Leveraging Deep Learning to Improve Performance
of Distributed Optimal Frequency Control under
Communication Failures

Siyu Xie, Masoud H. Nazari*, Senior Member, IEEE, Farinaz Nezampasandarbabi, Student Member, IEEE, Le Yi
Wang, Life Fellow, IEEE

Abstract—This paper proposes a deep learning approach to
overcome the impacts of communication failures on the perfor-
mance and convergence rate of the distributed optimal frequency
control (DOFC) for power systems. Novel features of the proposed
framework are fourfold. First, the nonlinear model of the DOFC
is developed to consider for nonlinearities of power flows. Second,
the long short-term memory (LSTM) algorithm is used for
dynamic model estimation during communication failures. Next,
the LSTM-based DOFC method is introduced to cope with the
impact of communication failures on the performance of the
distributed control strategy. Finally, we prove the convergence
of LSTM-DOFC and show that the algorithm has superior
performance compared to the linearized prediction methods, such
as autoregressive—moving-average models. Simulations on two
real-world power systems are carried out to demonstrate the
effectiveness of the proposed framework.

Index Terms—Communication failures, deep learning, dis-
tributed optimal frequency control, fast convergence, multi-agent
network, prosumer.

NOMENCLATURE
ARMA :  Autoregressive—-moving-average
A Quasi-steady-state system matrix for frequency
control
B;; Equivalent susceptance between prosumer ¢
and j
B: Quasi-steady-state control matrix for frequency
control
DOFC : Distributed optimal frequency control
Aw; : Variations of angular frequency
AP; : Power deviations
Ad; : Variations of the voltage angle
Aéij : A(SZ - A(Sj
S(k): [8u(k)e s Ga(k)]T
dh Prediction error from the LSTM model at iter-
ation h
dh - Gradient error at iteration h
DERs : Distributed energy resources
EVs: Electric vehicles
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F@(.):  Nonlinear function of the g-layers of LSTM

Yi Characteristics of the internal quasi-steady-
state dynamics of prosumer i

I: diag{~1, - -Yn}, i.€., the diagonal matrix of
control parameters

H,(6(k)) : Network matrix

LSTM :  Long short-term memory

MPS : Modern power systems

M; : Cost of frequency deviations for prosumer

N; : Cost of control for prosumer ¢

N; Set of prosumers electrically adjacent to pro-
sumer ¢

ODE : Ordinary differential equation

Prosumer :Hybrid producer-consumer agent

P(k):  [Pi(k),-  Palk)]T

o; Droop constant of prosumer ¢

P diag{oi,---on}, i.e., the diagonal matrix of
equivalent droop constants

T : Sample time for frequency control

91@ : Parameter vector of the g-layers of LSTM

u(k): fun(k), e un(R) T

uj Frequency control variable of prosumer ¢

u; (k) : Control action of prosumer ¢ at time instant k

qu)(k) Estimation of control action of prosumer ¢ at
time instant k using g-layers of LSTM

u; (k) Estimation of control action of prosumer i at
time instant k using the ARMA model

u* (k) Optimal control action

Vi Voltage at prosumer 7

I. INTRODUCTION

Modern power systems are fundamentally networked sys-
tems, involving DERSs, prosumer agents, and advanced sensing
and communication technologies [1]-[3]. Traditionally, power
system operating tasks, such as frequency control, are imple-
mented in a centralized architecture. While the centralized
architecture works well for the traditional power system, it
may not be scalable to massive integration of DERs and
prosumers in MPS due to: 1) single point of cyber-physical
failure, 2) slow response to stochastic variations caused by
emerging renewable energy resources, 3) lack of flexibility
for prosumers integration, 4) low privacy for controlling non-
utility owned assets, such as EVs and residential appliances,
5) dependence of dedicated communication links that are not
appropriate to networks with large numbers of users or system



components [4]. In this regard, the idea of moving towards a
distributed architecture is proposed in [S], [6] and has been
extended recently in [7]-[13].

DOEFC is an important problem in the MPS operation, which
involves bringing frequency deviations from 60 Hz or 50
Hz to zero while optimizing power sharing among agents
[14]-[21]. Although frequency is a global variable, optimizing
power sharing among prosumers to restore frequency requires
coordination [14]. Two general approaches have been offered
for DOFC: 1) Distributed Averaging, and 2) Primal-Dual
Methods. The former scheme is based on distributed averaging
integral control, which equalizes the marginal prices to ensure
correct steady-state frequency and a fair sharing of power
generation [22]-[28]. This method requires communication
between the local controllers. Note that fully decentralized
integral control is not robustness to measurement bias and
clock drifts [29]-[32]. Furthermore, the decentralized integral
controllers cannot generally obtain an efficient allocation of
generation resources.

