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In brief

Analysis of viral RNA genomes from
thousands of diverse ecosystems
substantially expands the known
diversity of RNA viruses and show that
RNA bacteriophages account for a much
greater fraction of the global RNA virome.
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SUMMARY

High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150
diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent
RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA vi-
rus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses
and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five es-
tablished phyla and reveals two putative additional bacteriophage phyla and numerous putative additional
classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eu-
karyotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and
bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated

with eukaryotes, infect prokaryotic hosts.

INTRODUCTION

Viruses are obligate intracellular parasites of living organisms and
are regarded as the most numerous biological entities on Earth
(Mushegian, 2020). Historically, only viruses causing disease in hu-
mans, livestock, and crops along with model bacterial viruses
(phages) have been studied in detail. Recently, a previously unsus-
pected diversity of DNA viruses has been identified, thanks to ad-
vances in genome sequencing and metagenomics (Call et al.,
2021; Roux et al., 2021). Recognizing metagenomics role in virus
discovery, the International Committee for Taxonomy of Viruses
(ICTV) approved formal recognition of new virus taxa on the basis
of metagenomic sequence analysis (Simmonds et al., 2017).
Compared with DNA viruses, the diversity and role of RNA vi-
ruses in microbial ecosystems is poorly understood. Recently,
however, metatranscriptome surveys (bulk RNA sequencing of
entire microbial communities) uncovered massive amounts of
previously undetected RNA viruses (Krishnamurthy et al., 2016;

Zeigler Allen et al., 2017; Dolja and Koonin, 2018). In particular,
analysis of invertebrate transcriptomes resulted in doubling the
number of known RNA viruses (Shi et al., 2016), followed by a
further 2-fold expansion through analysis of the RNA sequences
in the metavirome (sequencing of the subcellular size fraction)
from a single site, implying a vast, barely sampled global RNA vi-
rome (Wolf et al., 2020). Other forays into RNA viromes include
analysis of fungal transcriptomes (Sutela et al., 2020), metatran-
scriptomes of various types of soil (Starr et al., 2019; Wu et al.,
2021), and expansion of the RNA phageome of aquatic environ-
ments (Callanan et al., 2020).

Apart from deltaviruses, all RNA viruses share a single hallmark
protein, the RNA-dependent RNA polymerase (RdRP) (Koonin
et al., 2020). Thus, study of the diversity and evolution of RNA vi-
ruses hinges on detection and analysis of RdRPs. Although due
to the extreme sequence divergence of the RARPs, the confidence
in the deepest branchings in the phylogenetic tree is low, five well-
separated, major clades were identified (Wolf et al., 2018; Holmes
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obtained via bootstrapping; semi-opaque segments represent the range of measured unique RvANI9O0 clusters across 25 random subsamplings. The central line
represents the mean of 25 random samples. Colors indicate the environment type (right chart).

(C) Number of RCR90 clusters (left) and RvANI9O0 (right), whose members are either entirely “reference” (contigs from the “reference set” only), “novel” (only
identified in the analyzed metatranscriptomes), or “shared” (contains members of each type).

See also Figure S1.

and Duchéne, 2019) and subsequently recognized as phyla
comprising the kingdom Orthornavirae within the realm Riboviria
(International Committee on Taxonomy of Viruses Executive Com-
mittee, 2020; Koonin et al., 2020).

Clearly, an extensive census of RNA virus genomes from
diverse habitats and hosts is crucial for understanding RNA virus
evolution. Here, mining 5,150 metatranscriptomes from various
environments, we expanded RNA virus diversity from 13,282 to
124,873 distinct clusters at a granularity level between species
and genus. We identified two candidate additional phyla and
numerous tentative classes, orders, and families. These include
unreported lineages likely infecting bacteria. Additionally, we
report multiple unexpected protein domains, some of which
are likely to counter antiviral defense.

RESULTS

Identification of RNA viruses from diverse
metatranscriptomes

Here, we devised a computational pipeline for sensitive RNA virus
detection suitable for analysis of thousands of metatranscriptomes
(Figure 1; see STAR Methods). Briefly, the pipeline first filters out
sequences likely encoded by DNA entities by comparing the
metatranscriptomic contigs to a diverse set of DNA genomes
and metagenomes. Subsequently, the much reduced sequence
set (<1% of the initial set) is iteratively searched for RdRPs, and
confident matches are treated as putative RNA viruses (see
STAR Methods). 3,598 of the 5,150 metatranscriptomes queried,
contained one or more contigs coding an RdRP of sufficient
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completeness for further analyses (see STAR Methods). We then
used the RdRP-encoding contigs as bait to identify additional
metatranscriptomic contigs sharing high nucleic similarity with
the RdRP-encoding ones (including outside of the RARP region).
Altogether, 2,658,344 RNA virus contigs were identified and
supplemented with 27,984 sequences from published sources
(Figure 1A). Of these, 348,762 contigs represented a deduplicated,
non-redundant sequence set of length > 1 kbp. These were group-
ed into 124,743 clusters sharing 90% average nucleotide identity
(RNA Virus ANI9O clusters [hereafter RvANI9Q]), of which only
13,308 (10.7%) contained at least one previously known
sequence, translating into a roughly 9-fold expansion of the global
RNA virome, at the ANI9O0 level of diversity.

The RNA virus sequence clusters showed a power law-like
distribution by size, dominated by small clusters, with a long
tail of large clusters, the largest one including 429 contigs (Fig-
ure S1). Based on the accumulation curve, the global diversity
of RNA viruses evaluated at the RvANI9O0 level showed no sign
of saturation (Figure 1B), with a particularly high richness in soil
environments (Figure 1B). About 5.8% of the RdRP-encoding
contigs showed evidence of utilizing alternative genetic codes
(Figure 2), and about 0.5% showed shuffling of the conserved
motifs (domain permutation) within the RdRP (Figure 2).

RdRP phylogeny and major expansion of RNA virus
diversity

To build a global RNA virus phylogeny, we first collected full-
length RARP core domain sequences and clustered them
at 90% amino acid identity threshold, arriving at 77,510
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representatives (RCR90 set). Even when reduced to the
RCR90 granularity, the set remained too large and diverse to
be directly amenable for multiple sequence alignment and phylo-
genetic analysis with advanced maximum likelihood phyloge-
netic methods. Therefore, we employed an iterative procedure
in which the tree was reconstructed using an alignment of con-
sensuses of sequence cluster alignments (see STAR Methods).
The resulting RdRP tree comprised 77,520 representative
sequences (77,510 RCR90 sequences and 10 reverse transcrip-
tases [RTs] included as an outgroup; Figure 2). Despite this dra-
matic expansion, the 5 previously established phyla (Wolf et al.,
2018) remained largely monophyletic. In addition, the tree
included two groups below the base of the phylum Kitrinoviri-
cota, which were analyzed in detail (see below).

Monophyly of the major branches in the RdRP tree, in particular
the 5 phyla, was verified by subsampling. Representatives of virus
families were repeatedly randomly sampled, phylogeny was re-
constructed from the multiple alignment of each sample, the posi-
tions of the phyla clades were traced, and a quantitative measure
of their monophyly was calculated (see STAR Methods). In most of
the samples, the 5 phyla stayed largely monophyletic (Figure S2A).
Sequences that tended to break the phylum-level monophyly
formed a sharply biased subset, with Flasuviricetes being the
most common “offender.” In this work, Flasuviricetes was placed
inside Pisuviricota, whereas in previous analyses, it was the basal
clade of Kitrinoviricota. Nevertheless, the inconsistent position of
flaviviruses in subsampled trees indicates that their phylogenetic
placement remains uncertain. The families Reoviridae, Picobirna-
viridae, Cystoviridae, and several candidate families also often

¢? CellPress

OPEN ACCESS

Pisuviricota

Figure 2. Phylogenetic reconstruction of the
o global RNA virosphere
nggfw”_cma An ultrameterized RdRP tree rooted using reverse
Negamaviicta transcriptases as an outgroup and visualized with
Reverse tanscrptases ggtree and ggtreeExtra (Xu et al., 2021; Yu et al.,
2018). Branches are colored black unless any of
their descendants contain at least one sequence
from the “reference set” (cyan). Tips aligned with
stars indicate evidence of prokaryotic host—
CRISPR spacer match in blue and bacteriolytic
domain in red. Green arcs indicate clades with an
alternative genetic code in >50% of the sequences.
Orange arcs indicate clades with motif permutation
in >50% of the RARPs. The 5 established phyla and
the proposed candidate phylum p.0002 are color
coded in both the text and the bar-plot in the
outermost ring, which represents the maximum
genome length observed for each RCR90 cluster
(i.e., tree tip). Key taxa are labeled directly on the
tree. Additional visualizations of the tree are avail-
able in the project’s Zenodo repository (see data
and code availability).
See also Figure S2.
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within Pisuviricota (see below).

When the subsampled trees were
reduced to the lowest common ancestor
of each of the five phyla, the deepest branching order was found
to be robust, with Pisuviricota and Kitrinoviricota forming a crown
group in the consensus tree, and Lenarviricota and Negarnaviri-
cota occupying basal positions (Figure 2, top right inset). As in pre-
vious analyses (Wolfetal., 2018), when the tree was rooted by RTs,
the deepest branch within Orthornavirae was the phylum Lenarvir-
icota that includes leviviruses (positive-sense RNA phages; class
Allassoviricetes) and their apparent direct descendants among
the viruses of eukaryotes, mitoviruses (Howeltoviricetes), narnavi-
ruses (Amabilivirecetes), and botourmiaviruses (Miaviricetes).
Although validating this branching order definitively may not be
feasible, this position of Lenarviricota is biologically plausible,
placing the origin of Orthornavirae in the bacterial domain. In
contrast, the deep placement of Negarnaviricota was unexpected,
given that -ssRNA viruses have been isolated almost exclusively
from animals and plants. Negarnaviricota position might reflect
an ancient origin, but more likely, is a phylogenetic artifact,
perhaps caused by acceleration of evolution at the base of
Negarnaviricota.

Comparison of the phylogenetic depths of the present RARP
phylogeny and the previously reported tree (Wolf et al., 2020) re-
flected a roughly 5-fold expansion of the global RNA virome as
measured by the total-branch-length (TBL). To convert the RARP
phylogeny into a tentative taxonomic scheme, we developed a
semi-quantitative approach for assigning taxonomic ranks to un-
classified nodes based on neighboring well-established taxa
(see STAR Methods). Taxa were designated to rank and prefixed
by p, c, o, f, and g for phylum, class, order, family, and genus,
respectively, followed by an ordinal number for proposed taxa of
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Table 1. Expansion of the global RNA virome

Number of Updated number Fold

Rank known taxa of taxa increase
RVANI90 13,282 124,873 9.4
cluster

RCR90 12,862 77,510 6.0
cluster

Family 98 489 4.9
Order 26 121 4.7
Class 19 93 4.9
Phylum 5 7 14

that rank. Taxa that associated with a previously described taxon
were terminated with “base,” e.g., £.0127.base-Noda is the 127th
new family that is basal to Nodaviridae in the RdRP tree (Table S1).

This approach resulted in a roughly 5-fold expansion of diver-
sity at all ranks below phylum, compared with the results of the
latest RNA virome analysis (Wolf et al., 2020; Table 1). However,
it has to be emphasized that this estimate was obtained without
taking into account the results of two large-scale RNA virus sur-
veys published since this analysis was performed (see limitations
of the study section) (Edgar et al., 2022; Zayed et al., 2022).

When broken down by phyla, the largest expansion at all
ranks was within Lenarviricota, followed by Kitrinoviricota and
Pisuviricota. By contrast, only a few taxa were added to Duplor-
naviricota and Negarnaviricota (Figure 2; Table S1).

In addition to the expansion reflected in the RARP phyloge-
netic tree, some of the RNA viruses (39,000 contigs that formed
24,742 RvANI9O clusters) identified in this work via the RARP-
based profile searches were discarded from the phylogenetic
analysis as the boundaries and some of the motifs of the core
RdRP domain could not be reliably identified.

