

1 Core ideas:

2 1. A subsurface drainage fed bioreactor was retrofitted with a supplemental surface water

3 pumping system.

4 2. Design criteria of the pumping system is presented along with challenges and future

5 recommendations.

6 3. Pumped bioreactor systems show promise for treatment of alternative nitrate-laden

7 sources of water.

8 4. Pumped bioreactors have the potential to remove nitrate beyond the typical drainage

9 season.

10 **Modification of a dual-chamber denitrification bioreactor with a surface water pumping**

11 **system**

12 Lindsey M. Hartfiel^{1,2*}, Andrew J. Craig¹, Michelle L. Soupir¹

13 Affiliations: ¹Department of Agricultural and Biosystems Engineering, Iowa State University,
14 Ames, IA 50011, USA. ²UW Discovery Farms, University of Wisconsin-Madison, Division of
15 Extension, Madison, WI, USA. *Corresponding author: lindsey.hartfiel@wisc.edu

16 Abbreviations: DNR, Department of Natural Resources; ISU, Iowa State University; NO_x-N.
17 nitrate-nitrogen + nitrite-nitrogen; NRCS, Natural Resources Conservation Service.

18 **ABSTRACT**

19 Denitrification bioreactors are an edge-of-field conservation practice being implemented
20 to reduce nonpoint nitrogen pollution to downstream waterbodies. In the Midwestern region of

21 the United States, these bioreactors are commonly used for the treatment of nitrate-laden
22 subsurface drainage systems. Innovative strategies will be needed to reach the nutrient reduction
23 goals established; here, a typical denitrification bioreactor was retrofitted with a supplemental
24 surface water pumping system to enhance the bioreactor use and performance. Potential benefits
25 of the pumped bioreactor system include extended treatment beyond the typical drainage season,
26 increased nitrate mass removal, extended bioreactor lifespan, and extended applications of the
27 bioreactor such as treatment of surface waters. Current challenges associated with pumped
28 bioreactors exist with the timing of the pumping and water source identification. Considerations
29 include the water availability and the potential need to obtain a permit for the water extraction,
30 and nitrate concentration, temperature, and carbon content of the source to be pumped from.
31 Conditions that would promote complete nitrate removal should be avoided. Additional potential
32 applications for these pumped bioreactors have been identified and include, but are not limited
33 to, treatment of additional surface water sources, irrigation waters, drainage ditches, and
34 groundwater.

35 INTRODUCTION

36 Globally, over 400 hypoxic zones have been identified (Diaz & Rosenberg, 2008), with the
37 second largest hypoxic zone in the world forming seasonally in the Gulf of Mexico each year
38 (Rabalais & Turner, 2019). Nitrogen, especially in the form of nitrate, is one of the main
39 nutrients of concern in the formation of these hypoxic zones (Jones et al., 2018; Rabotyagov et
40 al., 2010). Besides the impact of excess nitrate on the environment, there are concerns for human
41 health. A drinking water standard of 10 mg N L^{-1} has been established in the United States
42 (E.P.A, 2021) largely due to the link between high nitrate levels and infant methemoglobinemia,
43 commonly referred to as blue baby syndrome (Knobeloch et al., 2000). More recently, nitrate has

44 been linked to several types of cancer (Ward et al., 2018; Ward, 2009). Excess nitrate levels have
45 been observed in surface waters receiving subsurface drainage, requiring nitrate reduction to be
46 in accordance with current safe drinking water standards (White, 1996).

47 Edge-of-field technologies and in-field management strategies are all being adopted to
48 reduce nutrient loads and the size of the hypoxic zone in the Gulf of Mexico (Illinois E.P.A,
49 2015; Iowa Department of Agriculture and Land Stewardship, 2017; Minnesota Pollution
50 Control Agency, 2014). Denitrification bioreactors are becoming an increasingly popular edge-
51 of-field treatment technology to reduce nonpoint source nitrate-nitrogen loading to downstream
52 surface waters (Christianson et al., 2021) as they require minimal amounts of agricultural land to
53 be taken out of production and can be integrated into flat landscapes, aiding in the adoption of
54 the practice by producers (Liu et al., 2018). Other edge-of-field treatment technologies for
55 nonpoint source nitrogen pollution include saturated buffers and constructed wetlands (Groh et
56 al., 2015; Iowa Department of Agriculture and Land Stewardship, 2017; Jaynes & Isenhart,
57 2014).

58 The bioreactor at its core consists of a trench of woodchips which receive nitrate-laden water
59 (Schipper et al., 2010). The woodchips (or other carbon source) within the bioreactor act as an
60 electron donor to promote microbial denitrification (Greenan et al., 2009; Healy et al., 2011;
61 Schipper et al., 2010). The trench of woodchips is often covered with soil which can be seeded in
62 a pollinator habitat to provide additional ecological benefits (NRCS, 2020). Bioreactors are being
63 used globally to reduce nitrate-nitrogen with median percent reductions of 46% being observed
64 and median mass removal rates of $5.1 \text{ g N m}^{-3} \text{ d}^{-1}$ (Christianson et al., 2021).

