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Abstract
In this paper, we investigate the use of supervisory control to maximize mean time to fail-
ure in a discrete event system framework. A complex engineering system is modeled as a
discrete event system. Some of the states of the system are essential to the functionality of
the system and are called required states. Some other states represent failures in the system
and are called failure states. The control objective is to maximize the mean time to failure
(MTTF) while allowing the system to visit all required states. The control is achieved by a
supervisor that disables some controllable events based on monitoring the observable events
as in classical supervisory control. To design such a supervisor, the MTTF of a supervised
system is calculated by converting a discrete event system into a Markov chain having the
same MTTF. Based on MTTF, two algorithms are developed that together allow us to design
an optimal supervisor. The theoretical results are applied to power systems by investigating
the maintenance management of equipment such as transformers.

Keywords Discrete event systems · Time to failure · Supervisory control · Markov chain

1 Introduction

Discrete event systems are first introduced in the 1980s to model man-made systems with
discrete states and discrete events. The dynamics of these systems cannot be modeled by
differential or difference equations. Rather, their dynamics are described by occurrences of
events that move the system from one discrete state to another. Several theories of discrete
event systems have been developed. Among them, supervisory control theory is developed to
control a discrete event system so that the controlled system is safe and live.Here safetymeans
that the controlled system will never enter some illegal/unsafe states, while liveness means
that the controlled system will eventually enter some final/marked states. Important con-
cepts such as controllability Ramadge and Wonham (1987), observability Lin and Wonham
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(1988); Cieslak etal (1988), and co-observability Rudie and Wonham (1992) are introduced
in supervisory control. A history of supervisory control can be found in Wonham and Cai
(2019).

Fault diagnosis and diagnosability have also been investigated extensively using discrete
event systems. Diagnosability of discrete event systems is first introduced in Sampath etal
(1995); Lin (1994), where the goal is to diagnose failures in a system. A discrete event sys-
tem is said to be diagnosable if any failure in the system can be diagnosed within a bounded
number of observations of observable events. If a discrete event system is diagnosable, then a
diagnoser can be designed to diagnose failures. Polynomial algorithms to check diagnosabil-
ity are developed in Yoo and Lafortune (2002); Jiang etal (2001). A history of diagnosability
of discrete event systems can be found in Lafortune etal (2018).

When we design and control a complex system, such as a power system, an airplane, or
an automobile, we often want to know how long we can expect the system to run before
some failures occur. In other words, we would like to know the mean time to failure (MTTF)
of a system. The MTTF of a system depends on many factors, such as the MTTF of its
components, how often the system is inspected and maintained, whether it operates in states
that are prone to failures. In this paper, we investigate MTTF in the framework of discrete
event systems.

To this end, we assume that some of the discrete states in a system are failure states. To
increase MTTF, we can control the system by preventing it from entering some prone-to-
failure states (states that have small MTTF) and by introducing maintenance. To design such
a control rigorously, we use the supervisory control theory of discrete event systems. That
is, control is implemented by a supervisor, which observes observable events and controls
controllable events by disabling them if needed. The goal of a supervisor is to ensure that
the set of possible trajectories/strings of events generated by the supervised system equals
to a given specification language. This language specifies which prone-to-failure states shall
be avoided and which maintenance shall be performed. It is proven in supervisory control
theory that there exists a supervisor achieving the specification language if and only if the
language is controllable and observable Ramadge and Wonham (1987); Lin and Wonham
(1988). If the specification language is not controllable and observable, we can find its
smallest superlanguage that is controllable and observable. Algorithms are available to do
this formally and systematically, see Ramadge and Wonham (1987); Wonham etal (2018);
Lin and Wonham (1988); Cassandras and Lafortune (2009), for example.

For a given supervisor, we would like to know the MTTF of the supervised system. This
requires that we know the probability distributions of event lifetimes (the time it takes for
the event to occur after it is allowed to occur), called lifetime distributions. In this paper, we
assume that lifetime distributions are exponential with known means. To calculate MTTF,
we use the existing results on first-passage time of continuous time Markov Chains Darling
and Siegert (1953); Brown and Chaganty (1983); Yao (1985); Hunter (2018).

Clearly, discrete event systems and Markov chains are introduced for different purposes.
While discrete event systems are used to model and control various systems to ensure safety
and liveness, Markov chains are used to capture stochastic features of systems. However, for
the purpose of calculating MTTF, a discrete event system can be converted into a Markov
chain that has the sameMTTF.Note that this particularMarkov chain is for calculatingMTTF
only; the supervisory control is applied to the original discrete event system.

After developing a method to calculate MTTF for a given supervisor, we then pursue
synthesis of an optimal supervisor as follows. We divide the states of the system to be
controlled into three types: (1) failure states, (2) required states, that is, states that are essential
to the function of the system, and (3) the remaining states. We start with the required states
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and design a supervisor that reaches all required states. We check the remaining states to
determine if they shall be removed or allowed in the controlled system. This is done in two
steps. First, we define and calculate the prone-to-failure measures for the remaining states
and order the remaining states according to this measure. Second, we add the remaining states
to the supervised system one by one, starting from the least prone to failures state, to see if
adding a state improves MTTF. If so, the state is added and the supervisor is re-designed.
Otherwise, the state is not added. The computational complexity of synthesizing such an
optimal supervisor is polynomial with respect to the number of states and hence can be used
for large-scale systems.

We apply the results to power systems and investigate how to manage the maintenance
of equipment such as transformers. Transformer failures have been investigated in power
systems Jan etal (2015); Murugan and Ramasamy (2015); Zhong etal (2016); authorname
(2018). Our approach can be used to calculate the MTTF of a transformer and to increase
the MTTF by proper maintenance. For transformers considered in Zhong etal (2016), we
show that, compared with the MTTF of the transformer without major and minor overhauls,
its MTTF can be increased by 37% (from 11.1 years to 15.1 years) if major overhauls are
performed and by 351% (from 11.1 years to 49.8 years) if both major and minor overhauls
are performed.

