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Abstract

The magnetorotational instability (MRI) has been extensively studied in circular magnetized disks, and its ability to
drive accretion has been demonstrated in a multitude of scenarios. There are reasons to expect eccentric magnetized
disks to also exist, but the behavior of the MRI in these disks remains largely uncharted territory. Here we present
the first simulations that follow the nonlinear development of the MRI in eccentric disks. We find that the MRI in
eccentric disks resembles circular disks in two ways, in the overall level of saturation and in the dependence of the
detailed saturated state on magnetic topology. However, in contrast with circular disks, the Maxwell stress in
eccentric disks can be negative in some disk sectors, even though the integrated stress is always positive. The
angular momentum flux raises the eccentricity of the inner parts of the disk and diminishes the same of the outer
parts. Because material accreting onto a black hole from an eccentric orbit possesses more energy than material
tracing the innermost stable circular orbit, the radiative efficiency of eccentric disks may be significantly lower than
circular disks. This may resolve the “inverse energy problem” seen in many tidal disruption events.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamical simulations (1966); Accretion (14); Black hole
physics (159); Gravitation (661)

Supporting material: animation

1. Introduction

Eccentric gaseous disks arise in a surprisingly wide variety
of astrophysical contexts. A number of mechanisms can
explain the existence of eccentric disks, the most commonly
invoked one being external perturbation. In eccentric binaries,
secular gravitational interaction endows forced and free
eccentricities upon circumbinary and circumobject disks (e.g.,
Murray & Dermott 1999); in circular binaries, tidal forces
couple to circumobject disks through the 3:1 mean motion
resonance and allow free eccentricity to grow exponentially
(Lubow 1991). Another possibility is that disks become more
eccentric over time. Viscous overstability (Kato 1978), which
amplifies small-scale eccentric perturbations in isolated disks
(e.g., Lyubarskij et al. 1994; Ogilvie 2001), is often cited in this
connection. A third option is for disks to be born eccentric.
Outgassing from planetesimals can create eccentric disks
(Trevascus et al. 2021), and so can the tidal disruption of stars
(Shiokawa et al. 2015; Piran et al. 2015; Svirski et al. 2017)
and molecular clouds (e.g., Bonnell & Rice 2008) by
supermassive black holes. On the phenomenological side,
eccentric disks are sometimes invoked to explain asymmetric
lines in white dwarfs (e.g., Gänsicke et al. 2006), as well as
asymmetric broad emission lines in active galactic nuclei (e.g.,
Eracleous et al. 1995; Tucker et al. 2021) and tidal disruption
events (TDEs; e.g., Guillochon et al. 2014; Liu et al. 2017).

Because ideal magnetohydrodynamics (MHD) is supported
even by low levels of ionization (Blaes & Balbus 1994;
Gammie 1996), we expect magnetic fields to play a role in
many of the eccentric disks enumerated above. The presence of
magnetic fields changes the way disks evolve because of the

magnetorotational instability (MRI; Balbus & Hawley 1991;
Hawley & Balbus 1991). Simply put, in a disk whose inner
parts rotate faster than the outer parts, differential rotation can
latch onto horizontal bits of the magnetic field, stretch them
out, and amplify them. The gas connected to one of these bits
on the inside is pulled back by magnetic tension, loses angular
momentum, migrates inward, and picks up orbital speed. In the
meantime, the gas on the outside is dragged forward, gains
angular momentum, drifts outward, and slows down. The rising
velocity difference across the horizontal magnetic field in turn
enhances its stretching, precipitating an instability.
Analytic calculations for circular disks show that a

perturbation can grow by orders of magnitude per orbit in the
linear stage (Balbus & Hawley 1991), making the MRI among
the most vigorous MHD instabilities. The initially exponential
amplification eventually enters the nonlinear stage and breaks
down into MHD turbulence. Orbital shear enforces a correla-
tion between the radial and azimuthal components of the
turbulent velocity, and between the same components of the
magnetic field. Turbulent stresses transport angular momentum
outward; gas robbed of angular momentum sinks to smaller
radii, and the disk accretes.
The saturation process is amenable only to numerical

investigation. Previous simulations of circular disks, number-
ing in the hundreds, are divided into shearing-box simulations,
which consider a small neighborhood of the disk as
representative of the whole (e.g., Hawley & Balbus 1992;
Hawley et al. 1995, 1996; Brandenburg et al. 1995; Stone et al.
1996), and global simulations, which take in the entire
disk (e.g., Hawley & Balbus 1991; Armitage 1998;
Matsumoto 1999; Hawley 2000; De Villiers & Hawley 2003).
This large body of work converged on the consensus that,
irrespective of the circumstances simulated, MHD turbulence
in circular disks saturates within 10–20 orbits, and the stresses
at saturation correspond to a Shakura & Sunyaev (1973) alpha
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parameter between 0.01 and 1. For circular disks around black
holes, the alpha parameter may change substantially near their
inner edges at the innermost stable circular orbit (ISCO). In
disks with gas-dominated pressure, the alpha parameter can
increase very rapidly as matter approaches and crosses the
ISCO (Noble et al. 2010); alternatively, in super-Eddington
radiation-dominated disks, it may exhibit a sharp peak at a
radius a short distance outside the ISCO (Jiang et al. 2014).

There is no reason to expect the MRI and the associated
MHD stresses to be absent from eccentric disks, though their
character and the exact manner in which they approach
saturation may differ from circular disks. Very little heed,
however, has hitherto been paid to any aspect of the role of
magnetic fields in eccentric disks. We were the first to establish
analytically that eccentric disks are susceptible to the MRI
(Chan et al. 2018). Compared to the circular MRI, the growth
rate of the eccentric MRI is smaller at the order-unity level and
the range of unstable wavelengths is wider. That work,
however, is incomplete because it examined only linear
stability. It remains an open question whether the robust
growth of MHD stresses in the linear stage would, as the MRI
turns nonlinear, translate to saturated stress levels significant
enough to affect disk evolution.

As of writing, only a couple of simulations have looked at
how eccentricity interacts nonlinearly with the MRI. Dewberry
et al. (2020b) set up a circular disk in the potential of
Paczyńsky & Wiita (1980) and excited eccentric waves from
the outer edge; they saw that the MRI is active at large radii
where eccentricities are higher, but suppressed near the ISCO
where eccentricities are lower and differential apsidal preces-
sion is stronger. Oyang et al. (2021) fed the disk around one
member of a binary through Roche-lobe overflow; they found
that the rf-component of the magnetic stress aids tidal gravity
in growing eccentricity but all other stress components oppose
it. Neither work achieved eccentricities 0.1 because doing so
requires overcoming two challenges.

The first problem stems from the fact that existing
Newtonian MHD codes are capable of handling only Cartesian,
cylindrical, and spherical coordinate systems. If a moderately
eccentric disk were simulated in one of these coordinate
systems, the streamlines would be oblique to the grid, and so
would the magnetic fields dragged out by orbital shear.
Numerical artifacts reflecting grid symmetry would creep in;
at the same time, excessive numerical dissipation would
prevent the disk from maintaining its shape over a long time.
These drawbacks limited previous simulations of isolated
eccentric disks to eccentricities small enough to be implemen-
table as an m= 1 perturbation to the initial velocity (e.g.,
Papaloizou 2005a), but alternative approaches do exist (Barker
& Ogilvie 2016; Dewberry et al. 2020a, 2020b). Here we
demonstrate that Newtonian simulations can be performed in
arbitrary coordinate systems with general-relativistic magneto-
hydrodynamics (GRMHD) codes, provided that the metric is
judiciously chosen. Employing a coordinate system molded to
the shape of moderately eccentric disks significantly suppresses
the numerical errors arising from ordinary cylindrical
coordinates.