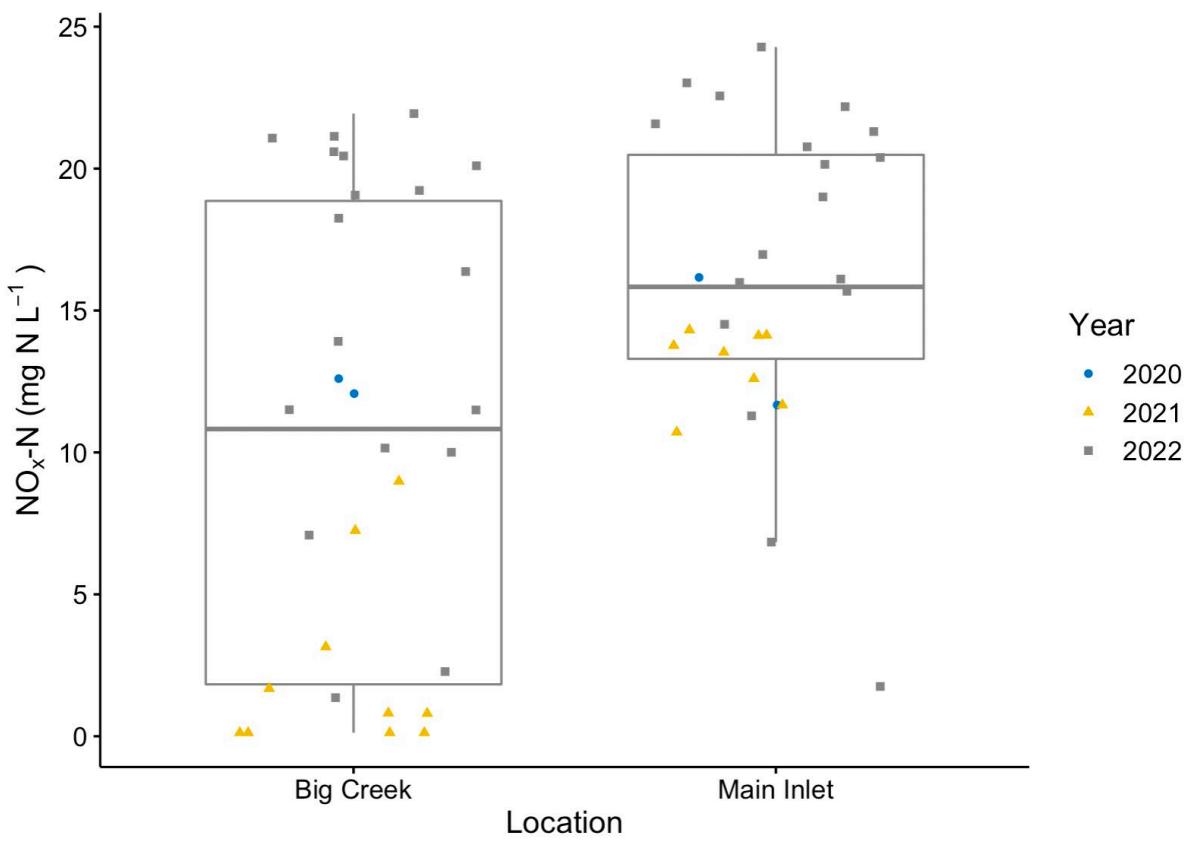
65 Bioreactors are commonly used to treat subsurface tile drainage, but they have been modified
66 to include treatment of additional nitrate-laden sources such as spring water effected by legacy

67 nitrogen and brine from groundwater desalination facilities (Díaz-García et al., 2021; Easton et
68 al., 2019). Due to the adaptability of the design of denitrifying bioreactors and the need for
69 reductions to nitrate loading for both ecological and human health concerns, additional uses of
70 bioreactor systems warrant study to allow for treatment of further sources of water. The
71 subsurface drainage flow is often seasonal in the Midwestern region of the United States, with
72 flow subsiding in the summer when the crop water demand is greatest (Helmers et al., 2022;
73 Helmers et al., 2005). This period of low or no flow conditions presents an opportunity for
74 unique bioreactor designs to be implemented. During these periods, bioreactors have the
75 potential to be retrofitted to treat nitrate-laden surface waters or irrigation water to allow for
76 additional nitrate reduction and enhance the bioreactor use.

77 We monitored a retrofitted dual-chamber bioreactor (two bioreactors connected in parallel)
78 which received lower than anticipated flow rates. The site was retrofitted with a pumping system
79 to supplement the flow rate entering the bioreactor and to explore the potential for additional
80 uses of denitrifying bioreactors. We had the goals of (i) documenting the design and installation
81 of a retrofitted pumping system to augment flow to a dual-chamber bioreactor, (ii) exploring the
82 potential of additional pumped bioreactor systems, and (iii) evaluating the challenges of this
83 system to provide future recommendations for pumped bioreactor systems.

84 **MATERIALS AND METHODS**

85 **Dual-Chamber Bioreactor Site Description**

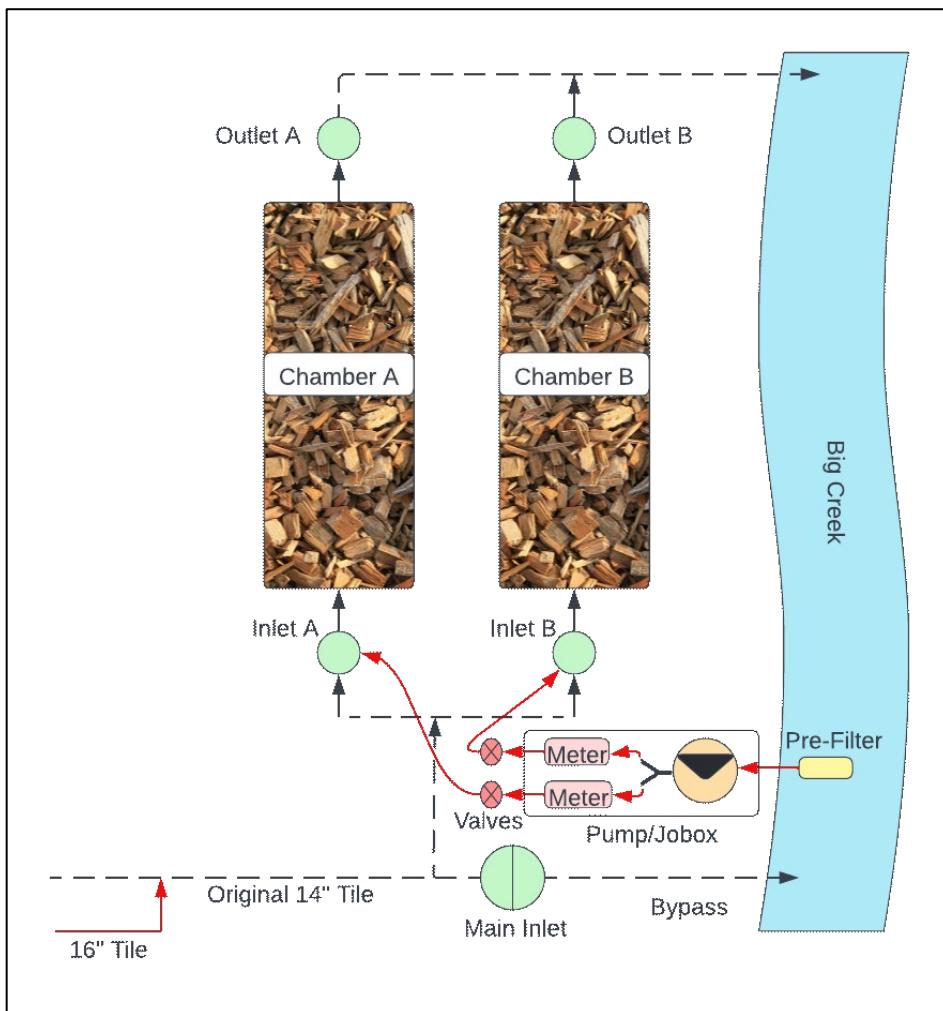

86 This study was conducted at Iowa State University's (ISU's) Uthe dual-chamber bioreactor
87 site (Boone Co., Section 9 – T82N-R25W, Garden Township), located at a Committee for
88 Agricultural Development farm. The dual-chamber bioreactor was installed in summer 2018 and

