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Comparison of antibiotic
resistance genes in swine
manure storage pits of
lowa, USA

Timothy P. Neher*, Michelle L. Soupir, Daniel S. Andersen,
Maggie L. O'Neill and Adina Howe

Department of Agricultural and Biosystems Engineering, lowa State University, Ames, IA, United States

Antimicrobial resistance (AMR) can develop in deep-pit swine manure storage
when bacteria are selectively pressured by unmetabolized antibiotics.
Subsequent manure application on row crops is then a source of AMR into soil
and downstream runoff water. Therefore, understanding the patterns of diverse
antibiotic resistance genes (ARGs) in manure among different farms is important
for both interpreting the results of the detection of these genes from previous
studies and for the use of these genes as bioindicators of manure borne antibiotic
resistance in the environment. Previous studies of manure-associated ARGs are
based on limited samples of manures. To better understand the distribution of
ARGs between manures, we characterized manures from 48 geographically
independent swine farms across lowa. The objectives of this study were to
characterize the distribution of ARGs among these manures and to evaluate what
factors in manure management may influence the presence of ARGs in manures.
Our analysis included quantification of two commonly found ARGs in swine
manure, ermB and tetM. Additionally, we characterized a broader suite of 31
ARGs which allowed for simultaneous assays of the presence or absence of
multiple genes. We found the company integrator had a significant effect on both
ermB (P=0.0007) and tetM gene concentrations (P=0.0425). Our broad analysis
on ARG profiles found that the tet(36) gene was broadly present in swine
manures, followed by the detection of tetT, tetM, erm(35), ermF, ermB, str,
aadD, and intl3 in samples from 14 farms. Finally, we provide a comparison of
methods to detect ARGs in manures, specifically comparing conventional and
high-throughput gPCR and discuss their role in ARG environmental monitoring
efforts. Results of this study provide insight into commonalities of ARG presence
in manure holding pits and provide supporting evidence that company integrator
decisions may impact ARG concentrations.
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Introduction

Large-scale swine production and growing demand for pork has
resulted in the consequent increased production of swine manures
(OECD and Food and Agriculture Organization of the United
Nations, 2021). Manures are a reservoir for unmetabolized
antibiotics and antibiotic resistant bacteria (Marti et al., 2014; Mu
et al.,, 2015; He et al., 2020; Lima et al., 2020; Howe and Soupir,
2021). The enrichment of antibiotics in manure originates from the
use of antibiotic administration to therapeutically and sub-
therapeutically control, prevent, and treat disease (Klein et al,
2018). In the United States, more than two million kilograms, or
39% of medically important antibiotics intended for use in food-
producing animals, were used in swine production in 2019 (Center
for Veterinary Medicine, 2020). Much of the administered
antibiotic is unmetabolized and remains in the animal tissue or
excreted with manure (Elmund et al., 1971; Bacanli and Bagaran,
2019). Excess manure and associated antibiotic residues are often
retained in deep pit storage structures until field application as
fertilizer (Elmund et al, 1971; Zhang et al., 2017). Manure can
remain in storage structures for more than a year, between intervals
of land application (IADNR, 2022). Within these deep pits, there is
continuous interaction between antibiotics and bacteria, which can
lead to the development and/or enrichment of antibiotic resistance,
both by genetic mutation and horizontal gene transfer (Chee-
Sanford et al., 2009; Zhao et al., 2019; He et al., 2020). Generally,
manure has been identified as a potential hotspot for the
accumulation and dissemination of antibiotic resistance to
the environment.

Diverse antibiotic resistant genes (ARGs) associated with
medically important classes of antibiotics have been observed in
swine manure bacteria. Swine manure associated ARGs include
tetracyclines (tet), macrolides (erm, msr, mef), lincosamides (Inu,
lin), aminoglycosides (aac, aad, aph, str), sulfonamides (sull, sul2),
amphenicols (cpr, cml, floR), and fluoroquinolones (gnr), ranked by
total mass distributed in the US. (Fang et al., 2018; Center for
Veterinary Medicine, 2020; Checcucci et al., 2020). The most
commonly detected ARG determinants in swine manure encode
resistance to tetracyclines (fef), sulfonamides (sul), and macrolides
(erm) (Chen et al., 2007; Whitehead and Cotta, 2013; Li et al., 2019).
A number of these ARGs have been detected within environments
adjacent to animal production or manure application and are
attributed to manure management practices (Wang et al., 2020),
supporting the theory that manure-borne antibiotics and
subsequent antimicrobial resistance contribute to the overall
resistome in environmental soil and water (Wellington et al,
2013; Checcucci et al., 2020; Zhou et al., 2020).