The main contributions of the paper are as follows: (1)We introduce a formal definition of
MTTF in a discrete event system. (2) We develop a method to calculate MTTF by converting
a discrete event system into a Markov chain. (3) We propose to use a supervisor to maximize
MTTF by removing prone-to-failure states and allowing (not removing) other states. (4) We
develop a systematic approach to synthesize such a supervisor.

The paper is organized as follows. In Section 2, we briefly review discrete event systems
and supervisory control. An automaton is used to model a discrete event system. Supervisor
design procedure is outlined to achieve a specification language if the language is controllable
and observable. In Section 3, random event lifetimes are introduced in discrete event systems.
Operating rules of the resulting stochastic discrete event systems are defined. Based on these
rules, times to failure are formally defined in Section 4. Section 5 investigates how to calculate
MTTF. To this end, a stochastic discrete event system is first converted to a Markov chain.
Results on the first-passage time ofMarkov Chain are then used to deriveMTTF. In Section 6,
we investigate how to use supervisory control to maximize MTTF. We start with a required
language and calculate MTTF for this language. We then check if MTTF can be increased by
removing or adding more states to the required language. The result is an optimal supervisor
that maximizes MTTF.We apply the results to the maintenance management of transformers
in power systems in Section 7.

2 Discrete event systems and supervisory control

In this section, we review results in discrete event systems and supervisory control. A discrete
event system is modeled as an automaton (also called a finite state machine) denoted by

A = (Y ,Σ, ζ, yo), (1)

where Y is the set of (discrete) states; Σ is the set of events, ζ : Y × Σ → Y is the (partial)
transition function; and yo ∈ Y is the initial state. The transition function can be extended
to ζ : Y × Σ∗ → Y , where Σ∗ is the set of all strings over Σ , including the empty string
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ε. With slight abuse of notation, the set of all possible transitions of A is also denoted by
ζ = {(y, σ, y′) : ζ(y, σ ) = y′}.

A describes a plant (the system to be controlled). Its trajectory is described by a string of
events s ∈ Σ∗. We use ! to express “is defined”. When ζ(yo, s) is defined, that is, ζ(yo, s)!,
we say that s can be generated by A. The set of all strings that can be generated by A is
called language generated by A, which is defined as

L(A) = {s ∈ Σ∗ : ζ(yo, s)!}
L(A) describes the behavior of the uncontrolled system. A supervisor is used to control or
supervise the system so that the strings generated by the closed-loop (or supervised) system
are safe and admissible. This control requirement is described by a specification language
K ⊆ L(A).

The (prefix) closure of a language K is the set of all prefixes of all strings in the language.
A language is closed if it equals its closure. By definition, L(A) is closed.

Not all events inA are controllable in the sense that their occurrences can be disabled. For
example, failure events are not controllable because we cannot always prevent failures from
occurring. Some events may not be observable in the sense that their occurrences cannot be
observed. This is mainly because observing events requires sensors that may be too difficult
or expensive to install. The set of controllable events is denoted by Σc ⊆ Σ . The set of
uncontrollable events is denoted by Σu = Σ − Σc. The set of observable events is denoted
by Σo ⊆ Σ . If a string s ∈ L(A) occurs in A, then the supervisor observes P(s), where
P : Σ∗ → Σ∗

o is the projection, defined iteratively as follows. For s ∈ Σ∗ and σ ∈ Σ ,

P(ε) = ε, P(sσ) =
{
P(s)σ if σ ∈ Σo

P(s) otherwise.
(2)

The projection P can be extended from a string to a language Lin and Wonham (1988).
P(L(A)) represents the set of all possible observations.

A supervisor can now be defined formally as a mapping

S : P(L(A)) → 2Σ. (3)

Intuitively, after observing t ∈ P(L(A)), supervisor S enables the events in S(t). Since
uncontrollable events cannot be disabled, we require that (∀t ∈ P(L(A)))Σu ⊆ S(t).

The supervised system is denoted by S/A. The language generated by S/A, denoted by
L(S/A), is defined iteratively as follows:

ε ∈ L(S/A),

(∀s ∈ L(S/A))(∀σ ∈ Σ)sσ ∈ L(S/A) ⇔ sσ ∈ L(A) ∧ σ ∈ S(P(s)). (4)

In other words, if s occurs in S/A (s ∈ L(S/A)), then a new event σ can occur in S/A
(sσ ∈ L(S/A)) if and only if σ can occur in A (sσ ∈ L(A)) and σ is enabled by S
(σ ∈ S(P(s))).

As mentioned above, the objective of a supervisor is to restrict the behavior of the system
so that L(S/A) = K for a given specification language K ⊆ L(A). Since the supervisor
cannot observe and control all events, this objective may or may not be achievable. To find
a necessary and sufficient condition for achieving the objective, two important concepts are
introduced.

(1) Controllability Ramadge and Wonham (1987): A language K ⊆ L(A) is controllable
if

KΣu ∩ L(A) ⊆ K . (5)
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(2) Observability Lin and Wonham (1988): A language K ⊆ L(A) is observable if

(∀s, s′ ∈ K )(∀σ ∈ Σ)P(s) = P(s′) ∧ sσ ∈ K ∧ s′σ ∈ L(A) ⇒ s′σ ∈ K . (6)

It is proven in Lin andWonham (1988) that there exists a supervisorS such that L(S/A) =
K if and only if K is controllable and observable.

If K is controllable and observable, then a state-based supervisor S satisfying L(S/A) =
K can be designed. To do so, we assume, without loss of generality, that K is generated by
the following subautomaton of A:

R = (YR,Σ, ζR, yo), (7)

where YR ⊆ Y and ζR = ζ |YR×Σ , that is, ζR is the transition function restricted to YR×Σ .
Denote subautomaton by R � A. We have K = L(R). A supervisor S with L(S/A) = K
can be designed in the following steps.