89 received tile drainage from a 35.56 cm diameter main tile line. This site was designed using the
90 USDA Natural Resource Conservation Service (NRCS) conservation practice standard 605 to
91 allow for treatment of about 17% of the peak flow from the tile drainage system (NRCS, 2015).
92 This corresponded to an approximate combined flow rate for the two chambers of $\sim 10.5 \text{ L s}^{-1}$.
93 This design resulted in the two bioreactor chambers each having dimensions of $36.58 \text{ m} \times 10.36$
94 $\text{m} \times 1.1 \text{ m}$, connected in parallel. Extensive monitoring occurred at this site in 2019–2021. From
95 this monitoring, it was determined that the design flow rate was never achieved due to a smaller
96 diameter main tile line upstream and smaller than expected drainage area (Sarah Anderson,
97 USDA–NRCS, personal communication, September 2, 2022), creating undesirable conditions in
98 the bioreactor. Briefly, these conditions included low flow rates, near complete removal of
99 nitrate on most sampling dates, and byproduct formation including methane gas (Hartfiel et al.,
100 2023). As a result of the monitoring at this site, the Iowa USDA–NRCS approved two
101 modifications to this system (Christian Osborn, USDA–NRCS, personal communication, July
102 28, 2020). The first modification was to add a nearby 40.64 cm diameter main tile line that
103 drained a grassed waterway into the system which was completed in April 2021. The second
104 modification that was approved at this site was the addition of a pumping system which is
105 described in detail in the subsequent sections.

106 **Design of the Pumping System for the Dual-Chamber Bioreactor**

107 Prior to designing the pumping system, the nearby creek that the bioreactor outlets to (Big
108 Creek) was monitored for its nitrate concentration via grab samples to identify if this surface
109 water source was reasonable for a retrofitted pumping system to a bioreactor. The nitrate-
110 nitrogen + nitrite-nitrogen concentrations ($\text{NO}_x\text{-N}$), referred to as the nitrate concentrations
111 hereafter, were measured at ISU's Water Quality Research Laboratory using a Seal Analytical

112 AQ2 Discrete Autoanalyzer (AQ2 method EPA-114-A Rev. 11, a cadmium reduction method).
113 The nitrate concentrations were often observed to be similar to the incoming subsurface drainage
114 to the bioreactor (Figure 1). With the pumping water source identified, the rest of the design
115 moved forward. The pumping system was designed based off the initial design flowrate from the
116 USDA–NRCS of $\sim 10.5 \text{ L s}^{-1}$. This flowrate was used as the maximum amount of possible flow
117 through the pumping system. A water use permit was obtained from the Iowa Department of
118 Natural Resources (DNR) to pump water from the nearby Big Creek at a maximum rate of the
119 design flow rate for the bioreactor system or a total water volume of $162,773 \text{ m}^3$ from April 1st to
120 September 30th each year. The water use permit is valid until June 2031 (Iowa Water Use Permit
121 Number 10,369; Iowa DNR, 2021).

