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Abstract

Extreme tidal disruption events (eTDEs), which occur when a star passes very close to a supermassive black hole,
may provide a way to observe a long-sought general relativistic effect: orbits that wind several times around a
black hole and then leave. Through general relativistic hydrodynamics simulations, we show that such eTDEs are
easily distinguished from most tidal disruptions, in which stars come close, but not so close, to the black hole.
Following the stellar orbit, the debris is initially distributed in a crescent, it then turns into a set of tight spirals
circling the black hole, which merge into a shell expanding radially outwards. Some mass later falls back toward
the black hole, while the remainder is ejected. Internal shocks within the infalling debris power the observed
emission. The resulting lightcurve rises rapidly to roughly the Eddington luminosity, maintains this level for
between a few weeks and a year (depending on both the stellar mass and the black hole mass), and then drops.
Most of its power is in thermal X-rays at a temperature ∼(1–2)× 106 K (∼100–200 eV). The debris evolution and
observational features of eTDEs are qualitatively different from ordinary TDEs, making eTDEs a new type of
TDE. Although eTDEs are relatively rare for lower-mass black holes, most tidal disruptions around higher-mass
black holes are extreme. Their detection offers a view of an exotic relativistic phenomenon previously inaccessible.

Unified Astronomy Thesaurus concepts: Tidal disruption (1696); Supermassive black holes (1663); Hydro-
dynamics (1963); General relativity (641); Gravitation (661)

1. Introduction

Almost every galaxy harbors a supermassive black hole
(SMBH) at its center (Kormendy & Ho 2013). Well before
observational data established this fact, theoretical work (e.g., Lacy
et al. 1982; Carter & Luminet 1983; Rees 1988) demonstrated that
if a star approaches an SMBH closer than a “tidal radius” that is

( )( ( )~Y   M M R M M, BH BH
1 3 (here MBH and Må are the mass

of the black hole (BH) and the star, respectively, Rå is the stellar
radius, and Ψ(Må, MBH) is a correction factor of order unity; Ryu
et al. 2020a), it is disrupted by the SMBH’s tidal gravity. For
MBH= 106Me, the critical distance for total disruption of main-
sequence stars is ;25rg (rg≡GMBH/c

2
), nearly independent of

Må (Ryu et al. 2020a). In ordinary TDEs, those in which the star’s
pericenter rp is not far inside the critical radius, the star follows an
essentially parabolic orbit as it approaches the SMBH. After the
disruption, the debris forms an elongated structure. Half the matter
is unbound and rushes away, while the other half is placed on
highly eccentric ( ( )- ~ -

e M M1 2 BH
1 3) orbits (see the lower

panels of Figure 1). Near their apocenters, the orbits of different
streams of bound matter intersect, dissipating energy with a rest-
mass efficiency ∼10−4–10−3. The result of these interactions is an
irregular, crudely elliptical accretion flow (e.g., Piran et al. 2015;
Shiokawa et al. 2015; Svirski et al. 2017; Steinberg & Stone 2022).

In the last;15 yr, roughly 100 such events have been observed
(Gezari 2021), generally producing an optical/UV luminosity
similar to what the stream intersections would yield (Piran et al.
2015). The luminosity of such a flare grows on the timescale of
the orbital period of the most-bound debris, ~t 1 month0

( ) ( ) ( ) ( )   X- -
  M M M M R R M M10 ,BH

6 1 2 1 3 2
BH

3 2 month

(Rees 1988), where Ξ is an order-unity correction (Ryu et al.
2020a). After the peak is reached, the rate at which bound mass
returns to the neighborhood of the SMBH declines ∝t−5/3

(Rees 1988; Phinney 1989), and many (but by no means all)
observed TDE lightcurves follow this trend (Komossa &
Bade 1999; Halpern et al. 2004; Hung et al. 2017; van Velzen
et al. 2021).
Remarkably, even though an SMBH causes the tidal

disruption, in ordinary TDEs much of the subsequent evolution
of the debris can be explored using Newtonian dynamics.
However, general relativity changes the character of orbits
dramatically when their pericenter distance is <6rg. When a
star falls from far away with a total energy very close to its rest-
mass energy and passes this close to an SMBH, rather than
tracing a parabola as it would under Newtonian gravity,
relativistic apsidal precession is so strong that the pericenter
region wraps all the way around the SMBH (Figure 2). In
extreme cases, the orbit can go several times around the SMBH
while keeping a distance just slightly greater than the
pericenter. Only after completing these circuits can the orbital
path once again extend out to large distance. When a star
follows such an orbit, the time during which it suffers
extremely strong tidal gravity can be is greatly extended, an
effect that, as we will show here, dramatically alters the fate of
its postdisruption debris.
Several earlier works investigated the initial stage of stream