Step 1: Replace all unobservable transitions in R by ε transitions:

Rε = (YR,Σo, ζRε , yo),

where ζRε = {(y, σ, y′) ∈ ζR : σ ∈ �o} ∪ {(y, ε, y′) ∈ ζR : σ /∈ �o}.
Step 2: Convert Rε from a nondeterministic automaton to a deterministic automaton,

called observer Cassandras and Lafortune (2009); Wonham and Cai (2019):

Robs = (Z ,Σo, ξ, zo) = AC(2YR ,Σo, ξ,UR(yo)),

where AC(.) denotes the accessible part; UR(.) denotes the unobservable reach, which is
defined, for z ⊆ YR , as

UR(z) = {y ∈ YR : (∃y′ ∈ z)y ∈ ζRε (y
′, ε)}.

The transition function ξ is defined, for z ∈ Z and σ ∈ Σo, as

ξ(z, σ ) = UR({y ∈ YR : (∃y′ ∈ z)y ∈ ζRε (y
′, σ )}).

It is well-known that L(Robs) = P(L(A)) Cassandras and Lafortune (2009); Wonham and
Cai (2019).

Step 3: Define state feedback φ : Z → 2Σ as

φ(z) = {σ ∈ Σ : (∀y ∈ z)ζ(y, σ )! ⇒ ζ(y, σ ) ∈ YR}.
In other words, an event σ is enabled at state z if it does not take the system out of YR at any
state y ∈ z. We can then design a supervisor S as follows: For t ∈ P(L(A)) = L(Robs),

S(t) = φ(ξ(zo, t)).

It can be shown that the above designed supervisor satisfies L(S/A) = K if K is con-
trollable and observable Lin and Wonham (1988); Cassandras and Lafortune (2009).

If K is not controllable and/or observable, then we can find the smallest superlanguage
of K that is controllable and observable. This superlanugae is unique. It is called the infimal
controllable and observable superlanguage of K and denoted by K↓. In other words, K↓
is controllable and observable, K ⊆ K↓, and K↓ is the smallest language satisfying these
conditions. After finding K↓, we can design a supervisor such that L(S/A) = K↓ Lin and
Wonham (1988); Cassandras and Lafortune (2009).
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3 Stochastic discrete event systems

Many man-made systems can be modeled as discrete event systems. Such a discrete event
system often has some failure states. We investigate two important questions in this paper.
(1) How long can the system run before a failure occurs, that is, what is the MTTF of the
system? (2) Can we control the system so that its MTTF is maximized?

Intuitively, MTTF depends on lifetimes of events that are stochastic and paths to failure
states described by the automaton A. Formally, let us denote failure states by Y f ⊆ Y . Y f

depends on the system under consideration and is given. To determine the corresponding
failure states in the supervised system S/A, we note that S/A is described by the following
automaton.

G = S/A = (Q,Σ, δ, qo) = AC(Y × Z ,Σ, δ, (yo, xo)), (8)

where the transition function δ is defined, for q = (y, z) ∈ Q = AC(Y × Z) and σ ∈ Σo,
as

δ(q, σ ) =
{

(ζ(y, σ ), ξ(z, σ )) if ζ(y, σ )! ∧ ξ(z, σ )! ∧ σ ∈ φ(z)
undefined otherwise

and for q = (y, z) ∈ Q and σ /∈ Σo, as

δ(q, σ ) =
{

(ζ(y, σ ), z) if ζ(y, σ )! ∧ σ ∈ φ(z)
undefined otherwise

Note that we denote the states in the supervised system as q ∈ Q to simplify the notations
in the rest of the paper. A state q = (y, z) is a failure state if y ∈ Y f , that is,

Q f = {q ∈ Q : (∃y ∈ Y f )q = (y, z)}.
Enumerate the states in Q as

Q = {q1, q2, ..., qn}, (9)

where n is the number of states in Q, denoted by n = |Q|. Without loss of generality, assume
that there are l = |Q f | failure states and they are the last l states in the above enumeration,
that is,

Q f = {qn−l+1, qn−l+2, ..., qn}. (10)

Enumerate the event set as
Σ = {σ1, σ2, ..., σm}, (11)

where m is the number of events: m = |Σ |. Suppose that the system is currently at state
qi ∈ Q. The set of all possible traces from qi is given by the language

L(G, qi ) = {s : s ∈ Σ∗ : δ(qi , s)!}.
A string to failures, s ∈ L(G, qi ), is a string that ends at a failure state in Q f and none of

its prefixes visits any failure states in Q f , that is,

s ∈ L(G, qi ) ∧ δ(qi , s) ∈ Q f ∧ (∀s′ < s)δ(qi , s
′) /∈ Q f ,

where s′ < s means s′ is a prefix of s and s′ �= s.
The set of all possible strings to failures is denoted by

L f (G, qi ) = {s ∈ L(G, qi ) : δ(qi , s) ∈ Q f ∧ (∀s′ < s)δ(qi , s
′) /∈ Q f }.
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Note that L f (G, qi ) is different than the marked language of G Wonham and Cai (2019);
Cassandras and Lafortune (2009), because it requires the first visit to a failure state. Also, if
the system is already in a failure state, qi ∈ Q f , then L f (G, qi ) = {ε}.

To investigate time to failure, we introduce event lifetimes and the associated clock struc-
ture as follows, which is same as described in Cassandras and Lafortune (2009). We say that
an event σ ∈ Σ is active after s ∈ L(G) (or equivalently at state q = δ(qo, s)) if sσ ∈ L(G)

(or equivalently δ(q, σ )!). If this is the case, σ becomes active when the last event in s occurs.
We say that an event σ ∈ Σ is activated if it becomes active. We say that an event σ ∈ Σ is
deactivated if it becomes inactive. The lifetime of an event is the time it takes for the event
to occur after it is allowed to occur.

The clock structure is then denoted by

Ω = {(ωσ1(i), ωσ2(i), ..., ωσm (i)) : i = 1, 2, 3, ...}, (12)

where ωσk (i) is the lifetime of the i th occurrence of event σk ∈ Σ .
For each event σ ∈ Σ , the lifetime ωσ (i) is generated according to a given (stationary)

probability distribution Ψσ , that is, for all i = 1, 2, 3, ...