Primal-dual optimization methods have been emerged as
an alternative to integral-control strategies. These optimization
methods can be implemented online as frequency controllers
and can directly solve the optimal generator dispatch problem.
They are typically based on primal-dual gradient methods [33],
[34] and seek the saddle points of the Lagrangian function of
the underlying optimization problem.

To our best of knowledge, the aforementioned works require
perfect communication among controllers to reach consensus.
This assumption is strong and cannot always hold. For in-
stance, in [31] it has been demonstrated that the distributed
schemes can be sensitive to faults and misbehavior of agents.
In other words, communication failures, caused by discon-
nection of communication links, cyber-attacks, delay and
other channel imperfections, can jeopardize the performance
of distributed algorithms and lead to system-level reliabil-
ity and efficiency problems [35]-[40]. The state-of-the-art
asynchronous distributed optimization methods are only valid
under bounded delay conditions [41]-[44]. If delay exceeds
the pre-determined bound, the asynchronous algorithms cannot
converge to the optimal solution.

In this paper, we address this challenge by leveraging
deep learning based on LSTM to estimate the states of other
prosumers and predict their future actions when delays exceed
the limit or the communication links between agents are lost.
An LSTM unit is composed of a cell, an input gate, an output
gate and a forget gate (see Fig. 1). The cell remembers values
over arbitrary time intervals and the three gates regulate the
flow of information into and out of the cell. By stacking
multiple LSTM units, we can form a multilayer deep learning
model. LSTM uses nonlinear functions to capture the nonlinear
behavior of the system.

The LSTM-based estimation and prediction uses the his-
torical time series data and can be implemented on DOFC
to ensure efficiency and reliability of the frequency control
under communication failures. The LSTM-based DOFC can
bypass convergence in the cyber network during communica-
tion failures and can be directly implemented on the physical
grid. In our earlier work, we have used the linearized model

of power flows and applied the ARMA model to estimate
missing data during communication failures [45]. The ARMA
model uses a polynomial approximation which forms a linear
model for estimation and prediction. If the linearized power
flow equations are valid, the ARMA model can be an effective
approach for modeling and prediction. Note that the linearized
power flow model is valid when power deviations are small.
In this model, AJ; is assumed to be smaller than 10 degree
and Vj is assumed to be close to 1 p.u. However, when power
deviations are large, the linearized model may obtain infeasible
solutions.

In this paper, we extend our previous works and design
the control strategy based on nonlinear power flows. We will
show that due to system nonlinearities the LSTM algorithm
has superior performance for state estimation, prediction, and
algorithm convergence compared with the ARMA model and
other linearized models. The main contributions of this paper
are:

1) Developing the distributed LSTM-based state estimation
and prediction algorithm for prosumer-based MPS by
considering the nonlinearities of power flow equations.

2) Embedding the LSTM model into the DOFC algorithm,
and laying a foundation for learning-based DOFC to
mitigate the impact of communication failures.

3) Quantitatively characterizing the fundamental relation-
ship between the estimation errors and convergence
rates of the LSTM-based DOFC algorithm to develop
a practical criterion for securing reliability of optimal
frequency control under communication uncertainties.

4) Illustrating that the LSTM-based DOFC algorithm under
communication failures asymptotically approaches the
same convergence rate of the normal condition.

The rest of the paper is organized as follows. Section II
develops the nonlinear model of DOFC considering nonlinear
frequency w/real-power relationships. In Section III the dy-
namic system estimation method based on the LSTM model
is proposed to estimate missing data during communication
failures. In Section, IV, the convergence analysis of the
LSTM-based DOFC algorithm is conducted and the main
results including the error bounds, strong convergence, and
asymptotic optimality errors are derived. Simulation studies
on two real-world power systems are carried out in Sections
V. The paper concludes with discussions of the overall findings
and future directions in Section VI.