Putative additional phyla and classes

As there is currently no official guidance from the ICTV for the for-
mation of RNA virus phyla and classes, we opted for criteria
similar to the ones used for shallower ranks (see STAR Methods),
that is, to form a phylum or class, a group was required to branch
outside of the existing phyla or classes. Two of the most diver-
gent clades identified here were positioned below the base of Ki-
trinoviricota in the RARP phylogeny and, in principle, can be
included in an expanded version of this phylum. The first of these
deep branches, p.0001, included only 3 RCR90 clusters and
therefore was not analyzed further. The second one, p.0002,
possess distinct features that appear more compatible with a
candidate phylum designation rather than expansion of Kitrino-
viricota. This putative phylum consisted of 234 contigs from 30
RCR90 clusters, the most complete ones encoding ~10 ORFs
with mean length of about 12 kb. Except the RdRP, only one of
the ORFs (conserved in one of the two tentative families in
p.0002) had significant similarity to a known protein domain,
specifically to M15 or M35 family of zinc metallopeptidases
implicated in cell lysis (see below). The ORFs in p.0002 genomes
are tightly spaced and preceded by ribosome-binding motifs
(Shine Dalgarno [SD]) involved in prokaryotic translation initiation
(Figure 3A). Taken together, p.0002 appears to consist of
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bacteriophages, supporting the group’s phylum designation as
all isolated Kitrinoviricota members infect eukaryotes.

Another highly divergent candidate RNA phage phylum was
RVvANI90_0011770, one of the viral clusters omitted from the phy-
logeny effort as they distorted the RARP alignment (hence, no p
designation). All RvANI90_0011770 members originated from 27
different active sludge samples, where the largest of these 55 con-
tigs were 10-12-kb long, encoding 7-9 closely spaced ORFs with
no conserved SD motifs. Similarly to p.0002, the only recognized
protein domains included the RARP and a predicted lysis enzyme
(see below).

A substantial increase in class-level diversity (see STAR
Methods) was observed in 4 of the 5 established phyla, including
14 classes versus 4 known in Lenarviricota, 18 classes over the 4
known in Pisuviricota, 20 classes versus 3 known in Kitrinoviricota,
and 18 classes versus 6 known in Negarnaviricota. In Duplornavir-
icota, only two candidate class-level clades were identified in
addition to the two recognized classes. Overall, the 5 phyla of Or-
thornavirae contained 91 classes compared with the 19 previously
established ones and 489 families compared with the previously
recognized 98 (Table 1; Table S1). Some of these additional candi-
date taxa included previously reported, divergent viruses that so
far eluded placement and lacked ICTV designation.

Major expansion of the range of RNA viruses associated
with bacteria

So far, most RNA viruses have been associated with eukaryotic
hosts, with only two groups known to infect bacteria, leviviruses
(Leviviricetes), and cystoviruses (Vidaverviricetes). Until recently,
leviviruses and particularly cystoviruses, included small numbers
of viruses with narrow host ranges. Here, we expand Cystoviridae
diversity from the 8 published RCR90 clusters to 132 RCR90 clus-
ters. Levivirus diversity, which was recently expanded (Callanan
et al.,, 2020) to 1,940 RCR90 clusters, was further increased
here by an additional 13,512 RCR90 clusters.

The expanded phylum Lenarviricota now accounts for over a
third of the RNA virus RCR90 clusters, including the four largest
families (Figure 2; Table S1), the first and fourth of these, Steitz-
viridae and Fiersviridae, respectively, are bona fide Leviviricetes
phages. The second-largest family, Botourmiaviridae, consists
of eukaryotic viruses that appear to have evolved from a
common ancestor with Leviviricetes, with the capsid-less Narna-
viridae and Mitoviridae (the third largest family of RNA viruses)
as intermediates (Koonin et al., 2020). In addition to the major
expansion of Lenarviricota, converging lines of evidence sug-
gested reassignment to bacterial hosts for several groups of vi-
ruses previously thought to solely infect eukaryotes (Figure 3B).
Phages now appear to be interspersed with those infecting eu-
karyotes within Pisuviricota. Specifically, the family Cystoviridae,
which migrated from Duplornaviricota to Pisuviricota in the cur-
rent RARP phylogeny, forms a strongly supported branch with
picobirnaviruses and partitiviruses (double-stranded RNA
[dsRNA] families embedded in the midst of the +ssRNA viruses
[Figure 2)). Within this Durnavirales order, several clades showed
unexpected conservation of SD motifs in the 5’ untranslated re-
gions (UTRs), suggesting that these viruses infect bacteria (Ba-
hiri Elitzur et al., 2021; Hockenberry et al., 2018). These putative
phages include members of Picobirnaviridae, for which presence
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excluding genes predicted on the edges of contigs. Ltase, lytic transglycosylase, lysozyme superfamily fold; SGL, “single-gene lysis” (cell wall synthesis in-
hibitors); PRO-M15, Zn-DD-carboxypeptidase (sensu PF08291.13); PRO-M35, M35 family zinc metalloendopeptidase; PRO-M23, M23-family metal-
lopeptidases; Amidase, N-acetylmuramoyl-L-alanine amidase; Endopep, L-alanyl-D-glutamate endopeptidase.

(C) CRISPR spacer landscape of Roseiflexus sp. RS-1 in Yellowstone hot springs, including spacers matching genPartiti.0019 genomes. Left panel displays the
total number of spacers identified for each type of Roseiflexus sp. RS-1 CRISPR arrays (see Figure S3). The right panel presents phage type (dsDNA, ssDNA, or
RNA) for which hits to CRISPR spacers were identified for each CRISPR type.

(D) Example of a predicted pair of RARP and capsid-encoding segments from a genPartiti.0019 phage. Top panel: CRISPR spacer matches are indicated
alongside a genomic map for each segment. The number of mismatches is shown on the y axis, and the position of the hit is indicated on the x axis. The bottom
panel displays the relative abundance of both segments across a metatranscriptome time series.

(E) Relative abundance of different prokaryotic RNA virus groups across biomes. Only datasets dominated by prokaryotic sequences (“P-dominated”) containing
at least 10 prokaryotic RNA viruses were considered. The right panel shows a breakdown of the biome distribution for each group, calculated from a balanced
dataset composed of random subsamples of 50 samples per environment (random subsampling was performed 100 times, and the mean values were plotted).

See also Figures S3 and S4.

of SD motifs was previously noted (Boros et al., 2018; Krishna-
murthy and Wang, 2018), along with two cysto-like families
(f.0114.base-Cysto and f.0112.base-Cysto) and two additional
genera within Partitiviridae (genPartiti.0029, genPartiti.0019.-
base-Deltapartitivirus) (Table S2; Figure 3B).

Another evidence of bacterial association for some of the
identified viral groups is the conserved occurrence of bacterio-
lytic proteins (Figure 3B). Many dsDNA Phages and dsRNA
cystoviruses encode lytic enzymes (endolysins) degrading bac-
terial peptidoglycan (Cahill and Young, 2019). In contrast, levi-
viruses induce host lysis by inhibiting peptidoglycan synthesis
via small proteins termed single-gene lysis (Sgl) (Cahill and
Young, 2019). Leviviruses sg/ are typically overlapping or
nested within other genes (Chamakura and Young, 2020).
Here, we used a collection of such lysis domains to detect
metatranscriptomic viral genomes potentially infecting bacteria
(see STAR Methods) (Figure 3B). This search yielded 546 signif-
icant matches to lysis protein profiles, mostly in Leviviricetes

(469) and Cystoviridae (17). Although known cystoviruses
encode lytic transglycosylases of the lysozyme superfamily
(SF) fold (Dessau et al., 2012), some of the cysto-like families
identified here encoded other peptidoglycan-digesting en-
zymes. Specifically, some f.0114.base-Cysto viruses encode
N-acetylmuramoyl-L-alanine amidases, whereas viruses of
f.0112.base-Cysto encoded metallopeptidases of the M15 or
M23 families (Table S2), both often found in dsDNA phages
and are known to cleave bonds of cross-linking peptides (Oli-
veira et al., 2013). Some £.0112.base-Cysto viruses also en-
coded lipases that may further induce host lysis. Finally,
f.0115.base-Cysto viruses encoded an L-alanyl-D-glutamate
endopeptidase that commonly functions as endolysins in
dsDNA phages (Cahill and Young, 2019; Oliveira et al., 2013).
This clade-specific distribution of endolysins in cystoviruses in-
dicates that, as in dsDNA phages, lysis genes are subject to
frequent non-homologous replacement, potentially linked to
host range change.
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Two other groups of RNA viruses were found to encode lysis
proteins, picobirnaviruses and family £.0278 in the proposed
phylum p.0002. Six picobirnaviruses encode either lytic transgly-
cosylases or M23-family metallopeptidases. Members of £.0278
encode either M15 or M35 family zinc metallopeptidases
(Table S2). M15 family enzymes are involved in host lysis in
some dsDNA phages (Kutyshenko et al., 2021) and in some
ssDNA bacteriophages (Roux et al., 2012), whereas M35-family
enzymes have not been previously linked to phage egress. Given
that the two enzymes are mutually exclusive in £.0278 and the
corresponding genes occupy equivalent positions, we propose
that M15 and M35 family proteins function as endolysins. The
conservation of M15 and M35 proteins in £.0278 strongly sup-
ports bacterial host assignment. Finally, RvANI90_0011770, a
putative phylum of RNA bacteriophages identified by the RARP
searches not included in the present phylogeny, showed similar
conservation of M23-family metallopeptidases.

The final line of evidence for prokaryotic host assignment was
the detection of matches between RNA viruses and CRISPR
spacers. Although most known CRISPR systems target DNA
templates, a large subset of type Ill CRISPR systems encode
RT and can protect bacteria against RNA bacteriophages (Ma-
karova et al., 2020; Silas et al., 2017). We compared all identified
RNA virus genomes with the IMG database of >50 million
spacers (see STAR Methods), detecting spacer matches for
161 RNA viruses from 23 RvANIQO clusters, across two clades:
Leviviricetes, and genPartiti.0019 (Figure 3B; Table S2). All
matches to Leviviricetes viruses were from short contigs derived
from IMG metagenomes, with no reliable taxonomic information
or adjacent cas genes (Table S3). By contrast, matches to
genPartiti.0019 viruses were specifically associated with popula-
tions of Roseiflexus sp. RS-1 and were further analyzed. This
filamentous anoxygenic phototrophic bacterium of the phylum
Chloroflexi is a dominant member of microbial mats in Mush-
room Spring (Davison et al., 2016), from which the genPar-
titi.0019 sequences were obtained. The genome of Roseiflexus
sp. RS-1 contains four CRISPR loci, with one subtype IlI-B en-
coding a RT fused to the Cas1 protein (see Figure S3) (van der
Meer et al., 2010). Compiling spacers across 16 metagenomes,
each of the CRISPR arrays could be associated with =1,000-
40,000 spacers, yet all but one spacers matching genPartiti.0019
sequences were detected in the RT-encoding IlI-B array,
suggesting that these were acquired from RNA templates (Fig-
ure 3C). These CRISPR spacer matches were observed in sam-
ples spanning 9 years and showed dynamic spacer gain/loss
through time, indicative of virus-host association (Figure S3).

Because all genPartiti.0019 contigs encoded RdRP alone,
whereas related partitiviruses have segmented genomes, where
the capsid and other proteins are encoded in separate seg-
ments, we searched the Mushroom Spring metatranscriptomes
for contigs encoding the corresponding capsid proteins (CPs).
Combining matches to spacers from the RT-encoding type
I1-B array of Roseiflexus sp. RS-1, the absence of corresponding
sequences in the Mushroom Springs DNA metagenome, and
strong relative abundance correlation (>0.9) to at least one gen-
Partiti.0019 RdRP-encoding sequence, we identified 88 poten-
tial capsid-encoding contigs (Figure 3D; Table S3), of which 86
encoded proteins with best alignment to HMM profiles of known
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partitiviruses capsids (Figure S3). Thus, genPartiti.0019
members are most likely segmented RNA phages infecting
Roseiflexus sp. RS-1.

Interestingly, in datasets dominated by prokaryotic hosts
(“P-dominated,” see below), most potential RNA phages were
detected across a broad range of biomes, where Leviviricetes
was by far the most abundant group of prokaryotic RNA viruses,
except in some Yellowstone hot springs dominated by genPar-
titi.0019 (Figure 3E).