To understand the risk of AMR from swine manure, broad and
effective surveillance methods are necessary. Ideally, these methods
would be sensitive and specific to swine-specific AMR risks, such as
ARGs or pathogens. Unfortunately, the ARGs that are associated
with swine manures are also detected in other animal production
where similar antibiotics are used (Zalewska et al., 2021).
Furthermore, ARGs and antibiotic resistant bacteria are naturally
occurring in the environment (Martinez, 2012; Van Goethem et al.,
2018), making it necessary to distinguish antibiotic resistance
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determinants derived from swine production to those that are
found in the natural environment (Allen et al., 2010; Meyers
et al., 2020). Additionally, swine manures themselves can vary
significantly in the suite of ARGs that are characteristic of their
microbial communities (Xue et al., 2021; Shui et al., 2022). We have
a limited understanding of this variation among manures because
most studies of swine-associated ARGs have been focused on
demonstrating an enrichment of ARGs in a small sample of a
single farm or a small number of manure samples (Li et al., 2019;
Wen et al., 2019; Yang et al., 2020; Xue et al., 2021).

We focused on swine manures originating from the state of
Towa, which is the highest swine producing state in the United
States, where there are more than 5,400 swine farms (IPPA, 2012).
The rationale for selecting a state-wide sampling was based on
accessibility to samples within a similar time period and also our
expectation that we would observe high variability in swine
production systems and company integrators within regional
samples. Swine farms can vary in specialized production systems
such as wean-finish or grow-finish, and company integrators that
manage supplies like weaners, feed, and medication (Cooper, 2018).
It is yet unclear how these variables may influence resulting AMR in
stored manure.

In this study, we expand our knowledge of the presence of
antibiotic resistant determinants in swine manure by providing a
broad comparison of ARGs among manures from 48 farms. We
aimed to quantify the presence of ARGs that have been
demonstrated to be consistently enriched in swine manures, tetM
and ermB (Whitehead and Cotta, 2013; Wen et al.,, 2019; Alt et al,,
2021) and also characterized the presence of diverse resistance
genes associated with other antibiotics and with swine manure,
including aminoglycoside, carbapenem, lincosamide, phenicol, and
sulfonamide resistance (Table 1). Our justification for the gene
selection is that these genes are associated with the most sold
antibiotics in swine production (Center for Veterinary Medicine,
2020). Additionally, a parallel study of the manures from these
farms measured high levels of tetracyclines and macrolides
(Congilosi et al., 2022). Our objective of this study was to better
understand ARG representation across multiple swine sources in a
similar region and to assess the variability of ARGs in swine manure
and their usefulness as broad bioindicators of manure influence.
Concurrently with evaluating ARGs among farm manures, we
assessed the differences in farm management: production system
(wean-finish or grow-finish) and company integrator (integrator 1
or integrator 2). Understanding the distribution of these genes
under varying farm management conditions will help us better
understand whether broad management factors influence the
concentrations of manure-associated ARGs in swine manure from
deep pit storage structures.

Materials and methods
Sample collection

A total of 48 swine farms were sampled from across the state of
Towa in the summer of 2020. At each farm, a single representative
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TABLE 1 Antibiotic resistance genes observed in previous studies in soil and water influenced by swine manure.