evolution in such extreme disruptions. Laguna et al. (1993)
were the first to simulate eTDEs, considering a case with
rp= 4.7rg. Kobayashi et al. (2004) reconsidered the same
event focusing on the gravitational wave signature during
the strongest compression of debris at the first pericenter
passage. Later, eTDEs have been simulated to examine the
impact of relativity on the energy and angular momentum
distributions of the debris immediately after it leaves the star
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(e.g., Cheng & Bogdanović 2014) and to compare the initial
stage of stream evolution in nonspinning and spinning SMBHs
(e.g., Tejeda et al. 2017; Gafton & Rosswog 2019). All these
previous studies found that immediately after disruption the
debris forms a crescent around the SMBH; those running a little
bit longer found that the crescent becomes a spiral. However,
all stopped when the debris was still close to the SMBH.

Other studies considered stars on orbits with pericenters
7rg� rp� 20rg passing by a BH with mass ∼105Me (e.g.,
Evans et al. 2015; Darbha et al. 2019). In these cases, a small
part of the star came close to the BH, but the majority was too
far away to reveal the effects we discuss here. In fact, the debris
in these simulations does not form a crescent; instead it
resembles the common TDE debris structure.

Here, we report on the first simulations that follow the
evolution of the debris from an eTDE long enough to estimate
the observational signature. Our simulations, which are fully
relativistic, continue far beyond the longest endpoint of
previous work. We find that at later times the debris undergoes
multiple shape transitions, which ultimately lead to formation
of a hot accretion flow near the SMBH (see Figure 2). This
inner hot flow is the main source powering the event’s flare,
whose observational signature, both lightcurve and spectrum,
are very different from those observed in ordinary TDEs.

Our paper is organized as follows: we begin with a detailed
description of the numerical methods in Section 2. Our results
are presented in Section 3, and their implications are discussed
in Section 4. We summarize and conclude in Section 5.

2. Numerical Methods

We performed a series of fully relativistic hydrodynamics
simulations of tidal disruptions of a realistic star on very deeply
plunging zero binding-energy orbits around a 106Me SMBH,
using the grid-based code HARM3D (Noble et al. 2009). As

described in Ryu et al. (2020b), the initial state of all the stars
was taken from a stellar model for a 1Me middle-aged main-
sequence star evolved using the stellar evolution code MESA

(Paxton et al. 2011).
The first stage of our calculations uses the Ryu et al. (2020b)

method, in which the star’s dynamics are computed in a
Cartesian domain that extends 5R

å
in each dimension and

follows the star’s center of mass along its geodesic until the star
is completely disrupted. In this approach, the star’s self-gravity
is calculated with the Newtonian Poisson equation in an
orthonormal tetrad frame comoving with the star. Because the
metric in this frame departs from Minkowski by very small
amounts within the simulation domain, the potential can be
added as a perturbation to gtt. The modified tetrad-frame metric
is then transformed back to the simulation coordinates. This
procedure ensures that the self-gravity calculations are
consistent with relativity. Although the star becomes strongly
distorted during this stage, negligible mass is lost from the box.
The second stage of the calculation begins when the tidal

force completely dominates the self-gravity (at r 5–6rg). At
this point, the tidal force is more than 1 order of magnitude
greater than the self-gravity even a single cell away from the
debris’ center of mass. We therefore switch off the self-gravity,
interpolate data from the box’s Cartesian grid into the spherical
grid, and continue to follow the evolution of the debris on a
spherical grid that covers the entire volume near the SMBH (for
details, see Appendix A). Self-gravity remains unimportant
even in the long-term evolution of the debris because multiple
shocks due to stream–stream collisions keep almost the entire
debris hot.
Until the tidal force becomes dominant over the star’s self-

gravity, we evolve the gas using the equation of state
p= (Γ− 1)u with Γ= 5/3 where p is the pressure and u
internal energy. When stellar self-gravity becomes negligible,
we switch to an equation of state with an “effective adiabatic
index” (Shiokawa et al. 2015) expressed as

( )
( )G =

+

+

u u

u u

4 5

3 1
. 1

gas rad

gas rad

This form includes radiation pressure under the assumption of

thermodynamic equilibrium. Here, ugas/urad is the ratio of the

gas internal energy density to the radiation energy density.