Differential distribution of RNA viruses across samples
and habitats
Our RNA virus survey spanned the entire globe, reflecting the
ubiquity of RNA viruses on Earth (Figure 4A). Metagenomic
studies have shown that DNA virus distribution is shaped by
the environment type and host community composition (Gregory
et al., 2019; Martinez-Hernandez et al., 2017; Roux et al., 2016),
and the same factors likely determine the RNA virus distribution.
For metatranscriptomes, the sample processing protocol can be
another factor, namely, whether the total RNA was sequenced or
whether any specific preprocessing was used (such as mRNAs
enrichment via poly(A) amplification, or rRNAs depletion) (Gann
et al., 2021). Here, most of the datasets analyzed were rRNA-
depleted (67 %, Figure S4). Although the poly(A)-enriched and to-
tal RNA datasets were dominated by eukaryotic sequences, the
rRNA-depleted datasets consisted mostly of sequences from
prokaryotes (Figure S4). The datasets were separated into
three groups: “Eukaryote(E)-dominated” (811), “Prokaryote(P)-
dominated” (2,706), and “Mixed” (452), based on the taxonomic
composition of non-viral contigs. Most RNA virus classes
showed clear distribution patterns across dataset types and en-
vironments, likely reflecting the distribution of their primary host
groups (Figures 4B and 4E). For instance, Leviviricetes were
consistently enriched in P-dominated samples from engineered,
rhizosphere, and soil habitats (Figure 4B). This implies an uneven
global ecological distribution of RNA phages, supporting previ-
ous findings (Callanan et al., 2020). Also among Lenarviricota,
Miaviricetes which infect mostly fungi, invertebrates, and plants
were associated with E-dominated and Mixed datasets,
whereas Howeltoviricetes members, including mitoviruses,
were common in all sample types but found preferentially in
plant-associated datasets also rich in fungi.

Although assigning specific eukaryote hosts to RNA viruses is
a challenging task not addressed in this work, we suspect that
many of the detected viruses infect diverse unicellular eukary-
otes, as they utilize alternative genetic code (see below).
Assuming that the broad host assignment (plants, animals, or
fungi) of viruses can be extended over minor sequence dissimi-
larity (less than 10%), we identified only 1,038 metatranscrip-
tomic contigs that belonged to the same RVANI9O cluster as
viruses from VirusHostDB (Mlhara et al., 2016) assigned to plant
or animal hosts, indicating low prevalence of viruses infecting
these hosts in the analyzed datasets. Additionally, specific
host assignment to plants can be made for 1,038 metatranscrip-
tomic contigs (in 6 families: Tombusviridae, Virgaviridae,
Betaflexiviridae, Alphaflexiviridae, Benyviridae, and Mayoviri-
dae), encoding movement proteins (MPs), which enable viruses
to pass through plasmodesmata.
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Figure 4. Global distribution of RNA viruses
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See also Figure S4.

Modular evolution of RNA virus genomes

Here, we performed a comparative analysis of viral genomes
from related clades, identifying instances of genomic modularity,
such as fusion of genome segments, rearrangement of proteins,
and segmentation of polyproteins. Common genomic rearrange-
ments involving the structural module were observed in Picorna-
virales, where CPs were encoded both downstream or upstream
of the genome replication module, as part of the same polypro-
tein or as separate proteins (Figure S5, Genome maps). Known
viruses of Benyviridae, Picobirnaviridae, and Botourmiaviridae
typically encode the CP and RdRP on different segments.
Here, we identified members of these families where the RdRP
and CP are on the same segment.

We detected multiple cases of structural gene module displace-
ment by non-homologous counterparts. For instance, although
members of Potyviridae, Benyviridae, and Matonaviridae encode
3 unrelated CPs and form helical filamentous, rod-shaped, or en-
veloped virus particles, respectively, some of the lineages branch-
ing near these viruses encode single jelly roll (SJR) CPs expected
to form non-enveloped icosahedral virions. Given this lineage
basal position, SUIR CPs were likely ancestral in all three virus
groups. In the £.0226.base-Beny group, several viruses encode
both SJR and tobacco mosaic virus (TMV)-like CPs that can be
predicted to form icosahedral and helical capsids, respectively
(Figure S5), suggesting these viruses probably acquired the sec-
ond CP yet retained the ancestral one. Exaptation of one of the
CPs appears likely, as previously described for closteroviruses
(Doljaetal., 2006). Non-homologous CPs were also identified in lin-

eages basal to Togaviridae (f.0271.base-Toga and f.0273.base-
Toga), where the typical Togaviridae icosahedral forming CPs
were replaced by TMV-like CPs, likely forming rod-shaped helical
virions, suggesting TMV-like CPs emerged in a common ancestor
of Hepelivirales and Martellivirales. Conversely, in two identified
Virgaviridae contigs (ND_191857 and ND_019381), the TMV-like
CP was replaced by structural proteins of Kitaviridae. In
f.0268.base-Toga, the typical Togaviridae structural module
(including genes for CP and class Il fusion [CIIF] protein) was re-
placed by a class | fusion protein and M protein of nidoviruses
(ND_164660; Figure 5). Similar replacement of a membrane fusion
glycoprotein was also identified in Xinmoviridae contigs, where
CIIF protein replaced the typical class Il fusion protein, yet retain-
ing the typical mononegaviral nucleocapsid protein.

We identified several virus groups basal to Hypoviridae (capsid-
less mycoviruses) encoding CPs homologous to those of flexible
helical viruses (f.0066.base-Hypo) or SIR CPs of icosahedral vi-
ruses (f.0067.base-Hypo, £.0068.base-Hypo, f.0069.base-Hypo),
suggesting these families ancestor is likely capsid encoding. Simi-
larly, we identified Deltaflexiviridae relatives encoding SUR CPs
(ND_196199 and ND_246366 from £.0215.base-Deltaflexi) similar
to those of tymoviruses, suggesting that Deltaflexiviridae evolved
from a member of Tymoviridae following the switch to fungal hosts.
The recurrent appearance of the SUR CP in base lineages of
several groups of structurally diverse viruses is compatible
with the proposed origin of most RNA viruses of eukaryotes from
a simple ancestor that encoded RdRP and SJR CP (Koonin
et al.,, 2020).
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cleotides. Abbreviations: NUDIX, nucleoside diphosphate-X hydrolase; BIR_IAP, baculoviral IAP repeat (BIR) domains of the inhibitor of apoptosis (IAP); HAM1,
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See also Figures S5, S6, and S7.

Originally described in Permutotetraviridae and Birnaviridae, a
distinct rearrangement (known as “domain permutation”) occurs
within the RARP domain, where the order of the motifs (A, B, C.) dif-
fers from the canonical form. Here, ~2.9% of the RCR90 RARP set
(2,241) were identified as permuted. Our analysis suggests that
motif swapping was ancestral in two classes (Figure 2), candidate
class ¢.0017 in Pisuviricota (which includes Permutotetraviridae,
Birnaviridae, and 14 other tentative families [f.0088-f£.0101])
and candidate class ¢.0032 in Kitrinoviricota (covering 8
putative families [f.0167-f.0174], including many viruses from
the Yangshan assemblage [Wolf et al., 2020]). Outside of Pisuviri-
cota and Kitrinoviricota, we detected only a small clade
consisting of 2 permuted RCR90 RARPs within Botourmiaviridae
(Lenarviricota).

Expansion of the protein domain repertoire of RNA
viruses

Here, we annotated the identified viruses via an extensive search
for protein domains (see STAR Methods and Figure S3). In line
with previous studies (Wolf et al., 2020), the frequencies of the
detected domains followed a power law-like distribution, where
most domains only occurred in specific viral groups (Figure S7).
Of the few hallmark domains that were widespread across the
RNA viral tree, the most ubiquitous was the RdRP, followed by
different types of CPs (CP_SJR, CP_levi), RNA helicases (SF1,
SF2, SF3), and serine/cysteine proteases (Figure S7). Apart
from the aforementioned lysis domains, we identified several do-
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mains predicted to modulate virus-host interactions and sup-
press the host antiviral response.

Several Tobaniviridae members, which primarily infect verte-
brates, encoded homologs (HHpred p = 100%) (Zimmermann
et al., 2018) of the cytokine receptor-associated Janus kinase
(JAK) TYK2, which upon activation triggers host immune re-
sponses (Haan et al., 2006). These viral JAKs lacked the FERM
and SH2 domains of typical TYK2 and may function as dominant
negative inhibitors of the cellular JAKs via their pseudokinase
domain. The only other RNA viruses predicted to encode a
serine/threonine kinase are partitiviruses (Figure 5), although
that kinase is unrelated to JAKs. Members of £.0059.base-Poty
and £.0167 families encode homologs of cytokine receptors of
the tumor necrosis factor receptor SF, known to be involved in
apoptosis and inflammation (Gravestein and Borst, 1998). The
viral homologs may act as decoys of the host counterparts,
sequestering the cytokines.

Some Dicistroviridae members, and several lineages basal to
Solinviviridae (f.0024.base-Solinvi, f.0014.base-Solinvi, f.0017.
base-Solinvi, f.0018.base-Solinvi) and Polycipiviridae (f.0008.
base-Polycipi), contained homologs of baculoviral IAP repeat
(BIR) domain (baculovirus inhibitor of apoptosis), known to func-
tion in cell cycle control and death (Clem, 2015).

Nucleoside diphosphate-X hydrolase (NUDIX) SF hydrolases
are common in all domains of life and in dsDNA viruses (Vasude-
van and Ryoo, 2015). Here, we identified NUDIX hydrolases
in 13 different RNA virus families (Flaviviridae, Nodaviridae,
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Cystoviridae, and several candidate families). Apart from the
bacteria-infecting Cystoviridae, we suspect these RNA virus-en-
coded NUDIX hydrolases function like those of dsDNA viruses,
acting as decapping enzymes promoting shutoff of host protein
synthesis (Kago and Parrish, 2021).

In 11 diverse RNA virus families from the phyla Kitrinoviricota
and Pisuviricota, we identified the J domain, the active moiety
of Dnad (Hsp40) co-chaperone (Laudenbach et al., 2021). In
these viruses, the J domain is part of the virus polyproteins
and might facilitate polyprotein folding and processing and/or
virion assembly.

We also identified several enzymatic domains implicated in
RNA repair and metabolism, including RtcB-like 3'-phosphate
RNA ligase (Hughes et al., 2020), HAM1-like pyrophosphatase
(Simone et al., 2013), DEDD-SF 3'-5’ exonuclease that could
be involved in immune suppression, as in arenaviruses (Hastie
et al., 2011), and tRNA 2’-phosphotransferase implicated in
tRNA splicing (Sawaya et al., 2005). In cellular organisms, the
latter enzyme is often encoded with NAD and ADP-ribose
(NADAR) domain proteins implicated in NAD metabolism, in
the context of RNA processing (de Souza and Aravind, 2012).
NADAR domains have been originally detected in Roniviridae
(+ssRNA viruses) and giant dsDNA viruses (de Souza and Ara-
vind, 2012). We identified NADAR domains in RNA viruses
from 12 families, emphasizing the potential importance of this
domain for RNA virus replication.

In certain cystoviruses, we detected a protein with an N-termi-
nal domain homologous to the C-terminal domain (CTD) of
sigma70 factors (a subunit of the bacterial RNA polymerase
holoenzyme, that directs the RNA polymerase to specific pro-
moters; Paget and Helmann, 2003). The CTD of this cystoviral
protein is similar to the C-terminal region of bacterial RNA poly-
merase alpha subunit. The CTDs of sigma70 and RNA polymer-
ase alpha are known to interact (Chen et al., 2003), suggesting
that this cystoviral protein reconstitutes this interaction interface
and may participate in transcriptional takeover during infection,
potentially overcoming the host antiviral defenses.

The identification of these diverse domains in RNA viruses
of one or several lineages implies multiple mechanisms of
virus-host interaction and, in particular, counter-defense, which
remain to be investigated.