The second difficulty is with the simulation setup. One may
think that the setting of localized perturbations in Chan et al.
(2018) lends itself naturally to shearing-box simulations (e.g.,
Ogilvie & Barker 2014; Wienkers & Ogilvie 2018). Drawing
inspiration from circular disks, one may imagine shearing

boxes in eccentric disks to have edges running along curves of
constant semilatus rectum and constant azimuth. However, the
very notion of an eccentric shearing box is suspect. Circular
shearing boxes assume that the disk, being homogeneous, is
equivalent to a tiling of the shearing box; this justifies periodic
azimuthal and shift-periodic radial boundary conditions. The
assumption breaks down for eccentric disks. Chan et al. (2018)
showed that a perturbation grows differently at different
positions along the orbit, depending on the local orbital shear.
This means the conditions at the leading edge of an eccentric
shearing box are different from the trailing edge, and they also
vary along each of the other two edges, so boundary conditions
that directly copy one edge to the other would be inappropriate.
We can avoid these questions about the eccentric shearing box
by performing global simulations instead. It is worth noting
that the first simulations of the circular MRI were also global
(Hawley & Balbus 1991).
We recount our simulation setup in Section 2. The results

from the simulations are presented in Section 3 (see the
animation associated with Figure 3) and discussed in Section 4.
Our concluding remarks are gathered in Section 5.

2. Methods

We outline our simulation strategy in Section 2.1. We
continue with the details of the simulation setup in the
subsequent subsections and in the Appendix; readers unin-
terested in the technicalities may skip to the results in
Section 3.

2.1. Overall Strategy

Our goal is to simulate the nonlinear evolution of the
eccentric MRI in a purely Newtonian setting. The only reason
we turn to a GRMHD code is because numerical issues force us
to tailor the coordinate system to the eccentric disk shape, but
existing Newtonian codes lack the facility to deal with bespoke
coordinate systems. The GRMHD code we use for this purpose
is Athena++ (White et al. 2016; Stone et al. 2020).
There can be drawbacks to solving Newtonian problems

with a GRMHD code, principally the large truncation error
potentially created by the smallness of the typical kinetic and
internal energies compared to the rest energy. This error can,
however, be mitigated by careful design of the simulation
setup, as described in later subsections. With our setup, the
truncation error is 10−7 for the vast majority of cells.
A major difference of GRMHD codes compared with

Newtonian codes is that gravity enters not as explicit
momentum and energy source terms, but through the metric.
Our choice of the metric in Sections 2.3 and 2.4 ensures that
orbits are closed ellipses that do not apsidally precess, allowing
our simulations to closely approximate Newtonian behavior.
We simulate a suite of disks. The initial hydrodynamic

configuration of the disks follows the common prescription in
Section 2.5: Gas is placed within a limited radial range, so that
the inner and outer edges of the disk are well separated from
the inner and outer boundaries, respectively, of the simulation
domain. All disks are tracked for 15 orbits so turbulence may
have enough time to reach saturation. The individual disks
comprising the suite are designed with contrast in mind. They
are classified along two orthogonal dimensions: circular versus
eccentric and unmagnetized versus magnetized.
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Comparison between circular and eccentric disks gives us an
idea whether the saturation level of the MRI depends on
eccentricity. The eccentric disks have a moderate eccentricity
of 0.5, so that the character of the MRI specific to eccentric
disks can reveal itself without being overwhelmed by
hydrodynamic effects.

Comparison between unmagnetized and magnetized disks
helps us disentangle MHD effects from hydrodynamic effects.
Magnetized disks are seeded with an initial magnetic field as
described in Section 2.6. Two magnetic topologies are
considered—vertical and dipolar fields—because topology
can influence the saturated MHD turbulence (e.g., Hawley
et al. 1995, 1996; Sano et al. 2004; Bai & Stone 2013).

2.2. Equations

We employ natural units, which means the length and
velocity units are the gravitational radius and the speed of light,
respectively. The sign convention is (−, + , + , +), Greek
indices range over {0, 1, 2, 3}, Latin indices range over {1, 2,
3}, and Einstein summation is implied. The equations of
GRMHD are

r r¶ - + ¶ - =g u g u 0, 1t
t

j
j1 2 1 2[( ) ] [( ) ] ( )

¶ - + ¶ - = - Gm m s
n
mn
sg T g T g T , 2t

t
j

j1 2 1 2 1 2[( ) ] [( ) ] ( ) ( )

¶ - + ¶ - =g F g F 0. 3t
i

j
ij1 2 0 1 2[( ) ] [( ) ] ( )* *

Here t is the coordinate time, ρ is the comoving mass density,

uμ is the velocity, g is the determinant of the metric gμν, and

Gmn
s is the Christoffel symbol of the second kind. * From the

Hodge dual of the electromagnetic tensor *Fμν, we obtain the

magnetic field B i
=

*F i0 and the projected magnetic field

bμ
= uν

*F νμ. Lastly, the stress–energy tensor is

r
g
g

= +

+ +
-

+ -

mn
s
s mn

s
s m n m n

T p b b g

p b b u u b b

1

2

1
, 4( )⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where p and γ are the gas pressure and adiabatic index,

respectively.

2.3. Eccentric Coordinate System

We solve the GRMHD equations in an eccentric coordinate
system (Ogilvie 2001). It is similar to the cylindrical coordinate
system, except that circular coordinate surfaces are replaced by
axially aligned elliptical ones, chosen such that their cross
sections along the midplane match the initial disk streamlines.
Adapting the coordinate system to the disk reduces numerical
artifacts and dissipation in our simulations. The eccentricities
and orientations of the coordinate surfaces can in principle vary
from one elliptical cylinder to the next, but here we specialize
to the case in which both are spatially uniform.

Let (t, R, j, z) be cylindrical coordinates. We work with
gravity weak enough to be well described by a quasi-
Newtonian potential Φ(R, z); the nonzero components of the
metric in this limit are

= - + Fg R z1 2 , , 5tt [ ( )] ( )

=g 1, 6RR ( )

=jjg R , 72 ( )

=g 1. 8zz ( )

Let l ft z, log , ,( ) be eccentric coordinates specialized for use

in our simulations; they are related to cylindrical coordinates by

l f= +R e1 cos , 9( ) ( )

j f= . 10( )

Here e is the eccentricity of our eccentric coordinates, set to 0

for circular disks and 0.5 for eccentric disks. Coordinate

surfaces of constant λ are elliptical cylinders of semilatus

rectum λ, or equivalently, semimajor axis a= λ/(1− e2). We

opt for llog instead of λ in order to generate a logarithmic

grid, but for ease of understanding we continue to label that

coordinate by λ and express results in terms of λ. We reuse t

and z without risk of ambiguity because these two coordinates

do not participate in the coordinate transformation from

cylindrical to eccentric. The metric and connection in both

coordinates are provided in Appendix A.