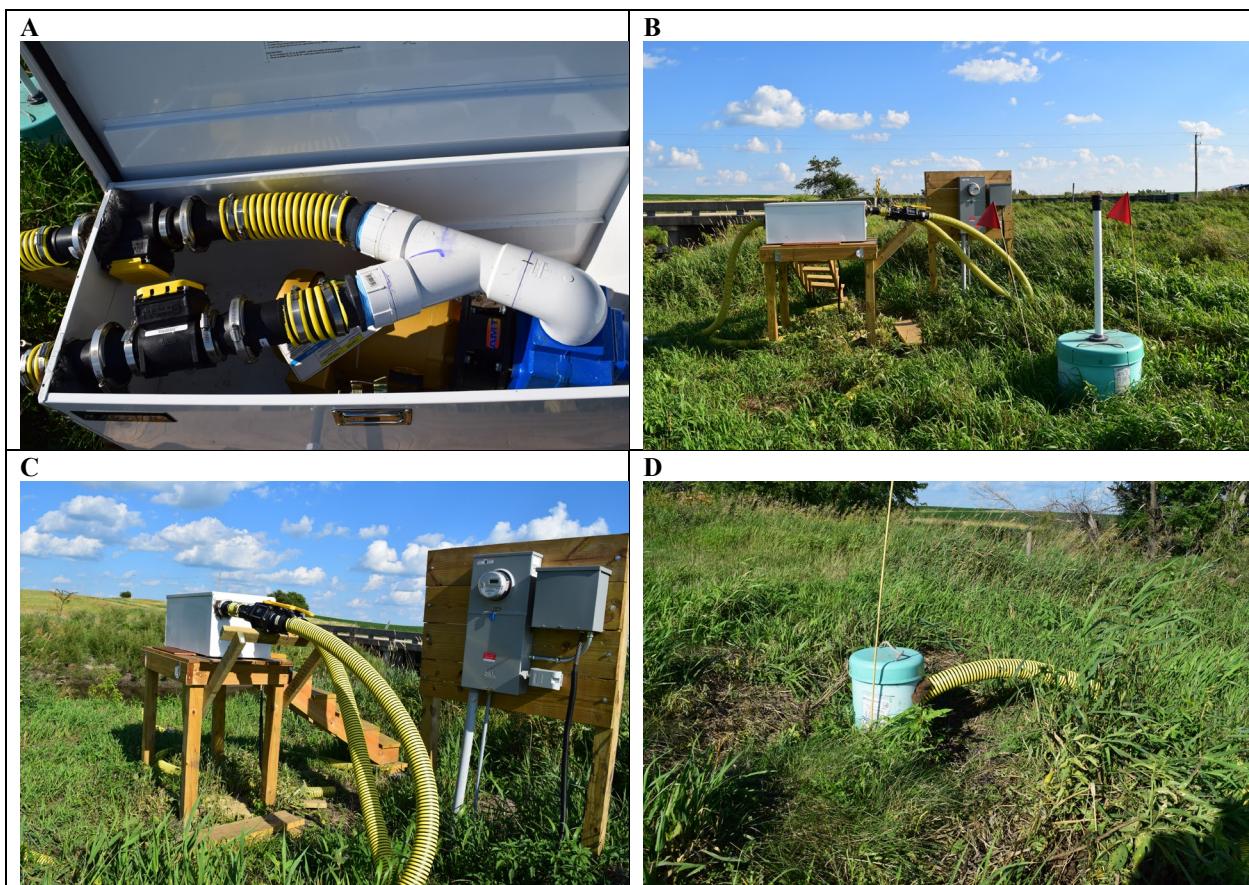

122
123 Figure 1. Boxplot of nitrate-nitrogen + nitrite-nitrogen (NO_x-N) within Big Creek at the research
124 site. Concentrations are represented for 2020 (blue circles), 2021 (yellow triangles), and 2022

125 (gray squares). Concentrations in Big Creek were generally lower in 2021 due to on-going
126 drought conditions.

127 With approval to treat water from Big Creek from both the Iowa USDA-NRCS and the Iowa
128 DNR, the remainder of the pumping system was designed. Since the pumping system is a new
129 application to tile drainage bioreactor systems and would be seasonal in nature, this design was
130 created with flexibility in mind to be able to tear down and easily re-install the system as needed.
131 The main components of the system included a pump, meters, valves to control the flow, and an
132 intake filter to reduce debris entering the pumping system. A fine filter was not included in this
133 system due to concern for frequent clogging and subsequent strain on the pump. Using the
134 maximum flowrate of 10.5 L s^{-1} , the size of the pump and flexible hose was determined,
135 accounting for the anticipated head loss to the system. Since this site featured two bioreactor
136 chambers, a main component to consider in the head loss for the system was a wye to divide the
137 flow from the creek into the two bioreactor chambers. A factor of safety was added into the
138 design to ensure the target flow rate of 10.5 L s^{-1} would be achievable. Therefore, in the design,
139 we ensured a flowrate of 14.2 L s^{-1} could be achieved. With these key components, the diameter
140 of the flexible hose (7.62 cm in diameter) and expected head loss were determined.

141 A pump (AMT pump company, Self-Priming Circulation Pump, 7.5 hp) was then sized,
142 ensuring the design flowrate could be achieved at the expected head loss of 14.1 m. With the size
143 of the hose and pump determined, the flow meters (Banjo 2" Full Port Manifold Flow Meter),
144 valves (Banjo 3" Full Port Ball Valve), and course filter (EasyPro High Volume Centrifugal
145 Pump Intake Filter) were selected, ensuring their performance range included the design flowrate
146 of 10.5 L s^{-1} . With the main components of the system determined, the remaining parts for the
147 pumping system were selected, including the necessary fittings, adapters, and clamps to connect
148 the main components to the flexible hose. A large, heavy-duty steel chest was purchased with a

149 lock to store the pump and meters in to protect it from the environment and other disturbances.
150 Lastly, electrical service had to be installed at the site which included a wooden stand for the
151 electrical panel, meter, and single phase 240V electrical power with a three phase to single phase
152 converter. The electrical service was installed through a collaborative effort between the local
153 power company and local electricians. The configuration of the pumping system design is
154 illustrated in Figure 2, highlighting the main components of the system.



155

156 Figure 2. Illustration of the design of the pumping system with respect to the existing bioreactor
157 infrastructure (black dashed lines). The flexible hose for the pumping system is denoted by the
158 curved red solid lines.

159 Pumping System Installation

160 The installation of the pumping system was completed in the spring of 2022, beginning with the
161 installation of electrical service at the research site. Upon completion of the electrical service
162 installation, a wooden platform was constructed to place the steel chest with the pump and
163 meters on (Figure 3). This was a necessary feature for this pumping system as the site of the
164 bioreactor is located within the floodplain of the creek and has previously been completely
165 flooded.

166 Figure 3. Demonstration of components of the pumping system during installation. (A) shows
167 the pump, wye, and flow meters located within the steel chest, (B) shows the flexible hose
168 entering the steel chest and valves/flexible hose leaving the chest, (C) shows a closer view of the
169 valves and flexible hose leaving the pump/chest and the electrical service, and (D) shows the
170 flexible hose entering one of the inlet water control structures.

171 As the pump and meters were to be stored in the steel chest, holes were cut in the box to
172 allow the flexible hose to enter and leave the pump and meters. Once this was completed, the

173 pump was placed within the box and the wye and meters were connected to the pump (Figure 3).
174 The remaining components were then attached (valves, intake filter, and remaining flexible hose
175 to the pump and to the water control structures). Lastly, holes were made in the two inlets water
176 control structures (inlet A and inlet B in Figure 2) to allow for the flexible hose to be placed in
177 the structures (Figure 3).

178 Upon completion of the installation, the pumping system could be started as needed to
179 supplement the flow into the bioreactor. The flow rate from the system was controlled and
180 monitored with the flow meters and valves. Flow leaving the bioreactor system were also
181 monitored using vented pressure transducers (Solinst Model 3250 LevelVent; Solinst, Ontario,
182 Canada) and V-notch weirs (Agri Drain Corporation, Adair, IA).

183 **RESULTS AND DISCUSSION**

184 **Flow Rates Achieved**

185 Prior to 2022, the bioreactor site experienced lower than expected flow rates furthered by
186 drought conditions in 2020 and 2021. More specifically, the bioreactor received an estimated
187 940, 665, and 717 mm of precipitation in 2019, 2020, and 2021 respectively with 935 mm
188 representing the average annual precipitation in Ames, Iowa (30-year average from 1981-2010)
189 (Daigh et al., 2015). In 2022, it became evident that while the bioreactor was designed for a flow
190 rate of 10.5 L s^{-1} , this flow rate was not actually achievable. This is believed to be a result of a
191 poor slope or gradient within the bioreactor in combination with suspected woodchip degradation
192 near the inlets restricting the inflow. The bioreactor was installed against the natural gradient at
193 the site due to the location of the incoming subsurface drainage. Through a survey at the site, the
194 inlet of chamber B was identified as the lowest point in the entire bioreactor system. In 2022, the
195 addition of the second 40.64 cm diameter tile line in combination with greater precipitation

196 contributed to increased flow rates, limiting the need for the pumping system. In July and early
197 August 2022, the pumping system was used to supplement the flow to the bioreactor system as
198 the subsurface drainage flow subsided.

