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Abstract

T Deep Boosted Molecular Dynamics ES,

We have developed a new Deep Boosted Molecular Dynamics (DBMD) method. Probabilistic
Bayesian neural network models were implemented to construct boost potentials that exhibit
Gaussian distribution with minimized anharmonicity, thereby allowing for accurate energetic
reweighting and enhanced sampling of molecular simulations. DBMD was demonstrated on model
systems of alanine dipeptide and the fast-folding protein and RNA structures. For alanine
dipeptide, 30ns DBMD simulations captured up to 83-125 times more backbone dihedral
transitions than 1ps conventional molecular dynamics (cMD) simulations and were able to
accurately reproduce the original free energy profiles. Moreover, DBMD sampled multiple folding
and unfolding events within 300ns simulations of the chignolin model protein and identified low-
energy conformational states comparable to previous simulation findings. Finally, DBMD
captured a general folding pathway of three hairpin RNAs with the GCAA, GAAA, and UUCG
tetraloops. Based on Deep Learning neural network, DBMD provides a powerful and generally
applicable approach to boosting biomolecular simulations. DBMD is available with open source

in OpenMM at https://github.com/MiaoLab20/DBMD/.
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Molecular dynamics (MD) is a powerful computational technique for simulating biomolecular
dynamics at an atomistic level!. With recent advances in computing hardware and software
developments, timescales accessible to MD simulations have significantly increased” 3. However,
conventional MD (¢cMD) is often limited to tens to hundreds of microseconds* for simulations of
typical biomolecular systems, and cannot attain the timescales required to observe many biological
processes of interest, which typically occur over milliseconds or longer with high energy barriers
(e.g., 8-12 kcal/mol)’.

Many enhanced sampling techniques have been developed during the last several decades to
overcome the challenges mentioned above®. In particular, Gaussian accelerated molecular
dynamics (GaMD) is an enhanced sampling that technique works by applying a harmonic boost
potential to smooth biomolecular potential energy surface’. Since this boost potential exhibits a
near Gaussian distribution, cumulant expansion to the second order (“Gaussian approximation’)
can be applied to achieve proper energetic reweighting®. GaMD allows for simultaneous
unconstrained enhanced sampling and free energy calculations of large biomolecules 7. GaMD has
been successfully demonstrated on enhanced sampling of ligand binding, protein folding, protein
conformational change, as well as protein-membrane, protein-protein, and protein-nucleic acid
interactions®. GaMD has been implemented in widely used simulation packages including
AMBER’, NAMD?, OpenMM!?, GENESIS!!, and TINKER-HP'2,

Recently, Machine Learning/Deep Learning techniques (ML/DL) have been combined with
MD methods to enhance the sampling of biomolecular simulations. DeepDriveMD is a DL driven
adaptive MD method designed specifically to simulate protein folding'®. In DeepDriveMD, DL
was utilized to reduce the dimensionality of MD simulations to automatically build latent

representations that correspond to biophysically relevant collective variables (CVs) and drive MD



simulations to automatically sample potentially novel conformational states based on the CVs!3,
DeepDriveMD has been demonstrated to speed up the folding simulations of Fs-peptide and the
fast-folding variant of the villin head piece protein by at least 2.3 folds!’. The State Predictive
Information Bottleneck (SPIB) approach was applied as a deep neural network to learn a priori CV
for well-tempered metadynamics from undersampled trajectories!*. The well-tempered
metadynamics performed along the biased SPIB-learned CVs were shown to achieve > 40 times
acceleration in simulating the left- to right-handed chirality transitions in a synthetic helical peptide
and permeation of a small benzoic acid molecule through a synthetic, symmetric phospholipid
bilayer'*. Moreover, denoising diffusion probabilistic models were combined with replica
exchange MD to achieve superior sampling of biomolecular energy landscape at temperatures that
were not simulated without the assumption of particular slow degrees of freedom!>. The
temperature was treated as a fluctuating random variable and not a control parameter to allow for
the direct sampling from the joint probability distribution in configuration and temperature space.
The procedure was shown to discover transition and metastable states that were previously unseen
at the temperature of interest and bypass the need to perform simulations for a wide range of
temperatures'>.