2.4. Gravitational Potential and Orbits

We ignore vertical gravity in these first simulations of the
eccentric MRI, so the potential depends only on R. In this
sense, our simulations resemble earlier simulations of unstra-
tified circular disks (e.g., Hawley & Balbus 1991; Hawley et al.
1995, 1996; Sano et al. 2004; Fromang & Papaloizou 2007;
Fromang et al. 2007; Lesur & Longaretti 2007; Simon et al.
2009; Guan et al. 2009; Bodo et al. 2011). However, instead of
the point-mass gravitational potential Φ(R, z)=− 1/R, we
adopt

F = - +R z R, 1 2 11( ) ( ) ( )/

because, as proven in Appendix B, this potential admits closed

eccentric orbits at all distances. The modification matters

because general-relativistic apsidal precession, albeit small at

large distances, accumulates over the tens of orbits during

which the MRI saturates.
The properties of orbits in our potential are also derived in

Appendix B; here we repeat the parts that support our
exposition. For an orbit along a coordinate curve of semilatus
rectum λ or semimajor axis a= λ/(1− e2), the orbital period is

p= +T a a2 1 2 . 123 2 ( ) ( )

The specific energy and angular momentum conserved with

respect to our metric are

= + -E a1 1 , 131 2( ) ( )

l=L E. 141 2 ( )

The specific energy includes the rest energy; E= 1 corresponds

to marginally bound material, and E→ 0 as material becomes

more bound. The nonzero components of the orbital velocity

are

= + Fu E R z1 2 , , 15t [ ( )] ( )

=fu L R , 162 ( )
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so the physical velocity at the pericenter is

l
l
l

= =
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( )
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Consider a collection of such orbits nested within one
another, all following coordinate curves. The velocity field thus
generated has finite divergence:

f
f

- ¶ - =
+ +

m
f
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e2
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1 cos
. 18j

1 2 1 2( ) [( ) ] ( )/ /

Consequently, if the motion of a gas without pressure is

described by this velocity field, the density along a streamline

of constant λ cannot be uniform, but must instead vary with f

in proportion to

l f
l f
l

º
+ +
+ +

d
e

e
,

2 1 cos

2 1
. 19

1 2

( )
( )

( )
( )⎡

⎣⎢
⎤
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So as to guarantee an initial condition that is a genuine

hydrodynamical steady state, we take this modulation into

account in Section 2.5 even though the modulation amplitude is

tiny for our disk parameters.

2.5. Hydrodynamic Initial Condition

Because we ignore vertical gravity, our initial disk is
translationally symmetric along the z-direction. It can be
described as an elliptical annular cylinder, each shell of which
orbits the coordinate axis along a coordinate surface of constant
λ with a velocity as given by Equations (15) and (16). The
scale of the disk is characterized by its fiducial orbit, whose
semilatus rectum is the geometric mean of the semilatera recta
of its inner and outer edges.

The disk should be large enough that orbital velocities are
nonrelativistic, and small enough that severe truncation errors
do not arise from the evolution of the total energy as a result of
the smallness of the kinetic energy with respect to the rest
energy. In light of the fact that the linear growth rate of the
MRI is inversely proportional to the orbital period (Chan et al.
2018), we additionally require that runs of different e have the
same semimajor axis and thus orbital period. We settle on a
semilatus rectum of λ*= 200(1− e2) for the fiducial orbit, and
we report time in units of the orbital period at this orbit.

The initial density profile is

r l f r l f= m, , , 20( ) ( ) ( )
*

with ρ* the density at the pericenter of the fiducial orbit, (λ,

f)= (λ*, 0). To give the disk edges that are not too sharp and

to build in a numerical vacuum, the density is modulated

spatially as

l f l f= - +lm f d h l l q f, 1 , , ; 2 , 21v gb gt v( ) ( ) ( ) ( ) ( )

where

º +
+

+
-

h a s x
x a

s

a x

s
, ;

1

4
1 tanh 1 tanh 22( ) ( )⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

is a smoothed top-hat function and

l l
l l

º
-
-

lq
log log

log log
23

max min

( )*

is the fractional llog( )-coordinate position within the simula-

tion domain. The modulation is governed by three parameters:

fv= 0.01 is the vacuum-to-disk density ratio, and lgb= 0.5 and

lgt= 0.1 are the fractional llog( )-coordinate extents of the disk

body and the disk–vacuum transition, respectively.
Because the most unstable mode of the circular MRI is

incompressible, the thermodynamic properties of the gas are
expected to have little bearing on the growth of the eccentric
MRI. Even so, we would like the pressure to be small enough
initially that the configuration above is close to equilibrium,
and the internal energy to be large enough at all times that
catastrophic truncation errors are avoided. We balance these
competing desires by setting the Mach number at the fiducial
pericenter to M*= 30. Additionally, we adopt an adiabatic
index of γ= 1+ 10−5, corresponding to a nearly isothermal
gas, so that the internal energy is larger at fixed pressure. The
initial pressure is therefore

r l g=p v M 24p
2[ ( ) ] ( )

* * * *

at the fiducial pericenter and

l f l f= gp p m, , 25( ) [ ( )] ( )
*

everywhere else. This initial condition is not strictly hydro-

static; transient outgoing waves are launched from the inner

edge as the disk seeks force balance. Moreover, our use of a

soft equation of state means that density perturbations are

stronger and pressure gradients have a lesser effect on disk

evolution than if an adiabatic equation of state were used.

2.6. Magnetic Initial Condition

The magnetized runs are initialized with the two kinds of
magnetic topologies illustrated in Figure 1. The vertical-field
topology refers to a magnetic field with one nonzero
component

l fµ lB d h l l q, , , 2 , 26z
mb mt( ) ( ) ( )

Figure 1. Poloidal slices showing with arrows the initial magnetic field for our
two magnetic topologies. Background colors plot the initial density on the same
scale as Figure 3. The ordinate is more stretched than the abscissa, and the
vectors are arbitrarily scaled.
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where lmb= 0.4 and lmt= 0.1 are the fractional llog( )-coordi-

nate extents of the magnetized disk body and the transition

from the magnetized disk body to the unmagnetized disk edges,

respectively. The net vertical magnetic flux persists throughout

the simulation. Thanks to its simplicity and its ability to

generate the fastest-growing instabilities, the vertical-field

topology was considered in the first studies of the circular

MRI (Balbus & Hawley 1991; Hawley & Balbus 1991) and in

our analytic study of the eccentric MRI (Chan et al. 2018).
The dipolar-field topology is derived from a magnetic

potential with one nonzero component

p pµ -f
lA g q l qcos min , cos , 27z1 2 2 1

2
mb

2( )( )( ) ∣ ∣ ( ) ( )

where

º
-

q
z

z z
28z

max min

( )

is the fractional z-position within the simulation domain and

lmb= 0.4. The inclusion of the metric determinant makes the

magnetic-field strength more uniform over azimuth. The

dipolar-field topology sees frequent application in global

simulations of the circular MRI (e.g., Hawley 2000).
For both topologies, the initial plasma beta, defined as the

ratio of the initial volume integral of gas pressure to that of
magnetic pressure, is 100. The pressure due to the magnetic
field is subtracted from the gas to preserve the total. The gas
pressure in magnetized regions is perturbed at the 0.01 level to
seed the MRI.