3. Results

Comparing the evolution of debris with four different values
of rp= 4.03, 5, 6 and 7rg (L; 4.0− 4.5rgc), we find that
extreme apsidal precession for rp< 6rg (precession angle >π/
2) causes debris evolution qualitatively different from ordinary
disruption events that take place at larger rp. The essential
element is an orbit that stays very close to the SMBH for at
least one complete circuit. Although in the following we
describe in detail the results for rp; 4.03rg, debris behavior for
orbits with rp 6rg is qualitatively similar. In sharp contrast,
orbits with rp; 7rg produce debris flows akin to ordin-
ary TDEs.

3.1. Overview of Dynamics

Figure 2 depicts the geodesic trajectory of the center of mass
as well as the debris just before reaching the pericenter. As
shown in this figure, the star makes two complete trips around
the SMBH, maintaining a separation 4.1rg for nearly the

Figure 2. The solid white curve depicts the geodesic of an orbit with
rp ; 4.03rg around an SMBH (red disk at the center); the arrow indicates the
direction of the orbit. The color scale shows the density distribution of stellar
debris 241 s before a star whose center of mass follows this geodesic passes
through pericenter.

2
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entire time. While it does so, it continually loses mass; because
of the strong apsidal precession, it spends enough time very
close to the SMBH before reaching pericenter that it is wholly
disrupted before the original stellar trajectory would reach the
pericenter. Roughly 3/4 of the bound mass, close to half the
star’s initial mass, is captured immediately, some of it even
before the nominal pericenter passage. Meanwhile, the
remainder of the debris expands away from the star. As shown
in the second upper panel of Figure 1, the result is a spiral of
gas around the SMBH comprising both bound and unbound

gas, but predominantly the latter. As the spiral expands further,
its arms merge into a hot circular ring shown in the third upper
panel; strong shocks accompany this merger. This ring then
continues to expand. Ultimately (fourth upper panel), the
bound matter in the ring falls back as it reaches its orbital
apocenter at ;200rg, shocking upon itself as it converges
toward the SMBH. This last stage occurs (in our fiducial
simulation) at ∼104 s after the star is disrupted. Meanwhile, the
unbound matter continues to move outward.

This behavior stands in a dramatic contrast to that of
ordinary TDEs, in which the debris forms a long, narrow
stream (see the first and second lower panels of Figure 1), and
essentially all the bound mass is placed on highly elliptical
orbits with apocenters several thousand rg in size (Figure 1,

third and fourth lower panels4), and dissipative events within
this bound debris power the photon flare.

Importantly, the gas heating that powers the flare in eTDEs
has a very different character from the stream–stream
interactions seen in ordinary TDEs (e.g., Shiokawa et al.
2015). In eTDEs, shocks first form when the spirals merge into
a shell, and then stronger shocks take place in the radially

infalling matter surrounding the SMBH. However, as illu-
strated in the fourth lower panel of Figure 1, in ordinary TDEs,
shocks occur at specific intersection points between bound
material moving on elliptical orbits, whether at a “nozzle
shock” stretching along a line whose inner end is at ;rp
(Shiokawa et al. 2015; Steinberg & Stone 2022) or at
“apocenter shocks” taking place at a distance ∼100× that of
the infall shocks in eTDEs. The shocks seen in eTDEs are also
different from the discrete and isolated stream intersections
envisioned as taking place when rp 15rg (Lu & Bonnerot
2020; Batra et al. 2021).

3.2. Energetics

In an ordinary TDE, the distribution dM/dE of debris mass
with orbital energy E≡−(ut+ 1) is roughly a square wave

with edges at ΔE=±ΞΔò, where D =
* *

GM M RBH
1 3 2 3 ,

(Rees 1988) and Ξ≈ 1–2 (Ryu et al. 2020a). The top panel of
Figure 3 displays both how different the immediately
postdisruption dM/dE is from that of an ordinary TDE and
how much it is redistributed well after the gas leaves the star. It
also reveals how much of the bound debris is rapidly lost to
accretion.
In an ordinary TDE, dM/dE is symmetric around E= 0,

nearly flat from E=−ΔE to E=+ΔE, and drops sharply for
|E|>ΔE (Lodato et al. 2009; Guillochon & Ramirez-
Ruiz 2013; Goicovic et al. 2019; Ryu et al. 2020b). In an
eTDE, by t∼ 230 s after pericenter passage, although the
energy distribution (in our fiducial simulation) is roughly
symmetric, it is centered at ;+ (1–2)Δò, and its half-width
ΔE∼ 10Δò. The debris energy distribution found by Gafton &
Rosswog (2019) at a similar time was qualitatively similar, but

quantitatively different: narrower by a factor of a few and
symmetric around E; 0. This contrast may result from our use

Figure 1. Illustration of the evolution and shape of debris in an extremely relativistic event with rp ∼ 4.02rg (upper panels) and an ordinary TDE with rp ∼ 110rg
(lower panels). Four phases are shown for each. For the eTDE: crescent (note that the star has already been fully disrupted at this stage and a significant fraction of its
mass has been captured); spiral; ring; and ring with inflow. For evolution of an ordinary TDE: beginning of the disruption; highly stretched star; and two stages of the
stream’s return to the vicinity of the SMBH. In all cases, the color scale represents the logarithmic density in the orbital plane. Insets show the matter near the SMBH.

