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Abstract—This paper considers target detection in distributed
multi-input multi-output (MIMO) radar with non-orthogonal
waveforms in non-homogenous clutter. We first present a gen-
eral signal model for distributed MIMO radar in cluttered
environments. To cope with the non-homogenous clutter and
possible clutter bandwidth mismatch, the covariance matrix of
the disturbance (clutter and noise) signal is modeled as a random
matrix following an inverse complex Wishart distribution. Then,
we propose three Bayesian detectors, including a non-coherent
detector, a coherent detector, and a hybrid detector. The latter is
a compromise of the former two, as it forsakes phase estimation
needed by the coherent detector, but requires the samples
within a coherent processing interval (CPI) to maintain phase
coherence that is unnecessary for the non-coherent detector.
Simulation results are presented to illustrate the performance
of these Bayesian detectors and their non-Bayesian counterparts
in non-homogeneous clutter when the clutter bandwidth is known
exactly and, respectively, with uncertainty.

Index Terms—Distributed MIMO radar, non-orthogonal wave-
forms, Bayesian detection, non-homogeneous clutter

I. INTRODUCTION

In recent years, distributed multi-input multi-output
(MIMO) radar, which employs widely separated antennas to
form the transmit (TX) and receive (RX) apertures, has been
of significant interest for civilian and military applications
[1]–[5]. Compared with co-located MIMO radar, distributed
MIMO radar can enhance target detection by exploiting the
spatial diversity of the target’s radar cross section (RCS) [6].
Target detection, a primary radar function, with distributed
MIMO radar has received extensive attention [7]–[17]. A
variety of detection techniques have been explored, such as
adaptive detection [7], parametric clutter modeling [8], [9],
utilization of a “defocused transmit-defocused” receive operat-
ing mode [10], power allocation [11], moving target detection
on moving platforms [12], delay compensation [13], range-
spread target detection [14], Bayesian detection in clutter [15],
target residual due to imperfect waveform separation [16], and
robust detection in the presence of clutter Doppler frequency
mismatch [17].

While most prior studies assume orthogonal waveforms,
orthogonality cannot be maintained across arbitrary propaga-
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tion delays and Doppler frequency shifts [18]. To tackle this
issue, target detection with general non-orthogonal waveforms
in distributed MIMO radar was studied in [19], which also
accounts for the effect of time, frequency, and phase errors
among the transmitters and receivers. The work was recently
extended to the case when the received signal contains non-
negligible clutter [20].

In this paper, we continue investigating target detection for
distributed MIMO radar with non-orthogonal waveforms in
cluttered environments. While the clutter in distributed MIMO
radar is inherently non-homogeneous with distinct power
across different TX-RX pairs, the covariance matrix structure
depends on the clutter bandwidth (BW), which is normally
unknown. In practice, an upper bound for the clutter BW can
be selected a priori to construct the covariance matrix, while
the clutter power is adaptively estimated from the received
signal [20]. However, a mismatch between the pre-selected
upper bound and the exact clutter BW may exist, which could
lead to performance degradation. To address this problem,
we propose a Bayesian approach for target detection in non-
homogeneous clutter by treating the disturbance (clutter plus
noise) covariance matrix as a random matrix which follows an
inverse complex Wishart distribution. Using this approach, we
develop three Bayesian detectors using non-coherent, coherent,
and hybrid detection. We compare the proposed Bayesian
detectors with their non-Bayesian counterparts, which use a
preselected clutter BW to construct the covariance matrix, in
cases with and, respectively, without clutter BW mismatch.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider a distributed MIMO radar equipped with M
widely separated TX antennas and N RX antennas. Each TX
emits a succession of K pulses over a coherent processing
interval (CPI). Suppose there is a moving target at distance
Rt,m to m-th TX and the distance Rr,n to n-th RX. The range
sum Rt,m+Rr,n specifies an isorange of the (m,n)-th TX-RX
pair with Lmn clutter scatterers, which is an ellipse with foci
at the TX and RX. Then, the noise-free received signal at the
RX can be expressed as [19]:

sn(t) =
M∑
m=1

αξmnum(t− τmn)eψmne2π(fc+fmn)(t−τmn)



+

Lmn∑
l=1

M∑
m=1

α̃mnlξ̃mnlum(t− τmn)

× eψmne2π(fc+f̃mnl)(t−τmn), (1)

where
• α and α̃mnl denote the radar cross section (RCS) of the

target and, respectively, the (m,n, l)-th clutter scatterer.
• ξmn and ξ̃mnl are the channel coefficients, which lump

the path loss and antenna gains [19], associated with the
(m,n)-th TX-RX pair of the target path and the (m,n, l)-
th scatterer path, respectively.