Antibiotic class of Antibiotic Resistance Gene

resistance

Studies reported

Aminoglycoside aadD, aada2, str (Chen et al., 2017; Han et al., 2018; Liu et al., 2019)

Carbapenem blaPSE, blaOXA10 (Han et al., 2018; Cheng et al., 2020; Radu et al., 2021)

Lincosamide InuA, InuB (Han et al., 2018; Cheng et al., 2020)

Macrolide erm(35), erm(36), ermB, ermC, (Chen et al., 2017; Peng et al., 2017; Han et al., 2018; Liu et al., 2019; Lopatto et al., 2019; Wen et al,,

ermF, ermQ, ermT

2019; Meyers et al., 2020; Radu et al., 2021)

Mobile Genetic Element intll, intl2, intl3, intI1F165

(Chen et al., 2019; Lopatto et al., 2019; Meyers et al., 2020)

Phenicol floR, cmlA1, cmlA5 (Chen et al.,, 2017; Liu et al., 2019)

Sulfonamide sull, sul2 (Peng et al., 2017; Chen et al., 2019; Liu et al., 2019; Lopatto et al., 2019; Meyers et al., 2020; Radu
et al., 2021)

Tetracycline tet(36), tetA, tetL, tetM, tetO, tetT, (Chen et al., 2017; Chen et al., 2019; Peng et al., 2017; Han et al., 2018; Liu et al., 2019; Wen et al.,

tetW, tetX

manure sample was collected from deep pit storage structures.
Specific locations of the farms are not disclosed due to privacy
restrictions, but all farms are within the state of Iowa and are
geographically independent of each other. Samples were collected at
the edge of the pits through a manure pump out via dipping the
sample from the top six inches of the manure surface. All farms
were deep pit barn facilities where pigs were either grow-finish (GF)
or wean-finish (WF) pigs raised on a slatted floor. Pigs were fed
commercial production diets consisting primarily of corn, soybean
meal, and distillers grains with percentages fed varying by growth
stage and price of different feed ingredients. After collection,
manure was stored at -20°C for one month until further
processing. Each manure sample was subsampled in triplicate
prior to DNA extraction. Each farm included was categorized
based on originating integrator and production system.
Specifically, these categories were company integrator: Integrator
1 (n=24) or integrator 2 (n=24); production system: wean-finish
(n=34), or grow-finish (n=14). Ethical review and approval was not
required for the study on animals in accordance with the local
legislation and institutional requirements. This work was conducted
in collaboration with local swine growers who made all animal
decisions regarding health and well-being and allowed the
collection of manure at their site.

DNA extraction

The DNA extraction procedure followed protocols from the
MagAttract PowerSoil DNA EP Kit (Qiagen) and an epMotion 5075
automated robot for extraction (Eppendorf). Samples of 0.25 grams
wet weight of liquid swine manure were used for DNA extraction.
Each manure was sub-sampled into three replicates (“farm
replicates”). For each farm replicate, we performed three DNA
extractions, resulting in three technical extraction replicates
(“extraction technical replicates”) for each farm replicate manure
sample. The resulting DNA was cleaned using a DNA Clean and
Concentrator kit (Zymo Research). Subsequent DNA
concentrations were measured with the Quant-it dsDNA Assay
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2019; Meyers et al., 2020; Radu et al., 2021)

Kit, high sensitivity (Thermo Fisher Scientific). The DNA samples
were stored at -80°C until further use.

Conventional gPCR quantification
(quantification of concentrations of tetM
and ermB)

Conventional qPCR assays were performed on a CFX96 Touch
Real-Time PCR Detection System (BioRad) and measured in
triplicate using primers targeting the 16S rRNA gene, ermB gene,
and tetM gene (Supplementary Table 1). Genes were quantified in
all 48 swine manure samples. The DNA template was diluted (1:10)
to optimize qPCR detection, to minimize inhibitors, and increase
primer efficiency to a target gene. The limit of quantification was
determined for each gene using oligonucleotide standards. Standard
curves ranged from 107 to 10" copies, and all samples measured
above the limit of quantification. Outliers in the triplicate were
omitted if above 1.5 times the standard deviation in the average of
the three values. Efficiencies calculated by standard curves ranged
from 82.2 to 100.6% and all R* values were above 0.98
(Supplementary Table 2). All reported absolute abundance
(copies/gram) are reported in gene copies per gram of wet weight
of manure and were calculated by the equation:

X copies* 100uL final volume

= «dilution factor 10x(

reaction 2uL
reaction

High-throughput qPCR (presence absence
of ARGs)