Alternative genetic codes in RNA viruses

Previous surveys identified several RNA virus groups utilizing
non-standard genetic codes, suggesting they infect hosts with
matching codes, such as ciliates (Wolf et al., 2020). Here, of
the 77,510 RCR90 representatives, 5,843 (~7.5%) showed evi-
dence of alternative genetic codes, indicated by the presence
of canonical STOP codons within the RARP core domain coding
region (see STAR Methods). Although in most cases, it is impos-
sible to identify the specific alternative code, of the cases where
it was feasible, the most common codes were 6 (UAA and UAG
coding GIn) and 14 (UAA and UGA coding for Tyr and Trp,
respectively, along with recoding of three sense codons) that
have been identified in ciliates (Ring and Cavalcanti, 2008) and
flatworm mitochondria (Ross et al., 2016), respectively. Unlike
many DNA viruses that use alternative genetic codes which
actively reprogram the host cell’s translation machinery for their
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benefit (lvanova et al., 2014; Yutin et al., 2021), in RNA viruses,
such codes are likely to represent adaptation to the host transla-
tion machinery. This phenomenon is well-known for multiple iso-
lated mitoviruses that use the mitochondrial genetic code (UGA
recoded from stop to Trp) and replicate inside mitochondria (Ni-
bert, 2017), and indeed, ~51% of the viruses within the much
expanded (2,553 of 5,006 RCR90) Mitoviridae use code 4 that
is common in fungal mitochondria. Apart from mitoviruses, con-
tigs with alternative genetic codes were detected in most of the
large RNA virus groups, typically at frequencies of a few percent.
We identified virus lineages enriched (>50%) in such codes,
throughout the phylogenetic tree of the RdRPs (Table S5, green
arcs in Figure 2). No coherent phylogenetic signal of alternative
code was detected in Duplornaviricota and Negarnoviricota.
Contrastingly, we detected 19 families of Pisuviricota that typi-
cally contained one or two small branches (8-30 RCR90 mem-
bers) with apparent protist codes (UAA and/or UAG code for
an amino acid). Dicistroviridae (monopartite +ssRNA arthropod
viruses) stood out with 12 such branches, suggesting some of
these dicistroviruses may be protists infecting, potentially
arthropod-associated ones. Finally, in Kitrinoviricota, we
observed a surprising distribution of alternative codes: 7 families
included small branches with alternative codes, whereas 7 other
families consisted exclusively (.0150, £.0177-f.181) or primarily
(f.0176) of viruses using alternative protist-like codes. In line
with previous findings (Wolf et al., 2020), the present analysis
suggests Kitrinoviricota includes a substantial, previously unsus-
pected, diversity of protist viruses.

DISCUSSION

Metagenomes and metatranscriptomes have become the prin-
cipal sources of DNA and RNA virus discovery, respectively
(Call et al., 2021; Simmonds et al., 2017). Here, we analyzed
more than 2.5 million RNA virus contigs recovered from 3,598
diverse metatranscriptomes. Metatranscriptome analysis is
prone to artifacts that stem, in particular, from chimeric RNA
assemblies. Therefore, it is important to emphasize that all
conclusions of this work are based on analysis of evolutionary
conserved groups of RNA virus sequences, and not singletons,
under the assumption that appearance of the same chimera in
different assemblies is highly unlikely; several other safeguards
against chimeric assemblies were implemented (see STAR
Methods).

Our analysis resulted in a 9-fold-increase in the number of
90% RVANI clusters (between the species and genus ranks), a
5-fold increase in the total phylogenetic depth, an almost
6-fold increase in the number of representative RARP sequences
(RCR90), and a 5-fold increase in the number of putative taxa at
the levels from family to class. In contrast, at the phylum level,
the RNA virus taxonomy remained essentially stable, with the
exception of adding two candidate phyla to the previously estab-
lished 5.

Most of the previous assignments of RNA virus families to
phyla remained stable, albeit with notable exceptions. Thus,
Cystoviridae expanded by an order of magnitude and relocated
from Kitrinoviricota to Pisuviricota, where it now forms a strongly
supported clade with other dsRNA viruses, picobirnaviruses,
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and partitiviruses. Given the greater reliability of phylogenetic
analysis with the expanded family and the plausibility of the
monophyly of these three groups of dsRNA viruses, the current
position of Cystoviridae is likely to be valid. However, the
placement of several other families, notably, Flaviviridae, was
unstable. Although this family also moved from Kitrinoviricota
to Pisuviricota, in this case, the actual affiliation remains
uncertain.

Classification of the kingdom Orthornavirae into phyla appears
to be robust, but the resolution of the phylogeny of the RARP
near the root might be insufficient to decipher the relationship
among the phyla. The previously proposed scenario of the origin
of dsRNA viruses from within positive-sense RNA viruses on
multiple independent occasions and of negative-sense RNA vi-
ruses (Negarnaviricota) from the Duplornaviricota (Wolf et al.,
2018) remains biologically plausible. However, phylogenetic
analysis of the expanded set of RdRPs failed to vindicate this
scenario in its entirety, although multiple origins of dsRNA vi-
ruses were supported. The basal position of Negarnaviricota
observed here, albeit robust to the performed tests, most likely,
is an artifact of deep phylogenetic analysis. In contrast, the basal
position of Lenarviricota in the tree rooted with RT likely reflects
the origin of the rest of the RNA viruses from a common ancestor
with this phylum within the bacterial domain. This scenario ap-
pears particularly plausible considering the major expansion of
the bacterial RNA virome in this work. Considering the size and
diversity of the analyzed dataset, it appears likely that the infor-
mation contained in the RARP sequences is indeed insufficient to
resolve the deepest relationships among RNA viruses. This
problem will merit revisiting once sufficient diversity of RARP
structures accumulates, possibly, providing for a better phyloge-
netic resolution.

The present analysis eliminates the long-standing bias in the
RNA virome toward eukaryote-infecting viruses (Koonin et al.,
2015). Apart from the major expansion of the diversity of levi-
like viruses, we obtained indications that multiple additional
groups of viruses infect bacteria—in particular, picobirnaviruses
and several clades of partitiviruses. A key line of evidence sup-
porting this possibility is the discovery of numerous CRISPR
spacers targeting RNA viruses, both members of Leviviricetes
and a group of candidate RNA phages within partitiviruses.

The present results strongly suggest that drastic host shifts,
known as horizontal virus transfer (HVT), between distantly
related hosts, even crossing the prokaryote-eukaryote divide,
is a major route of RNA virus evolution (Dolja and Koonin,
2018). The HVT events likely occurred on multiple, independent
occasions within different phyla, classes, and possibly even or-
ders of RNA viruses. In that regard, the small group of viruses,
for which multiple CRISPR spacer matches were detected and
that therefore was tentatively assigned to the Roseiflexus bacte-
rium as the host, is notable. This narrow virus group from a
unique habitat, likely, a genus, is lodged deeply within partitivi-
ruses, many of which are known to infect fungi, plants, and inver-
tebrates (Cross et al., 2020; Shi et al., 2016; Vainio et al., 2018).

In addition to the major expansion of the global RNA virome,
this work also substantially expands the catalog of protein do-
mains encoded in RNA virus genomes. The common theme
among these domains that are each represented in narrow line-
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ages of RNA viruses appears to be counter-defense via diverse
molecular mechanisms. These findings imply that, despite their
typically smaller genomes, RNA viruses are more similar to
DNA viruses with respect to the exaptation of host genes than
previously appreciated (Koonin et al., 2022).

In summary, the results greatly expand the diversity of the
kingdom Orthornavira, in particular that of RNA viruses associ-
ated with bacteria, while introducing relatively minor changes
into the latest taxonomic scheme, supporting its general robust-
ness. Additionally, multiple protein functionalities were predicted
in RNA viruses. The large amount of sequence and derivative
data generated in this work is available through the companion
website (riboviria.org) or via the Zenodo deposit. We expect
this resource to enable researchers to gain meaningful and
comprehensive context when describing new RNA viruses in
future studies, for example, by offering insights into the ecolog-
ical distribution of specific viral lineages or via the clade-specific
protein domain annotations. Furthermore, this resource can help
researchers identify key RNA virus genomes to be characterized
experimentally.

Limitations of the study

Our approach to the detection of RNA viruses relied heavily on
the presence of an RdRP via profile searches that can miss
extremely distant homologs with altered canonical sequence
motifs. Furthermore, several RNA viruses possess “split”
RdRPs, where the motifs are encoded in different ORFs or
even genomic segments (Sutela et al., 2020; Chiba et al.,
2021). Another drawback of our RdRP-based discovery is the
lack of a systematic identification effort for segmented RNA virus
genomes (as the non-RdRP coding segments would be unre-
ported). Presently, genomic segments other than that encoding
the RARP were identified by co-occurrence analysis only for the
group of bacteria-infecting partiti-like viruses targeted by
CRISPR. Comprehensive detection of segmented RNA virus ge-
nomes is a task for future analyses, as is the assignment of
different segments to each other/specific viral genome.

Two studies conducted concurrently with this work generated
related insights. A large-scale survey of RNA-sequencing ar-
chives reporting numerous novel RNA viruses has been pub-
lished by the Serratus team (Edgar et al., 2022), and a large-scale
metatranscriptome analysis of oceanic RNA viruses has been
published by the Tara Oceans project (Zayed et al., 2022). A
comprehensive comparison of the results of the three studies
that differed in many methodological aspects, including the
scope of the analyzed metatranscriptomes, remains a major
task for the future. However, to quantify the overlap among the
results of the three projects and accordingly assess the novelty
of each, we performed an automated comparison of RdRP clus-
ters obtained with two clustering thresholds, 0.9 for fine grain
and 0.5 for coarse grain classification (see STAR Methods).

The results of this comparison (Table S8 “cluster intersec-
tions”) detected relatively small numbers of clusters shared by
all three projects and showed that thousands of clusters were
unigue to each. At fine grain (threshold of 0.9), the greatest num-
ber of unique clusters was identified in the Serratus data, as
could be expected given that this project included a consider-
ably larger data set than the other two. However, at coarse grain
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(threshold of 0.5), our present results included more unique clus-
ters than the other two studies taken together, indicating that our
work covers a substantially greater phylogenetic depth of RNA
viruses. This comparison supports our conclusion that the
current sampling of the global RNA virome is far from reaching
saturation. Thus, the three studies are complementary, and
incorporation of the results into a single phylogenomic frame-
work and synthesis of the conclusions should substantially
advance our knowledge of the RNA virosphere.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

All original data and code produced in This paper https://doi.org/10.5281/zenodo.6553771
this work

Original code produced in this study This paper https://github.com/UriNeri/RVMT
accompanying interactive web portal This paper https://riboviria.org

Software and algorithms

MMseqs?2 Steinegger and Séding, 2017 https://github.com/soedinglab/MMseqs2

NCBI BLAST+ suite Altschul et al., 1997; Johnson et al., 2008 https://ftp.ncbi.nim.nih.gov/blast/
executables/blast+/LATEST/

DIAMOND Buchfink et al., 2015 https://github.com/bbuchfink/diamond

bbmap v38.81 Bushnell, 2014 https://sourceforge.net/projects/bbmap/

MUSCLE v.5 Edgar, 2021 https://www.drive5.com/muscle/
downloads.htm

Mafft v7.407 Katoh and Standley, 2013 https://mafft.cbrc.jp/alignment/software/

HH-Suite Steinegger et al., 2019 https://github.com/soedinglab/hh-suite

HMMER Soding, 2005; Potter et al., 2018 http://hmmer.org/

CD-HIT Fu et al., 2012 https://github.com/weizhongli/cdhit

MCL Enright et al., 2002 https://micans.org/mcl/index.html

ggtree Yu et al., 2018 https://bioconductor.org/packages/
release/bioc/html/ggtree.html

ggtreeExtra Xu et al., 2021 https://bioconductor.org/packages/
release/bioc/html/ggtreeExtra.html

1Q-Tree Nguyen et al., 2015 http://www.igtree.org/

dustmasker (v1.0.0) Morgulis et al., 2006 https://www.ncbi.nim.nih.gov/IEB/
ToolBox/CPP_DOC/Ixr/source/src/app/
dustmasker/

etandem (v6.6.0.0) Rice et al., 2000 http://emboss.open-bio.org/rel/rel6/apps/
etandem.html

R The R Project for Statistical Computing https://cran.r-project.org/

Python Python Software Foundation https://www.python.org

Igraph Csardi and Nepusz, 2006 https://igraph.org/

Prodigal (v2.6.3) Hyatt et al., 2010 https://github.com/hyattpd/Prodigal

tRNAscanME2 Chan et al., 2021 https://github.com/UCSC-LowelLab/

tRNAscan-SE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and additional data should be directed to and will be fulfilled by the lead contact,
urineri@mail.tau.ac.il (U.N.).