4
Data in the lower panels are taken from a simulation in which a 3Me

middle-aged main-sequence star on a parabolic orbit with rp ; 110rg is
disrupted by a 105Me SMBH (T. Ryu et al. in preparation).

3

The Astrophysical Journal Letters, 946:L33 (9pp), 2023 April 1 Ryu, Krolik, & Piran



of a main-sequence internal density profile rather than their
γ= 5/3 polytrope.

However, this distribution soon changes drastically, a change
not seen in previous work because their calculations stopped
before it begins. Within ∼10 minutes, most of the bound
material plunges into the SMBH. By ∼3 hr, the radial pressure
gradient within the spirals broadens the distribution of the
remaining matter by a further factor ∼2–3, while also making it
highly asymmetric and decidedly not flat-topped (see Figure 3,
upper panel).

After the redistribution of energy, some of the bound
material that had moved outward falls back toward the SMBH.
The converging streams shock against each other, transforming
orbital energy into heat. There it forms a compact (100 rg),
hot (a few 106 K), roughly spherical structure which is
illustrated in the inset in the fourth panel of Figure 1. The most
tightly-bound matter enters this structure first; the sharp low-
energy cutoff in dM/dE at t= 40,000 s signals that the gas
whose orbital energy had been ;−(20–30)Δò has moved to

much more negative orbital energy due to dissipation in shocks.
Unlike a classic Keplerian accretion disk that is supported by
angular momentum, this accretion flow is geometrically thick
and primarily radiation pressure supported: the mean specific
angular momentum is only about half what would be required
for a circular orbit in this range of radii.
Another consequence of the broad and asymmetric debris

energy distribution is that the rate at which bound matter falls
back toward the SMBH has a different time dependence from
that of ordinary TDEs. Because dM/dE rises with increasing E
steadily, but unevenly, across the entire range of bound
energies, the postpeak decay of the mass fallback rate declines
more slowly (see bottom panel of Figure 3) than in the case of
ordinary TDEs—crudely ∝t−5/4 rather than ∝t−5/3. However,
as we discuss in Section 4.1, as for ordinary TDEs (but for
different reasons), the mass fallback rate does not translate
directly into a lightcurve.
The unbound ejecta are contained in an axisymmetric ring of

mass ;0.4Me that moves continuously outward once it forms.
It simultaneously expands vertically as radiation forces
compete with gravity. The distribution of outgoing speed at
infinity can be estimated from the dM/dE distribution
(Figure 3). For our fiducial case, the bulk of the unbound
ejecta has specific orbital energy ;(3–4)Δò, corresponding to a
speed ;9000 km s−1 at infinity. The total kinetic energy
available for deposition in the surrounding gas is ;1051 erg.
However, a bit less than 1% of the ejecta mass has a speed
21,000 km s−1 at infinity, a factor of 3–4 faster than the same
mass ejecta mass fraction for ordinary TDEs (Ryu et al. 2020a).
This fast expanding debris that carries ∼1050 erg can produce a
strong flare, as discussed in Section 4.3 below.

4. Observational Implications

4.1. Luminosity and Spectrum

The inner hot accretion flow is the main source of the
radiation. We estimate the bolometric luminosity by integrating
the local emissivity of cells within the photosphere whose
cooling time is shorter than the evolution time. So that the
surface brightness may be used to define a characteristic
spectral temperature, we use the thermalization photosphere,
defined as the location at t t 1T ff , where τT is the Thomson
optical depth and τff the absorption optical depth, both of which
are integrated over polar angle. See Appendix B for details.
The luminosity rises very rapidly—on a timescale of a few

hours for the parameters of our simulations, rather than the
∼1 month of ordinary TDEs,—and persists at roughly the
Eddington luminosity (∼2–3× 1044 erg s−1 forMBH= 106Me)

until at least ∼1/2 day, the time at the end of our simulations.
The speed of the lightcurve’s rise can be seen in Appendix B,
which illustrates how rapidly the volume of the cooling region
within the observed photosphere grows at the beginning of an
event.5 At later times, the luminosity should persist at this level
until the mass fallback rate becomes too small to support such a
luminosity. At that point, it should decline with the shallow
power law of the fallback rate. Our cooling time-based
lightcurve estimate should capture the majority of the
luminosity (the portion coming from the innermost region)
reasonably well. The luminosity from the outer regions, whose
cooling time is the longest, is more uncertain. Our method