199 When using the pumping system, the flow rate through the bioreactor was between 1.06 L s^{-1}
200 and 2.17 L s^{-1} , for each bioreactor chamber. The bioreactor could not handle all of the flow being
201 pumped, and an average of 41% of the flow being pumped was bypassed back to the stream,
202 going untreated. These were the total flow rates at the outlet of the bioreactor or bypassing the
203 bioreactor, which were monitored with the vented pressure transducers described previously. We
204 suspect the lower flow rates are a result of woodchip degradation near the inlet manifolds
205 restricting the inflow. The flow rates from the pumping system (Banjo flow meters described
206 previously) still require validation in the field.

207 **Challenges and Future Recommendations**

208 As the supplemental pumping system is a new concept, challenges have been experienced,
209 creating the opportunity for recommendations for future systems. Unexpected challenges with
210 this system occurred in the sizing of the pump and subsequent other components due to the
211 discrepancies between the observed maximum flow rates and the actual design flow rate, with
212 the observed maximum flow rate being approximately 55% (5.66 L s^{-1}) of the design flow rate.
213 As a result, the pump capacity is higher than necessary, resulting in greater restriction of the flow
214 than expected. Knowing the actual bioreactor system capacity, rather than the design capacity,
215 will allow for more proper design and sizing of these pumping systems.

216 An additional consideration in the installation of these pumping systems is the timing of
217 the application. When treating surface waters in the summer months, the temperature of the
218 water being pumped can be much warmer than the subsurface drainage. We observed as much as

219 a 10°C increase in the temperature of the supplemental surface waters pumped versus the
220 incoming subsurface tile drainage. As the denitrification process in these systems is microbially
221 driven, a large increase in temperature can lead to more rapid denitrification (Ghane et al., 2015;
222 Hoover et al., 2016; Warneke et al., 2011). Therefore, it is important to consider both the
223 temperature of the pumping source and its nitrate concentration, to ensure that harmful pollution
224 swapping will not occur as a result of complete denitrification (Davis et al., 2019; Hartfiel et al.,
225 2022; Healy et al., 2011). Lastly, the total or dissolved organic carbon levels within the pumping
226 system is another consideration. As surface waters contain sediment, the pumping of surface
227 waters can add carbon from the sediment to the bioreactor system. Carbon is necessary for
228 microbial denitrification, acting as an electron donor or food source for the denitrifying bacteria
229 (Schipper et al., 2010); the addition of potentially readily available carbon from the pumped
230 water can stimulate enhanced denitrification (Cameron & Schipper, 2010; Feyereisen et al.,
231 2016; Warneke et al., 2011). The creek typically contained total organic carbon concentrations
232 ~1.5 times greater than the incoming subsurface drainage, although the creek total organic
233 carbon concentrations were relatively low being at or below 4.2 mg C L⁻¹ during the monitoring
234 period in 2022. The potential addition of carbon from pumping is likely due to increased
235 sediment loads to the bioreactor which is an area of caution; previous research has demonstrated
236 that in aquaculture wastewater systems treated by bioreactors that elevated total suspended solids
237 creates a potential for clogging to occur especially near the bioreactor inlet (Christianson et al.,
238 2016). While the pumping source has the potential to add additional carbon into the bioreactor
239 system, there is preliminary evidence that the higher temperature water contributed to quicker
240 release of the total organic carbon from the woodchips as well. This was evidenced by increasing

241 total organic carbon concentrations from the inlet to the outlet of the bioreactor; however, these
242 total organic carbon samples were only collected on one pumping date and are therefore limited.

243 Considering both the increased temperatures and potential for increased carbon entering the
244 bioreactor for pumped surface water systems, it is important to consider the timing of the
245 pumping application and the nitrate concentrations in the pumping source. By pumping from
246 these warmer surface water systems during the spring or fall where cooler temperatures may be
247 present, especially in the subsurface drainage, enhanced microbial denitrification conditions may
248 be promoted (Addy et al., 2016; Christianson et al., 2012; Hoover et al., 2016), potentially
249 contributing to improved bioreactor performance in cooler months.

250 **Potential for Additional Pumped Bioreactor Systems**

251 The pumping source at this site, Big Creek, does have high nitrate concentrations while the
252 creek is flowing (Figure 1). However, this site has experienced extremes in the amount of flow
253 with both stagnant conditions and out-of-bank flooding being observed in a one-year period
254 (Supplemental Figure S1). The application of these pumped bioreactor systems would therefore
255 be better fit for less flashy surface water systems or alternative nitrate-laden sources of water.
256 Here, the pumping system was used to extend the use of bioreactor by three weeks by allowing
257 for treatment of the pumped surface waters. During this time, the bioreactor was monitored
258 weekly for water quality but was checked every day to two days while pumping to ensure
259 uniform pumping and bioreactor flow conditions were occurring. Due to the increased
260 temperatures, the system was nitrate limited during two of the three weeks of monitoring, where
261 nitrate was completely removed prior to the water reaching the outlet of the bioreactor. In the
262 first week of the pumping system and monitoring when the system was not nitrate limited, the
263 bioreactor was able to achieve a combined average daily removal rate of $6.58 \text{ g N m}^{-3} \text{ d}^{-1}$ per

264 bioreactor chamber (range of $5.77 - 7.39 \text{ g N m}^{-3} \text{ d}^{-1}$) compared to a combined daily average
265 removal rate of $3.62 \text{ g N m}^{-3} \text{ d}^{-1}$ per bioreactor chamber (range of $3.42 - 3.82 \text{ g N m}^{-3} \text{ d}^{-1}$) the
266 previous week without pumping.

267 While our system was nitrate limited during much of its use as the flow in the creek
268 diminished, there are other surface waters where more consistent flow conditions and nitrate
269 concentrations could be encountered, making these systems more ideal for a pumping system.
270 For demonstration purposes, the potential of these pumped bioreactor systems will be made
271 using our observations during the period where the system was not nitrate limited (with a
272 combined average removal rate of $6.58 \text{ g N m}^{-3} \text{ d}^{-1}$ for the system). If these rates were able to
273 consistently be achieved, on a daily basis, the bioreactor could remove $5,513 \text{ g N d}^{-1}$ (average of
274 $2,756 \text{ g N d}^{-1}$ per chamber). Extended over a one-month period, the bioreactor could remove 165
275 kg N (average of 83 kg N per month per chamber).