II. DISTRIBUTED OPTIMAL FREQUENCY REGULATION

FORMULATION
We first formulate the general structure of the DOFC

problem for systems with n prosumers, where each prosumer
represents a balancing area [46]:

minn % Zzzl Aw; (k)T M;Aw; (k) + ui (k) T Niwi (k) (1a)

UL,

A6 (k4 1) = Aw;(k) + TsAd; (k) (1c)
AP(k) = Vi(k)V;(k)
JEN;



The objective function of (la) is to minimize quasi-steady-
state frequency deviations at the prosumer-level while mini-
mizing the system-wide control effort at time interval k. M;
and N, are two positive constants. Constraint (1b) is the three-
way droop equation which relates the variations of angular
frequency at the prosumer level to the frequency control and
power deviations. Constraint (Ic) represents the relationship
between voltage angle and frequency given the sample time
T,. The discrete time model is used as is appropriate for the
quasi-static models and is standard in the frequency control
literature [47]. Constraint (1d) illustrates the nonlinear power
flow equations.

It is well known that power systems are inherently nonlinear.
For example, in frequency regulation problems, the power flow
equations are nonlinear functions:

Z ij (k)eij (k) Adi; (k) (2)
JEN;
where
cij(k) = Vi(k)V;(k)Bij,
015 (k) = sin(d;; (k) + AA(EJU((IQ — Sin(éij(k)). 3)

Furthermore, due to inaccurate or unknown physical model
of transmission lines including transformers, compensation
devices, protection systems, and unmodeled inductance and
capacitance, the true power systems models are nonlinear
and their parameters cannot be accurately and easily derived
from line distance only. In this paper, we employ the LSTM
model to represent the unknown physical system. The model
parameters in LSTM will be learned from either historical
or real-time operational data. Since the LSTM models are
unstructured, they are flexible in representing real systems.

Generally, the LSTM models entail a parameterized non-
linear mapping. In our applications, the control action of
neighboring prosumers is estimated through nonlinear g-th
order dynamic models as follows:

ﬂgq)(k) _ ]—"(‘I)(ui(k‘ -1),...,

Pi(k),...

lk_ )
ui(k — q) @
7P1(k_q+1)501q )7

The parameter vector qu) must be learned from operational
data. For notational simplicity, we suppress the dependence
of the following models and optimization problems on the
unknown parameter vector 0, (@) The learning algorithms for
9(‘1) and the convergence properties are given in Section IV.

Power systems contain a physical network for power flow
interaction and a cyber network for information exchange.
In this paper, we assume that the cyber networks and the
prosumer-based power networks are the same. The set of
nonlinear power flow equations has the following network
analogy [48], [49]:

AP(k) = Hy(5(k))Ad(k), (5)

H,(6(k)) is the network matrix and is defined as follows:

gij(k’)cij(k) if 7 = j
H,, (0(k)) ={ ~ jej%:#j cij(k)gij(k) if i #j (6)
0 Otherwise.

Combining the constraints in (1) with (5) and assuming that
H,(6(k + 1)) =~ H,(6(k)), the following analogy to (1) is

obtained:
APk +1)=H,(6(k+1))Ad(k+1)
=H,(6(k))Ad(k) + Hy(0(k))Ts Aw(k)
_AP( + H,(0(k))TsTu(k)

)
Hy(6(k))TsXAP(K)

=( T Hy(5(K))Z)AP(K)
+ T5Hy(6(k))Tu(k), (7

where [ is the identity matrix, ¥ = diag{o1,---0,} is the
diagonal matrix of equivalent droop constants of prosumers,
and T' = diag{~1, - - yn} is the matrix of control parameters.
Note that the elements of the network matrix are dominated
by the susceptance matrix [B;;]. Thus, we can assume that in
the small-time interval between k and k£ + 1, the topology of
the power grid is fixed and the elements of the network matrix
will not change.

Under the quasi-steady-state frequency deviations, it is
common that the DOFC problem and its solutions are sim-
plified by approximation around rated frequency and nominal
power flows. Following this approach, by removing A for
simplicity, the quasi-steady-state dynamic model of prosumer-
based power network can be approximated by:

P(k+1) = AG(R) P(k) + BO(R)ulk), @)
where

A(6(k)) =1 —TsH,(6(k))Z, (9a)

B(6(k)) = T H,(3(k))T (9b)

This simplification leads to the following DOFC problem
which contains a cost coefficient for its power deviation and
that for its control action:

i = min 1 T wl U
min 7 (u(k)) = min 3 (P(k + 1) QP(k + 1) + u” (k) Ru(k)
=mmlu<<mz%m B(6(k))u(k)TQ

u(k) 2
B(5(k))u(k))
(10)

where () and R are diagonal and positive definite cost matri-
ces. The matrices A(d;) = [Ai;(x)] and B(dx) = [Bi;(0r)]

are related to the network topology, i.e., they are sparse. To



find a distributed solution, we denote that for prosumer ¢ the
following performance index can be defined:

(k) = 3[Rt 1) + @ (3 A6 Py

: z_; Bijw(k))uj(k))z}
-1 {Rﬂ@(k) . Qi( S AL P )

JEN;U{i}

+ Bz‘j@(@)%(’f)f]- (11)

JEN;U{i}

Then, we have J (u(k)) = .1 J;(u(k)), and the optimal

solution
u*(k) = —G~(6(k))BT (8(k)QA(S(K))P(K),  (12)
where G(0(k)) = R+ BT (§(k))QB((k)).