Figure 3. (Upper panel) The orbital energy distribution of the debris from a
1Me star disrupted after following an orbit with rp ; 4.03rg around an SMBH
with MBH = 106Me. Energy is in units of Δò. The black dashed line shows the
energy distribution in the gas remaining immediately after half the stellar mass
plunges directly into the SMBH; the four colored curves show its evolution at

later times. Here, E = −(1 + ut) and D = GM R rBH t
2 where

( )=  r M M Rt BH
1 3 . The time (in seconds) is measured since the initial

pericenter passage. (Bottom panel) The thick black curve shows the mass
fallback rate predicted from the energy distribution as of t = 40,000 s. The thin
gray lines indicate the Eddington accretion rate assuming radiation efficiencies
of η = 0.01 or 0.1.

5
Note that for this purpose, we define the photosphere by integrating the

effective opacity along radial paths of differing polar angle.
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tends to overestimate it, but, because it is already a minority
contributor, this means the actual luminosity may be less than
estimated, but not by much. Future time-dependent transfer
studies will clarify this situation.

To characterize the spectrum, we calculate the effective
temperature for each surface element of the photosphere using
the local area and the local luminosity. We find that the
effective temperature distribution is well described by a single
peak at ∼106 K. Thus, the power is primarily in soft X-rays.
For events driven by SMBHs of different masses, the
luminosity peak should scale like the Eddington luminosity,

∝MBH, while the temperature is µ -MBH
1 4 and the duration is

µ -
*

M MBH
1. This last scaling follows from the fact that the

emitted energy is ∝Må (see next subsection), but nearly
independent of MBH, while the Eddington luminosity is ∝MBH.

Although the peak luminosity is comparable to Eddington,
there is relatively little matter far from the flow; consequently,
reprocessing should be minor. To demonstrate this, in
Appendix Bwe show the shape of the thermalization photo-
sphere as seen by distant observers at several times; we define
the photosphere by integrating the opacity inward from the
outer boundary along radial paths. It is roughly axisymmetric
everywhere; it is nearly flat close to the BH, e.g., at a distance
;100rg from the equatorial plane for all radii 100rg at
t= 40,000 s. As a result, the character of the continuum
spectrum is determined fairly close to the site of initial
radiation, the primary direction of photon diffusion is
perpendicular to the orbital plane, and very little light emerges
in directions close to the orbital plane.

The peak luminosity, spectrum, and lightcurve of eTDEs are
therefore very different from those of ordinary TDEs, which are
mostly observed in the optical with a peak luminosity lower by
1 order of magnitude, a rise time of order a month, and a
postpeak luminosity falling as a steep power law in time.
Although eTDEs’ expected spectral shape in the X-ray band
resembles that of ordinary TDEs (i.e., thermal with T∼ 106 K),
the X-ray lightcurves of ordinary TDEs are qualitatively similar
to those seen in the optical band (Auchettl et al. 2017; van
Velzen et al. 2019; Jonker et al. 2020), rising comparatively
gradually and then declining, rather than the extremely rapid
rise to a plateau expected in eTDEs. Even more tellingly, the
observed X-ray luminosities of ordinary TDEs
(∼1042–1043 erg s−1: Auchettl et al. 2017) are much lower
than the Eddington-limited luminosities we predict for eTDEs.6

4.2. Total Radiated Energy

Within the duration of our simulation, the luminosity estimated
using the local cooling time sums to a total energy
∼2× 1048(M

å
/Me) erg. To estimate the radiated energy at later

times, we first note that the total energy available is ∼ηdissΔMc2,
where ηdiss is the energy per unit mass acquired by the radiating
debris from dissipative processes and ΔM is the amount of
remaining bound mass in the hot compact settling flow. From
shocks in this flow taking place at ∼50rg, ηdiss; 0.02. The total
bound mass isΔM/Me; 0.15Me, suggesting the total amount of
energy radiated during the event might rise to ∼5× 1051 erg or
more. Radiated at the Eddington luminosity, the luminosity we

have estimated at the end of our simulation, such a flare would last
( )( ) ~ -
M M M M1 1 10BH

6 1 yr.