In this work, we have developed a new Deep Boosted Molecular Dynamics (DBMD) method.
In DBMD, probabilistic Bayesian neural network models were used to construct boost potentials
that exhibit Gaussian distribution with minimized anharmonicity for accurate energetic
reweighting and enhanced sampling (Figure 1). DBMD has been demonstrated on model systems
of the alanine dipeptide in explicit and implicit solvent, the chignolin fast-folding protein, and

three hairpin RNAs with the GCAA, GAAA, and UUCG tetraloops.



DBMD simulations were performed on alanine dipeptide on alanine dipeptide (Figure 2a) in
explicit and implicit solvent. Representative distributions of randomly generated boost potentials
and the boost potentials generated by DL for alanine dipeptide in explicit and implicit solvent are
shown in Figure 2b and 2¢, respectively. DL was able to reduce the anharmonicity from 0.153 for
the randomly generated boost potentials to 0.019 and 0.006 in two iterations of the explicit-solvent
simulation (Figure 2b), and from 0.295 to 0.013 and 0.006 in two iterations of the implicit-solvent
simulation (Figure 2c).

The time courses of the effective harmonic force constants (kop and kop) as well as the total and
dihedral boost potential parameters (Vimin, Vmax, and E) during the equilibration of the alanine
dipeptide in explicit and implicit solvent are shown in Figure S1. During the one round of Ins
DBMD equilibration in explicit solvent, the total and dihedral effective harmonic force constants
kop and kop stayed at 0.35 and 1.0, respectively (Figure S1a). The minimum total and dihedral
potential energies Vminp and Vuinp also remained constant at -5,966.96 kcal/mol and 5.92 kcal/mol,
respectively (Figure S1b-S1c¢). However, the maximum total and dihedral potential energy Viaxp
and Vaxp increased from -5,742.44 kcal/mol and 25.18 kcal/mol to -5,690.89 kcal/mol and 33.16
kcal/mol, respectively (Figure S1b-S1c). The reference total and dihedral potential energy for
applying boosts were the same as the maximum potential energies. The effective harmonic force
constants as well as extrema and reference potential energies in the implicit-solvent equilibration
followed similar trends as the explicit-solvent simulation (Figure S1e-S1g).

Three independent 30ns DBMD simulations of alanine dipeptide in both explicit and implicit
solvent captured more dihedral transitions compared to 1ps cMD simulations (Figure S2). In
particular, DBMD sampled ~15, ~14, and ~10 ® dihedral transitions during the 30ns of Siml,

Sim2, and Sim3, respectively, compared to only ~4 dihedral transitions observed in the 1us cMD



of alanine dipeptide in explicit solvent (Figure S2a-S2d). In the implicit-solvent simulations,
Siml1, Sim2, and Sim3 sampled ~17, ~28, and ~28 @ dihedral transitions during the 30ns
simulations, respectively, compared to the ~26 ® dihedral transitions observed in the 1pus cMD
simulation (Figure S2e-S2h). Therefore, DBMD accelerated the explicit-solvent simulations by
~83-125 times and implicit-solvent simulations by ~22-36 times. Furthermore, the boost potentials
applied in DBMD simulations of alanine dipeptide followed Gaussian distributions, with low
anharmonicity of 6.2 x 10 in the explicit-solvent and 1.7 x 10 in implicit-solvent simulations
(Figure S3a-S3b). The averages and standard deviations of the added boost potentials were
recorded to be 11.2 + 2.8 and 11.3 + 2.3 kcal/mol in the explicit and implicit solvent simulations,
respectively.

The PMF free energy profiles of alanine dipeptide were calculated for the ® and ¥ dihedral
angles. The 1D PMF free energy profiles were in excellent agreement between DBMD and cMD
for both ® and ¥ in explicit and implicit solvent (Figure S3¢-S3f). Moreover, the 2D PMF free
energy profiles of the (@, ¥) backbone dihedrals showed high degrees of similarity between
DBMD and ¢cMD simulations (Figure 2d-2g). In particular, DBMD simulations in explicit solvent
sampled five different low-energy conformational states of alanine dipeptide, which centered
around (-150°, 159°) in the B-sheet, (-72°, 162°) in the polyproline II (P1), (48°, 18°) in the left-
handed a helix (cr), and (-148°, 0°) and (-69°, -17°) in the right-handed o helix (ar) conformation
(Figure 2d). In implicit solvent, DBMD also identified five low-energy conformational states of
alanine dipeptide, including 3-sheet centered around (-160°, 150°), Pi; around (-62°, 140°) and (-
90°, 61°), o around (56°, 34°), and ar around (-70°, -27°) (Figure 2e¢). The 1D and 2D free energy
profiles of (O, V) calculated from DBMD simulations were in excellent agreements with previous

GaMD simulations performed by AMBER’, NAMD?, and OpenMM!?. Therefore, simulations of



alanine dipeptide have demonstrated the enhanced sampling capability as well as accuracy of
DBMD for both explicit and implicit solvent systems.