Extracted DNA was analyzed for a wide host of ARGs encoding
resistance to a broad spectrum of antibiotics used in swine
production; str, aadD, aadA2 (Aminoglycosides), ermB, ermC,
ermF, ermQ, ermT, erm(35), erm(36) (Macrolides), sul2, sull
(Sulfonamides), tetA, tetL, tetM, tetO, tetT, tetW, tetX, tet(36)
(Tetracyclines), blaPSE, blaOXA10 (Carbapenems), nuC, InuA
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(Lincosamides), ¢mlA5, ¢mlAl, floR (Phenicols), intI3, intl2,
intI1F165, and intll (Integrons). The high-throughput qPCR
primers used for the analysis are originally described in Stedtfeld
et al. (2018), Supplementary Table 1. The high-throughput qPCR
assay was performed on the Biomark Fluorescent machine in the
96x96 primer target layout. Each assay was performed in triplicate.
The template DNA was diluted in a 1:500 dilution for optimal
performance on the Biomark machine and to decrease potential
inhibitor effects. Samples reading a cycle threshold value greater
than 30 were omitted from further analysis. Cycle threshold
detections greater than 30 were assumed to be non-detected.
Verification of the high-throughput qPCR machine performance
is supported with internal standards for standard curve
development of 16S rRNA, ermB, ermF, sul2, tetM, and tetW
genes. Each internal standard gene amplified successfully with
efficiencies ranging from 80.0 to 104.2% (Supplementary Table 3).

Quality control

In order to be deemed a successful amplification, we required
that the conserved total bacteria gene 16S rRNA was detected in
each manure sample. Additionally, we required that detection was
observed for each gene in 2 out of 3 farm manure replicates and 2
out of 3 technical extraction replicate detections for each sample.

Statistical analysis

All statistical analyses were performed using R version 4.0.3. The
quantified ermB and tetM gene concentrations (copies/gram wet
weight) were logl0 transformed to fit a normal distribution.
Normality was confirmed with visual inspection of histograms and
Q-Q Plots. The linear regression models were fit using the lme4
package (Bates et al., 2015). The two gene responses were analyzed
separately. The integrator and production system were treated as
fixed effects. Gene concentrations of subsampled triplicates from one
representative manure sample per farm were averaged before model
building. Model performance was evaluated using the Performance
package (Liidecke et al., 2021) (Supplementary Table 4).

The R package emmeans (Lenth, 2021) was used for calculating
the estimated marginal means from the verified models and making
pairwise comparisons of fixed effects. All pairwise comparisons were
made with a 95% confidence level (P<0.05) and P-values were
adjusted using Tukey’s method for multiple comparisons. The main
effects refer to the overall effect of the variable while ignoring, or
averaging over, the levels of the other predictor variable. The main
and interaction effects of each model were analyzed using ANOVA
and type-III error.

Results
Conventional gPCR gene quantification

The number of gene copies of tetM and ermB were quantified in
DNA extracted from all manures using targeted amplification of
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these genes. Additionally, gene copies of the 16S rRNA gene, a
phylogenetic marker present in all bacteria, were estimated and
used for normalizing total bacterial counts among manure
comparisons. Overall, there was a large range of detection of both
genes across all 48 farms (Figure 1); the absolute gene
concentrations of ermB ranged from 2.20x10* copies gram™ to
1.53x10® copies gram™ and tetM ranged from 1.33x10° copies gram”
! to 2.23x10°® copies gram™'. The limit of quantification for each
individual qPCR plate are reported in Supplementary Table 2. The
concentrations of ermB and tetM were significantly different across
the 48 manure samples (ANOVA, P< 0.0001) (Supplementary
Table 5), and a general trend was observed that tetM and ermB
concentrations increased with concentrations of 16S rRNA genes.

The company integrator had a significant main effect on
observed ermB absolute gene concentrations based on the overall
ANOVA with type-III error (P=0.0007) (Supplementary Table 6).
The mean concentration of ermB in manures associated with
integrator 2 manure was 15% greater than manures from
integrator 1. Integrator 2 had an ermB estimated marginal mean
of 4.8x10° copies/gram compared to integrator 1 with 6.5x10°
copies/gram. This result exists when ermB was normalized to 16S
rRNA (P=0.0020) (Supplementary Figure 1 and Supplementary
Table 7). Likewise, there is evidence that the integrator had a
significant effect on tetM concentrations (P=0.0425), with tetM
also being enriched in integrator 2 relative to integrator 1
(Figure 2). However, this result is non-significant when tetM was
normalized to 16S rRNA (P= 0.3670). The production system had
no significant main effect on ermB or tetM gene concentrations or
relative abundance to 16S rRNA (Supplementary Figures 2, 3).
Additionally, there was no significant interaction between the two
fixed effects in both the absolute copy number model and the
16S rRNA normalized model for each gene (Supplementary
Tables 6, 7).