2.7. Simulation Domain, Boundary Conditions, and Other
Numerical Concerns

The simulation domain spans l l- ´exp 2 , exp 1[ ( ) ( ) ]
* *

p p- ´ -, 10, 10[ ] [ ] in (λ, f, z). The lower end of the λ-
range ensures velocities are never close to the speed of light,
and the asymmetry of the λ-range gives the infalling disk more
room to evolve freely before hitting the inner boundary. The
resolutions of the unmagnetized and magnetized simulations
are 240× 240× 1 and 240× 240× 60, respectively.

Periodic boundary conditions apply to the f-direction. They
are also employed in the z-direction, in accordance with our
neglect of vertical gravity. Outflow boundary conditions are
used in the λ-direction: We copy all quantities to the ghost
zone, zero the λ-component of the velocity if it points into the
simulation domain, and zero the f- and z-components of the
magnetic field always. This last step reduces unphysical
influences from the boundaries.

To prevent numerical issues, we require that the pressure in
the simulation domain always satisfy (γp/ρ)1/2� 2× 10−4. In
addition, whenever the recovery of primitive variables fails, the
primitive variables from the previous time step are carried
forward.

As the simulation progresses, different parts of the disk may
evolve differently in eccentricity and orientation, so the disk
could eventually become misaligned with the grid, resulting in
greater numerical dissipation. The disk also occupies a wider
range of semilatera recta due to pressure gradients and outward
angular momentum transport, bringing the now differently
shaped disk into contact with the boundaries. The inner
boundary poses a lower limit on the pericenter, but this
restriction is arguably physical because there are indeed radii

an accretion flow cannot return from. If the central object is a
star, the disk cannot extend inside the star or its magnetosphere.
If the central object is a black hole, Figure 2 informs us that
material with sufficiently low angular momentum and high
energy can plunge directly into the black hole; low angular
momentum and high energy are, of course, the hallmarks of an
eccentric orbit. By contrast, the interaction with the outer
boundary is unphysical and can lead to numerical artifacts;
therefore, we restrict our attention to the first 15 orbits at
a= 200, before the disk starts running into the outer boundary
and numerical artifacts appear. Steady state appears to obtain at
this time for the plasma beta and the alpha parameter, despite
the continual evolution in disk shape.

3. Results

3.1. Overview

Figure 3 tells us how much the disks have changed by the
end of the simulations. The circular unmagnetized disk after 15
orbits is almost indistinguishable from the initial disk. The
eccentric unmagnetized disk changes shape slightly because
pressure gradients, which are nonzero along the inner and
outer disk edges, cause differential apsidal precession (e.g.,
Ogilvie 2001); the density striation is a result of this adjustment
process.
The most conspicuous contrast between unmagnetized and

magnetized disks, of whatever eccentricity, is that unmagne-
tized disks remain smooth while magnetized disks develop
large density fluctuations. This, of course, is due to the
MRI creating MHD turbulence in the magnetized disks. The

Figure 2. Effective potential = - + -V r L r r1 1 2eff
1

2

2 2( )( )/ / / in Schwarz-

schild spacetime as a function of spherical radius r and specific angular

momentum L. The specific energy E must satisfy - >E V1
1

2

2
eff( ) , and

marginally bound trajectories have E = 0. Material accretes by losing angular
momentum; thus, its trajectory is described by potentials of decreasing L. In
circular disks, trajectories have the lowest energy allowed by the stable
potential well; such trajectories evolve along the sequence of dots downward
until they arrive at the smallest radius that supports circular orbits—the ISCO.
In eccentric disks, trajectories have energies above the bottom of the potential
well, which allows them to make radial excursions as suggested by the double-
headed arrow. The smallest radius a bound trajectory can reach without falling
in is the marginally bound orbit; such a trajectory has E = 0 and L2 = 16.
Because trajectories energetic enough to overcome the centrifugal barrier have
energies greater than the ISCO orbit, material plunging into the black hole on
these trajectories has less energy available for radiation compared to material
accreting on circular trajectories.

5

The Astrophysical Journal, 933:81 (14pp), 2022 July 1 Chan, Piran, & Krolik



fluctuations are larger in vertical-field disks than in dipolar-field

disks.
Comparison can also be made between circular and eccentric

disks regardless of magnetic topology. Unlike the circular

disks, which stay circular despite the MHD turbulence, the

inner parts of eccentric disks grow more eccentric and precess

prograde. As the inner parts of eccentric disks shrink, their

pericenters move inside the inner boundary, and their material

accretes across the boundary while retaining its eccentricity.

This loss of material from the most eccentric orbits is the

reason why there is a sparsely populated region between the

inner parts and the inner boundary, visible in the late-time

eccentric disks in Figure 3.

There are also differences among the eccentric disks,
concerning chiefly eccentricity evolution and, to a lesser
degree, precession. The unmagnetized and vertical-field disks
in Figure 3 have largely preserved their initial eccentricity,
even though the outer parts of the unmagnetized disk have
become somewhat rounder, and the inner parts of the vertical-
field disk have precessed slightly more. The dipolar-field disk
features the steepest eccentricity gradient and a much higher
degree of precession.
The eccentricity gradient can be quantified by computing the

instantaneous eccentricity ē, which is the eccentricity of the
orbit that material would follow given its instantaneous
velocity uμ if only gravitational forces were to act; this orbit
is also known as the osculating orbit. We calculate ē from uμ

using Equations (15), (16), and (B9). Figure 4 contains plots of
the mass-weighted vertical average of ē:

ò òr rá ñ ºre dz e dz . 29z;¯ ¯ ( )

The instantaneous eccentricity deviates little from its initial

value in the unmagnetized and vertical-field disks, but it

develops a clear gradient in the dipolar-field disk, with the

eccentricity higher than its initial value in the inner parts and

lower in the outer parts. The implications of the eccentricity

gradient will be discussed in Section 4.2.

3.2. Plasma Beta and the Alpha Parameter

The top half of Figure 5 portrays the mass-weighted vertical
average of the plasma beta at the end of the simulations, defined
as

ò òb r rá ñ ºr
m
m

dz
p

b b
dz

2
. 30z; ( )

The plasma beta is ∼10 in vertical-field disks and ∼100 in

dipolar-field disks; the variation within a disk is about one

order of magnitude. Comparable levels of plasma beta are

witnessed in circular and eccentric disks with the same

Figure 3. Midplane slices of density, in units of the fiducial density ρ* from
Equation (20). The top row shows two initial disks with different eccentricities.
The panels under each top-row panel are the outcomes of imposing various
magnetic topologies on an initial disk and evolving it for 15 orbits. The
boundaries of the simulation domain are traced by thin ellipses in order to
better distinguish low-density regions from regions not covered by the
simulations. Short lines from the origin indicate the approximate orientations of
the inner parts of the eccentric disks. A 30 s animation of the time evolution of
all six disks is available; the animation covers the entire simulation duration,
from the initial state to the moment depicted above.

(An animation of this figure is available.)

Figure 4. Mass-weighted vertical average of the instantaneous eccentricity, as
defined in Equation (29). The top-left panel shows the eccentric initial disk.
The other panels are the outcomes of imposing various magnetic topologies on
the initial disk and evolving it for 15 orbits. The boundaries of the simulation
domain are traced by thin ellipses. In keeping with Figure 7, regions with
density below 0.1 ρ* are left blank, where ρ* is the fiducial density from
Equation (20).
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magnetic topology, suggesting that the MRI is unimpeded by

eccentricity, in contrast to the findings of Dewberry et al.