• um(t) =
∑K−1
k=0 pm(t− kTs) is the baseband transmitted

signal which comprises K repetitions of the pulse wave-
form pm(t) with Ts being the pulse repetition interval.

• ψmn denotes the phase offset between the oscillators at
the m-th TX and the n-th RX.

• τmn = (Rt,m + Rr,n)/c is the propagation delay associ-
ated with the (m,n)-th TX-RX pair and c is the speed
of light.

• fc is the carrier frequency, while fmn and f̃mnl denote
the Doppler frequency of the target and the (m,n, l)-th
clutter scatterer.

After down conversion, the received signal passes through
M matched filters (MFs) matched to the M radar waveforms
and then is sampled at the radar pulse rate. The noise-free
output sample of the m-th MF at the n-th RX corresponding
to the k-th pulse, i.e., xmn(k), are stacked as a K × 1 vector
xmn = [xmn(0), · · · , xmn(K − 1)]:

xmn = αSnhmn +

Lmn∑
l

S̃nlh̃mnl, (2)

where
• Sn = [s(f1n), · · · , s(fMn)] and S̃nl =

[s(f̃1nl), · · · , s(f̃Mnl)] with s(f) =
[1, e2πTsf , · · · , e2π(K−1)Tsf ]T .

• hmn ∈ CM×1 is the target channel vector
with the m̄-th element given by [hmn]m̄ =
ξm̄ne

−2πfcτm̄ne2πfmn(τmn−τm̄n)eψmnχmm̄(τmn −
τm̄n, fm̄n − fmn).

• h̃mnl ∈ CM×1 is the clutter channel vector
with the m̄-th element given by [h̃mnl]m̄ =
α̃mnlξ̃m̄nle

−2πfcτm̄ne2πfmn(τmn−τm̄n)eψmnχmm̄(τmn−
τm̄n, fm̄nl − fmn).

The cross ambiguity function (CAF) χmm̄(v, f) is defined as

χmm̄(ν, f) =

∫
pm(µ)p∗m̄(µ− ν)e2πfµdµ. (3)

Since the clutter components contain reflections from un-
wanted stationary and slow moving objects (e.g., wind, rain,
wave, etc.) within the considered test cell, their velocities and
sizes are usually unknown. We assume that the clutter Doppler
frequencies f̃m̄nl and reflection amplitudes αm̄nl are inde-
pendent random variables. Specifically, f̃m̄nl are uniformly
distributed in an interval of [−∆f ,∆f ], where ∆f denotes
the maximum Doppler frequency, and α̃m̄nl are Gaussian

random variables with zero mean and variance σ2
m̄nl. Then,

the (k1, k2)-th element of clutter covariance matrix Γmn can
be expressed as

[Γmn]k1,k2
=
[ Lmn∑

l

E
[
S̃nlh̃mnlh̃

H
mnlS̃

H
nl

]]
k1,k2

≈
[ Lm̄n∑
l=1

M∑
m̄=1

|χ̃mm̄n|2E
[
S̃nlΛ̃nlS̃

H
nl

]]
k1,k2

=

Lm̄n∑
l=1

M∑
m̄=1

|χ̃mm̄n|2σ2
m̄nlξ̃

2
m̄nlsinc[2π∆f (k1 − k2)Ts]

= amn[Ψ]k1,k2
, (4)

where Λ̃nl is an M × M diagonal matrix with diagonal
elements given by

[Λ̃nl]m̄,m̄ = σ2
m̄nlξ̃

2
m̄nl, (5)

and

amn =

Lm̄n∑
l=1

M∑
m̄=1

|χ̃mm̄n|2[Λ̃nl]m̄,m̄ (6)

which denotes the clutter power with the approximation
χ̃mm̄n = χmm̄(τmn − τm̄n, 0) ≈ χmm̄(τmn − τm̄n, fm̄nl −
fmn) as the radar waveform is insensitive to small Doppler
shift [21, p.15], and

[Ψ]k1,k2 = sinc[2π∆f (k1 − k2)Ts], k1, k2 = 1, · · · ,K (7)

which is the covariance structure matrix which depends on
the clutter Doppler BW ∆f with Ts being the pulse repetition
interval.