Pr [ωσ (i) ≤ x] = Ψσ (x). (13)

In other words, Ψσ (x) is the cumulative distribution function of the lifetime of σ . Denote
the corresponding probability density function by ψσ (x) and the mean of the lifetime of σ

by μσ . Also, denote
Ψ = (Ψσ1 , Ψσ2 , ..., Ψσm ). (14)

We assume that the event lifetimes are independent of each other.
The operating rules of event occurrences in stochastic discrete event system G are as

follows:

1. Each event is associated with a clock. When an event is first activated after its previous
occurrence, its clock is initiated to be ωσ (i), i = 1, 2, 3, .... The clock decreases at
the rate of -1 (unitless), when it reaches 0, the event occurs. In other words, the clock
describes the remaining lifetime of an event.

2. When an event occurs, the system may move to a new state. This causes some events to
be activated and some other events to be deactivated.

3. When an event is deactivated, if its clock is not 0, it will be frozen until the event is
re-activated.

Denote a realization of � based on Ψ by ω. For each realization ω, the stochastic discrete
event system generates a string of events s. The string s depends on both ω and G, as G
specifies when events are activated and deactivated.

4 Time to failure

Consider a stochastic discrete event system defined by the triple

(G, Ω, Ψ ). (15)

Assume that the system is currently in state qi and qi is not a failure state, that is, i ≤ n−l,
(otherwise, the time to failure is 0). Denote the time to failure by

πi = the time to failure from state qi . (16)
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Tofind themean time to failure, we consider the set of all possible strings to failures L f (G, qi )
as defined in the previous section. For each string to failures s ∈ L f (G, qi ), we denote

T (s) = the time when the last event in s occurs.

The cumulative distribution function of time to failure is denoted by

Hi (x) = Pr [T (s) ≤ x | s ∈ L f (G, qi )].
The corresponding probability density function is denoted by hi (x).

Our objective is to find MTTF from state qi , denoted by

ηi = E[πi ] = E[T (s) | s ∈ L f (G, qi )] =
∫ ∞

0
xhi (x)dx . (17)

Before we demonstrate how to calculate ηi for general stochastic discrete event systems,
let us first consider the following example.

Example 1 Consider the stochastic discrete event system shown in Fig. 1. The failure state is
3. There are three events: α, β, and γ . Assume that the system is at State 1 initially and the
lifetime distributions are exponential, that is,

Ψα(x) = 1 − e−x/μα , Ψβ(x) = 1 − e−x/μβ , Ψγ (x) = 1 − e−x/μγ ,

where μα , μβ , and μγ are mean lifetimes of α, β, and γ , respectively. As we will show in

the next section, η1 = μα + μ2
α

μβ

, η2 = 2μα + μ2
α

μβ

.

For general stochastic discrete event systems with arbitrary lifetime distributions, it is not
always possible to find analytic solutions for MTTF. To obtain an analytic solution, we must
make some assumptions on the structures of stochastic discrete event systems and lifetime
distributions, as to be investigated in the next section.

5 Calculation of mean time to failure

In order to calculate the MTTF analytically for a general stochastic discrete event system, we
make the following assumptions. (1) The discrete event system G is strongly connected, that
is, (∀q, q ′ ∈ Q)(∃s ∈ Σ∗)δ(q, s) = q ′. (2) The event lifetime distributions are independent
and exponential, that is, (∀σ ∈ Σ)Ψσ (x) = 1−e−x/μσ . The first assumption is madewithout
significant loss of generality, because if G is not strongly connected, we can investigate its
strongly connected subsystems separately.

Fig. 1 Stochastic discrete event
system G in Example 1. →
denotes the initial state
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Under the above assumptions, we show that the problem of finding MTTF in stochastic
discrete event systems can be translated into the problem of finding first passage time in finite,
irreducible, continuous time Markov chains, which has been investigated in the literature
Darling and Siegert (1953); Brown and Chaganty (1983); Yao (1985).

We first convert a stochastic discrete event system (G, Ω, Ψ ) into a continuous time
Markov chain as follows:

Step 1: Remove all self loops in G, that is,
G′ = (Q,Σ, δ′, Q f ).

In G′, δ′ is obtained as follows: Remove from the set of all transitions in G
δ = {(q, σ, q ′) : q, q ′ ∈ Q ∧ σ ∈ Σ ∧ δ(q, σ ) = q ′}

all the self loops to obtain

δ′ = δ − {(q, σ, q) : q ∈ Q ∧ σ ∈ Σ ∧ δ(q, σ ) = q}.
Step 2: Identify all parallel transitions (PT) in G, that is, for all q, q ′ ∈ Q, q �= q ′,

PT (q, q ′) = {(q, σ, q ′) ∈ δ′ : σ ∈ Σ}.
Step 3: The state space of the continuous time Markov chain is the same as that of G, that

is,
Q = {q1, q2, ..., qn}.

Step 4: Define the transition rate matrix (also known as an intensity matrix or infinitesimal
generator matrix) as

Λ = [λi j ], (18)

where

λi j =
∑

(qi ,σ,q j )∈PT (qi ,q j )

1

μσ

, i, j = 1, 2, ..., n ∧ i �= j

λi i = −
∑
i �= j

λi j , i = 1, 2, ..., n. (19)

For qi ∈ Q, denote the time that the system stays in qi , called sojourn time, by ρi . For
the continuous time Markov Chain (Q,Λ), the mean sojourn time is given by

E[ρi ] = − 1

λi i
= 1∑

i �= j λi j
. (20)

Theorem 1 For the stochastic discrete event system (G, Ω, Ψ ) and the continuous time
Markov chain (Q,Λ) defined above, the sojourn time ρi in any state qi ∈ Q is the same for
the stochastic discrete event system and the continuous time Markov chain.

Proof Since self loops do not change the state of the system, removing self loops does not
change the sojourn time at any state.

Because event lifetimes are independent and exponential, parallel transitions, say α and
β, can be combined, the lifetime of the combined transition is also exponential, with a mean

lifetime of
μαμβ

μα + μβ

.
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Since the exponential distribution ismemoryless, re-activating the clock inOperating Rule
4 is same as starting a new clock.

Therefore, the stochastic discrete event system (G, Ω, Ψ ) and the continuous timeMarkov
chain (Q,Λ) has the same sojourn time ρi for any state qi ∈ Q.