(2020b). The stronger magnetic fields produced by the vertical-

field topology accord with simulations of circular disks in the

literature (e.g., Hawley et al. 1995, 1996; Sano et al. 2004; Bai

& Stone 2013).
We can also examine the plasma beta along a one-

dimensional profile running from the inside of the disk to the
outside at different times during the simulations. Considering
that the disk evolves in eccentricity and orientation, it makes
little sense to look at profiles over semilatus rectum; instead, we
construct profiles over cylindrical radius. The mass-weighted
average plasma beta at cylindrical radius R is given by

ò òb r rá ñ ºj r
m
m

dS
p

b b
dS

2
, 31t z; ( )

where the hypersurface element is

l f d
l
f

º -
+

-dS g dt d d dz
e

Rlog
1 cos

. 321 2( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

Temporal and spatial averaging smooths out turbulent fluctua-

tions. Temporal averaging is performed over two intervals,

each lasting one-third of the simulation duration; comparison

between the intervals gives us an idea how close the MRI is to

saturation. Spatial averaging is limited to the cylindrical shell

of radius R picked out by the delta function. The results are

plotted in the top half of Figure 6, and the legend lists the

intervals of temporal averaging. The relatively small difference

between the two intervals at radii 100 R 200 suggests that

steady state is achieved to some degree at those radii, despite

the relatively short simulation duration. We also reach similar

conclusions as we did with Figure 5: The plasma beta is quite

uniform over the disk, it is not significantly modified by the

introduction of eccentricity, but it is one to two orders of

Figure 5. Mass-weighted vertical averages of the plasma beta in the top half and
Maxwell-only alpha parameter in the bottom half, as defined in Equations (30) and
(37), respectively. The panels are the outcomes of imposing various magnetic
topologies on an initial disk and evolving it for 15 orbits. Regions with negligible
levels of magnetic field have exceedingly large values of plasma beta. The
boundaries of the simulation domain are traced by thin ellipses.

Figure 6. Mass-weighted radial profiles of the plasma beta in the top half and
Maxwell-only alpha parameter in the bottom half, as defined in Equations (31)
and (38), respectively. The profiles are time-averaged over the two intervals in
the legend. The two rows in the bottom half have different vertical scales. The
magnetic field strength varies weakly with eccentricity, but is much stronger in
vertical-field disks than in dipolar-field disks.
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magnitude lower in vertical-field disks than in dipolar-field

disks.
The alpha parameter is conventionally taken to be the sum of

Reynolds and Maxwell stresses divided by the gas pressure.
However, it is difficult to determine the mean flow and
departures from it in a disk whose inner and outer parts evolve
differently in eccentricity and orientation. We therefore
consider only the Maxwell, not Reynolds, contribution to the
alpha parameter, working under the assumption that the
Maxwell stress dominates the total, as is uniformly the case
for circular disks (e.g., Hawley et al. 1995). The Maxwell stress
is defined in terms of the projected magnetic field bμ, similar to
the stress–energy tensor. To make the stress more physically
interpretable, we measure bμ in a local orthonormal basis,
whose basis vectors are those of cylindrical coordinates but
with lengths normalized to unity:

f
f

= +
+

l fb R b b
e

e

sin

1 cos
, 33R ( )

ˆ
⎜ ⎟
⎛
⎝

⎞
⎠

=j fb Rb , 34( )ˆ

=b b . 35z z ( )ˆ

We then define the Maxwell stress to be − jb bRˆ ˆ
. A factor of R

is attached to bλ in Equation (33) because our eccentric

coordinates use llog , not λ. Orthonormality guarantees that

+ + = +ll
l l

lf
l f

ff
f f j jg b b g b b g b b b b b b2 . 36R R ( )

ˆ ˆ ˆ ˆ

The bottom half of Figure 5 depicts the mass-weighted
vertical average of the Maxwell-only alpha parameter at the
end of the simulations:

ò òaá ñ º - jdz b b dz p. 37z p
R

m ; ( )ˆ ˆ

The alpha parameter is positive almost everywhere in circular

disks, as required for outward angular momentum transport. By

contrast, the alpha parameter is uniformly positive in the lower

half of the eccentric disks where material falls to the pericenter,

but it is consistently negative in certain sectors of the upper half

where material flies out to the apocenter. In the eccentric

vertical-field disk, positive sectors occupy significantly more

area than negative sectors. The magnitude of the alpha

parameter, whether positive or negative, varies from ∼0.2–5;

however, if we construct area-weighted histograms of the

magnitude separately for positive and negative sectors, we find

that the positive histogram is shifted by a factor of ∼2 toward

larger values relative to its negative counterpart. In the

eccentric dipolar-field disk, the total area of positive sectors

is only slightly larger than that of negative sectors. In addition,

the magnitude of the alpha parameter has a narrower

distribution, ∼0.3–3; the positive histogram is again displaced

by a factor of ∼2 compared to the negative one. We shall

speculate about why the alpha parameter switches sign in

Section 4.1.
The net effect of angular momentum transport is revealed by

integrating the Maxwell stress over an orbit. When doing so by
eye on the basis of Figure 5, it is important to take into account
the relative areas and alpha-parameter ranges of the positive
and negative sectors. More quantitatively, we construct in
Figure 6 mass-weighted radial profiles of the alpha parameter at

different times using the prescription

ò òaá ñ º -j
jdS b b dS p, 38t z p

R
m ; ( )ˆ ˆ

with dSbeing the same hypersurface element from

Equation (32). The alpha parameter is comparable in circular

and eccentric disks with the same magnetic topology. In

vertical-field disks, the alpha parameter is ∼0.5–1; in dipolar-

field disks, it is still positive, but only ∼0.05–0.15. Stronger

stress for vertical than dipolar magnetic field agrees with

previous simulations of circular disks (e.g., Hawley et al.

1995, 1996; Sano et al. 2004; Bai & Stone 2013).

3.3. Specific Angular Momentum and Binding Energy

To investigate the effect of internal stresses, we examine
how the specific angular momentum squared L2 and binding
energy Eb= 1− E evolve. The mass-weighted vertical
averages of the two quantities at the end of the simulations are

ò òr rá ñ ºr jL dz Ru dz , 39z
2

;
2( ) ( )ˆ

ò òr rá ñ º +rE dz u dz1 . 40z tb ; ( ) ( )

Here =j fu Ruˆ is the velocity measured in the local

orthonormal cylindrical basis, defined analogously to jb ˆ in

Equation (34), and the covariant velocity component ut=−E is

a conserved quantity of our time-independent metric.
Figure 7 displays the specific angular momentum squared

and binding energy, normalized to their initial values at the
inner edge. Our focus is on the eccentric disks. Because of
pressure gradients, even the inner edge of the unmagnetized
disk experiences a reduction in specific angular momentum
squared by ∼25% from its initial value. The decrease is greater
in magnetized disks where the Maxwell stress also contributes:
The dipolar-field disk reports a drop by ∼33%, and the vertical-
field disk, which has a smaller plasma beta and larger alpha
parameter than the dipolar-field disk, records a suppression by
∼50%. It should be noted that the range of specific angular
momentum is constrained by the geometry of the simulation
domain: Once material loses enough angular momentum that
its pericenter recedes inside the inner boundary, it leaves the
simulation domain.
The specific binding energy at the inner edge changes by

rather less. It is almost identical to its initial value in the
unmagnetized disk, ∼30% higher in the vertical-field disk, and
∼10% lower in the dipolar-field disk. The smaller fractional
changes suggest that the torques transporting angular momen-
tum outward, regardless of whether they are hydrodynamic or
magnetic in nature, occur preferentially near the apocenter
where the attendant work done is smaller.