4.3. Radio Flare

The interaction of the expanding ejecta with the surrounding
gas should produce a radio flare (Krolik et al. 2016; Yalinewich
et al. 2019; Matsumoto & Piran 2021). As discussed in the TDE
context by Krolik et al. (2016), electron acceleration at the shock
driven by the ejecta leads to synchrotron emission whose peak

flux depends on the ejecta velocity as µn
-

F f f v
A V
2 7 5 7 k58 19

14 ,
where we assume the energy distribution of the emitting electrons
is µ -Ee

3, as is typical for Newtonian shocks. We further assume
that the external density declines with distance ∝r− k . The factors
fA and fV describe the area and volume of the emitting region as
compared with those of a spherical outflow (Barniol Duran et al.
2013). Because eTDEs have both unbound material with larger
velocity and larger covering factors fA and fV, their characteristic
radio signal should be larger by 1 order of magnitude compared to
that of an ordinary TDE with the same external density. This
stronger radio flare could help identifying eTDEs in addition to
their strong earlier X-ray signature.
Initially the peak radio flux varies with time ∝t19(2− k)/14

(Krolik et al. 2016). For a gradually declining density profile,
like in the Milky Way (where k≈ 1), the radio luminosity
increases with time. For steeper density profiles, like those
observed in most TDE hosts, which generally have k≈ 2
(Matsumoto & Piran 2021), the flux is roughly constant. In
either case the peak frequency decreases with time until
eventually it drops significantly below 1 GHz and the source
becomes undetectable. Overall, as a significant fraction of the
unbound material moves at 20,000 km s−1

(see Section 3.2),
which is much faster than a regular TDE, the radio signal
should be brighter by about a factor of ∼10 and longer by a
factor of ∼3 than the radio emission of ordinary
(unjetted) TDEs.

4.4. Rate

For a fixed stellar distribution function that varies little
across the loss cone, the rate of events having a pericenter less
than rp (measured in units of rg) is ∝L2(rp), which is

( )-r r2 2p p
2 in Schwarzschild spacetime. To illustrate how

the relative rates of different varieties of TDEs depend on MBH,
we show in the top panel of Figure 4 L2 for partial TDEs,
common full TDEs, circularized TDEs, eTDEs and direct
capture events7 and in the bottom panel the cross sections of
the different varieties of observable full disruption events
relative to their total. When the BH mass is relatively small
(106Me), the rate of eTDEs is only ;6% of all observable
events (i.e., excluding direct captures). This fraction is,
nonetheless, only about a factor of 3 smaller than that of
circularized events for this BH mass. However, as MBH

increases, these extreme events become a much larger fraction
of all those displaying observable signals: for MBH 107Me,
they are 40% of all observable TDEs, becoming the majority
for MBH (2–4)× 107Me (depending on the stellar mass). If
we apply these relative rates to the observationally calibrated
TDE rate estimated by Stone & Metzger (2016), the rate of

6
There are three cases presented in Auchettl et al. (2017) with higher X-ray

luminosities, but their nature is uncertain because each has only a single
observation.

7
Following Krolik et al. (2020), we define circularized TDEs to be events

with strong enough relativistic apsidal precession for debris to circularize
rapidly.
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eTDEs as a function of MBH peaks at MBH; 2× 107Me,
where the rate is ≈6× 10−5 yr−1 per galaxy.

5. Summary and Conclusion

In this paper, we examined the long-term evolution of debris
produced in extremely relativistic tidal disruption events of a
realistic main-sequence 1Me star by a 106Me SMBH using
fully relativistic hydrodynamics simulations with realistic
initial conditions. We considered several different pericenter
distances ranging from rp; 4.03–7rg. Strikingly, extremely
strong apsidal precession, which occurs only for rp 6rg, leads
to a debris evolution qualitatively different from that for
ordinary disruption events. The debris undergoes four different
phases: it is elongated to form a crescent that stretches to form a
spiral wrapping around the SMBH. The spiral expands
outward, and then its several windings merge into a ring that
continues to advance outwards. The bound material of the ring
eventually falls back toward the SMBH and forms a roughly
spherical accretion flow near the SMBH. The resulting hot
(∼(1–2)× 106 K) accretion flow is the main source of

radiation. Our detailed analysis indicates that the luminosity
rises on a timescale (∼3 hr for MBH∼ 106Me) much shorter
than the flare duration ( ( )~ -M M1 10BH

6 1 yr). For most of its
duration, the flare should maintain approximately the Edding-
ton luminosity of the SMBH, but then decline as a shallow
power law when the continued infall cannot sustain that
luminosity.
These events should be detectable by eROSITA as X-ray

events that are accompanied by weak or no optical signal. The
interaction of the high velocity (20,000 km s−1

) escaping
unbound material with the surrounding matter should lead to a
powerful radio flare (Krolik et al. 2016; Yalinewich et al. 2019;
Matsumoto & Piran 2021) that follows these events by a few
weeks.
Thus, even though they are genuine tidal disruptions, their

lightcurves and spectra are very different from classical
expectations; consequently, matching the classical expectations
should not be an absolute prerequisite for classification as a
TDE. Although these events are probably rare for lower-mass
SMBHs (i.e., MBH 106Me), they should be the dominant
tidal disruption events yielding flares for MBH 3× 107Me.
Moreover, any such event in an SMBH of this mass would be
exceptionally luminous because LE; 4.5× 1045(MBH/3×
107Me) erg s−1.