��
Note that although the sojourn times are the same for the discrete event system and the

continuous timeMarkov chain, the conversion from the discrete event system (G,Ω,Ψ ) to the
continuous time Markov chain (Q,Λ) removes some important information on the discrete
event system. For example, self-loops and parallel transitions are important in modeling and
control of discrete event systems Cassandras and Lafortune (2009); Wonham etal (2018).
In other words, the conversion is for calculating MTTF only. The discrete event system
(G, Ω, Ψ ) with controllable and observable events is needed for modeling and control.

The problem of finding the first passage time of a finite, irreducible (that is, strongly
connected), continuous time Markov chain has been investigated in the literature Darling
and Siegert (1953); Brown and Chaganty (1983); Yao (1985). We review and summarize the
results as follows.

For qi /∈ Q f , that is, i = 1, 2, ..., n− l, denote the Laplace transform of hi (x) by LPi (s).
In other words,

LPi (s) =
∫ ∞

0
e−xshi (x)dx = E[e−πi s]. (21)

The system will stay in qi for ρi time and then move to state q j with probability −λi j

λi i
=

λi j∑
i �= j λi j

. Hence,

E[e−πi s] = −
n∑

j=1, j �=i

λi j

λi i
E[e−(ρi+π j )s] = −

n∑
j=1, j �=i

λi j

λi i
E[e−ρi s]E[e−π j s].

Since for j = 1, ..., n − l, E[e−π j s] = LPj (s), and for j = n − l + 1, ..., n, E[e−π j s] = 1,

LPi (s) = −
n−l∑

j=1, j �=i

λi j

λi i
E[e−ρi s]LPj (s) −

n∑
j=n−l+1

λi j

λi i
E[e−ρi s]. (22)

Taking derivative with respect to s on both sides, we have

dLPi (s)

ds
= −

n−l∑
j=1, j �=i

λi j

λi i
E[−ρi e

−ρi s]LPj (s) −
n−l∑

j=1, j �=i

λi j

λi i
E[e−ρi s]dLPj (s)

ds

−
n∑

j=n−l+1

λi j

λi i
E[−ρi e

−ρi s]. (23)
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Since

lim
s→0

dLPi (s)

ds
= lim

s→0

∫ ∞

0
(−x)e−xshi (x)dx = −

∫ ∞

0
xhi (x)dx = −E[πi ] = −ηi

lim
s→0

LPj (s) = lim
s→0

∫ ∞

0
e−xshi (x)dx =

∫ ∞

0
hi (x)dx = 1

lim
s→0

E[−ρi e
−ρi s] = E[−ρi ] = 1

λi i

lim
s→0

E[e−ρi s] = 1,

we have, by letting s → 0,

ηi =
n−l∑

j=1, j �=i

λi j

λi i

1

λi i
+

n−l∑
j=1, j �=i

λi j

λi i
(−η j ) +

n∑
j=n−l+1

λi j

λi i

1

λi i
,

which is equivalent to

λi iηi =
n−l∑

j=1, j �=i

λi j

λi i
+

n−l∑
j=1, j �=i

λi j (−η j ) +
n∑

j=n−l+1

λi j

λi i
.

Hence,

λi iηi +
n−l∑

j=1, j �=i

λi jη j =
n∑

j=1, j �=i

λi j

λi i
= −1.

Write the above equations in the matrix form

A

⎡
⎢⎢⎣

η1
η2
...

ηn−l

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎦ , (24)

where

A =

⎡
⎢⎢⎣

λ11 λ12 ... λ1(n−l)

λ21 λ22 ... λ2(n−l)

... ...

λ(n−l)1 λ(n−l)2 ... λ(n−l)(n−l)

⎤
⎥⎥⎦ . (25)

Note thatA is the principal submatrix ofΛwith dimension (n−l)×(n−l). The following
theorem presents the results on MTTF.

Theorem 2 Consider the stochastic discrete event system (G, Ω, Ψ ). MTTF is given by⎡
⎢⎢⎣

E[π1]
E[π2]

...

E[πn−1]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

η1
η2
...

ηn−l

⎤
⎥⎥⎦ = −A−1

⎡
⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎦ . (26)

Proof By Theorem 1 and the derivation above.

Using similar approaches, we can prove the following theorem that can be used to calculate
the standard deviation of time to failure.
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Theorem 3 Consider the stochastic discrete event system (G, Ω, Ψ ). The standard deviation
of time to failure is given by, for i = 1, 2, ..., n − l,

υi = √
Var(πi ) =

√
E[π2

i ] − (E[πi ])2, (27)

where

⎡
⎢⎢⎣

E[π2
1 ]

E[π2
2 ]

...

E[π2
n−1]

⎤
⎥⎥⎦ = 2A−2

⎡
⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎦ . (28)

Proof ByTheorem1 and taking the second derivative of LPi (s). SeeAppendixA for details.��
Example 2 Consider the stochastic discrete event system of Example 1 shown in Fig. 1. We
first convert the stochastic discrete event system into a continuous time Markov chain as
follows.

Step 1: Remove all self loops in G.
Step 2: Identify all parallel transitions (PT) in G,

PT (1, 2) = {(1, β, 2)} PT (1, 3) = {(1, α, 3)}
PT (2, 1) = {(2, α, 1)} PT (2, 3) = ∅
PT (3, 1) = {(3, β, 1), (3, γ, 1)} PT (3, 2) = ∅

Step 3: The state space of the continuous time Markov chain is the same as that of G, that
is,

Q = {q1, q2, q3}.
Step 4: Define the transition rate matrix as

Λ =
⎡
⎢⎣

− 1
μα

− 1
μβ

1
μβ

1
μα

1
μα

− 1
μα

0
1

μβ
+ 1

μγ
0 − 1

μβ
− 1

μγ

⎤
⎥⎦ .

Since there is only one failure state, l = 1 and n − l = 2. Hence

A =
[− 1

μα
− 1

μβ

1
μβ

1
μα

− 1
μα

]
.