3.4. Quality Factors

We close this section by examining how well our
magnetized disks resolve the MRI. The figures of merit for
circular disks are the quality factors, defined as the ratio of the
characteristic wavelength of the MRI to cell sizes in different
directions (Hawley et al. 2011). We generalize their mass-
weighted vertical averages to eccentric disks as

ò òr
r

rá ñ º
D

rQ dz
b T

z
dz , 41z z

z

; 1 2

∣ ∣
( )

ˆ
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ò òr
r f

rá ñ º
D

f r

j
Q dz

b T

R
dz , 42z; 1 2

∣ ∣
( )

ˆ

where T is the orbital period from Equation (12), and Δz and

Δf are the cell sizes in the z- and f-directions, respectively. In

keeping with work on circular disks, we base our quality

factors on the physical, cylindrical components mb ˆ of the

projected magnetic field b
μ, given by Equations (34) and (35).

Figure 8 showcases the quality factors at the end of the
simulations. For ease of comparison with the criteria that
indicate adequate resolution for circular disks, to wit, 〈Qz〉 15
and 〈Qf〉 20 (Hawley et al. 2013), the color scales of the
figure are centered on these values. In terms of 〈Qz〉, the
vertical-field disks are extremely well resolved everywhere, but
the same is true for the dipolar-field disks only for a limited

range of semilatera recta. In terms of 〈Qf〉, all disks are
marginally underresolved. Interestingly, 〈Qf〉 is noticeably
higher in the pericentric half of the disks; this is because the
strong orbital shear near the pericenter amplifies jb ˆ , not b ẑ .

4. Discussion

4.1. Stresses in Circular and Eccentric Disks

Our earlier investigation into the linear stage of the MRI
found that the MRI grows in both circular and eccentric disks;
the growth rate in eccentric disks is about half that in circular
disks (Chan et al. 2018). The present simulations suggest that
the nonlinear stage of the MRI is also not so different in
circular and eccentric disks, in that it saturates to comparable
levels of plasma beta and alpha parameter in the two kinds of
disks. Thus, the MRI functions in much the same capacity in

Figure 7. Mass-weighted vertical averages of the specific angular momentum squared in the left half and specific binding energy in the right half, as defined in
Equations (39) and (40), respectively. The top row shows two initial disks with different eccentricities. The panels under each top-row panel are the outcomes of
imposing various magnetic topologies on an initial disk and evolving it for 15 orbits. In all panels, the inner edge is arbitrarily defined to be where the density is 0.1 ρ*,
where ρ* is the fiducial density from Equation (20), and regions less dense than that are left blank. Furthermore, the specific angular momentum squared or binding
energy in each panel is normalized by its value at the inner edge of the corresponding initial disk, which is why the inner edge appears yellow in the top row. The
boundaries of the simulation domain are traced by thin ellipses. The fractional changes in the specific angular momentum squared and binding energy together
determine the change in eccentricity seen in Figure 4.
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eccentric disks as in circular disks, mediating outward angular
momentum transport.

That being said, the MRI in eccentric disks exhibits two
intriguing features not witnessed in circular disks. The first one
is the sign flip in the Maxwell-only alpha parameter. In circular
disks, the alpha parameter is positive almost everywhere; by
contrast, in eccentric disks, the alpha parameter can be
consistently negative in some sectors of the disk even though
the azimuthal integral of the Maxwell stress remains positive.

To understand the basic principle underlying this surprising
behavior, we break temporarily from the general-relativistic
treatment used in the rest of the article and work in the
Newtonian limit. We denote the Newtonian velocity and
magnetic field by ṽ and B̃, respectively, and their components
measured against the local orthonormal cylindrical basis by vĩ
and Bi˜ . We conflate Bi˜ with bî elsewhere in the text, so the
Maxwell stress is simply - jB BR˜ ˜ . Our starting point is the

induction equation:

¶
¶

=  ´ ´
B

v B
t

. 43
˜

( ˜ ˜ ) ( )

To track the time evolution of the magnetic field at a point

comoving with the flow, we consider

=
¶
¶

+  =  - 
B B

v B B v B v
d

dt t
. 44

˜ ˜
( ˜ · ) ˜ ( ˜ · ) ˜ ˜ ( · ˜) ( )

We set  =v 0· ˜ because the MRI is largely incompressible,

and we take ∂/∂z= 0 because we ignore vertical gravity in our

simulations. Consequently,

j
- = -

¶

¶
-
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⎠

In circular disks, the time- and azimuth-averaged ¤¶ ¶jv R˜ is

negative, the averaged j¶ ¶R v1 R( )( ˜ ) is zero, and the
averaged vR̃ is also negative, albeit with a very small
magnitude. Because - >jB B 0R

˜ ˜ nearly everywhere, all terms
on the right-hand side of Equation (45) are therefore, on
average, zero or positive, so - jB BR˜ ˜ grows over time until
limited by dissipation.
In eccentric disks, the time-averaged ¶ ¶jv R˜ is also negative

everywhere. However, the averaged j¶ ¶R v1 R( )( ˜ ) is no
longer zero: It changes from negative to positive shortly before
the pericenter and back after the pericenter. The averaged vR̃
also changes sign, from negative to positive at the pericenter
and back at the apocenter. The second and third terms therefore
have azimuth-dependent signs. When orbits are significantly
eccentric, the averaged j¶ ¶R v1 R( )( ˜ ) is comparable in

magnitude to the averaged ¤¶ ¶jv R˜ , and the averaged vR̃ is

comparable to the averaged jṽ , so all three terms can be
important.
Consider material starting from the apocenter with positive

Maxwell stress, that is, - >jB B 0R
˜ ˜ . Initially all three terms

work together to make - jB BR˜ ˜ more positive. As the material
swings toward the pericenter and its velocity becomes more
azimuthal than radial, j¶ ¶R v1 R( )( ˜ ) turns positive while vR∣ ˜ ∣

drops, flipping the sign of the second term and reducing the
magnitude of the third term. If jB BR∣ ˜ ∣ ∣ ˜ ∣ , which is marginally
satisfied at these azimuths, the second term can dominate,
pulling- jB BR˜ ˜ toward negative values. For some distance past
the pericenter, the second term continues to be negative; at the
same time, >v 0R̃ and >dv dt 0R̃ , so the third term now tends

to reduce the magnitude of - jB BR˜ ˜ at an increasing rate
regardless of its sign. The second and third terms combined
make - <jB B 0R

˜ ˜ at some point near the pericenter. Further
beyond the pericenter, the second term changes back to positive
and the third term decreases in magnitude. By the time the
material returns to the apocenter, the first and second terms
have restored- jB BR˜ ˜ to positive, transporting angular momen-
tum outward.
Both magnetic topologies share these qualitative features,

but they differ in the quantitative details. The dipolar-field
topology yields a very close alignment between the local
directions of velocity and magnetic field, whereas the vertical-
field topology produces merely a correlation between the two
directions that has much more scatter. In addition, as we can
see in Figure 5, the sectors of the dipolar-field disk with
- <fB B 0R