This research project was conducted using computational
resources (and/or scientific computating services) at the Max-
Planck Computing & Data Facility and at the Maryland
Advanced Research Computing Center (MARCC). The
simulations were performed on the national supercomputer
Hawk at the High Performance Computing Center Stuttgart
(HLRS) under the grant No. TDEglobalsimulation/44232. J.H.
K. was partially supported by NSF grant AST-2009260. T.P.
was partially supported by ERC advanced grants TReX and
MultiJets.
Software: matplotlib (Hunter 2007); MESA (Paxton et al.

2011); HARM3D (Noble et al. 2009).

Appendix A
Numerical Grid

In the simulations with a spherical grid, we adopt modified
spherical coordinates in Schwarzschild spacetime: the modified
spherical coordinate variables ( ¢r , q¢, f¢) are related to ordinary
spherical coordinates (r, θ, f) by

( )= ¢r e , A1r

( [ ( )] [ ( )]) ( )q q q q p= ¢ - + ¢ + +b a b atanh tanh 0.5 , A20

( )f f= ¢. A3

Here, ( ) [ ( ( )) ( ( ))]q p q= - - - - + - +b a b a0.5 tanh 0.5 tanh 0.5c0 . The

angle θc is the opening angle of the polar cutout, and a and b

are a set of tuning parameters that determine the vertical

structure, which are given within 0.32� a� 0.35 and

9.8� b� 10. These modified coordinates allow us to place

the grid cells where they are most needed in the simulation

domain. The radial grid cells have constant Δr/r and the

vertical cells are more concentrated toward the midplane. To

minimize the computational cost, we flexibly adjust the domain

extent in θ and r. During the grid transition, we adjust the

number of cells to ensure that there are more than 15–20 cells

per scale height in r, θ, and f.

Figure 4. (Top) Regions in parameter space for five kinds of disruption events:
partial TDE (orange), common full TDE (blue), circularized TDE (red), and
direct capture (gray, rp < 4g). We define partial TDEs as events where the star
loses more than 10% of its mass at the first pericenter passage. This plot is an
extended version of Figure 3 in Krolik et al. (2020). (Bottom) The cross section
as a function of MBH for each class of observable full disruption events, i.e.,
common (dashed black), circularized (dotted black), extreme (solid red), in
units of the total disruption cross section for a 1 Me main-sequence star.
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The boundary conditions are outflow for the r and θ
boundaries and periodic for the f boundary. The Courant
number is 0.3.

Appendix B
Luminosity Estimate

Because our simulations do not include time-dependent
radiation transfer, we estimate the luminosity based on the local
cooling time. Here, we define the local cooling time as
tcool= hρτ(1+ ugas/urad)/c where hρ is the density scale height
along the θ direction, τ is the optical depth integrated along θ
coordinate curves from the polar angle cutout to the individual
cells and ugas (urad) is the local gas thermal (radiation) energy
contained within the cell. The opacity is found in terms of ρ
and T using an OPAL opacity table for solar metallicity
(Iglesias & Rogers 1996).Figure 5shows the shape of the
photosphere in the r−z plane at f= 0at four different times.

At early evolutionary stages (t a few hours, where t is the
time since pericenter passage), the gas is packed into dense
spirals that then merge into an expanding ring. Because the
cooling time is very long (tcool a few months), the evolution
is nearly adiabatic and we expect little energy is radiated.

At later stages, bound debris falls back toward the BH,
shocks against itself, and forms an accretion flow, while the
unbound ring expands outward. At the end of the simulation for
our fiducial model (t; 0.6 days), tcool very near the SMBH is
only ∼1 hr, but increases gradually and monotonically out-
ward, reaching a few months in the expanding ring. From
t∼ 104 s onward, the distance at which tcool= t remains
constant at ;70rg.