MTTF is then given by

[
η1
η2

]
=

[
E[π1]
E[π2]

]
= −A−1

[
1
1

]
=

⎡
⎣ μα + μ2

α

μβ

2μα + μ2
α

μβ

⎤
⎦ .

To calculate the standard deviation of time to failure, we have

[
E[π2

1 ]
E[π2

2 ]
]

= 2A−2
[
1
1

]
=

⎡
⎢⎣
2μ2

α + 6μ3
α

μβ
+ 2μ4

α

μ2
β

6μ2
α + 8μ3

α

μβ
+ 2μ4

α

μ2
β

⎤
⎥⎦ .
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Hence,

[
υ1
υ2

]
=

⎡
⎣

√
E[π2

i ] − (E[πi ])2√
E[π2

i ] − (E[πi ])2

⎤
⎦ =

⎡
⎣μα

√
1 + 4μα

μβ
+ (

μα

μβ
)2

μα

√
2 + 4μα

μβ
+ (

μα

μβ
)2

⎤
⎦ .

In particular, if μβ → ∞,[
η1
η2

]
→

[
μα

2μα

]
,

[
υ1
υ2

]
→

[
μα√
2μα

]
.

If μα → ∞, [
η1
η2

]
→

[∞
∞

]
,

[
υ1
υ2

]
→

[∞
∞

]
.

If μβ = μα , [
η1
η2

]
=

[
2μα

3μα

]
,

[
υ1
υ2

]
=

[√
6μα√
7μα

]
.

6 Supervisory control to maximizemean time to failure

In this section, we use supervisory control to maximize MTTF. The idea is that while some
states are necessary to perform required tasks, the remaining states are optional. For those
optional states, we determine one by one whether it shall be removed or added by supervisory
control, depending on whether it increases or decreases MTTF.

Formally, let us denote the set of required states by Yr ⊆ Y . Required states are states
necessary for the system to perform its tasks and hence any supervisor must allow the sys-
tem to visit these states Lin and Wonham (1988); Cassandras and Lafortune (2009). The
subautomaton with the required states is denoted by

Ar = (Yr ,Σ, ζr , yo),

where ζr = ζ |Yr×Σ . The language generated by Ar , Kr = L(Ar ), is called the required
language. The required states Yr are fixed and determined by the problem to be solved.

To maximize MTTF, we design a supervisor that allows states in Y −Yr or not, depending
on whether allowing them will increase MTTF or not. We check the states in Y − Yr one
by one in a given order Y − Yr = {y1, y2, ..., yk} to see if it shall be allowed or not using
Algorithm 1 below.

Since the optimal supervisor Sk obtained by Algorithm 1 depends on the order Y − Yr =
{y1, y2, ..., yk}, theoretically, we need to consider all possible orders, which is a big job.
However, we can avoid this exhaustive search if we first order the states in Y − Yr by
measuring how a state y ∈ Y − Yr is prone to failure using Algorithm 2.

Since the optimal supervisor Sk obtained by Algorithm 1 depends on the order Y − Yr =
{y1, y2, ..., yk}, theoretically, we need to consider all possible orders, which is a big job.
However, we can avoid this exhaustive search if we first order the states in Y − Yr by
measuring how a state y ∈ Y − Yr is prone to failure using Algorithm 2.

Since θ(yi ) is the MTTF from yi inA(y), if θ(yi ) > θ(y j ), then it takes more time for the
system to fail from yi than from y j , that is, yi is less prone to failure than y j . Hence, θ(yi ) can
be used as a measure on how yi is prone to failure. After obtaining Θ = {θ(y) : y ∈ Y −Yr }
using Algorithm 2, we order the states in Y − Yr as Y − Yr = {yo1 , yo2 , ..., yok } such that
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Algorithm 1 Find optimal supervisor for Y − Yr = {y1, y2, ..., yk}.
Input: A = (Y , Σ, ζ, yo), Y f , Y − Yr = {y1, y2, ..., yk }
Output: Optimal supervisor So

1: Y0 = Yr ;
2: A0 = (Y0, Σ, ζ0, yo), where ζ0 = ζ |Y0×Σ ;
3: for i = 1, 2, ...k do begin
4: Yi = Yi−1 ∪ {yi };
5: Ai = (Yi , Σ, ζi , yo), where ζi = ζ |Yi×Σ ;
6: Ki = L(Ai );

7: calculate K↓
i ;

8: design a supervisor Si such that L(Si /A) = K↓
i ;

9: calculate MTTF ηo,i of Si /A from the initial state qo;
10: if ηo,i < ηo,i−1, then
11: Yi = Yi−1;
12: Si = Si−1;
13: end (for loop)
14: Optimal supervisor So = Sk ;
15: End.

Algorithm 2 Find prone to failure measures.
Input: A = (Y , Σ, ζ, yo), Y f , Yr
Output: Prone to failure measures Θ

1: for y ∈ Y − Yr do begin
2: identify all direct paths from y to Y f (paths without loops);
3: remove all states and transitions in Y − Y f , except those in the direct

paths identified above. Denote the resulting automaton asA(y);
4: calculate MTTF from y using automatonA(y). Denote the result as

θ(y);
5: end (for loop)
6: Prone to failure measures Θ = {θ(y) : y ∈ Y − Yr };
7: End.

θ(yoi ) ≥ θ(yoi+1), i = 1, 2, ..., k−1.We then use Algorithm 1with Y −Yr = {yo1 , yo2 , ..., yok }
to obtain the optimal supervisorSo that maximizesMTTF as shown in the following theorem.

Theorem 4 Order the elements in Y − Yr as Y − Yr = {yo1 , yo2 , ..., yok } such that θ(yoi ) ≥
θ(yoi+1), i = 1, 2, ..., k − 1 based on the outputs of Algorithm 2. Let Y − Yr be the input
to Algorithm 1 and the optimal supervisor outputted by Algorithm 1 be So. For a state-
based supervisor S, denote the states visited by S/A from the initial state qo by YS and
MTTF of S/A from the initial state qo by MT T F(S/A). Assume that, for yoi ∈ YS − YSo ,
MT T F(S/A) > MTT F(So/A) implies adding yoi to Yr increases MTTF. Then the optimal
supervisor So maximizes MTTF, that is,

(∀S)(L(S/A) ⊇ Kr ⇒ MTT F(S/A) ≤ MTT F(So/A)).