276 In the upper Midwest region of the United States, the application of bioreactor systems
277 has been primarily for treatment of subsurface drainage (Christianson et al., 2021). With the
278 nutrient reduction goals set as part of the Gulf Hypoxia Action Plan (Mississippi River/Gulf of
279 Mexico Watershed Nutrient Task Force, 2008), more widespread adoption of conservation
280 practices will be needed (Iowa Department of Agriculture and Land Stewardship, 2017), which
281 presents the opportunity for unique bioreactor designs to be explored, such as pumped bioreactor
282 systems, that could treat nitrate-laden sources of water that are otherwise going untreated.
283 Potential applications of these pumped bioreactor systems could include treatment of additional
284 nitrate-laden surface waters, irrigation waters, drainage ditches, pumped cistern systems for
285 stored subsurface drainage, or potentially groundwater.

286 Lastly, there is potential for these pumped bioreactor systems to prolong the bioreactor
287 life. Research is showing more rapid decomposition of the carbon source, typically woodchips,
288 near the inlet of the system (Christianson et al., 2020; Schaefer et al., 2021). The carbon source
289 located near the inlet can be subjected to aerobic conditions (with higher dissolved oxygen
290 levels) where greater decomposition can occur (Moorman et al., 2010; Schaefer et al., 2021). The
291 inlet of the bioreactor can also experience larger fluctuations in the water level, experiencing
292 periods of drying and rewetting that have also been hypothesized as accelerating woodchip
293 decomposition (Ghane et al., 2018; Maxwell et al., 2019). As most bioreactors in the Midwest
294 region of the United States receive subsurface drainage, there can be periods of no or low flow
295 conditions as the drainage often subsides with crop development (Helmers et al., 2022; Helmers
296 et al., 2005). With the use of a pumping system, the bioreactor could potentially experience more
297 uniform, consistent flow rates with less variation in the saturation level of the bioreactor,
298 potentially extending the life of the bioreactor.

299 The cost of a pumped bioreactor system is a consideration for future installations of these
300 systems. Due to the short period of monitoring in this study, we have not provided an estimate of
301 electricity use or cost per kg N removed. A scenario-based cost assessment of three pumped
302 bioreactor systems has been conducted in another study. That study identified that pumped
303 bioreactor systems tended to have a slightly higher unit cost of nitrate removal (\$ kg N removed⁻¹)
304 than a traditional, subsurface drainage-fed bioreactor due to greater material and installation
305 costs (Hartfiel, 2022). However, for larger scale pumped bioreactor systems (e.g., 300+ m³) the
306 unit costs were comparable to those of a traditional bioreactor ranging from about \$8 to \$28 kg N
307 removed⁻¹ for most of the scenarios evaluated. The potential for higher mass removal rate,

308 extended lifespan of the bioreactor, and extended operating period allowed for the unit costs to
309 decrease (Hartfiel, 2022).

310 **CONCLUSIONS**

311 There is a need for reductions to the nutrient loading from the upper Midwest region of the
312 United States to the Gulf of Mexico. To reach the nutrient reduction goals established, innovative
313 solutions are needed. A new concept is the use of pumped bioreactor systems to allow for
314 treatment beyond temporary subsurface drainage. Potential applications of these pumped systems
315 briefly include treatment of nitrate-laden surface waters, irrigation waters, drainage ditches, or
316 groundwater. When determining a source to be pumped, a few considerations are the source
317 water nitrate concentrations, temperature, and carbon content. The timing of the pumping
318 application should factor in these parameters to optimize the bioreactor system's performance.
319 Pumping during periods of high temperatures and/or carbon levels with lower nitrate
320 concentrations should be avoided as these conditions can promote enhanced microbial
321 denitrification leading to complete nitrate reduction and potential pollution swapping
322 opportunities.

323 **ACKNOWLEDGMENTS**

324 The authors thank Ji Yeow Law for his assistance in constructing and assembling aspects
325 of the pumping system and Natasha Hoover for capturing photos of the system and installation.
326 This work was supported by the Natural Resources Conservation Service, U.S. Department of
327 Agriculture, under numbers NR186114XXXXG004 and NR213A750013G038. Any opinions,
328 findings, conclusions, or recommendation expressed in this publication are those of the author(s)
329 and do not necessarily reflect the views of the U.S. Department of Agriculture. USDA is an

330 equal opportunity provider and employer. This project was also supported by Agriculture and
331 Food Research Initiative Competitive Grant no. 2018-67016-27578 awarded as a Center of
332 Excellence from the USDA National Institute of Food and Agriculture.

333 **CONFLICT OF INTEREST**

334 The authors declare no conflict of interest.

335 **ORCID**

336 Lindsey M. Hartfiel: <https://orcid.org/0000-0002-1083-3888>

337 Andrew J. Craig: <https://orcid.org/0000-0001-9096-1849>

338 Michelle L. Soupir: <https://orcid.org/0000-0003-3449-1146>

339 **SUPPLEMENTAL MATERIAL**

340 The supplemental materials include a figure to demonstrate the fluctuations in water level
341 (stagnant conditions and out-of-bank flooding) that can be observed within a one-year period at
342 the site we were pumping from.

343 **REFERENCES**

344 Addy, K., Gold, A. J., Christianson, L. E., David, M. B., Schipper, L. A., & Ratigan, N. A.
345 (2016). Denitrifying Bioreactors for Nitrate Removal: A Meta-Analysis. *J Environ Qual*,
346 45(3), 873-881. <https://doi.org/10.2134/jeq2015.07.0399>

347 Cameron, S. G., & Schipper, L. A. (2010). Nitrate removal and hydraulic performance of organic
348 carbon for use in denitrification beds. *Ecological Engineering*, 36(11), 1588-1595.
349 <https://doi.org/10.1016/j.ecoleng.2010.03.010>

350 Christianson, L., Bhandari, A., Helmers, M., Kult, K., Sutphin, T., & Wolf, R. (2012).
351 PERFORMANCE EVALUATION OF FOUR FIELD-SCALE AGRICULTURAL
352 DRAINAGE DENITRIFICATION BIOREACTORS IN IOWA. *Trans. ASABE*, 55(6),
353 2163-2174. <https://doi.org/10.13031/2013.42508>

354 Christianson, L., Feyereisen, G., Hay, C., Tschirner, U., Kult, K., Wickramarathne, N., . . .
355 Soupir, M. (2020). DENITRIFYING BIOREACTOR WOODCHIP RECHARGE:

356 MEDIA PROPERTIES AFTER NINE YEARS [Article]. *Transactions of the ASABE*,
357 63(2), 407-416. <https://doi.org/10.13031/trans.13709>

358 Christianson, L. E., Cooke, R. A., Hay, C. H., Helmers, M. J., Feyereisen, G. W., Ranaivoson, A.
359 Z., . . . Pluer, W. T. (2021). Effectiveness of denitrifying bioreactors on water pollutant
360 reduction from agricultural areas. *Transactions of the ASABE*, 64(2), 641-658.