Let ymn denote the noise-contaminated observation of xmn.
The moving target detection problem can be formulated as the
following hypothesis testing:

H0 : ymn =

Lmn∑
l

S̃nlh̃mnl + wmn,

H1 : ymn = αSnhmn +

Lmn∑
l

S̃nlh̃mnl + wmn, (8)

m = 1, 2, · · · ,M, n = 1, 2, · · · , N,
where wmn is the noise with zero mean and covariance matrix
σ2I, i.e., wmn ∼ CN (0, σ2I), and σ2 is the noise variance.

Eqn. (4) indicates that the clutter has non-homogeneous
power amn, which is distinct for different TX-RX pair, and
its covariance matrix structure depends on the clutter BW ∆f ,
which is generally unknown. A common approach is to choose
an upper bound ∆̄f for ∆f , while amn is estimated from the
received signal [20]. If there is a mismatch between the upper
bound and the real clutter BW, a performance loss is expected.
To address this problem, we consider a Bayesian approach as
described next.

Let dmn denote the disturbance signal that includes the



clutter and noise:

dmn =

Lmn∑
l

S̃nlh̃mnl + wmn, (9)

whose covariance matrix is denoted by Rmn. We have
Rmn = amnΨ + σ2I ≈ amn(Ψ + σ2I) because the clutter
is usually much stronger than the noise. To account for
the non-homogeneous clutter power and possible clutter BW
mismatch, we model Rmn as a complex inverse Wishart
random matrix [14]:

Rmn v CW−1
(
amn(v −K)Ψ̃, v

)
, (10)

where v is the degree of freedom of the inverse Wishart
distribution and (v −K)Ψ̃ denotes a prior knowledge of the
covariance matrix with Ψ̃ = Ψ+σ2I. The probability density
function (PDF) of Rmn conditioned on amn is given by

f(Rmn|amn) =
|amn(v −K)Ψ̃|v

Γ̄K(v)|Rmn|(v+K)
etr(−(v−K)amnΨ̃R−1

mn),

(11)

where

Γ̄K(v) = π
K(K−1)

2

K∏
k=1

Γ(v − k + 1) (12)

denotes the multivariate gamma function which can be defined
in terms of the original gamma function Γ(·). In the next
section, we develop three Bayesian detectors based on this
model, referred to as Bayesian non-coherent detector in clutter
(B-NCDC), Bayesian coherent detector in clutter (B-CDC),
and Bayesian hybrid detector in clutter (B-HDC), respectively.

III. BAYESIAN DETECTORS IN CLUTTER

A. B-NCDC

The B-NCDC treats the target signal in (8) as an unknown
quantity with no specific structure, i.e., µmn = αSnhmn, and
solves the detection problem using a generalized likelihood ra-
tio test (GLRT) approach along with the maximum likelihood
estimates (MLEs) of the unknown parameters. Specifically, the
GLRT is given by the likelihood ratio with the parameters
replaced by their MLEs:

max
{µmn},{Rmn}

∏
m,n

∫
f1(ymn|µmn,Rmn)f(Rmn|amn)dRmn

max
{Rmn}

∏
m,n

∫
f0(ymn|Rmn)f(Rmn|amn)dRmn

(13)

where

f1(ymn|µmn,Rmn) =
exp

(
− tr

(
(Rmn)−1ỹmnỹHmn

))
πKdet(Rmn)

(14)

f0(ymn|Rmn) =
exp

(
− tr

(
(Rmn)−1ymnyHmn

))
πKdet(Rmn)

, (15)

and ỹmn = ymn−µmn. Substituting (11), (14), and (15) into
(13) followed by simplification yields

∏
m,n

max
µmn,amn

aKmn|ỹmnỹHmn + amn(v −K)Ψ̃|−(v+1)

max
amn

aKmn|ymnyHmn + amn(v −K)Ψ̃|−(v+1)
. (16)

The MLE of amn under H1 is obtained by

max
amn

aKvmn|ỹmnỹHmn + amn(v −K)Ψ̃|−(v+1)

= min
amn

a
K

v+1
mn (1 + a−1

mnỹmn((v −K)Ψ̃)−1ỹHmn). (17)

Taking the derivative of the log of the above equation with
respect to amn and setting it to zero, we obtain the MLE of
amn under H1 as:

âmn,1 =
v + 1−K

K
ỹHmn((v −K)Ψ̃)−1ỹmn. (18)

Substituting the above MLE of amn into the numerator of
(16), the MLE of µmn under H1 is given by

µ̂mn = ymn.