Materials availability

This study did not generate new unique reagents, physical samples, or specific biological material. As a computational project, the
input for this study is publicly available as detailed below in “metatranscriptome acquisition”. All results and output of this study are
described below in the “data and code availability” section.
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Data and code availability
All original data and code produced in this work is freely and fully available through several venues (DOls also listed in the key re-
sources table):

e All the data, code, results produced in the course of this project, as well as the latest release of the accompanying interactive
web portal (https://riboviria.org), are available via CERN’s Zenodo repository (https://doi.org/10.5281/zenodo.6553771). This
project is intended to serve as a community wide resource. As such, the Zenodo repository includes the additional information
and various intermediary results and secondary analyses, such the predicted coding sequences, host assignments, phylogeny
and taxonomic affiliation, raw domain hidden markov model (HMM) search matches, additional domain profile databases
generated in this work (e.g. alignments, HMMs, original seed sequences and predicted function) as well the nucleic sequences
for both the expanded (2.6M metatranscriptome derived) contig set and the manually consolidated “Reference Set” (see STAR
Methods).

® As noted above, the Zenodo deposit includes the original code produced in this study, which corresponds to the latest version
of the project’s GitHub repository, which is available under the open-source MIT License at https://github.com/UriNeri/RVMT.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Metatranscriptome acquisition

The identification of RNA viruses was performed on a total of 5,150 publicly available, pre-assembled metatranscriptomes, that were
retrieved from IMG/M in January 2020 (Chen et al., 2021; Mukherjee et al., 2021). As previously described, the majority of these were
assembled using MEGAHIT (Li et al., 2016) (see Table S4 for information referring to the assembler used in the different samples, and
when available, reference to the study where the samples were originally published).

Primary Filtering process
For convenience, we summarized the final tools and cutoffs of the Primary and secondary filtration process in Table S6 - Discovery
pipeline search and filtration thresholds.

Our initial criteria for contigs acquired from the IMG/M portal discarded sequences shorter than 1,000 nt or encoding rRNA genes
(the remaining contigs were dereplicated at 99% sequence identity via mmseqs easy-linclust) (Steinegger and Soding, 2017).

To filter out sequences that were highly unlikely to represent RNA viruses, we compared the obtained metatranscriptome contigs
to a compendium of DNA sequences built from 1,831 metagenomes originated from the same studies as 1,306 of the metatranscrip-
tomes. We selected metagenomes that shared the metadata attribute of “Study_ID” with the 5,510 metatranscriptomes in the Ge-
nomes OnLine Database (GOLD) portal (Mukherjee et al., 2021) as these DNA assemblies would cover a similar range of habitats as
the analyzed metatranscriptomes. Using multiple sequence search tools (specifically, MMsegs2 (nucleic - nucleic (search type 3)
(Hauser et al., 2016; Steinegger and Soding, 2017), DIAMOND (translated nucleotide versus the IMG sourced DNA metagenomic
predicted ORFs (diamond blastx) (Buchfink et al., 2015), and NCBI BLAST (nucleic - nucleic - blastn) (Altschul et al., 1997; Camacho
et al., 2009; Johnson et al., 2008)) in an iterative manner, we identified and excluded metatranscriptomic contigs that matched se-
quences in the DNA sequence dataset (Figure 1A), based on the assumption that RNA viruses would not be present in DNA assem-
blies — which would be comprised of cellular organisms, DNA-based mobile elements, and integrated retroviruses. The iterative
search was performed such that each iteration gradually increased the search sensitivity (e.g., through decreased word length
(BLASTN) and higher sensitivity value (MMsegs?2 “-sensitivity”)), while discarding all sequences from the metatranscriptomes collec-
tion that produced reliable matches to sequences in the “DNAome”, before advancing with the filtered output to the next iteration.
This process was repeated for a total of five iterations, though we should note the initial iterations were mainly exploratory (used for
crude tuning of the procedure).

Secondary Filtering process

To further filter the contig set, we supplemented the above filtering process output with 5,954 RNA viral sequences from reference
databases and performed an additional iterative filtering procedure using public databases (NCBI NT/NR and IMG/VR) as the DNA
set. To prevent the exclusion of bona fide RNA virus sequences, we masked entries of the public databases that matched reference
RNA viruses from subsequent iterations. All discarded contigs were aggregated and supplemented with manually identified DNA
encoded contigs, creating a database of “false positives”, that was used to further filter the metatranscriptome dataset through
exclusion of sequences with producing passable matches to the “false positive” set. The procedure of collecting the discarded
matches to further refine the working set was repeated three times.

Estimation of DNA remnants in intermediate sets

To evaluate remnants of DNA sequences in the working set through the filtration process, we routinely analyzed random contig
subsets by (1) computing the RdRP to reverse-transcriptase domain ratio as a proxy to the RNA virus to DNA-encoded contigs;
(2) manually inspecting the presence of the most frequent non-RNA virus-related domains. Of note, several specific domains
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recurred frequently during this performance evaluation, and manual examination revealed these to be domains of known repeats.
Mostly, these contigs were fully populated with matches to such repeat domains, and that these had cellular matches in the public
DBs, whose alignment values were just below our reporting or acceptance criteria. Hence, we decided to discard these contigs if
they were completely coding for multiple repeats, as there would be no sufficient coding space for these to encode an identifi-
able RdRP.

Following the below RdRP identification step (described in the section below) approximately 130 reverse-transcriptases had
passed the various filtration processes and were manually removed. MMseqgs2, the PFamA Database (Mistry et al., 2021) and the
RdRP and RT collection from Wolf et al. (2018), were used in all the profile searches performed in this evaluation.

RdRP identification

Previously published multiple sequence alignments of RARPs and reverse-transcriptases (Wolf et al., 2018, 2020) were formatted as
tool-specific subject databases, and employed as queries to search a sequence database consisting of the 6-frame end-to-end
translations of contigs passing the above-described filtering processes, using PSI-BLAST, hmmsearch, DIAMOND and MMseqs2.
To estimate the desired search cutoffs, we supplemented the query set with non-RdRP sequences likely to produce false matches
(termed “true-negative” set), constructed as follows: (1) using a large set of RARPs as queries for an hhsearch (from the HH-Suite)
against the PDB70 database (2019), collecting all matches of bitscore > 20 that were not from RNA viruses, that aligned with at least
2 RdRPs; (2) fetching PDB entries clustered with those at 70% identity, (via ftp://resources.rcsb.org/sequence/clusters/bc-70.out);
(3) fetching Pfam entries relating the resulting PDB IDs, and sequences linked to the Pfam entries; (4) collapsing highly similar se-
quences to a single representative (MMseqs2 minimum coverage: 100%, minimum ident.: 90%). Subject RdARP profiles capable
of producing alignments to any sequence from the “true-negative” set were discarded. Otherwise, acceptance criteria for the
RdRP profiles searches were: profile coverage > 50%, E-value < 1e-10 and score > 70. These stringent parameters were then
fine tuned to represent the best possible value a non-RdRP sequence was able to achieve.

Subsequently, reliable RARP matches were trimmed to the approximate core domain, which we operationally defined as motif A-D
(see “Motif A-D identification” below). The extracted RdARP core sequences were pre-clustered (CD-HIT, coverage > 75%, % ID >
90) (Fu et al., 2012), passed to an all vs. all (DIAMOND BLASTp) run, formatted for use with MCL using mcxload (—stream-mirror
—stream-neg-logo -stream-tf "ceil(200)"), clustered (MCL, Inflation value between 3.6 and 2.8), aligned (MUSCLE), and formatted
as profile databases as described above (Altschul et al., 1997; Buchfink et al., 2015; Edgar, 2021; Enright et al., 2002; Steinegger
and Saoding, 2017). This process was repeated twice. Subsequently, contigs with putative RARPs were used to recover additional
contigs from the entire metatranscriptomic collection, which were highly similar yet shorter than the initial search length criteria
(see below “Comprehensive identification” for details). Of the resulting collection, sequences covering > 75% of an RdARP profile,
or with identifiable motifs A-D, were considered sufficiently complete for downstream phylogenetic analysis.

Identification of the RARP catalytic motifs A-D

A custom motif library (available in the project Zenodo archive, see data and code availability) was built by semi-manual partitioning of
the previously published RARP MSAs noted in the “RdRP identification” section. To identify the motifs along the individual RARP
sequences, a similar iterative search as described above for the full length RARP domain was performed.

Correction of putative frameshifts

A set of 1,656 contigs contained a clear RARP domain signature on more than one frame, commonly separated by < 20 nucleotides
(n=1,118). In order to avoid the omission of these signatures as simple incomplete, we addressed these in two manners: (1) if any of
one of the signatures covered >75% of the subject RARP profile, or coding for the desired catalytic motifs A-C, that signature would
be used; or (2) by concatenation of the two signatures into a single amino acid sequence.

Contig set augmentation with published genomes

To assess the novelty of our findings in terms of the number and diversity of newly predicted viral genomes, and in order to avoid the
exclusion of established viral lineages that may be underrepresented in environmental metatranscriptomes, we aggregated and
compiled a collection of “previously published” viral genomes termed “Reference Set”. These include RdRP-carrying sequences
identified in NCBI’'s NT database (NCBI Resource Coordinators, 2018), as well as sequences not indexed (at the time of writing) in
such public databases, that were identified in several previous large scale and notable RNA virus surveys and transcriptomic atlases.
Our criteria for addition of these supplementary sequences required that they originate from peer reviewed publications, and that all
underlying sequences were entirely publicly available, with no restrictions. The NCBI NT sequences were identified via an RARP scan
procedure similar to the procedure described above (see RARP identification). The previously published set was made from an
expansive set of Leviviricetes described by Callanan et al. (2020), the “Yangshan-assemblage” and other described by Wolf et al.
(2020), and the proposed Plastroviruses group described by Lauber et al. (2019), as well as several RdRPs identified in the ocean
atlas of genes (Carradec et al., 2018; Salazar et al., 2019). Following their aggregation, these sequences underwent a similar proced-
ure described for the metatranscriptomic sequences identified in this work (i.e. length filtration, clustering, and RdRP core domain
extraction). The eventual sequence set was labeled as “Known” (i.e. not novel), and noted as such in the data generated by this work
(e.g. branch colour in Figure 1). The processed “supplemental sequence set” was merged into the main sequence set (those
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identified in this study) and the combined set (termed “VR1507”) was used in all downstream analysis (phylogenetic reconstruction,
domain analysis etc).

Comprehensive identification of RNA virus contigs across metatranscriptomes

Because metatranscriptome assemblies can often yield incomplete genomes that would not fulfil the criteria for de novo RARP detec-
tion (see above), we used the “VR1507” contig set (see above), we initiated a secondary “sweeping” scan for additional RNA virus
contigs from the non-clustered, non-filtered (length, DNA similarity, RdRP presence) “bulk-set” of metatranscriptomic contigs (Fig-
ure 1). To this end, the “VR1507” was used as bait for highly similar contigs in the “bulk-set”, using an non-sensitive mmseqgs search
(mmsegs search —search-type 3 -min-aln-len 120 —-min-seqg-id 0.66 -s 1 -c 0.85 —cov-mode 1) followed by stringently filtering the
recovered matches (E-value < 1e-9, Identity > 95%, target-Coverage > 95%). These criteria were selected as a quality assurance
measure, so that the recovered contigs would be mostly contained within the “VR1507” contig counterpart (this large expansive data
set is available in project’s Zenodo repository, see data and code availability). This envelopment criteria was added to avoid capture
of chimeric, or otherwise uncertain, nucleic regions that extend over the “VR1507” query. The filtered bulk contig set was combined
with “VR1507” and consisted of 2,658,344 contigs (termed “Add1507”). To ascertain that this procedure was adequately stringent in
avoiding the capture of false positives, we verified if we carried it out on non-RNA virus containing DNA metagenome, no contigs
would be captured. For this end, we used a recently published high quality bovine (Rumen) DNA metagenome (i.e. long-read, HiFi
assemblies) (Bickhart et al., 2022), selected as it was not part of the DNA-sequence set used in the primary and secondary filtration
steps used in the discovery pipeline, making it a reliable benchmark. In this search, not a single contig passed our alignment threshold
of 95% identity (a single contig produced a short alignment of 72% ID).