Proof We prove Theorem 4 by contradiction. If

(∀S)(L(S/A) ⊇ Kr ⇒ MTT F(S/A) ≤ MTT F(So/A)),
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is not true, then

¬(∀S)(L(S/A) ⊇ Kr ⇒ MTT F(S/A) ≤ MTT F(So/A))

⇔ (∃S)(L(S/A) ⊇ Kr ∧ MTT F(S/A) > MTT F(So/A))

⇔ (∃S)(L(S/A) ⊇ K↓
r ∧ MTT F(S/A) > MTT F(So/A))

(by the definition of K↓
r )

Since L(S/A) ⊇ Kr , we have YS ⊇ Yr . From Algorithm 1, we have Yo
S ⊇ Yr . Because

MTT F(S/A) > MTT F (So/A), we have YS �= Yo
S .

Let yoi be the first element in {yo1 , yo2 , ..., yok } such that yoi ∈ YS − YSo . Since
MTT F(S/A) > MTT F(So/A), adding yoi to Yr increases MTTF. However, by Algo-
rithm 1, yoi /∈ YSo implies adding yoi to Yr decreases MTTF, a contradiction. ��

The computational complexity of synthesizing the optimal supervisor So
k can be analyzed

as follows. (1) The computational complexity of finding MTTF is of the order O(|Q|2).
(2) The computational complexity of finding K↓ and design a supervisor is of the order
O(|Y |) for full observation (all event are observable) and O(2|Y |) for partial observation (not
all event are observable). (3) The computational complexity of Algorithm 1 is of the order
O(|Y |(|Y | + |Q|2)) for full observation and O(|Y |(2|Y | + |Q|2) for partial observation. (4)
The computational complexity of Algorithm 2 is of the order O(|Y |3).

7 Applications tomanagement of transformers in power systems

In this section, we apply the theoretical results of the previous sections to power system
failure analysis. We calculate and maximize MTTF of equipment in power systems. Our
approach can be used for any equipment in a cyber-physical power system (and indeed in
any industrial system). We use the model and data of a 220 kV transformer discussed in
Zhong etal (2016) as an example mainly because the mean lifetimes of its events are readily
available from Zhong etal (2016).

The transformer is modeled as a discrete event systemA = (Y ,Σ, ζ, yo) shown in Fig. 2.
The definitions of states in Y = {1, 2, 3, 4, 5, 6, 7, 8, 9} are given in Table 1. The events are
Σ = {α1, α2, α3, α4, α5, α6, α7, β1, β2, β3, β4, γ1, γ2, γ3, γ4}, where αi are uncontrollable
events representing the natural progression of the transformer; βi are controllable events
representing the actions of minor overhaul, major overhaul, repair, and replacement, respec-
tively; and γi are uncontrollable events representing the completion of minor overhaul, major

Fig. 2 A discrete event system model of a transformer
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Table 1 Definitions of states of
the transformer

State Definition

1 Normal

2 Needing minor overhaul

3 Needing major overhaul

4 Minor overhaul

5 Major overhaul

6 Repair

7 Replacement

8 Repairable failure

9 Aging failure

overhaul, repair, and replacement, respectively.We assume that all events are observable, that
is, Σo = Σ .

Themean lifetimes of eventsμσ and their reciprocals 1/μσ for σ ∈ Σ are given in Table 2
(see Zhong etal (2016)).

Let the required state be Yr = {1, 2, 3, 8, 9} and the failure states be Y f = {8, 9}. Hence,
Ar = (Yr ,Σ, ζr , yo) is shown in Fig. 3.

Since Σc = {β1, β2, β3, β4} and Σo = Σ , it can be shown Lin and Wonham (1988)
that Kr = L(Ar ) is controllable and observable. Hence, a supervisor Sr exists such that
L(Sr/Ar ) = Kr . In fact, the supervised system Gr = Sr/Ar is isomorphic to Ar , that is,
there is a one-to-one mapping between states and transitions of Gr and Ar .

Table 2 Mean lifetimes of events
and their reciprocals

Event σ Mean lifetime μσ (year) 1/μσ (times/year)

α1 1.22 0.82

α2 3.23 0.31

α3 19.61 0.051

α4 2.44 0.41

α5 20.83 0.048

α6 21.23 0.0471

α7 21.23 0.0471

β1 0.083 12.04

β2 0.49 2.0

β3 0.0219 45.62

β4 0.0323 30.41

γ1 0.0285 35.1

γ2 0.0555 18.02

γ3 0.0823 12.15

γ4 0.1242 8.05
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Fig. 3 Ar = (Yr , Σ, ζr , yo) of the transformer with η1 = 11.0570

Recalling from the previous sections, we can calculate MTTF in Ar . For Yr =
{1, 2, 3, 8, 9}, using the mean lifetimes of events in Table 2, we have

Λ =

⎡
⎢⎢⎢⎢⎣

−1.23 0.82 0.41 0 0
0 −0.4051 0.31 0.048 0.0471
0 0 −0.0981 0.051 0.0471
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Hence

A =
⎡
⎣−1.23 0.82 0.41

0 −0.4051 0.31
0 0 −0.0981

⎤
⎦ .

⎡
⎣ η1

η2
η3

⎤
⎦ = −A−1

⎡
⎣ 1
1
1

⎤
⎦ =

⎡
⎣ 11.0570
10.2692
10.1937

⎤
⎦ .

In particular, MTTF from the initial state is η1 = 11.0570.
Next we investigate if MTTF can be improved by adding more states to Ar . Using Algo-

rithm 2, we constructA(y) for y = 4, 5, 6, 7. A(4) is shown in Fig. 4A(5),A(6), andA(7)
are similar.

The measures of prone to failure of state y, θ(y), are then calculated as follows.

θ(4) = 11.0855, θ(5) = 11.1125

θ(6) = 11.1393, θ(7) = 11.1812.