Similarly, the MLE of amn under H0 can be shown to be

âmn,0 =
v + 1−K

K
yHmn((v −K)Ψ̃)−1ymn. (19)

Substituting the MLEs under H1 and H0, i.e., âmn,1, µ̂mn
and âmn,0, into (16), the B-NCDC reduces to:

TB-NCDC =
∏
m,n

(
yHmnΨ̃

−1
ymn

× |ymnyHmn +
v + 1−K

K
yHmnΨ̃

−1
ymnΨ̃|

)
H1

≷
H0

γB-NCDC. (20)

B. B-CDC

Next, we propose a coherent detector under the condition
that the carrier phase can be accurately tracked and exploited
for compensation, which enables improved detection perfor-
mance. Specifically, the receiver forms the target Doppler
matrix Sn and channel vector hmn. This leaves the target RCS
α as the only unknown target parameter under H1. Then, the
B-CDC can be obtained by using the GLRT framework as:

max
α,{amn}

∏
m,n

∫
f1(ymn|α,Rmn)f(Rmn|amn)dRmn

max
{amn}

∏
m,n

f0(ymn|Rmn)f(Rmn|amn)dRmn

, (21)

where the likelihood function underH1 is similar to (13) for B-
NCDC except that the mean µmn is replaced by its structured
version αSnhmn, while the likelihood function under H0 is
the same as in (13). Thus, the MLE of amn under H0 is given
by (19). The MLEs of α and amn under H1 can be similarly
obtained in a sequential manner as for the B-NCDC:

âmn,1 =
v + 1−K

K
ỹHmn

(
(v −K)Ψ̃

)−1
ỹmn. (22)



and

α̂ =
hHmnSHn α̃−1ymn

hHmnSHn α̃−1Snhmn
. (23)

Then, substituting the MLEs back into (21), the B-CDC is
given by

TB-CDC =
∏
m,n

|ymnyHmn + v+1−K
K yHmnΨ̃

−1
ymnΨ̃|

|ỹmnỹHmn + v+1−K
K ỹHmnΨ̃

−1
ỹmnΨ̃|

× (hHmnSHn Ψ̃
−1

Snhmn)(yHmnΨ̃
−1

ymn)

(hHmnSHn Ψ̃
−1

Snhmn)(yHmnΨ̃
−1

ymn)− |hHmnSHn Ψ̃
−1

ymn|2
H1

≷
H0

γB-CDC. (24)

C. B-HDC

As noted earlier, B-HDC is a comprise between the B-
NCDC and B-CDC. Specifically, let βmn = αhmn. The B-
HDC can be obtained by using GLRT as

max
{βmn},{amn}

∏
m,n

∫
f1(ymn|βmn,Rmn)f(Rmn|amn)dRmn

max
{amn}

∏
m,n

f0(ymn|Rmn)f(Rmn|amn)dRmn

.

(25)

Since the MLE of amn under H0 is given by (13), we only
need to solve the estimation problem under H1. Following a
similar sequential procedure used for the B-NCDC by setting
the mean vector µmn = Snβmn, we can obtain the MLEs
under H1 as

âmn,1 =
v + 1−K

K
ỹHmn((v −K)Ψ̃)−1ỹmn, (26)

and

β̂mn =
SHn Ψ̃

−1
ymn

SHn Ψ̃
−1

Sn
. (27)

Finally, the Bayesian-based hybrid detector in clutter (B-HDC)
can be expressed as

TB-HDC =
∏
m,n

|ymnyHmn + v+1−K
K yHmnΨ̃

−1
ymnΨ̃|

|ỹmnỹHmn + v+1−K
K ỹHmnΨ̃

−1
ỹmnΨ̃|

× (SHn Ψ̃
−1

Sn)(yHmnΨ̃
−1

ymn)

(SHn Ψ̃
−1

Sn)(yHmnΨ̃
−1

ymn)− |SHn Ψ̃
−1

ymn|2
H1

≷
H0

γB-HDC. (28)

IV. SIMULATION RESULTS

In this section, simulation results are presented to show the
performance of the B-NCDC, B-CDC, and B-HDC and their
non-Bayesian counterparts NCDC, CDC, and HDC introduced
in [20]. In addition, we also include for comparison the NCD,
CD, and HD detectors in [19], which were introduced for
target detection in the absence of clutter (noise only). Two
scenarios are considered. The first one is an ideal case where
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Figure 1. Probability of detection versus SNR for non-coherent detectors
when CNR = 30 dB: (a) Without model mismatch; (b) With model mismatch.

there is no mismatch between the prior knowledge, which
refers to the clutter Doppler BW, and the ground truth, whereas
the other one involves a mismatch.