The fact that the dividing line between regions where
tcool< t and where tcool> t stays roughly fixed in place allows
us to split the entire system into three regions depending on
tcool/t: (1) the inner region of the hot accretion flow (r 70rg),
where tcool t; (2) the rest of the hot accretion flow, where
tcool t; and (3) the expanding ring, which has the longest

cooling time (∼0.1–1 yr). This distinction is important because
radiation transfer can reach a steady state only when the photon
diffusion time (here essentially tcool) is comparable to or shorter
than the evolution time. Put another way, the probability
distribution function for the emergence of photons from an
optically thick region cuts off much more sharply than linearly
for times longer than the photon diffusion time; hence
estimating the luminosity by the ratio of thermal energy to
cooling time is valid only for tcool t; when the cooling time is
longer, using this ratio leads to a severe overestimate of the
luminosity.
We therefore begin our estimate of the luminosity with

region (1), where our methods are most secure.
We estimate its total luminosity by integrating the local

emissivity of the individual cells with respect to polar angle
within the thermalization photosphere at t t 1T ff . Here, τT
(τff) is the Thomson (absorption) optical depth integrated
inwards from the θ boundary along the θ direction. The
luminosity from cells in each column above the midplane along
the polar axis is calculated as

( ) ( )òf q q=
p

q
-l r aT t r d, sin , B1up

2

4
cool
1

ph,up

where a is the radiation constant and θph,up is the polar angle of

the cell closest to the photosphere for given r and f above the

midplane. l below the midplane (ldown) is calculated similarly

by integrating from π/2 to θph,down. To find the total

luminosity, we integrate l for each (r, f) on the grid with

tcool< t gives the total luminosity L,

( ) ( )
( )

ò ò f= +
p

=

<
L l l rdrd

1

2
, B2

r R

r t t

0

2

up down
in

cool

where Rin is the radius of the inner radial cutout and

θph,up(θph,down) is the polar angle of the photosphere above

(below) the midplane. The effective temperature at each

Figure 5. The distribution of the density (top) and the ratio of the cooling time to the evolution time (bottom) in the r−z plane at f = 0 at t ; 10,000, 20,000, 30,000,
40,000 s. The location of the thermalization photosphere as seen by a distant observer is plotted using a white line. We define the thermalization optical depth as

t tt ff , for τT (τff) the Thomson (absorption) optical depths integrated radially inwards from the outer boundary. The prominent break in structure roughly halfway out
in the debris corresponds to the density peak of the expanding ring.
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individual cell near the photosphere is then calculated as

T= (l/σ)
1/4, where σ is the Stefan–Boltzmann constant. We

find that after the accretion flow forms (t∼ 104 s), the total

luminosity remain roughly constant in time at ∼(2–3)× 1044

erg s−1, which is roughly the Eddington luminosity for our

106Me SMBH, as demonstrated in the left panel of Figure 6.

And the temperature remains at T; (1–2)× 106 K (see the

right panel of Figure 6). That its luminosity is roughly

Eddington should not be surprising; dimensional analysis alone

shows that the Eddington luminosity is the characteristic

cooling rate of any plasma whose opacity is close to Thomson

and is supported by radiation pressure against gravity

(Krolik 2010).
Estimating the luminosity for regions (2) and (3) is more

difficult because its radiation transport is not in a steady state.
The flux reaching the surface may not be well estimated by
Urad/tcool; in addition, a diffusion time longer than the
dynamical time means that the radiation pressure can do work
on the matter, transforming photon energy in gas kinetic
energy, or vice versa. Qualitatively, we might expect that at
later times in region (2), the gas is likely to fall inward by a
factor of several; the compression should increase its total
energy by the same factor. At the same time, however, its
cooling time should increase by the same length scale ratio
because the gas’s scale length, but not its optical depth,
changes. On this basis, we will crudely estimate its contribution
to the luminosity from Urad/tcool at the end of the simulation;
this yields ∼3× 1043 erg s−1. It might therefore be less
luminous than the inner region by a factor of a few.

In region (3), the radiation escape time is a great deal larger
than the simulated evolution time. Because this region moves
outward, the radiation energy it carries is reduced by the work
done in adiabatic expansion. How rapidly this occurs can be
estimated by examining the time scaling of this region as
revealed by the simulation. Both the cooling time and the total
radiation energy contained within the expanding ring follow
simple power laws, tcool∝ t−0.8 and Urad∝ t−0.4. Extrapolating
these power laws out to the time at which tcool= t allows us to
predict the luminosity when the photons from this region
actually can escape. At this time (;5 days), we find that the
radiation energy has diminished to ;3.4× 1048 erg. This

implies a luminosity from the expanding ring of ;7× 1042

erg s−1 during a period of several days around t; 5 days. This
is rather less than the the emission from region (2) at this stage.
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