We should emphasize that this simplified optimization rep-
resents a valid approximation due to smoothness of the model
structures (they are continuously differentiable) and robustness
of the problem that can be verified by the properties of
solutions to the Lyapunov and Riccati equations. As a result,
in the convergence analysis for optimization algorithms, this
simplified model is employed. However, the LSTM models
are nonlinear and their learning algorithms have the advantage
of flexibility in representing different nonlinear functions and
accurate estimation of their parameters. Consequently, they
perform better than linear models, such as the ARMA model
in our recent work [45]. All our case studies employ true
nonlinear models of power systems.

A. Distributed Prediction Framework

The optimal solution in (12) is not feasible in distributed
strategies since we have to calculate the inverse of the matrix
G(6(k)). Next, we develop a distributed algorithm to search
for the optimal solution. Note that

Vau, j(u)
Vi, j(u)
VuJ (u) = . € R", (13)
V. T (1)
where
Vo, J(u) = Z Vo, Je(w). (14)

LeN;U{i}

At each time instant k, prosumer ¢ can adopt the following
gradient algorithm to track the optimal solution u}(k) at
iteration h:

W (k) = ul (k) — p" Vo, T (u (k)

wlk) = p" >V Je(uh(k)),
LeN;U{i}

15)

where the step size ,uh =1/h",1/2 <~ < 1, and from (11)
we know that

Vo Te(u (k)
Rzug<k>+czesw<5<k>>( S Ay ()P (k)
JENU{L}
oY ng(é(k:))u?(k)) ite—i,
_ JENU{L}
Qemé(m)( S Ay (6() P, (k)
JENU{L}
+ 3 ng(a(k))ug(k)> if e N
JENU{L}

Thus, this algorithm is strictly distributed, since for prosumer
1 it only requires the gradient information from its neighbors,
ie, Vi, Jo(u"(k)) where £ € N; U {i}. Since P;(k) can
be measured via tie-line flows and is the physical power
imbalance, only u;l (k) needs to be shared with neighbors.

However, during communication failures prosumer ¢ may
not be able to receive u? (k). The remedy to this problem is
the main contribution of this paper. In the next section, we
propose the LSTM method to estimate u” (k) based on the
historical data (u;(k — 1), u;(k —2),...).

III. DYNAMIC MODEL ESTIMATION METHODS

There are different types of dynamic models. We first use
simple examples, and then extend them to general expressions.
ARMA model is more effective when the power system
represents a linear behavior. For nonlinear power flow models,
deep machine learning methods are more effective. LSTM is
the method used in this paper for dynamic model estimation.
Note that all the parameters in LSTM must be learned from
data. This is similar to identification.

A. LSTM Method and LSTM-based DOFC Algorithm

LSTM networks are a special kind of Recurrent Neural
Network (RNN), capable of learning long-term dependen-
cies. Remembering information for long periods of time is
practically their default behavior. Also, LSTM does have
the ability to remove or add information to the cell state,
carefully regulated by structures called gates. A gate in a
neural network acts as a threshold for helping the network
to distinguish when to use normal stacked layers versus an
identity connection. An identity connection uses the output of
lower layers as an addition to the output of consecutive layers.
They are composed of a sigmoid neural net layer and a point-
wise multiplication operation. Sigmoid is a smooth nonlinear
activation function, which maintains the values between 0 and
1. This helps the network to update or forget the data.

In this paper, the gate functions are sigmoid and tanh, tan-
gent hyperbolic activation function. These are typical smooth
nonlinear functions; consequently, the LSTM models are con-
tinuously differentiable.