HT-gPCR gene survey

In addition to quantification of tetM and ermB in manures, we
also evaluated the presence of 31 ARGs listed in Table 1 and the 16S
rRNA gene in manures using methods similar to those previously
described (Stedtfeld et al, 2018) to leverage the ability to assay
numerous genes simultaneously with high-throughput qPCR (HT-
qPCR). Each internal standard gene of 16S rRNA, ermB, ermF, sul2,
tetM, and tetW were amplified successfully with efficiencies ranging
from 80-104% (Supplementary Table 3). However, while all 48
manures were evaluated against these 32 genes, in total, we detected
22 unique ARGs in 14 independent farm manure samples
(Figure 3). In 34 manures, we were unable to amplify the 16S
rRNA gene with HT-qPCR assays and thus these samples were
removed from further analysis. Within successfully amplified
samples, the most frequently detected ARG in manure was fet
(36), which was detected in all 14 manures. The second most
detected ARG was tetT at 93% detection, followed by erm(35) at
78.6% detection. Genes encoding resistance to tetracycline, tetT,
tetM, and tet(36), were present in 13/14, 8/14, and 14/14 farm
manure samples, respectively. The macrolide resistance gene class,
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Logl0 gene copies/g (wet weight) of ermB and tetM grouped by
company integrator. Asterisks above boxplots signify p-values
(alpha = 0.05) based on results of the linear model (not significant
[ns] p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.00001).
Interquartile ranges are indicated by boxes and the upper 25% and
lower 25% are indicated by whiskers. The number of farms (n) are
labelled on the x-axis.
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erm, had the second most detected antibiotic resistance genes with
erm(35), ermF and, ermB detected in 11/14, 10/14, and 7/14,
respectively. There was no detection of blaPSE, blaOXA10, cmlA5,
cmlAl, floR, InuA, erm(36), tetL, and tetA in any of the
manure samples.

Based on the detection of ARGs, we have developed
recommendations of the most commonly detected ARGs in Iowa
swine manures (Table 2). Importantly, we also identify the ARGs
that were not strongly present in manure holding pits, and these
ARGs include tetL, tetA, erm(36), floR, cmlA5, cmlA1, blaPSE, and
blaOXA10 (no detection), sull, intil, and intil1F165, (7.1%), aadA2
(14.2%), inti2 and sul2 (21.4%). In general, we observed that the two
main resistance mechanisms of ARGs present in the manures

studied were associated with target protection and target alteration.

Discussion

Many previous studies have characterized ARGs in swine
manures (Whitehead and Cotta, 2013; Yang et al., 2020; Howe
and Soupir, 2021) but are limited in the numbers of manure from
different farms represented in a single study. To help understand
the broad presence of ARGs in swine manures, this study identified
patterns in diverse manures from 48 geographically independent
farms. These farms represented variations in company integrator
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and production system, thus providing an opportunity to assess
generalized management factors. The ARGs selected for
characterization in this study were based on previous research in
environmental monitoring, and these genes have been previously
detected in manure, manure amended soil, and in the downstream
waters of agricultural land (Berendonk et al.,, 2015; Chen et al., 2019;
Lima et al., 2020; Neher et al., 2020; Zhang et al., 2021). While we
know these genes have been enriched in association with manures
in experimental studies, observations of their abundances in
environmental samples may not be able to be linked to a manure
reference. In other words, in environmental monitoring, it is
unknown if abundances observed of these genes are substantial.
Understanding the distribution of these genes in manures will help
us frame their observed abundances in the environment. While we
acknowledge that a study of 48 regional farms is far from
comprehensive, we believe that this study fills an important data
gap on ARG bioindicators from broad manures within a single
comparative study.