Since θ(7) > θ(6) > θ(5) > θ(4), let us add state y = 7, 6, 5, 4 to Ar one by one
in that order. Adding y = 7 results in A7, which is shown in Fig. 5. It can be shown that
K7 = L(A7) is controllable and observable. Hence, K↓

7 = K7 and a supervisor S7 exists
such that L(S7/A7) = K7. The supervised system G7 = S7/A7 is isomorphic to A7.

We calculate MTTF in A7 in a way similar to those in Ar and obtain η1 = 11.0570.
Hence, adding y = 7 does not improve MTTF. Therefore, we do not add y = 7. By a similar
calculation, adding y = 6 does not improve MTTF, and we do not add y = 6.

Adding y = 5 results in A5, which is shown in Fig. 6. K5 = L(A5) is controllable and
observable. Hence, K↓

5 = K5. We calculate MTTF in A5 and obtain η1 = 15.1092. Clearly,
performing a major overhaul improves MTTF, as MTTF is increased by 37%.

Adding y = 4 results in A4, which is shown in Fig. 7. K4 = L(A4) is also controllable
and observable. Hence, K↓

4 = K4. We calculate MTTF in A5 and obtain η1 = 49.8456.
Clearly, performing a minor overhaul in addition to a major overhaul significantly improves
MTTF, as MTTF is increased by 351%.

The supervised system under optimal control is given in Fig. 7
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Fig. 4 A(4) of the transformer

Fig. 5 A7 of the transformer with η1 = 11.0570

Fig. 6 A5 of the transformer with η1 = 15.1092

Fig. 7 A4 of the transformer with η1 = 49.8456

123



Discrete Event Dynamic Systems (2023) 33:105–127 123

8 Conclusion

The results in this paper are novel because MTTF has not been investigated in discrete event
systems before. To the best of our knowledge, this paper is the first to provide a formal
definition of MTTF in a discrete event system. The method proposed to calculate MTTF is
also new and easy to use. It involves the calculation of the inverses of intensitymatrices. Using
a supervisor to maximize MTTF has not been attempted before. It allows the system to avoid
prone-to-failure states while performing tasks that can prolong MTTF. Such a supervisor
can be designed systematically using the proposed method. The benefits of the approach
are illustrated by the application to the operation and maintenance of transformers in power
systems. In the future work, we plan to apply the developed theory to more engineering
systems. Since the computational complexity of calculatingMTTF is polynomialwith respect
to the number of states, we expect that our method can be applied to complex systems.
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Appendix: Proof of Theorem 3

Start from the derivative of LPi (s) in Eq. (23), let us take the second derivative of LPi (s):

d2LPi (s)

ds2
= −

n−l∑
j �=i, j=1

λi j
λi i

E[(−ρi )
2e−ρi s]LPj (s) − 2

n−l∑
j �=i, j=1

λi j
λi i

E[−ρi e−ρi s] dLPi (s)ds

−
n−l∑

j �=i, j=1

λi j
λi i

E[e−ρi s] d2LPj (s)
ds2

−
n∑

j=n−l+1

λi j
λi i

E[(−ρi )
2e−ρi s].

Since

lim
s→0

d2LPi (s)

ds2
= lim

s→0

∫ ∞

0
(−x)2e−xshi (x)dx =

∫ ∞

0
x2hi (x)dx = E[(πi )

2]

lim
s→0

dLPi (s)

ds
= lim

s→0

∫ ∞

0
(−x)e−xshi (x)dx = −

∫ ∞

0
xhi (x)dx = −E[πi ] = −ηi

lim
s→0

LPj (s) = lim
s→0

∫ ∞

0
e−xshi (x)dx =

∫ ∞

0
hi (x)dx = 1

lim
s→0

E[(−ρi )
2e−ρi s] = E[(ρi )2] = 2(

1

λi i
)2

lim
s→0

E[−ρi e
−ρi s] = 1

λi i

lim
s→0

E[e−ρi s] = 1,
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we have, by letting s → 0,

E[(πi )
2] = −

n−l∑
j �=i, j=1

λi j
λi i

2( 1
λi i

)2 − 2
n−l∑

j �=i, j=1

λi j
λi i

1
λi i

(−ηi )

−
n−l∑

j �=i, j=1

λi j
λi i

E[(π j )
2] −

n∑
j=n−l+1

λi j
λi i

2( 1
λi i

)2.

In other words,

n−l∑
j=1

λi j E
[
(π j )

2] = λi i E
[
(πi )

2] +
n−l∑

j �=i, j=1

λi j E
[
(π j )

2]

= −2
n−l∑

j �=i, j=1

λi j

λ2i i
− 2

n−l∑
j �=i, j=1

λi j

λi i
(−ηi ) − 2

n∑
j=n−l+1

λi j

λ2i i

= −2
n∑

j �=i, j=1

λi j

λ2i i
+ 2

n−l∑
j �=i, j=1

λi j

λi i
ηi

(by Eq. (19))

= 2
1

λi i
+ 2

n−l∑
j �=i, j=1

λi j

λi i
ηi

= 2
1

λi i
− 2ηi + 2

n−l∑
j=1

λi j

λi i
ηi .

Since

A

⎡
⎢⎢⎣

η1
η2
...

ηn−l

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎦ ,

we have

2
n−l∑
j=1

λi j

λi i
ηi = 2

1

λi i

n−l∑
j=1

λi jηi = −2
1

λi i
.

Hence,

n−l∑
j=1

λi j E[(π j )
2] = 2

1

λi i
− 2ηi + 2

n−l∑
j=1

λi j

λi i
ηi = −2ηi .

In the matrix form

A

⎡
⎢⎢⎣

E[π2
1 ]

E[π2
2 ]

...

E[π2
n−1]

⎤
⎥⎥⎦ = −2

⎡
⎢⎢⎣

η1
η2
...

ηn−l

⎤
⎥⎥⎦ = 2A−1

⎡
⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎦ .
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Therefore, ⎡
⎢⎢⎣

E[π2
1 ]

E[π2
2 ]

...

E[π2
n−1]

⎤
⎥⎥⎦ = 2A−2

⎡
⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎦ .
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