Each prosumer is trained offline using LSTM. The historical
power deviation data is different for each prosumer; therefore,



individual training is required. For prosumer i, LSTM first
looks at the current data on w;(k — 1) and P;(k):

Fi(k) = o (WEPP(k) + Wi u;(k — 1) +bF).  (16)

Next, it decides which new information needs to be stored in
the cell. This has two parts. First part, a sigmotd layer called
the “input gate” decides which values are updated. Second,
a tanh layer creates a vector of new candidate values, S‘z(k)
that could be added to the state:

Li(k) = (WP Pi(k) + W/Pu;(k— 1) +b), (A7)
Gi(k) = o(WEPP(k) + W wi(k = 1) +5F),  (18)
0;(k) = oc(WEPP(k) + WEYu;(k — 1) +b2). (19

Next, the old cell state S;(k — 1) is updated into the new
cell state S;(k), and the old state is multiplied by F;(k):

Si(k) = Gi(k) © Li(k) + S;(k — 1) @ Fy(k) (20)

The last part is obtaining the output, which is the estimate of
control action of neighboring prosumers.

az(‘l)(k) = ¢;(Si(k)) © O;(k).
b, etc.

The goal is to search for the parameters W™ WUV bl

for (11)-(14) by minimizing the difference between w;(k) and
the output value a§1>(k). The structure of the LSTM block is
shown in the following figure.
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Fig. 1: Schematics of the LSTM algorithm with 4 layers.

The aforementioned equations are for one layer of the
LSTM model. We can use the following notation to simplify
the statement for the estimate of control action of neighboring
prosumers.

A (k) = Flui(k — 1), Pi(k),00), (22)

where F(-) denotes the nonlinear function of the one layer
LSTM model, 9§1) denotes the unknown parameters of the
one layer LSTM model which needs to be estimated based on
existing data.

For recurring function, we can use this function and it is
based on historical data. If needed more layers of LSTM can
be added. The generalized format of g-layers LSTM model
for prosumer ¢ is provided in (4).

For the DOFC algorithm in (15), if prosumer ¢ does not
receive ué’ (k) at iteration h, an online estimate based on LSTM
model will be used. Figure 2 shows the flowchart of the LSTM

implementation on the DOFC algorithm.
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Fig. 2: Flowchart of LSTM integration with the online DOFC
algorithm.

In our previous work [45], the below linear ARMA model
is used to predict the missing data.

q q
Ui(k) =Y Qlui(k—1)+> 0'Pi(k—1+1), (23)
=1 =1

However in practical situations, the true dynamic of @; (k) may
be nonlinear. Thus, the prediction error from the ARMA model
is quite large for nonlinear cases, see Section V for details.
In order to make the prediction more accurate, we use the
aforementioned g-layers LSTM nonlinear function (4).

IV. CONVERGENCE ANALYSIS
A. Convergence of the parameter estimation

For (4), the unknown parameter 91@ in the LSTM model
must be learned from data by using identification algorithms.
There are many gradient-based algorithms and their modifica-
tions, such as Newton’s method, Nesterov accelerated gradient,
Adam, AdaGrad, AdaDelta, RMSProp, etc.

For prosumer ¢, to minimize the following error criteria

e(0, k) =|lus(k) — a2 (k)|
=||u; (k) — Fl(u;(k —1),...,u;(k — q),

Pi(k), ..., Pi(k —q+1),0)% (24



the gradient-based stochastic approximation algorithm is used
to search for the parameter HEQ):

07 (k+1) = 01 (k) = (k) [V g0 (017 (), k) +d ()], (25)

where (k) > 0 is the step size satisfying S(k) — 0
as k — oo and ), B(k) = oo. The term d(k) is the
observation/computation noise for the gradient which is a
random variable such that E[d(k)] = 0,E[d(k)d" (k)] = Za.
Also, ¥4 is symmetric and positive definite.

Assumption 4.1: The error criteria (24) for the LSTM model
is smooth, namely continuously differentiable to any order
needed, and is convex with respect to 191@.

Remark 4.1: By using smooth gate functions such as
sigmoid, LSTM are naturally smooth. Thus, Assumption 4.1
includes convex functions. At present, convergence properties
for optimal parameter estimation algorithms do require convex
conditions for global convergence. As a result, these assump-
tions are not restrictive.

Under Assumption 4.1, the convergence properties of (25)
can be analyzed by using the limit ordinary differential equa-
tion (ODE) method [50]. For prosumer ¢, denote éfq)(k) =

H,E(I)(k:) - OEQ) as the optimization error, then we have
07 (k +1) = 67 (k) = BRIV yor (67 (k), k) + d(k))-

For simplicity, we omit the detailed proof of the following
theorem and refer the reader to [50].
Theorem 4.1: For prosumer 4, assume that Vegq)e((‘)(q),k)

is positive definite and Assumption 4.1 holds, then GEQ)(IC) —
95‘1) with probability one (w.p.1) as k — oo.