361 Christianson, L. E., Lepine, C., Sharrer, K. L., & Summerfelt, S. T. (2016). Denitrifying
362 bioreactor clogging potential during wastewater treatment. *Water Research*, 105, 147-
363 156. <https://doi.org/10.1016/j.watres.2016.08.067>

364 Daigh, A. L. M., Zhou, X., Helmers, M. J., Pederson, C. H., Horton, R., Jarchow, M., &
365 Liebman, M. (2015). Subsurface Drainage Nitrate and Total Reactive Phosphorus Losses
366 in Bioenergy - Based Prairies and Corn Systems. *Journal of environmental quality*,
367 44(5), 1638-1646. <https://doi.org/10.2134/jeq2015.02.0080>

368 Davis, M. P., Martin, E. A., Moorman, T. B., Isenhart, T. M., & Soupir, M. L. (2019). Nitrous
369 oxide and methane production from denitrifying woodchip bioreactors at three hydraulic
370 residence times. *Journal of Environmental Management*, 242, 290-297.
371 <https://doi.org/10.1016/j.jenvman.2019.04.055>

372 Diaz, R. J., & Rosenberg, R. (2008). Spreading Dead Zones and Consequences for Marine
373 Ecosystems. *SCIENCE*, 321(5891), 926-929. <https://doi.org/10.1126/science.1156401>

374 Díaz-García, C., Martínez-Sánchez, J. J., Maxwell, B. M., Franco, J. A., & Álvarez-Rogel, J.
375 (2021). Woodchip bioreactors provide sustained denitrification of brine from
376 groundwater desalination plants. *J Environ Manage*, 289, 112521-112521.
377 <https://doi.org/10.1016/j.jenvman.2021.112521>

378 E.P.A, U. S. (2021). *National Primary Drinking Water Regulations*. United States
379 Environmental Protection Agency. Retrieved August 4 from
380 <https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water->
381 [regulations](https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations)

382 Easton, Z. M., Bock, E., & Stephenson, K. (2019). Feasibility of Using Woodchip Bioreactors to
383 Treat Legacy Nitrogen to Meet Chesapeake Bay Water Quality Goals. *Environ. Sci.
384 Technol.*, 53(21), 12291-12299. <https://doi.org/10.1021/acs.est.9b04919>

385 Feyereisen, G. W., Moorman, T. B., Christianson, L. E., Venterea, R. T., Coulter, J. A., &
386 Tschirner, U. W. (2016). Performance of Agricultural Residue Media in Laboratory
387 Denitrifying Bioreactors at Low Temperatures. *Journal of environmental quality*, 45(3),
388 779. <https://doi.org/10.2134/jeq2015.07.0407>

389 Ghane, E., Fausey, N. R., & Brown, L. C. (2015). Modeling nitrate removal in a denitrification
390 bed. *Water Research*, 71(1), 294-305. <https://doi.org/10.1016/j.watres.2014.10.039>

391 Ghane, E., Feyereisen, G. W., Rosen, C. J., & Tschirner, U. W. (2018). Carbon Quality of Four-
392 Year-Old Woodchips in a Denitrification Bed Treating Agricultural Drainage Water.
393 *Transactions of the ASABE*, 61(3), 995-1000. <https://doi.org/10.13031/trans.12642>

394 Greenan, C. M., Moorman, T. B., Parkin, T. B., Kaspar, T. C., & Jaynes, D. B. (2009).
395 Denitrification in wood chip bioreactors at different water flows. *Journal of
396 environmental quality*, 38(4), 1664. <https://doi.org/10.2134/jeq2008.0413>

397 Groh, T. A., Gentry, L. E., & David, M. B. (2015). Nitrogen Removal and Greenhouse Gas
398 Emissions from Constructed Wetlands Receiving Tile Drainage Water. *J ENVIRON
399 QUAL*, 44(3), 1001-1010. <https://doi.org/10.2134/jeq2014.10.0415>

400 Hartfiel, L. M. (2022). *Influence of denitrification bioreactor design on cost, performance, and
401 potential for pollution swapping*

402 Hartfiel, L. M., Hoover, N. L., Hall, S. J., Isenhart, T. M., Gomes, C. L., & Soupir, M. L. (2023).
403 Extreme low-flow conditions in a dual-chamber denitrification bioreactor contribute to
404 pollution swapping with low landscape-scale impact. *The Science of the total*
405 *environment*, 877, 162837-162837. <https://doi.org/10.1016/j.scitotenv.2023.162837>

406 Hartfiel, L. M., Schaefer, A., Howe, A. C., & Soupir, M. L. (2022). Denitrifying bioreactor
407 microbiome: Understanding pollution swapping and potential for improved performance.
408 *J Environ Qual*, 51(1), 1-18. <https://doi.org/10.1002/jeq2.20302>

409 Healy, M. G., Ibrahim, T. G., Lanigan, G. J., Serrenho, A. J., & Fenton, O. (2011). Nitrate
410 removal rate, efficiency and pollution swapping potential of different organic carbon
411 media in laboratory denitrification bioreactors. *Ecological Engineering*, 40.
412 <https://doi.org/10.1016/j.ecoleng.2011.12.010>

413 Helmers, M., Abendroth, L., Reinhart, B., Chighladze, G., Pease, L., Bowling, L., . . . Strock, J.
414 (2022). *Impact of controlled drainage on subsurface drain flow and nitrate load: A*
415 *synthesis of studies across the U.S. Midwest and Southeast*. Elsevier B.V.