In our evaluation of ARGs as bioindicators for swine manure,
we used two approaches on select genes. Our rationale for
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leveraging both these methods was to balance our abilities to
accurately quantify relevant ARGs to understand the distribution
of their presence in diverse manures while also providing a broad
survey of multiple ARGs. The first method we used was
conventional gene amplification with qPCR, which is an absolute
quantification method using known standard concentrations to
estimate specific gene concentrations within manures. To survey a
broad range of genes, we also used a second method, which is a
relative quantification method on a HT-qPCR platform. This
method has recently been used by numerous studies (Muurinen
et al., 2021; Fernanda et al., 2022; Flater et al., 2022; Kasuga et al.,
2022; Mware et al., 2022; Samanta et al., 2022) because it allows for
simultaneous presence/absence detection of numerous genes
(Stedfeld). HT-qPCR is also limiting in the volume of each
reaction (6.7 x 10> uL vs 2 uL in conventional qPCR), which
directly influences its detection limits. Thus, these amplification
methods, conventional gPCR and HT-qPCR, are complements, the
former allowing for more sensitive quantification of a limited
number of ARGs and the latter broad detection of numerous
ARGs simultaneously. As with any amplification method for
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TABLE 2 Ranked recommendations of ARGs for detection of AMR in swine manure holding pits, based on both detection of 16S rRNA genes and
specified ARG.

Gene Percent Detection Drug Class Resistance Mechanism
tet(36) 100 Tetracycline Target protection
tetT 92.9 Tetracycline Target protection
erm(35) 78.6 Macrolide Target alteration
ermF 714 Macrolide Target alteration
tetM 57.1 Tetracycline Target protection
str 57.1 Aminoglycoside Inactivation
ermB 50 Macrolide Target alteration
aadD 50 Aminoglycoside Inactivation

intl3 50 Integrase N/A

ermC 42.9 Macrolide Target alteration
ermQ 35.7 Macrolide Target alteration
ermT 357 Macrolide Target alteration
tetW 35.7 Tetracycline Target protection
tetX 35.7 Tetracycline Inactivation

tetO 28.6 Tetracycline Target protection
sul2 214 Sulfonamide Target replacement
intl2 21.4 Integrase N/A

aadA2 14.2 Aminoglycoside Inactivation
intl1F165 7.1 Integrase N/A

intll 7.1 Integrase N/A

sull 7.1 Sulfonamide Target replacement
InuC 7.1 Lincosamide Inactivation

InuA 1.6 Lincosamide Inactivation

tetL 0 Tetracycline Efflux

tetA 0 Tetracycline Efflux

erm(36) 0 Macrolide Target alteration
floR 0 Phenicol Efflux

cmlA5 0 Phenicol Efflux

cmlAl 0 Phenicol Efflux

blaPSE 0 Carbapenem Inactivation
blaOXA10 0 Carbapenem Inactivation

The percent detection is the proportion of 14 manure samples with concurrent positive detection of 16S rRNA gene. The antibiotic resistance genes analyzed in this study in 14 swine manures
from Towa farms.
N/A, Not Applicable.

manure samples, both methods will be influenced and likely Concentrations of ermB and tetM in swine

disproportionately by the sample complexity of manures, where manure pits (conventional CIPC R)
inhibitors (which vary among manure samples) may prevent

adequate amplification (Sidstedt et al., 2020; Waseem et al., 20205 Consistent with previous observations of the association and
Park et al., 2021). We provide a comparison of these methods to  enrichment of ermB and tetM genes with manures (Whitehead
target ARGs in our swine manure samples below. and Cotta, 2013; Joy et al, 2014; Zalewska et al, 2021) and
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adjacent soils and waters (Peng et al., 2017; Zhang et al., 2021), we
detected these genes in all 48 manures in this study. The
concentrations measured in our study were consistent with
those detected in manure holding pits measured in other studies
(Mackie et al., 2006; Joy et al., 2013; Hall et al.,, 2020; Alt et al,,
2021) and also demonstrate the wide variations of ARGs that can
be observed within manures, with variations up to three-fold. The
wide ranges of measured ermB and tetM in these manures may be
caused by covariates in manure holding pits that have yet
unknown implications on ARG concentrations after long-term
exposure such as concentrations of heavy metals, manure pit
additives, or changes in chemical properties such as pH or
organic substrates (Holzel et al., 2012; He et al.,, 2020). While it
is clear that these ARGs are consistently observed between swine
manures, it is less clear what the implications are of the magnitude
and variability of these gene concentrations (ermB and tetM
varying between 2.20x10* and 1.53x10% copies/gram in our
samples). We speculate that the concentration of ARGs may be
associated with the time spent in storage, with manure sampled
right at defecation presumably containing different concentrations
of ARGs than in manure stored for up to six months (Joy et al,
2014). Future studies of the relationship between these gene
concentrations and to risks antibiotic resistance are much
needed (Gullberg et al., 2011; Hughes and Andersson, 2017),
and the results of this study provide some insight the variability
of these concentrations in varying manures.