˜ ˜ coincide with the region where >v 0R̃ , whereas

Figure 8. Mass-weighted vertical averages of the vertical quality factor in the
top half and azimuthal quality factor in the bottom half, as defined in
Equations (41) and (42), respectively. The panels are the outcomes of imposing
various magnetic topologies on an initial disk and evolving it for 15 orbits. The
boundaries of the simulation domain are traced by thin ellipses.
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the vertical-field disk sectors with - <fB B 0R
˜ ˜ take up only a

small part of the >v 0R̃ region, and their boundary is much
more irregular. We speculate that both of these contrasts are
due to the larger amplitude of turbulence the MRI drives in the
presence of a vertical magnetic field, an effect well documented
in circular disks (e.g., Hawley et al. 1995, 1996; Sano et al.
2004; Bai & Stone 2013). Because the third term of
Equation (45) is sensitive to correlations between fluctuations
in velocity and magnetic field, large-amplitude turbulence may
change the stress evolution. This supposition is corroborated by
the fact that the vertical root-mean-square of v z, a good proxy
for the magnitude of turbulent fluctuations in unstratified
simulations, in the vertical-field disk is ∼4 times that in the
dipolar-field disk.

The other curiosity is that, whereas MHD stresses in circular
disks transport angular momentum and energy at such rates as
to keep shrinking orbits circular, the two rates can be
independent of each other in eccentric disks. Circular disks

have »E Lb
2 1

2
at all radii, according to Equation (B10); by

contrast, Eb and L2 in eccentric disks vary by amounts that
depend on location, and the mismatch dictates how the local
eccentricity evolves. The fractional changes of Eb and L2

estimated in Section 3.3 imply that the unmagnetized disk has
the least eccentric inner edge and the dipolar-field disk has the
most eccentric, which agrees with Figure 4. One possible
explanation of the ranking relies on the fact that stresses near
the pericenter tend to lower the eccentricity of the inner edge
and stresses near the apocenter tend to raise it (Svirski et al.
2017). Stresses in the unmagnetized disk, being purely
hydrodynamical, should be concentrated near the pericenter
where pressure gradients are the steepest; conversely, the
Maxwell stress in the vertical- and dipolar-field disks are
relatively evenly distributed between the pericenter and the
apocenter, as made apparent by the bottom half of Figure 5.
Our speculation in the previous paragraph may bear on the
ordering of the two magnetized disks: Stronger turbulence in
the vertical-field disk disrupts coherent angular momentum
transport, so the inner edge is less eccentric than in the dipolar-
field disk.

4.2. Dynamics and Energy Dissipation at the Inner Edge

As demonstrated in Section 3.3, MHD stresses in eccentric
disks are typically more effective at moving angular momen-
tum than energy. Because angular momentum constrains the
size of the inner edge, and because the binding energy at the
inner edge determines the amount of energy available for
radiation, the different transport rates of these two quantities
could have observable effects on eccentric disks.

To explore these effects, let us first consider how disks
behave around a star. For a circular disk, the inner edge is
located at the larger of the stellar or Alfvén radius. The total
energy a given amount of material dissipates in the disk is its
binding energy on a circular orbit at that radius. Additional
dissipation happens in the boundary layer at the inner edge as
the material comes into corotation with the star or its
magnetosphere. If the star-regulated rotation speed in this
boundary layer is small compared to the orbital speed, the
additional dissipation is equal to the dissipation that took place
in the disk itself.

For an eccentric disk, the stellar or Alfvén radius likewise
defines the inner edge, but in this case, it is through a match to
the pericenter of the inner edge. Because the corresponding

semimajor axis is larger than the stellar or Alfvén radius,
material dissipates less energy in the disk proper. The total
energy dissipated, however, is exactly the same as in the
circular case because the eccentric orbit of the material
ultimately transforms into a circular one at the stellar or
Alfvén radius. What makes eccentric disks different is that
dissipation in the boundary layer accounts for a larger fraction
of the total. Energy can be dissipated there in a variety of ways,
depending on how the inner edge interacts with the star or its
magnetosphere. In one extreme, the material immediately
comes into corotation. The fast-moving material dissipates
large amounts of energy in a small region, potentially
producing hard radiation. In the other extreme, the material
loses a tiny part of its kinetic energy each time it grazes past the
star or its magnetosphere, and the material migrates inward
gradually on orbits of decreasing semimajor axes and
eccentricities. Dissipation in this case could be more spatially
distributed, happening both in the grinding encounters and
along the circularizing orbits; if so, the eccentric disk may
resemble a circular one in appearance.
We now turn to disks around black holes. As shown in

Figure 2, material on eccentric orbits can reach the event
horizon even if it has more angular momentum than that of the
ISCO orbit provided that it has enough energy to overcome the
centrifugal barrier inside the ISCO radius; equivalently, it can
do so if its eccentricity is high enough. Moreover, when the
angular momentum is at least that of the ISCO orbit, the peak
of the centrifugal barrier is always above the energy of the
ISCO orbit. Consequently, the amount of energy available for
such material to radiate is always smaller than the binding
energy at the ISCO—the conventional estimate for radiative
efficiency in circular disks (Novikov & Thorne 1973; Page &
Thorne 1974). The energy available to eccentric material is
even smaller when we take into account extra energy extraction
by the Maxwell stress in circular disks (Thorne 1974;
Krolik 1999; Gammie 1999; Krolik & Hawley 2002; Noble
et al. 2009; Avara et al. 2016; Schnittman et al. 2016; Kinch
et al. 2021). Unlike eccentric disks around stars, the energy
retained by the plunging material cannot be recovered for
radiation in some boundary layer.
The diminution of the radiative efficiency of eccentric disks

around black holes could be particularly relevant to TDEs, in
which the energy radiated is considerably below that expected
from the accretion of a reasonable fraction of a stellar mass of
material onto a black hole through a conventional circular disk
(Piran et al. 2015). Svirski et al. (2017) suggested that this
“inverse energy problem” could be resolved by internal stresses
that transport angular momentum preferentially and cause the
most bound debris to plunge; our results provide quantitative
support to that qualitative argument.

4.3. Effects of Vertical Gravity

Our simulations of the nonlinear development of the MRI in
eccentric disks ignored vertical gravity. We did so for two
reasons. The first is to isolate the effects of orbital-plane
motions, the chief driver of the MRI, when they are azimuthally
modulated in eccentric disks. The second is to produce a
baseline for comparison with future simulations that do include
vertical gravity.
Because vertical gravity is a form of tidal gravity, it is much

weaker than radial gravity as long as the disk is thin. For this
reason, the modifications it introduces are likely minor and
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unable to quench the MRI. Here we examine what these
modifications may be.

One effect of vertical gravity that is discernible in circular
disks carries over to eccentric disks: It regulates the buoyant
eviction of accumulated magnetic flux that may determine the
saturation level of the MRI (e.g., Tout & Pringle 1992; Davis
et al. 2010; Beckwith et al. 2011; Hirose & Turner 2011;
Begelman et al. 2015; Hogg & Reynolds 2018).