While the actual proof of Theorem 4.1 will be skipped, the
main ideas can be summarized as follows. The limit ODE
is é,g(n = —Vggq)e(ﬁgrn,k), and it has a unique equilibrium
point, which is the optimal solution 91@
and using the Lyapunov method, the equilibrium point

is asymptotically stable. Using the ODE method in stochastic
approximation [50], the convergence result can be obtained.

. By Assumption 4.1,
6(‘1)

B. Convergence of the optimization process

In this part, we prove that the gradient-based DOFC algo-
rithm (15) based on the LSTM prediction can improve the
convergence rate of the optimization process. Also, it has
superior performance compared with the linearized prediction
models, such as ARMA used in [45]. For simplicity, we omit
k in the remaining part. Thus, the update algorithm with
the prediction error and gradient error can be written in the
following vector form:

uh Tt =l — "GO u" + BT ()QA(S)P + dt + db], (26)

where df € R™ denotes the prediction error from the LSTM
model at iteration A, and dg € R” denotes the gradient error
at iteration h. Next, we make the following basic assumption
for the theoretical analysis.

Assumption 4.2: The prediction error {d}} and the gradient
error {d%} are two mutually independent sequences of inde-
pendent and identically distributed (i.i.d.) random variables

such that E[d?] = E[d}] = 0,x1, E[d}d)T] = Za,,
E[d}(d})T] = B4,, where ¥y, € R™™ and 4, € R™¥"
are symmetric positive definite.

Thus, we can obtain the strong convergence result in The-
orem 4.2. Note that the prediction and gradient noises are
assumed to be stochastic, and their statistical coefficients are
known, including their means and variances. When the means
are non-zero, the noises will introduce a bias on optimal
solutions, which can be corrected in the following way: If we
know the mean d, a simple subtraction from the observation
data will lead to a modified observation error sequence whose
mean is then zero. Such transformation techniques are widely
used in control systems and related fields. Also, if the mean
is unknown, estimation algorithms may be added, leading
to adaptive optimization algorithms. The topic is beyond the
scope of this paper and will not be further discussed here.

Theorem 4.2: Under Assumption 4.2, the iterates {u”}
generated by (26) converge to the optimal solution u” — u*
w.p.l as h — oo.

For simplicity, we omit the detailed proof and refer the
reader to [50, Chapters 5 and 6]. The main idea is summarized
here. Using the ODE method in stochastic approximation [50],
define t" = Y7 uh w(t) = max{h : th < t}, the
piecewise constant interpolation ug(t) = u” for t € [t?, th*1),
and the shift sequence uy(t) = ug(t + t"). If the step size
u =1/h7 (1/2 < v < 1), the interpolated sequence {uy(+)}
is uniformly bounded and equicontinuous. By [50], we can
extract a subsequence {up,(-)}, which converges to u(-) on
any compact intervals w.p.l such that u(-) is a solution. The
limit ODE is @ = G(6)u + B"(6)QA(S)P, whose unique
equilibrium point is precisely the optimal solution u* =
~G~Y(0)BT(6)QA(6)P which is an asymptotically stable
point. This theoretical result leads to the desired property of
Theorem 4.2.

Next, we demonstrate the convergence rate. Define v
(u" —u*)/+/pP, which takes a continuous-time interpolation
as vo(t) = vl for t € [th ¢"*+1), and define vy (t) =
vo(t 4+ t"). As in [50, Chapter 10], we can show that vy, (-)
converges weakly to v(-) such that v(-) is a solution of
an appropriate stochastic differential equation. The scaling
factor ,/uy together with the asymptotic covariance gives the
desired rate of convergence. The standard central limit theorem
argument yields that ﬁ Zfi "1l + ) converges weakly
to N (0, X4, +X4,). Here, we consider the following averaging

form:
h—1
a" = Z u’ /h.
=0

Thus, the following results can be obtained:

Theorem 4.3: Under Assumption 4.2, V/h(a" — u*) con-
verges weakly to a normal random variable with zero mean
and asymptotic covariance

S* = GH0)(Ba, + Xay)G(6).

Remark 4.2: Here we omit the proof and refer interested
readers to [50, Chapter 11]. Note that " —u* is asymptotically
normal (Gaussian distributed) with zero mean and covariance
3* /h. Also, we use the error covariance matrix >* to evaluate

h:

27



how fast convergence to the optimal solution can be achieved.
It can be observed that by increasing the accuracy of the
estimate a;z the prediction error variance Y4, decreases, thus
the algorithm converges faster to the optimal solution. By [51],
we know that if the packet delivery ratio or the prediction
error is small enough, the gradient algorithm with prediction
will converge to the optimal solution faster than the original
gradient algorithm with packet loss.