In the simulation, a distributed MIMO radar with M = 2
TXs and N = 1 RX is considered. The propagation delays
are τ11 = 0.1Tp and τ21 = 0.61Tp, where Tp = 10−5 s is
the pulse duration. The pulse repetition frequency (PRF) is
500 Hz, the carrier frequency is 3 GHz, and the normalized
target Doppler frequencies are f11 = 0.3 and f21 = 0.4. From
(4), we set the prior knowledge of the clutter Doppler BW to
∆̄f = 0.12 and denote by ∆f the real Doppler BW.

The signal-to-noise ratio (SNR) and clutter-to-noise ratio
(CNR) are defined as

SNR =
M∑
m=1

N∑
n=1

|ξmn|2E{|α|2}
σ2

, (29)

and

CNR =
M∑
m=1

N∑
n=1

Lmn∑
l=1

|ξmnl|2E{|α̃mnl|2}
σ2

. (30)

where σ2 is the noise variance. In addition, the target RCS and
clutter RCS are randomly generated with complex Gaussian
distribution, i.e., α ∼ CN (0, σ2

t ) and α̃mnl ∼ CN (0, σ2
mnl),

where σ2
t and σ2

mnl are determined based on specific values of
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Figure 2. Probability of detection versus SNR for coherent detectors when
CNR = 30 dB: (a) Without model mismatch; (b) With model mismatch.

SNR and CNR, respectively. Other simulation parameters are
set as follows: the number of pulses within a CPI is K = 10
and the probability of false alarm is Pf = 10−4.

Fig. 1(a) shows the performance of NCDC, N-NCDC and
NCD when ∆f = ∆̄f = 0.12, i.e., there is no mismatch
between the prior knowledge and real knowledge. It can be
observed that the performance of NCDC is better than B-
NCDC because the Bayesian approach imposes an additional
model and involves a more complex estimation process. How-
ever, when there is a mismatch between the prior knowledge
and real knowledge, as shown in Fig. 1(b) with ∆f = 0.24
and ∆̄f = 0.12, B-NCDC has the best detection performance
because the Bayesian-based detector can partially correct the
prior knowledge error by using Bayesian estimation, which
utilizes not only the prior knowledge, but also the measured
data for estimation. In this sense, B-NCDC is a robust solution
that is able to tolerate some model mismatch, at the price of
slight performance loss when there is no model mismatch.
Note that in Fig. 1(b), all detectors experience some degrada-
tion compared with Fig. 1(a). This is because with ∆f = 0.24,
the clutter has a larger BW (doubled) and is closer to the
targets, which makes target detection harder due to stronger
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Figure 3. Probability of detection versus SNR for hybrid detectors when
CNR = 30 dB: (a) Without model mismatch; (b) With model mismatch.

clutter leakage, i.e., more clutter power being leaked into the
target band.

Similar relations can be observed in Figs. 2 and 3 for
the coherent detectors and hybrid detectors. In addition, by
comparing these figures, it can be seen that the detection
performance of B-CDC is better than that of B-NCDC, while
B-HDC is between the two but is much closer to B-CDC. This
makes B-HDC a good choice in cases when accurate phase
estimation is infeasible, which precludes B-CDC. As explained
earlier, B-HDC requires the signal samples within a CPI
to maintain phase coherence, which is generally ensured in
Doppler processing based radar systems by design. In contrast,
the non-coherent B-NCDC does not exploit this property for
detection, which incurs a significant performance loss.

V. CONCLUSIONS

In this paper, a new Bayesian approach is introduced
for target detection in distributed MIMO radar with non-
orthogonal waveforms and non-homogenous clutter. To tackle
non-homogenous clutter power and possible mismatch of the
clutter Doppler BW, we proposed a stochastic model for the
disturbance (clutter plus noise) covariance matrix. Based on
this model, we developed three Bayesian detectors including



the B-NCDC, B-CDC, and B-HDC. Comparison between the
proposed Bayesian detectors and their non-Bayesian counter-
parts were made. Simulation results indicate that the Bayesian
detectors are robust against clutter BW mismatch.
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