The abundances of these genes also followed observable
patterns based on their farm of origin. We observed significant
differences of ermB and tetM gene concentrations among farms
with different company integrators, with both genes consistently
largest in the same integrator. Integrators generally manage
piglet source, feedstock, and veterinary practices (Tsoulouhas
and Vukina, 1999; McBride and Key, 2003; Reimer, 2006).
Our observations that different integrators have different
concentrations of these genes suggest that these management
decisions may affect ARG concentrations in manures (Lu et al,
2017; Ghanbari et al., 2019; Cheng et al., 2021). We did not
observe any significant differences in tetM or ermB in association
to the production system, or whether manure originated from
wean or grow-finished pigs. This finding is consistent with
previous studies who investigated the differences of ARGs in
swine from the same farm over time and found that similar
genes were consistently observed among samples from different
stages in the production process (Petrin et al., 2019) and also at
similar concentrations (Wen et al., 2019). Our results combined
with these previous studies suggest that despite higher quantities
of antibiotics administered to younger weanling pigs than
mature growers (Dunlop et al., 1998; Dewey et al., 1999),
the concentrations of these ARGs in manure do not change
significantly. Overall, our results also indicate that the integrator
is a larger source of variation among these genes than production
stage and highlight the opportunity to engage in AMR stewardship
towards integrators in partnership with farms (Hayes, 2022;
Mitchell et al., 2022).
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Potential ARG indicators in swine manure
pits (HT-gPCR)

We also studied the detection of other ARGs to expand this
study beyond ermB and tetM by leveraging high-throughput qPCR
(HT-qPCR) methods which allow simultaneous testing of multiple
gene probes. ARG targets were selected based on published primers
(Stedtfeld et al., 2018) of ARGs previously observed to be present in
swine manures (Table 1). Between manures, the tetracycline
resistance gene class was the most prevalently detected in our
samples, which is consistent with its wide use in swine
production (Center for Veterinary Medicine, 2020). Likewise, the
macrolide resistance gene class, erm, had the second most detected
antibiotic resistance genes and is consistent with previous literature
(Whitehead and Cotta, 2013; Joy et al., 2014). For instance, a study
by Wen et al. (2019) studied nine ARGs at 18 different swine farms
and found tetO as the predominant gene in manure and tetQ, tetW,
ermB, and ermF were identified as having the highest risk of spread
to the soil and water environment through manure application.
Moreover, a study by Mu et al. (2015) took manure samples right
after defecation from swine in nine feedlots in China finding ogxB
(plasmic mediated quinolone) as the highest detected ARG followed
by sull, sul2, tetO, tetM, and ermB. Surprisingly, sull and sul2 were
only detected 11.1% and 23% respectively, in the manure storage
pits from the current study, suggesting a temporal shift in ARG
presence between fresh manure and stored manure. Finally, a study
of manure from three swine farms in China measured 28
tetracycline resistance genes and reported detection of 22 with the
most common genes tetA, tetL, tetM, and tetG (Zhu et al., 2013),
whereas in the current study, tetA and fetL were not detected in any
of the 14 farms. These variations in detected classes of ARGs among
studies and farms are speculated to be caused by differing antibiotic
treatments, legacy resistance in piglets passed down by the maternal
gut (Parndnen et al,, 2018), and co-selection of resistance genes
(Looft et al., 2012).