The ARMA-based prediction error is large when the true dy-
namic is nonlinear. But the LSTM-based prediction algorithm
can provide good results for nonlinear systems, see Section
V. In this scenario, ¥4, is smaller for LSTM-based prediction
than the ARMA model. This means that the convergence rate
for LSTM is faster than that for ARMA.

V. SIMULATION RESULTS

In this section, we first compare the accuracy of the LSTM-
based prediction with the ARMA model for two real-world
power systems. The first system is the power grid on Flores
Island and the second system is the power grid on Sao Miguel
Island. The PC used for all simulations and case studies
has Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz with
installed RAM of 16GB, and 64-bit operating system. Next,
we illustrate the performance of the LSTM-based DOFC under
different communication contingency scenarios.

A. LSTM-based Prediction Performance

1) Flores Island: Flores is one of the smaller islands of the
Azores Archipelago. It has three small power plants supplying
the island’s electrical demand with average of 2 MW hr. The
generators have three technologies: 1) diesel generators, 2)
hydro plants, and 3) wind plants [52]. The electrical network of
Flores is clustered into three prosumers, where each prosumer
has a generator to regulate frequency. The topological structure
of Flores’ electrical network is shown in Fig. 3 and the
prosumer-based electric power grid on Flores is shown in Fig.
4. The detailed electrical characteristics of Flores can be found
in [52], [53].

In this case study, the historical power flow data of pro-
sumers consisting of 4463 data points are used. This is one-
month power flow data for January 2019, which is publicly
available in [54]. 90% of the historical data is used for training
and 10% is used for testing the LSTM model.

For better data fitting and preventing training divergence,
we standardized the training data to have zero mean and
unit variance. We then standardized the test data using the
same training data parameters. The next step was creating an
LSTM network and training the network for forecasting. The
prediction horizon is one step ahead based on the previous ¢
steps historical data. This is consistent with the g layers of the
LSTM model. In other words, each layer uses the previous
value as input to the function. The last part of the algorithm
is to update the network state with the observed value, which
predicts the next time step.

For this case study, the LSTM model has 4 layers and
the epoch number is 250. Note that the epoch number is the
number of iterations multiplied by the number of batches. The
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Fig. 3: The electrical network on Flores Island.
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Fig. 4: The prosumer-based electrical network on Flores
Island.

number of iterations relates to the convergence of the LSTM
model to find the accurate prediction value. Also, batch size
is the number of training data processed at a particular time.
In this case study, the batch size is fixed and equals to one.

An epoch occurs when the full set of the training data is
passed/forward propagated and then backpropagated through
the neural network. The LSTM layers are mathematical func-
tions that are stacked on top of each other so that the output of
the first layer is the input to the second LSTM layer and so on.
The root mean square error of the LSTM model is 0.44%. This
implies that the prediction error is small. In other words, the
smaller the root mean square error, the better is the power flow
prediction. Also, having less error means the LSTM model is
accurate and can be implemented on the DOFC algorithm. The
results of the LSTM-based prediction is presented in Fig. 5.

Next, we apply the ARMA-based prediction method, which
is based on the linearized model, to the same data set. Due
to nonlinearities of the model the ARMA method has a
significant percentage of error (8.05%) as shown in Fig. 6.
More importantly, by increasing the nonlinearity of the model,
the ARMA method becomes unstable and does not converge.
Note that the ARMA method has an acceptable performance
for linear models and has less computational complexity.
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B. Sao Miguel Island

Sao Miguel Island is the capital of the Azores Archipelago.
The electric power grid on the Sao Miguel Island consists
of fifteen generators. These generators are geothermal, diesel,
and hydro plants. We assume that the island is clustered into
fifteen prosumers, where each prosumer is a balancing area for
frequency control [52]. The network topology of the prosumer-
based electric power grid on Sao Miguel is shown in Figure
7. The detailed electrical characteristics of Sao Miguel is
provided in [52], [53]. Similar to the previous case study,
historical power flow data for January 2019 is used for the
training and testing of the LSTM model. The historical data
includes 4463 data points [54]. 90% of the data is used for
training and 10% is used for testing the LSTM model.