416 Helmers, M. J., Lawlor, P. A., Baker, J. L., Melvin, S. W., & Lemke, D. W. (2005). Temporal
417 Subsurface Flow Patterns from Fifteen Years in North-Central Iowa. In: Iowa State
418 University Digital Repository.

419 Hoover, N., Bhandari, A., Soupir, M., & Moorman, T. (2016). Woodchip Denitrification
420 Bioreactors: Impact of Temperature and Hydraulic Retention Time on Nitrate Removal.
421 *J. Environ. Qual.*, 45(3), 803-812. <https://doi.org/10.2134/jeq2015.03.0161>

422 Illinois, E. P. A. (2015). Illinois nutrient loss reduction strategy. *Illinois Environ. Prot. Agency*.
423 <http://www.epa.illinois.gov/Assets/iepa/water-quality/watershed-management/nlrs/nlrs-final-revised-083115.pdf> (accessed 2 Feb. 2018).

425 Iowa Department of Agriculture and Land Stewardship, Iowa Department of Natural Resources
426 and Iowa State University College of Agriculture and Life Sciences. (2017). Iowa
427 Nutrient Reduction Strategy: A Science and Technology-Based Framework to Assess and
428 Reduce Nutrients to Iowa Waters and the Gulf of Mexico.

429 Jaynes, D. B., & Isenhart, T. M. (2014). Reconnecting Tile Drainage to Riparian Buffer
430 Hydrology for Enhanced Nitrate Removal. *J ENVIRON QUAL*, 43(2), 631-638.
431 <https://doi.org/10.2134/jeq2013.08.0331>

432 Jones, C. S., Nielsen, J. K., Schilling, K. E., & Weber, L. J. (2018). Iowa stream nitrate and the
433 Gulf of Mexico. *PLoS One*, 13(4), e0195930-e0195930.
434 <https://doi.org/10.1371/journal.pone.0195930>

435 Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue Babies and Nitrate-
436 Contaminated Well Water. *Environ Health Perspect*, 108(7), 675-678.
437 <https://doi.org/10.1289/ehp.00108675>

438 Liu, T., Bruins, R. J. F., & Heberling, M. T. (2018). Factors Influencing Farmers' Adoption of
439 Best Management Practices: A Review and Synthesis. *Sustainability*, 10(2), 432-432.
440 <https://doi.org/10.3390/su10020432>

441 Maxwell, B. M., Birgand, F., Schipper, L. A., Christianson, L. E., Tian, S., Helmers, M. J., . . .
442 Youssef, M. A. (2019). Drying–Rewetting Cycles Affect Nitrate Removal Rates in
443 Woodchip Bioreactors. *J Environ Qual*, 48(1), 93-101.
444 <https://doi.org/10.2134/jeq2018.05.0199>

445 Minnesota Pollution Control Agency. (2014). The Minnesota nutrient reduction strategy.
446 *Minnesota Pollution Control Agency*.

447 Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. (2008). Gulf Hypoxia Action
448 Plan 2008 for reducing, mitigating, and controlling hypoxia in the Northern Gulf of
449 Mexico and improving water quality in the Mississippi River Basin. *Mississippi*
450 *River/Gulf of Mexico Watershed Nutrient Task Force*.

451 Moorman, T. B., Parkin, T. B., Kaspar, T. C., & Jaynes, D. B. (2010). Denitrification activity,
452 wood loss, and N₂O emissions over 9 years from a wood chip bioreactor. *Ecological*
453 *Engineering*, 36(11), 1567. <https://doi.org/10.1016/j.ecoleng.2010.03.012>

454 NRCS, USDA. (2015). Conservation Practice Standard Denitrifying Bioreactor Code 605.
455 *United States Department of Agriculture Natural Resources Conservation Service*,
456 *Washington, DC*.

457 NRCS, USDA. (2020). CONSERVATION PRACTICE STANDARD DENITRIFYING
458 BIOREACTOR CODE 605. *United States Department of Agriculture Natural Resources*
459 *Conservation Service, Washington D.C.*

460 Rabalais, N. N., & Turner, R. E. (2019). Gulf of Mexico Hypoxia: Past, Present, and Future.
461 *Limnology and oceanography bulletin*, 28(4), 117-124. <https://doi.org/10.1002/lob.10351>

462

463 Rabotyagov, S., Campbell, T., Jha, M., Gassman, P. W., Arnold, J., Kurkalova, L., . . . Kling, C.
464 L. (2010). Least-cost control of agricultural nutrient contributions to the Gulf of Mexico
465 hypoxic zone. *ECOL APPL*, 20(6), 1542-1555. <https://doi.org/10.1890/08-0680.1>

466 Schaefer, A., Werning, K., Hoover, N., Tscherner, U., Feyereisen, G., Moorman, T. B., . . .
467 Soupir, M. L. (2021). Impact of flow on woodchip properties and subsidence in
468 denitrifying bioreactors. *Agrosystems, geosciences & environment*, 4(1), n/a.
469 <https://doi.org/10.1002/agg2.20149>

470 Schipper, L. A., Robertson, W. D., Gold, A. J., Jaynes, D. B., & Cameron, S. C. (2010).
471 Denitrifying bioreactors—An approach for reducing nitrate loads to receiving waters.
472 *Ecological Engineering*, 36(11), 1532-1543.
473 <https://doi.org/10.1016/j.ecoleng.2010.04.008>

474 Ward, M., Jones, R., Brender, J., de Kok, T., Weyer, P., Nolan, B., . . . van Breda, S. (2018).
475 Drinking Water Nitrate and Human Health: An Updated Review. *Int J Environ Res*
476 *Public Health*, 15(7), 1557. <https://doi.org/10.3390/ijerph15071557>

477 Ward, M. H. (2009). Too Much of a Good Thing? Nitrate from Nitrogen Fertilizers and Cancer.
478 *Rev Environ Health*, 24(4), 357-363. <https://doi.org/10.1515/REVEH.2009.24.4.357>

479 Warneke, S., Schipper, L. A., Bruesewitz, D. A., McDonald, I., & Cameron, S. (2011). Rates,
480 controls and potential adverse effects of nitrate removal in a denitrification bed.
481 *Ecological Engineering*, 37(3), 511-522. <https://doi.org/10.1016/j.ecoleng.2010.12.006>

482 White, V. (1996). Agriculture and drinking water supplies: removing nitrates from drinking
483 water in Des Moines, Iowa. *J SOIL WATER CONSERV*, 51(6), 454-455.

484