Phylogenetic reconstruction

We selected a diverse set of representative RARPs for the phylogenetic analysis by performing a preliminary MMseqgs?2 clustering run
(see Table S6, sheet “Clustering information), on a subset of the sequences which contained complete or near-complete RdRPs.
These representatives were termed RCR90, and went through several iterations of clustering (MMsegs2 with sequence identity
threshold of 0.5), alignment (MUSCLES) (Edgar, 2021) and profile-profile comparison (HHsearch) (Steinegger et al., 2019), as
described below. “Permuted” RdRPs (sequences with transposed motif C, following the C-A-B-D configuration) were identified
and “de-permuted” (i.e. the loop, containing motif C, was cut from the sequence and reinserted downstream from the motif B).
Once all identified sequences with transposed motifs were brought into the canonical A-B-C-D configuration, the following proced-
ure was employed to produce a multiple sequence alignment consisting of all RCR90 set:

® Sequences were clustered using MMseqs2 with sequence identity threshold of 0.3; sequences in the resulting 4,514 clusters
were aligned using MUSCLEDS; profile-profile comparison of the cluster alignments using HHSEARCH produced a 4,514x4,514
distance matrix (the distances were estimated as dag = -IN(Sag/MiN(Saa, Sgr)), where Sag is the HHSEARCH score for compar-
ison of the profiles A And B); a maximum-linkage tree was produced from the distance matrix using the R function hclust();

® The tree was cut at the depth threshold of 1.5, producing 1,360 subtrees;

® Each of the subtrees was used as a guide to hierarchical alignment of the corresponding profiles using HHALIGN, producing
1,360 alignments;

® 1,360 consensus sequences (excluding sites with more than 2/3 of gap characters) were extracted from these alignments and
aligned using MUSCLES;

@ Each position in the alignment of consensus sequences was expanded to the corresponding column of the original alignment,
producing an alignment of 77,510 RdRps (where the original RARp sequences were reduced to a set of positions, matching
their local consensus);

e Sites with >90% of gap characters were removed from this alignment; the resulting alignment was aligned with the alignment of
ten RTs (five group Il intron sequences and five non-LTR retrotransposon sequences) using HHALIGN.

The alignment of RdRps and RTs was used to reconstruct an approximate maximum likelihood tree using the FastTree (V.2.1.4
SSE3, Price et al., 2010) program (WAG evolutionary model, gamma-distributed site rates) and rooted between RTs and RdRps.

Taxonomic affiliation of clades
Tree leaves with existing taxonomic information were identified by mapping (MEGA-BLAST, E-value < 1e-30, query coverage >
95%, subject coverage > 95%, Alignment length > 200, Identity > 98%, (Alignment_length)/Query_length > 0.95) VR1507 sequence
set to the latest ICTV data at the time of analysis (July 20, 2021 release of the Virus Metadata Repository (VMR) file, corresponding to
MSL36, and available at https://talk.ictvonline.org/taxonomy/vmr/m/vmr-file-repository/13175). Overall, 2,765 contigs were map-
ped, and the ICTV taxonomic information was cloned to the VR1507 queries based on the highest score. For the reminder of
VR1507 contigs, we performed a similar procedure using the NCBI’'s NR database (these amount to an additional 6,878 mapped
contigs, though a non-negligible amount of those lacked taxonomic information or matched abolished taxonyms).

The procedure to establish the taxonomic affiliation of internal nodes on the tree (i.e. clades) relies on the above taxonomic
assignment of reference tree leaves, as well all on two principles:
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® All sequences, descending from the last common ancestor of reference leaves, assigned to a taxon T, also belong to taxon T;
sequences descending from deeper tree nodes, do not belong to taxon T and, therefore, and should be assigned to a new taxon
(taxa) of the same rank;

® The depth, at which a tree clade splits into taxa of the given rank, is defined by existing taxa of the same rank and is locality-
dependent (e.g. the characteristic depths of families could be different for different phyla);

Application of these principles assumes that the existing taxonomy is non-contradictory with respect to the tree, i.e. the reference
sequences, assigned to taxa, form monophyletic clades that are non-overlapping and non-nested within the same rank (e.g. a family
clade can’t be embedded into another family). An inspection of the taxonomic affiliation of reference leaves showed that this assump-
tion, while typically satisfied, is violated in multiple places. This necessitates disentangling the conflicting relationships first. To this
end, the following procedure was applied to all taxa of the given rank (i.e. separately for phyla, classes, etc):

® The tree was pruned to contain only leaves with this rank defined (e.g. all leaves without a family assignment are stripped); leaf
weights (w;) were derived from the pruned tree;

® For each taxon T, present in the tree, the total weight of leaves in this taxon was calculated (Wt = =w; across the leaves, as-
signed to T);

® Forany tree clade in the tree, the total weight of leaves in this clade was calculated (W¢ = =wi across the leaves, belonging to C);

® Foreach combination of clade C and taxon T, the clade-taxon weight was calculated (Wcr = =w; across the leaves, belonging to
C and assigned to T); then a precision-like and recall-like measures can be calculated (Pcr= Wer/ We and Rer = Wer/ W) and
combined into a quality index Qcr = Pcr * Rer

® Foreachtaxon T, present in the tree, the clade Cr= argmax Qcrwas identified as the “native” location of the taxon T (the clade,
where the maximum weight of taxon T is concentrated with the minimal intrusion of other taxa); leaves, belonging to clade Cr,
but not assigned to T, and leaves, assigned to T, but not belonging to clade Cr, were labeled as “intruding” or “outlying”
respectively;

All tree-incompatible taxonomic assignments were examined and resolved. In most cases the most agnostic way to resolve the
conflict was used (i.e. stripping the taxonomic labels from the corresponding leaves). In one case, most of the families within Timlo-
virales order of Lenarviricota, were found to be nested inside a very deep-branching family of Blumeviridae. For the purpose of this
work, we retained the Blumeviridae label on the largest clade of Timlovirales that didn’t have conflicting family assignments and
removed the Blumeviridae label from the rest of Timlovirales. In a few other cases where small families were wholly nested into larger
ones (e.g. a solo leaf classified as Sunviridae inside a large Paramyxoviridae clade) the embedded family label was removed for the
purpose of subsequent analysis and restored post hoc. Once the taxonomic labels of all leaves were brought into compatibility with
the tree, the following procedure was performed to assign new taxonomic labels to unlabeled leaves for each taxonomic rank
separately:

® All nodes of the tree were assigned depth, defined as the longest node-to-leaf path across all leaves, descending from
this node;

o Inthe full tree of 77,510 leaves the last common ancestor node of each taxon was determined; depths of the taxa, defined as the
depth of the LCA node plus the length of the incoming tree edge, was recorded; all unlabeled leaves, descending from the taxon
LCA, were assigned to this taxon;

@ All clades outside of existing taxa were isolated; for each such clade the depths of all existing sister taxa were determined; if a
clade has only one sister taxon, the search for the closest relatives was extended toward the root until at least another related
taxon was identified; the threshold depth was calculated as the average for the set of related taxa;

o Clades outside of existing taxa were dissected at the threshold depth; each resulting (sub)clade was assigned to a new taxon of
the given rank;

o New taxa that have a single existing taxon as a sister are labeled as associated with this taxon.

The novel taxa were given names, indicating rank (i.e. prefixed by p, ¢, o, fand g for phylum, class, order, family and genus respec-
tively), followed by an ordinal number for new taxa of this rank, and optionally, terminated with a label for taxa that are associated with
a previously described taxon (e.g. £.0127.base-Noda is the 127th new family that is basal to Nodaviridae in the RARP tree).

Robustness of deep phylogeny
To assess the robustness of deep phylogenetic reconstruction, the following procedure was performed:

o a list of 201 families with at least 20 RCR90 sequences was collected

o arandom representative of each family and from RT set was sampled

@ a sub-alignment of 202 sequences for the sample was extracted from the master alignment

® a phylogenetic tree was reconstructed using the 1Q-Tree program (Nguyen et al., 2015) with an automatically selected best
fitting model

100 independent samples were analyzed in the following manner:
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First, clades with the highest quality index (Ql, described above in the Taxonomic affiliation of clades section) were identified for
each of the five known phyla; the quality index values were used as a measure of the phylum monophyly under the subsampling.
Families, involved in breaking the monophyly of the respective phyla (note that a leaf can be both an outlier with respect to its
own phylum and an intruder into another phylum), were recorded.

Second, the subsampled trees were collapsed to the phylum level; 15 (out of 100) trees with paraphyletic phyla were excluded
(those, where e.g. the highest-quality clade for Pisuviricota was embedded within the highest-quality clade for Kitrinoviricota). An
extended majority-rule consensus tree was constructed for the remaining 85 trees with (largely) monophyletic phyla using the 1Q-
Tree program; branch support values were multiplied by 0.85 (the fraction of such trees among the whole sample).

Assignment of individual contigs to RCR90 clusters

Once the novel areas of the RCR90 megatree described above were fully populated by the major taxonomic ranks (Phylum — Genus),
we proceeded to affiliate contigs from the larger VR1507 set (see above - contig sets). Contig affiliation was performed in a gradual
manner by separation into the following 4 levels:

Level A. are contigs encoding the RdRPs used to create the tree. Level B. consists of contigs encoding RARPs with exceptionally
high amino acid identity to RdRPs from level A, (via best BLASTp match with Identity >90%, Query-Coverage >75%, and
E-value < 1e-3). Level.C consisted of contigs from the same RvANI9O0 cluster (see definition below) as contigs from levels {A, B},
and Level D. consists of contigs sharing high nucleic similarity to those from levels {A - C}, (via best dc-MEGABLAST hit at Identity
>90%, Query-Coverage >75% OR Nident > 900nt and E-value < 1e-3). Based on the distribution of ICTV-labeled RdRPS in the
above noted levels, we estimate that the majority contigs affiliated in this manner, would roughly share the same taxonomic ranks
down to genus level.

Of note, for level C., we devised custom measurement unit, RvANI, which is an extension of standard average nucleic identity (ANI)
clustering, designed to accommodate the fragmented nature of metatranscriptomic assemblies, thus avoiding an overestimation of
novelty caused by the relatively low pairwise coverage of related sequences. Briefly, RvANI is calculated as follows: Initially, mmseqs
is used to calculate all pairwise sequence alignments in the contig set, which are then used for the traditional ANI and alignment
fraction (AF) calculations, where:

ANI = (%ID x Alignmentlength) - Min(lengthofcontigm., lengthofcontign.)

AF = Min(Alignmentcoverageofcontigm., Alignmentcoverageofcontign.)

Given all pairs of ANI and AF (for prokaryotes 95-96% ANI is the commonly accepted species boundary, with similarly granular
definitions for certain viruses (Nayfach et al., 2021; Richter and Rossell6-Mara, 2009) clusters are defined as connected components
in a nucleic similarity graph pruned for pairwise alignments with ANl >90% and AF >90%. RvANI corrects for uneven genome
coverage in metatranscriptomes by reinserting specific pairwise alignments to the pruned nucleic similarity graph, even if their AF
is below the required cutoff, as long as the underlying pairwise alignment fulfill these criteria: %ID > 99, Alignment Length > 150
[bp], and the alignment occurs between the edge of the contigs, i.e. the alignment covers the 5’ or 3’ termini of each contig).

Subsequently, we defined RvANI9O0 clusters as the different connected components (using R-igraph package) in the nucleic sim-
ilarity graph processed as described above (Csardi and Nepusz, 2006).