The LSTM method has 4 hidden layers and the epoch
number is 250. All the training process took 51 seconds. The
root mean square error is 1.55% which implies that the LSTM
prediction is very accurate. Note that the training and testing
process can be done offline. All weights and parameters will
be tuned offline and will be updated periodically. Once the
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Fig. 7: The prosumer-based electrical network on Sao Miguel
Island.
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parameters are obtained, the LSTM model can be used for
online estimation and prediction in the DOFC algorithm. The
result of the LSTM-based prediction for the Sao Miguel Island
is presented in Fig. 9.
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Fig. 9: LSTM for SMG Island time prediction

In order to increase the speed of the LSTM algorithm, we
can reduce the number of epochs. For instance, when the
number of epochs decreases to 100, the prediction results are
still acceptable as shown in Fig. 10. In this case, the root mean



square error is 3.02% (two times larger than the case with 250
epochs). However, the computation complexity decreases. Fig
10 shows the training progress for 250 and 100 epochs for the
same set of historical data.

Based on our simulation studies, 4 layer is the minimum
number of layers that we could use for this case study. Reduc-
ing the number of layers to 3 or 2 can significantly impact the
accuracy of the prediction. Depending on the system model
and historical power used, the number of required LSTM
layer could vary. Having more layers improves the prediction
accuracy, but it increases the complexity of the LSTM model.
As DOFC is an online algorithm and needs to be updated every
few seconds, there can be a trade off between the number of
LSTM layers and the speed of algorithm. This can be the topic
of future research endeavor.
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Fig. 10: Training progress for 100 vs 250 epoch

C. LSTM-based DOFC Simulation

1) Flores Island: We simulate the performance of DOFC
after a power imbalance equal to 25 kW in the island. We
study three communication/computation scenarios:

e Normal communication system, using model-based
DOFC based on distributed ADMM optimization. This
is the benchmark scenario.

o Complete communication disconnection at prosumer 3
(disconnection of the link between prosumer 1 and 3),
using model-based DOFC based on ADMM. In this

scenario, the missing data cannot be estimated, instead
the previous received data is used.

o Communication disconnection, but using the LSTM
model to predict the states of prosumers 1 and 3.
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Fig. 11: Flores Island center of inertia

Fig. 11 shows the quasi-steady-state dynamics of the center
of inertia for the three scenarios. As shown in the figure, the
LSTM-based DOFC has a very similar performance compared
with the normal condition. In other words, the LSTM model
allows the disconnected prosumers to accurately predict the
states of their neighbors and continue performing DOFC.
However, the second scenario has a poor performance.

2) Sao Miguel Island: The historical power flow data of
fifteen prosumers are used for the simulation study of the Sao
Miguel Island. We simulate the quasi-steady-state dynamics
of DOFC after a power imbalance of 0.69 MW. Similar to
the previous case study, we investigate three communica-
tion/computation scenarios:

e Normal communication system, using model-based

DOEFC based on distributed ADMM optimization.

o Complete communication disconnection at prosumer 15.
In this scenario model-based DOFC based on ADMM is
used. Also, the previous received data is used when there
is missing data.

o Complete communication disconnection at prosumer 15,
but using the LSTM model to predict the states of
neighboring prosumers.

Fig. 12 shows the quasi-steady-state dynamics of the center
of inertia for the three scenarios. As shown in the figure, the
LSTM-based DOFC has a very similar performance to the
normal condition.

VI. CONCLUSIONS

This paper proposed a deep learning method-based LSTM
to mitigate the impacts of communication failures on the
performance of the DOFC algorithm. We considered the
nonlinearities of the power flow equations in designing the
control strategy. The proposed LSTM-based DOFC is novel
because it can estimate the states of prosumers and predict
their future control actions during communication failures,
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thus it can bypass convergence in the cyber network and
is scalable to large-scale power systems. In other words, as
the method only requires learning the behavior of electrically
adjacent prosumers, when the power grid increases in size and
scale, the learning and training will be still limited to neighbor-
to-neighbor interaction.

We proved the convergence properties of the LSTM-based
DOFC and showed that the algorithm has superior perfor-
mance compared with the ARMA model and other linearized
prediction methods. The theoretical results prove that the
LSTM-based DOFC asymptotically reaches the same conver-
gence rate of the normal condition (no communication con-
tingencies). The simulation studies on two real-world power
grids validate the theoretical findings.

The proposed LSTM-based prediction method can be imple-
mented on distributed economic dispatch and unit commitment
algorithms to increase their resilience against communication
failures and improve their convergence rate for large-scale
systems. This is the topic of future research endeavors.
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