Compared to conventional qPCR, fewer detections of ARGs
were observed on HT-qPCR, most likely due to a combination of
both the significantly reduced reaction volume (and thus lower limit
of quantification) and presence of inhibitors (Funes-Huacca et al.,
2011; Sandberg et al., 2018; Luo et al., 2021; Keenum et al., 2022).
Specifically, we observed ermB and tetM gene detection in 100% of
manure samples with conventional qPCR but 50% with HT-qPCR.
To better understand these results, we compared the lower limit of
quantification for ermB and tetM for traditional gPCR and HT-
qPCR and found that traditional qPCR was 63 (ermB) and 94 (tetM)
times more sensitive than HT-qPCR (Supplementary Tables 2, 3),
suggesting that limit of quantification contributed to the
inconsistency among ARG detections. Additionally, the DNA for
the HT-qPCR assays were diluted 500:1 to balance measuring high
16S-rRNA gene copies, enabling the detection of low concentration
ARGs, and reducing inhibitor effects. We conclude that the
combination of diluting DNA and the HT-qPCR’s significantly
reduced reaction volume contributed to the inconsistent detection
of ARGs. This observation should be considered in selecting
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monitoring methods for ARG detection in future studies. Although
HT-qPCR is not as robust as conventional gPCR, the advantages of
this method are its ability to simultaneously measure multiple gene
targets, use of much less reagent per sample, and significantly
reduced labor. We recommend that HT-qPCR be used to
screen the presence or absence of diverse ARG targets in
environmental samples, and conventional gPCR be used for more
rigorous quantification.

While ermB and tetM were inconsistently detected with HT-
qPCR methods, there were specific genes that were broadly present
using this method. Specifically, the tet36 and erm35 genes, encoding
resistance to tetracyclines and macrolides respectively, were
detected more frequently with the HT-qPCR than their
counterpart tetM and ermB. This suggests that tet36 and erm35
are consistently associated with swine manure and able to be
detected with current high throughput methods. The tet36 gene
was first discovered in swine manure pits, and is yet unclear
whether it is enriched or persists in the environment upon
manure application (Whittle et al., 2003; Kang et al., 2018; He
etal, 2019). Less is known about the erm35 gene, except that it was
detected in poultry manure with metagenomics (Blazejewska et al.,
2022; Wang and Chai, 2022). The erm35 gene may have potential as
a swine indicator since it was detected so frequently with HT-qPCR
in the current study. One major difference between the two sets of
genes is their association with mobile genetic elements (MGEs)
where ermB and tetM are highly associated with MGEs while erm35
and tet36 are not (Zhang et al., 2022). MGE:s are associated with the
mobility of ARGs, which may be a significant variable for the
dissemination of the gene after manure application. The class-3
MGE inti3 was present in half of the manure samples tested in the
ARG survey, and this is significant as this gene has the potential for
horizontal gene transfer (Martinez et al., 2015). We highlight these
genes tet36 and erm35 as potential targets for swine manure
borne resistance.

Conclusions

Overall, this study justifies the continued use of macrolide and
tetracycline resistant ARGs as broad indicators of swine manure-
borne resistance due to their presence in diverse manure samples.
The observation of the concentrations of these genes in manures
helps us to interpret whether abundances of these genes in the
environment are substantial. Additionally, results of this study also
highlight variations of using different methods to detect genes and
their variability across ARGs. Due to the observed variation of
ARGs in diverse manures, future studies should aim to characterize
not only antibiotic residues, but also physiochemical properties of
the manure to analyze for specific correlations that can explain this
variability. We also provide supporting evidence that company
integrator decisions may impact ARG concentrations, and we
recommend future multidisciplinary studies to determine which
company decisions may cause these observed differences.

The development of AMR bioindicators of manure impact is
greatly needed for standardizing studies and for use in routine
environmental monitoring (He et al., 2020; Howe and Soupir, 2021).
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This study provides support that standardized monitoring is likely
but requires further evidence in development methods in gene
selection and gene quantification. An ideal swine manure associated
bioindicator should be commonly found in swine manure at the
time of manure application and also specific to swine manure and
not detected in natural environments. Often, the selection of ARGs
are based on previous detection of ARGs, and our results justify the
selection of these genes on broad manure samples. However, we
also suggest that other genes within the tetracycline and
erythromycin resistant classes may complement these genes and
be more suitable for high-throughput methods. For detection of
AMR impact in complex environments, like manures, it is likely
that a single ARG will not be sufficient and methods that can
detect and quantify multiple genes simultaneously provide
opportunity for increased sensitivity and specificity of detection
for monitoring efforts.
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