Identification of reliable CRISPR spacer hits

RNA virus sequences were compared to predicted bacteria and archaea CRISPR spacer sequences to (i) identify which viruses may
infect a prokaryotic host, and (i) possibly predict a specific host taxon for these viruses. First, non-redundant RNA virus sequences
were compared to 1,568,535 CRISPR spacers predicted from whole genomes of bacteria and archaea in the IMG database (Chen
et al., 2021) using blastn v2.9.0 with options “-dust no -word_size 7”. To minimise the number of false-positive hits due to low-
complexity and/or repeat sequences, CRISPR spacers were excluded from this analysis if (i) they were encoded in a predicted
CRISPR array including 2 spacers or less, (i) they were < 20bp, or (jii) they included a low-complexity or repeat sequence as detected
by dustmasker (v1.0.0) (Morgulis et al., 2006) (options “-window 20 -level 10”) or a direct repeat of > 4bp detected with etandem
(v6.6.0.0) (Rice et al., 2000) (options “-minrepeat 4 -maxrepeat 15 -threshold 2”). To link RNA viruses to CRISPR spacers, only blastn
hits with 0 or 1 mismatch over the whole spacer length were considered. The spacer and array with hits were further inspected to
check (i) whether the spacers were of consistent length throughout the array, and (ii) whether Cas and/or RT genes were found in
the putative host genome, and if so whether these were adjacent to the CRISPR array with the hit. To expand the search for
CRISPR link beyond bacteria and archaea for which a draft genome is available, we next used the same approach to compare
non-redundant RNA virus sequences to 53,372,161 CRISPR spacers predicted from metagenome assemblies available in the
IMG database. Spurious spacers were filtered out using the same methods as for the genome-derived CRISPR arrays (see above),
and only hits for which the RNA virus and the CRISPR spacers originated from the same ecosystem (as defined in the GOLD data-
base) were retained. Since CRISPR spacer arrays are often assembled on short contigs without any other gene, we used the repeat
sequence of the arrays to link them to a putative host. Repeat sequences from metagenome-derived CRISPR arrays with at least 1 hit
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to an RNA virus sequence were compared to all IMG Bacteria and Archaea genomes using blastn (v2.9.0) with options “-perc_identity
90 -dust no -word_size 7”. The location of these hits in the putative host genome was then checked for the presence of a predicted
CRISPR spacer array, Cas genes, and RT genes. When individual RNA virus sequences or spacers were putatively linked to multiple
host genomes, these were prioritized based on the following criteria: (i) the spacer array is identified next to an RT-encoding CRISPR
array, (i) an RT-encoding CRISPR array is identified elsewhere in the genome, (iii) the spacer array is identified next to a Type llI
CRISPR array, (iv) a Type lll CRISPR array is identified elsewhere in the genome, (v) another type of CRISPR array is identified in
the genome, and (vi) no identifiable Cas gene can be identified in the genome.

The spacer content of CRISPR arrays encoded by Roseiflexus sp. RS-1 in Mushroom Spring was further studied as follows. First,
the CRISPR arrays of 17 metagenomes sampled from microbial mats in Mushroom Spring (Table S3) were specifically assembled
using the dedicated tool Crass v1.0.1 with default parameters (Skennerton et al., 2013). Next, all arrays based on repeats corre-
sponding to known CRISPR arrays in Roseiflexus sp. RS-1 (Table S3) were identified and the corresponding spacers collected
and filtered as previously described. RNA virus sequences as well as DNA virus sequences from the IMG/VR v3 database (Roux
et al., 2021) were compared to this database of Roseiflexus sp. RS-1 spacer arrays using blastn (v2.9.0) with options “-dust no
-word_size 7”. Sequences from putative RNA phages infecting Roseiflexus sp. RS-1 were first identified based on hits to > 1
RS-1 spacer with < 1 mismatch across the whole spacer length. For these selected phages, hits with up to 4 mismatches across
the spacer length were then collected to enable the detection of more distant virus-spacer hits.

Candidate capsid segments of Roseiflexus sp. RS-1 clade genPartiti.0019 viruses were identified based on 3 criteria: spacer
match to the RNA-targeting CRISPR array, no corresponding DNA sequence, and high coverage correlation to > 1 RdRP contig
across the metatranscriptome time series. First, a similar blastn comparison to Crass-assembled spacers (blastn with options
“-dust no -word_size 7”” and < 1 mismatch allowed) was used to identify putative capsid-encoding contigs i.e., excluding all contigs
encoding an RARP or a CRISPR array, in the same metatranscriptomes targeted by the Roseiflexus sp. RS-1 Type llI-RT CRISPR
array (n=3,958). Next, candidates with > 1 spacer match were compared to all contigs from Mushroom Spring DNA metagenomes
(blastn (v2.9.0) with options “-task megablast -max_target_seqgs 500 -perc_identity 90”), and all candidates with a matching DNA
contig (> 90% identity) were considered to be likely DNA phages and excluded (n=3,650). Finally, the coverage of all genPartiti.0019
RdRP contigs and all candidate capsid segments was obtained using read mapping as described below (bbmap.sh (v.38.90) with
options “vslow minid=0 indelfilter=2 inslenfilter=3 dellenfilter=3"), and candidates with a Pearson correlation of > 0.9 across the
42 Mushroom Spring metatranscriptomes were retained as likely capsid segments (n=88). To evaluate the gene content of these
capsid segments, cds were predicted de novo using Prodigal (v2.6.3) (Hyatt et al., 2010) (option “-p meta”), and clustered using
a standard blast-mcl pipeline (blastp (v2.9.0) with default options, hits selected based on score > 50, MCL clustering (v.14-137)
with an inflation value of 2). For the three largest protein clusters, a sequence alignment was built using MAFFT v7.407, (Katoh
and Standley, 2013) and used as input to an hhsearch against the virus-focused uniprot public database (uniprot_sprot_vir70),
and a custom database made from capsids of known partitiviruses and picobirnaviruses (available in the project’s Zenodo repository,
see data and code availability “Partiti_Picob_CP.tar.gz” and PC1_PROMALS3D_new.hhr).

Habitat distribution and relative abundance estimation
For visualisation purposes, location, ecological, and taxonomic information for each metatranscriptome were obtained from the IMG
and GOLD databases. Specifically, GPS coordinates and ecosystem classification were obtained from GOLD, with the ecosystem
information further grouped in custom categories (Table S4). To roughly estimate the host diversity present in each metatranscrip-
tome, the taxonomic information of all contigs as predicted by the IMG annotation pipeline (Clum et al., 2021) was queried at the
domain level, i.e. Bacteria, Archaea, Eukarya, and Viruses. The ratio between the number of contigs assigned to Bacteria and
Archaea and the number of contigs assigned to Eukarya was then used as a proxy to determine “Prokaryote-dominated” from
“Eukaryote-dominated” datasets. Specifically, datasets with a ratio of Eukaryote-affiliated to Prokaryote-affiliated contigs < 0.3
or >0.7 were considered as “Prokaryote-dominated” or “Eukaryote-dominated”, respectively, while other datasets were consid-
ered as “Mixed”. The map was drawn using the packages matplotlib v3.3.4 and basemap v1.2.2 for python 3.8.5 (Hunter, 2007).
For read mapping, a dereplicated set of RNA virus sequences (95% ANI over 95% AF, established using CheckV anicalc.py and
aniclust.py scripts; Roux et al., 2021), was established, hereafter “NR-mapping” dataset. Quality-trimmed reads (sensu; Clum et al.,
2021) from 3,998 metatranscriptomes (Table S4) were then mapped to this dataset as follows. First, contigs from each metatranscrip-
tome were compared to the NR-mapping dataset using blastn v2.9.0+ (E-value < 0.01). All contigs with cumulated blast hits of >
90% average nucleotide identity covering > 80% of the shortest sequence were considered as putative RNA viruses. All reads
mapping to contigs identified as putative RNA viruses and all uynmapped reads were extracted from the existing IMG read mapping
information, and mapped de-novo on the NR-mapping dataset using bbmap v38.81 (Bushnell, 2014) with the following options:
“vslow minid=0 indelfilter=2 inslenfilter=3 dellenfilter=3". This step was done to reduce the computing time and the risk of false-pos-
itive mapping by excluding all reads mapping to non-viral metatranscriptome contigs. The resulting bam files were then filtered with
FilterBam (https://github.com/nextgenusfs/augustus/tree/master/auxprogs/filterBam) retaining only mapping at >50% identity and
>50% coverage, and genomecov from bedtools v2.30.0 (Quinlan, 2014) was used to calculated the average coverage depth for
each contig in each sample. The relative proportion of a taxon was then calculated as the cumulated coverage for the taxon members
divided by the total accumulated coverage of all predicted RNA virus contigs in this dataset.
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Genetic code assignment and ORF calling

Presently, ORF identification software designed for diverse metagenomic data are limited to the standard genetic code (11) or the
Mold mitochondrial genetic code (4) (opted when the predicted ORFs are unnaturally short). To identify clades likely to use alternative
genetic codes, we extracted the RdRp core footprints and scanned them for in-frame standard stop codons.

We first separated all RdARP-encoding contigs into two subsets: “standard” and “non-standard” if any canonical stop codons
occurred within the narrow coordinates of the RARP core. Then, the “standard” set was subjected to metaprodigal CDS prediction
using default parameters (via Prodigal’s (v2.6.3) metagenomic mode (“anonymous”)) (Hyatt et al., 2010). In the “non-standard”
subset, the stop codon usage patterns were aggregated across the contigs, associated with each tree leaf, and classified into
“mitochondrial” (using UGA as a sense codon), and “protist” (other patterns). Prevalence of patterns (relative frequency among
the descendant leaves) was calculated for internal tree nodes; clades with high prevalence were noted and investigated. For practical
purposes, the ORFs predictions of the “non-standard” subset were performed by using the first genetic code enabling the entire
RdRP core to be translated. Cases for which none of the available genetic codes enabled the uninterrupted translation of the
RdRP core were assigned the general “non-standard” value and were predicted using the mitochondrial genetic code (4).

To discard the possibility of active recoding of tRNAs by these predicted RNA viruses, the VR1507 set was subjected to a single
pass of tRNAscanME2 (Chan et al., 2021), using the “global” flag (for non-specific domain of life tRNA prediction). No tRNAs were
identified on any of the viral contigs predicted to use an alternative genetic code, suggesting these are most likely an adaptation to
their host rather than an element of a virus-host arms race, as seen in some dsDNA phages (lvanova et al., 2014).

RBS identification and quantification
Using VR1507 as input, the RBS quantification was performed as described in Schulz et al. (2020). Briefly, Prodigal (v2.6.3) was run as
described above (see “genetic code assignment”) (Hyatt et al., 2010; Schulz et al., 2020), we then sourced the “rbs_motif” field from
Prodigal’s GFF output files, and classified the different 5 UTR sequences as either “SD” (for motifs similar to AGGAGG, the canonical
Shine-Dalgarno), “None” and “Other” (for details, see data and code availability,

“RBS_Motif2Type.tsv”). Then, for each contig, we defined the “%SD” as the ratio between all “SD” ORFs, and all ORFs with a true
start (i.e. not truncated by the contigs’ edge, field “start_type” different from “Edge”).

Domain annotation

To perform an initial domain annotation of the proteins encoded by RdARP-containing contigs, we used hmmsearch (from the HMMER
V3.3.2 suite) (Finn et al., 2011; Wheeler and Eddy, 2013) to match these proteins to hidden markov models (HMMs) gathered from
multiple protein profile databases using a maximal E-value of 0.001 (PFam 34, COG 2020 release, CDD v.3.19, CATH/Gene3D
v4.3, RNAViIrDB2020, ECOD 2020.07.17 release, SCOPe v.1.75) (Andreeva et al., 2014, 2020; Cheng et al., 2015; Galperin et al.,
2021; Lu et al., 2020; Mistry et al., 2021; Sillitoe et al., 2021; Wolf et al., 2020). We supplemented this set of HMMs with a custom
collection of profiles with bacteriolytic functions (termed “LysDB” - available in the project’s Zenodo repository, see data and
code availability). LysDB was built from (1) manually reviewed profile entries from public databases which we could link to GO terms
related to cell lysis by viruses, or virus exit from host cell, and (2) custom profiles for “Sgl” proteins, which were experimentally
demonstrated by Chamakura et al to induce cell lysis (Chamakura et al., 2020). Additionally, we used InterProScan (v.5.52-86.0)
to scan the protein sequences using MobiDBLite (v2.0), Phobius (v.1.01), PRINTS (v. 42.0), TMHMM (v.2.0c) (Attwood et al., 2012;
Jones et al., 2014; Kall et al., 2004; Kéll et al., 2007; Krogh et al., 2001; Potenza et al., 2015).