The variation of vertical gravity around an eccentric orbit
causes the disk to expand in height as it travels from the
pericenter to the apocenter, and to collapse on the way back.
This “breathing” can have large amplitudes even for mildly
eccentric disks (Ogilvie & Barker 2014; Lynch & Ogilvie 2021).
For the thickest and most eccentric disks, breathing can even
become nonadiabatic: Extreme compression can create shocks
that eject material vertically (Ryu et al. 2021).

Vertical gravity can also influence the eccentric MRI more
subtly, without shocks. Vertical motion opens up more avenues
of energy exchange between the orbit and the magnetic field.
Compression and expansion can alter the Alfvén speed, hence
the critical wavelength for stability against the MRI, and it can
also modulate the wavelengths of advected perturbations. All
these variations are periodic, raising the possibility of
instability through parametric resonance (Papaloizou 2005b).

It bears repeating that the changes due to vertical gravity
should be small for thin, moderately eccentric disks, so we
expect our results here to remain generally valid.

5. Conclusions

In circular disks, the MRI stirs up correlated MHD
turbulence, turbulent stresses transport angular momentum
outward, and the disk accretes. Our simulations demonstrate
that much the same process operates in eccentric disks, and
with comparable efficiency. Like circular disks, the quantitative
level of Maxwell stress achieved in eccentric disks depends on
the magnetic topology, but eccentric and circular disks with the
same magnetic topology reach comparable levels of plasma
beta and alpha parameter.

Although the mass-weighted, disk-averaged Maxwell stress
in an eccentric disk produces an outward angular momentum
flux similar in magnitude to that in a circular disk with the same
magnetic topology, the Maxwell stress in an eccentric disk can
cause inward angular momentum transport in certain disk
sectors. This behavior is seen only in eccentric disks likely
because the radial velocity and its azimuthal gradient are both
nonzero and have signs that vary over azimuth.

By removing proportionately more angular momentum than
energy from the inner parts of the disk, MHD stresses can
promote accretion of highly eccentric material. This material
has higher energy than a circular orbit with the same angular
momentum, so the radiative efficiency of a disk around a black
hole can be suppressed relative to a circular disk. These
findings corroborate earlier suggestions about how the power
output from eccentric disks may explain why the total observed
radiated energy in many TDEs is one to two orders of
magnitude lower than expected from circular accretion of a
stellar mass of material (Svirski et al. 2017).
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Appendix A
Metric Components and Christoffel Symbols

In cylindrical coordinates (t, R, j, z), the nonzero metric
components are

= -g , A1tt ( )P

=g 1, A2RR ( )

=jjg R , A32 ( )

=g 1, A4zz ( )
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the metric determinant is
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and the nonzero Christoffel symbols of the second kind are
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Performing a coordinate transformation to eccentric coordi-
nates l ft z, log , ,( ), we find that the nonzero metric
components are

= -g , A17tt ( )P

=llg R , A182 ( )

= =lf flg g R , A192 ( )Q

= +ffg R 1 , A202 2( ) ( )Q
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= = -lf flg g R , A242 ( )Q

=ffg R1 , A252 ( )

=g 1, A26zz ( )

the metric determinant is

= -g R , A274 ( )P
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and the nonzero Christoffel symbols of the second kind are

G = G = ¶ Fl l R , A28t
t

t
t

R( ) ( )P

G = G = ¶ Ff f R , A29t
t

t
t

R( ) ( )Q P

G = G = ¶ F , A30tz
t

zt
t

z ( )P

G = ¶ Fl R, A31tt R ( )

G =ll
l 1, A32( )

lG = -ff
l R , A33( )

G = G =lf
f

fl
f 1, A34( )

G =ff
f 2 , A35( )Q

G = ¶ F, A36tt
z

z ( )

where

f fº +e esin 1 cos . A37( ) ( )Q

Appendix B
Precession-free Gravitational Potential

Schwarzschild spacetime in general relativity produces
prograde apsidal precession, while an extended gravitating
mass in Newtonian mechanics causes retrograde apsidal
precession. It is natural to ask if one can be made to cancel
the other exactly.

We work in cylindrical coordinates (t, R, j, z). The metric in
the weak-gravity limit is given in Appendix A, but here we
assume Φ is not yet decided. The velocity of a particle is
uμ; without loss of generality we restrict the particle to the
midplane, so z= 0 and u z

= 0. Because t and j are ignorable in
the metric, we immediately have two integrals of motion

=E u , B1t ( )P

= jL R u . B22 ( )

Velocity normalization requires

= - + -u E L R1 . B3R 2 2 2 2( ) ( )P

Dividing the equation by =jR u L4 2 2( ) , changing variable to

ξ≡ 1/R, and differentiating with respect to ξ yields

x
j

x
x

+ = -
d

d

E

L

d

d2
. B4

2

2

2

2 2
( )

P

P

Closed eccentric orbits exist for all values of E and L if and

only if

x
- =

d

d
C

1

2
, B5

2 1 ( )
P

P

which has the solution

x= +C C1 2 , B61 2( ) ( )P

where C1 and C2 are constants. We take C1=C2= 1 so that

P= 1+ 2Φ≈ 1− 2ξ for ξ= 1, as befitting point-mass gravity.

The potential Φ=−1/(R+ 2) describes softened gravity, so

there are no coordinate or physical singularities.
Our next step is to determine the velocity uμ at any point

along an eccentric orbit. The solution to Equation (B4) is

l j= + +R e C1 cos , B73
¯ [ ¯ ( )] ( )

where ē and C3 are constants and

l º L E . B82 2¯ ( )

The embellishments on ē and l̄ serve to distinguish them from

e and λ defining our eccentric coordinates. Equation (B7)

describes an ellipse of eccentricity ē, semilatus rectum l̄, and
semimajor axis l= -a e1 2¯ ¯ ( ¯ ). We pick C3= 0 so that the

pericenter of the ellipse is at j= 0, and we fix ē by solving

Equation (B3) at the pericenter, where uR
= 0:

= + -e E L E1 1 . B92 2 2 4¯ ( ) ( )

This expression reduces to its Newtonian equivalent

» -e E L1 2 , B102
b

2 ( )

when |Eb|= |1−E|= 1. Once we know ē and l̄ for an eccentric

orbit, we can solve for E and L using Equations (B8) and (B9); the

results are Equations (13) and (14). These can then be substituted

into Equations (B1)–(B3) to yield the velocity uμ in cylindrical

coordinates. The velocity uμ in eccentric coordinates, given in

Equations (15) and (16), follows a coordinate transformation.
The final missing piece is the analog of Kepler’s equation for

our potential. We introduce the eccentric anomaly  , defined by

= -R a e1 cos . B11¯ ( ¯ ) ( )

Using a result from geometry,

j- = +e e1 tan 1 tan , B121 2 1

2

1 2 1

2
( ¯) ( ¯) ( )

we can express t along the orbit as a function of j:

ò
j

= = + -
j

t d
d

d

u

u
a a e1 2 sin . B13

t
3 2¯ [( ¯) ¯ ] ( )


 

The integration constant is set to zero for simplicity. As 
increases by 2π, t also increases by an amount equal to the

orbital period:

p= +T a a2 1 2 . B143 2¯ ( ¯) ( )

Multiplying both sides of Equation (B13) by 2π/T furnishes us

with the analog of Kepler’s equation:

= -
+
e

a

sin

1 2
, B15

¯

¯
( ) 



where p= t T2 is the mean anomaly.
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