Because the public protein profile databases that were used for initial annotation might contain HMMs that represent polyproteins,
which span multiple functional domains, we developed and employed a procedure to identify such profiles which were masked from
the subsequent annotation process. For this procedure, we first used the hmmemit command to convert HMMER profiles into mul-
tiple sequence alignments, which were then used as input to an all-versus-all profile comparison performed using HH-Suite. Next,
putative polyprotein profiles were identified by flagging the profiles that encompassed at least two other non-overlapping profiles
(“get_polyproteins.ipynb“ script, see data and code availability). The unmatched regions between the polyprotein domains were ex-
tracted to create a set of conserved, yet unknown domains, termed “InterDomains”. Additionally, profiles with over 1000 match
states (defined as columns with less than 50% gaps) were manually examined using HHpred. Several of the identified polyprotein
profiles were split into their constituent domains. Subsequently, all hmmsearch results were aggregated and profile matches were
prioritized based on their classification level (uncurated profiles, or ones of unknown function (e.g. “DUF”) were deprioritized) and
by their relative alignment statistics. To improve the quality of the functional annotation of the domain profiles and to assign functions
to unannotated profiles we identified clusters of similar profiles (clans, hereafter). First, profiles with at least one hit in the initial anno-
tation pass were extracted from their original DB, reformatted as HH-Suite’s HHMs (as described above) and used for an additional
all-versus-all step. The output of this profile comparison was then used as input to a graph-based clustering process using the Leiden
algorithm (“get_clan_membership.ipynb” script, see data and code availability), which identifies clans as communities of highly
similar domains. Clan membership was then used to improve the coverage of the functional annotation by transferring annotation
from functionally annotated profiles to other clan members. Briefly, this procedure followed a consensus-based label assignment.
For example, a clan with 12 profiles labeled as “RdRP”, and 2 “unclassified” profiles, was set as an “RdRP’’ clan and the 2 unclas-
sified members were reclassified as ’RdRP”. Cases of conflicts were either left unresolved, or by opting to the lowest denominator.
For example, a clan with 4 “unclassified” profiles, that also had 12 member profiles labeled “Super family 2 Helicase” and an
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additional 10 member profiles labeled “Super family 1 Helicases’, was set to “Helicase-uncertain”, and this label was extended to
those 4 “unclassified” members.

All subsequent profile matches passing a predefined cutoff (E-value < e-7, score > 9, alignment length > 8[AA]). were used to
generate a new custom profile database, in a process similar to the one used for RARPs (see above). Only clusters with > 10 se-
quences, sharing the same functional classification, were used to generate HMMs. This profile set was then supplemented by
most of the profiles from the above-mentioned RNAVirDB2020 database, as well as several dozen select profiles from the other da-
tabases (this final profile database termed “NVPC” is available via the projects Zenodo repository, see data and code availability).
Finally, we queried the six-frame translations of the 330k contig set using hmmsearch as described above, using the new profile data-
base. (Figure S3 - Annotation pipeline). Subsequently, we generated tentative genome-maps for =4-20 representative contigs for
each of the 400+ identified families (novel and established) using GGGenomes (https://github.com/thackl/gggenomes), which
were then manually examined to identify novel domains as well as uncommon domain fusion and segmentations.

Quality control and reliability of metatranscriptomic assemblies

Metagenomic assemblies are prone to various types of artifacts that can result in apparent contigs in the assembly that do not repre-
sent any existing nucleic acid molecules in the original biological sample (Arroyo Muhr et al., 2020). Notoriously, chimeras (contigs
mis-assembled from at least two different nucleic molecules) can be a major setback for novelty claims and can be difficult to identify
and separate from real genetic entities. We addressed this concern by implementing several stringent procedures to avoid any misin-
terpretation that could stem from the analysis of potentially chimeric contigs:

1. Firstly, no claims in this work are based on singletons. Rather, we only report observations based on the analysis of evolution-
arily conserved stemming groups of sequences (two or more alignable contigs, ideally, from multiple assemblies) or from
features conserved at the coarse phylogenetic level (family-level and above). The likelihood of the chimera recurring across
multiple assemblies appears negligible.

2. Secondly, when unexpected observations were made, such as those on genome rearrangement, gene fission and gene fusion,
we manually inspected each case at the read level, that is, traced the original sequencing runs and mapped (via the procedure
described above in the section “Habitat distribution and relative abundance estimation”) the raw lllumina short reads to the
contigs in question, and examined the distribution of reads along the assembled contigs, checking that the contigs (and
not only the RdARP-coding region) were well covered. Contigs in which some portions showed abnormally low coverage or
skewed GC% content were deemed unreliable and discarded.

3. We observed and removed several dozen contigs from the set we built by aggregating published sources as likely chimeras
(mostly, part levivirus, part rRNA). Prompted by this observation, we searched the entire VR1507 contig set against the SILVA
rRNA database (BLASTn against SILVA SSU & LSU Ref NR99, default parameters) (Quast et al., 2013), and manually examined
40 contigs encoding ribosomal proteins identified in the “domain annotation” section, to ribosomal protein profiles in the public
databases (e.g. Ribosomal protein L3 PF00297.24) Over all, we flagged 75 potential chimeras of these types, (23 of which
originate from the previously published sources, see Table S6, sheet “rRNA_summary” for details). Only the RdRPs of these
suspect contigs were used in downstream analyses, whereas the rest of the contig was disregarded.

4. The DNA subtraction we performed drastically reduced the abundance of chimeras that consisted in part from RNA virus se-
quences and in part from DNA encoded ones, whether rRNA or mRNA. Obviously, however, this procedure cannot eliminate
chimeras that consist of portions of different RNA virus genomes. Because such chimeras would be difficult to differentiate
from bona fide recombinant virus genomes, we employed a heuristic to identify these using the domain annotations to detect
contigs with duplicated full-length RdRP footprints. These were deemed chimaeric because RNA viruses normally encode a
single (full length) RARP. We found a single such case, ND_250651, a chimera that is part levivirus, part cystovirus.

Quantitative comparison with recently published RNA virus discovery endeavors

44,779 RdRPs from the Tara project were downloaded from https://datacommons.cyverse.org/browse/iplant/home/shared/iVirus/
ZayedWainainaDominguez-Huerta_ RNAevolution_Dec2021. Serratus project RARPs were represented by 296,623 unique PaimDB
sequences that were downloaded from https://github.com/rcedgar/palmdb repository. The Serratus sequences represent a tightly
defined RARP core (containing only motifs A, B and C) with a median length of 107 (compared to the 453 aa for the RCR90 set). Of
note, our study, the Tara project, and the Serratus projects, each defined differently which regions of the RARP could be used for MSA
and subsequent phylogenetic analysis. Hence, we restricted our comparison to the RARP region closest to a lowest common denom-
inator between the studies, which is the region shared and defined by palmDB. We performed this by using all 329,202 unique RdRP
sequences from this study and the 44,779 RdRPs from the Tara project, for a BLASTP search (e-value 0.0001) against the PaimDB
set, using the best hit to trim the query (specifically, with the query of length K and the hit footprint of p1..p2 against the subject of
length L and the hit footprint of q7..g2, the query was trimmed to max(1,p07-q1-1)..min(K,p2 +L-q2) to account for missing parts of the
subject). Queries without a significant hit to PalmDB were left untrimmed. The full set of sequences was pooled together and
clustered using MMseqgs2 with sequence identity thresholds of 0.9 and 0.5 (-min-seg-id 0.5/0.9 -c 0.333 -e 0.1 —cov-mode 1 —clus-
ter-mode 2). All sequences were classified into four categories: i) "known" (GenBank and other published sources from the current
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dataset (see STAR Methods “contig set augmentation with published genomes”), ii) "RVMT" (RNA Virus MetaTranscriptomes from
the current dataset), iii) Serrarus and iv) Tara. Clusters were examined for the presence of members from each of the four sets, and the
cluster set intersections are listed in Table S8.

QUANTIFICATION AND STATISTICAL ANALYSIS

Exact thresholds, including the expect value (E-values), for all analyses derived from sequence searches or alignments procedures
(e.g domain prediction, CRISPR spacer matching, etc) are provided in the relevant main text or in method details, and in Table S6
(sheet “filtration thresholds” for E-values used in DNA filtration process, and sheet “Clustering_information” for clustering thresholds
and associated quantification).

ADDITIONAL RESOURCES

In hope of providing a long lasting community resource, we created an accompanying interactive web portal (riboviria.org) that allows
users to download portions of the data generated in this work based on phylogeny and data type (e.g., a subset of the domain an-
notations for all contigs affiliated with a certain family). Both programmatic and graphical access to the data are supported through
the web portal. The website’s code is also available under the MIT License at github.com/Benjamin-Lee/riboviria.org. For all taxo-
nomic levels, this platform includes raw nucleic sequence, phylogenetic trees, metadata, and annotations.
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Figure S1. Distribution of contigs in RCR90/RvANI clusters, related to Figures 1B and 1C and Table 1
Each panel displays the total number of clusters (left panel RCR90, right panel RvANI90) on the horizontal axis (logarithmic scale) against their size (total number of

membering contigs) on the vertical axis (logarithmic scale).
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A Monophyly of phyla in 100 trees, reconstructed from subsampled alignments

. I

phylum

B Virus families most frequently involved in violations of phyla monophyly
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o B
reciridae
f.OL1E baseCysto
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family

C Extended majority rule consensus tree for subsampled alignments
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Duplornaviricota
Negarnaviricota
Lenarviricota

Figure S2. Robustness of deep phylogenetic reconstructions, related to Figure 2

(A) Quality index (the product of the fraction of phylum members that form a monophyletic clade and the fraction of other phyla members in this clade). The bar
shows the median value across 100 independent samples of one member of a family with at least 20 members; the whiskers indicate the 5% and 95% percentiles.
(B) The virus families, most often involved in monophyly violations (where a leaf is either outside of the clade of its phylum or inside a clade of the other phylum).
The number of violations is shown.

(C) The extended majority consensus tree of the five previously known phyla. The consensus tree was recovered from 85 (out of 100) samples that have non-
embedded monophyletic phyla, and the support values were multiplied by 0.85.
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Figure S3. Roseiflexus sp. RS-1 CRISPR arrays and related viruses, related to Figure 3

(A) Map of the 4 CRISPR-Cas regions in Roseiflexus sp. RS-1 (NC_009523.1) including predicted CRISPR arrays (red diamonds) and Cas genes (colored genes).
(B) Coverage heatmaps across Mushroom Spring and Octopus Spring metagenomes, for spacers associated with Roseiflexus sp. RS-1 (see Table S3). Spacers
matching predicted RNA phages are displayed on the left, and spacers matching DNA phages are displayed on the right for reference.

(C) Example of alignment obtained with hhpred for a putative capsid protein from a predicted novel RNA phage infecting Roseiflexus sp. RS-1 and the closest
publicly available homolog: fig cryptic virus capsid protein.
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Figure S4. Identification of different metatranscriptome types and associated virus types, related to Figures 3 and 4

(A) Distribution of the ratio of viruses predicted to infect prokaryotic hosts across individual samples.

(B) Distribution of non-viral contigs affiliated as eukaryotes or prokaryotes (hosts) across samples, separated based on the protocol used to generate the
metatranscriptome. The protocol information was obtained from the Gold, and summarized as follows: “poly(A) selection”: transcript enrichment based on
poly(A) tail, “rRNA depletion”: use of a kit(s) and/or protocol(s) for depletion of rRNA templates, “total RNA”: cDNA library prepared from the extracted RNA with
no poly(A) selection or rRNA depletion step, “unknown”: no information available.

(C) Relationship between the ratio of eukaryote/prokaryote RNA viruses (x axis) and the ratio of eukaryote/prokaryote host contigs (y axis). Each dataset type is
presented in a separate panel.
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Figure S5. Acquisitions and replacements of structural modules in RNA viruses, related to Figure 5

“Picobirnaviridae; ND_299612” and “f.0226.base-Beny; ND_172503" exemplify fusions of genomic segments encoding capsid proteins (CPs) and RdRPs, which
are encoded on separate segments in previously described picobirnaviruses and benyviruses. “f.0066.base-Hypo; ND_049849” and “Deltaflexiviridae;
ND_196199” encode Flexi/Phlebo-like CP and single jelly roll (SJR) CPs, respectively, although other members of the respective families comprise capsid-less
viruses. “f.0271.base-Toga; ND_366069” and “Virgaviridae; ND_191857" represent genomes with non-homologous replacements of the CP genes. In “Xin-
moviridae; ND_221687,” class Ill fusion glycoprotein gene, typical of xinmoviruses, has been replaced by a gene encoding a class Il fusion glycoprotein (CIIF).
Abbreviations: Env, envelope protein; GP, glycoprotein; PRO-Pap/vOTU, papain-like protease; SF1, superfamily 1; Cap_MTase-GTase, capping enzyme with

methyltransferase-guanylyltransferase activities.
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Figure S7. Identified domain distribution, related to Figure 5
The predicted viral function or structure of the final domain hits (vertical axis, slanted text labels), against the total number of reliable observed HMM search
matches (horizontal axis, logarithmic scale).
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