Representative distributions of randomly generated dual boost potentials and the boost
potentials generated by DL for chignolin folding are shown in Figure 3a. With the use of DL, the
anharmonicity reduced from 0.17 for the randomly generated boost potentials to 0.01 and 0.005 in
two iterations (Figure 3a).

The time courses of the effective harmonic force constants (kop and kop) as well as the total and
dihedral boost potential parameters (Vmin, Vimax, and E) during the equilibration of the chignolin
fast-folding protein in explicit solvent are shown in Figure S4. During the two rounds of 5ns
DBMD equilibration, the dihedral effective harmonic force constant kpp remained at 1.0, while the
total effective harmonic force constant kpp decreased from 0.94 in round one to 0.89 in round two
(Figure S4a). The minimum total potential energy Vui.p increased from -21,388.36 kcal/mol in
round one to -20,761.33 kcal/mol in round two (Figure S4b). The maximum total potential energy
Vimaxp increased from -20,742.03 kcal/mol to -20,234.95 kcal/mol and -19,671.23 kcal/mol at the
end of round one and two, respectively (Figure S4b). The minimum dihedral potential energy
Vminp increased from 87.50 kcal/mol in round one to 94.88 kcal/mol in round two (Figure S4c).
The maximum dihedral potential energy Viaxp increased from 120.52 kcal/mol to 139.37 kcal/mol
at the end of round one and 143.53 kcal/mol at the end of round two (Figure S4c¢). While the
reference dihedral potential energy Ep was identical to the maximum dihedral potential energy
Vmaxp, the reference total potential energy Ep was slightly higher than the maximum total potential
energy Vmaxp (Figure S4b).

Three independent 300ns DBMD simulations of chignolin in explicit solvent starting from its

extended conformation were able to capture multiple folding and unfolding events of the protein



(Figure S5). In particular, six, seven, and ten different folding-unfolding events were sampled in
Sim1, Sim2, and Sim3 of chignolin (Figure S5a). Here, chignolin was considered folded if the
Ca-atom RMSD of residues Y2-W9 was < 1.0 A. Furthermore, the boost potentials applied in
DBMD simulations of chignolin followed the Gaussian distribution, with an anharmonicity of 7.1
x 1073 (Figure S5¢) and an average of 23.1 + 5.1 kcal/mol.

The 2D PMF free energy profile of chignolin folding was calculated using the Cy-atom RMSD
relative to the IUAO!® PDB structure and Rg of residues Y2-W9 as RCs. Three different low-
energy conformational states of chignolin were identified from the free energy profile, namely
“Folded”, intermediate “I”, and “Unfolded” (Figure 3b). The “Folded” low-energy
conformational state of chignolin centered around 0.4 A and 4.1 A of RMSD and Rg, respectively.
In this state, terminal residues Y2-D3 formed p-sheets with residues G7-W9 of chignolin, while
the loop formed by the backbone atoms of residues P4-T6 closely matched with the 1TUAO!¢ PDB
structure (Figure 3c¢). In the intermediate “I” low-energy conformational state, the Co-atom RMSD
and Rg were ~4.0 A and ~5.2 A. Transitioning from the “Folded” to intermediate “I” state, the f3-
strands were broken apart due to the opposite movement of residues G1-D3 and T8-G10. However,
the core loop of chignolin was somewhat maintained with the hydrophilic side chains of residues
E5-T6 exposed to the solvent (Figure 3d). Finally, in the “Unfolded” low-energy conformational
state, chignolin was fully extended with all amino acids exposed to the solvent, resulting in a
RMSD of ~5.0 A and Rg of ~6.5 A (Figure 3e).

Representative distributions of randomly generated dual boost potentials and the boost
potentials generated by DL for the hairpin RNAs with the GCAA, GAAA, and UUCG tetraloops
are shown in Figures 4a-6a, respectively. With the use of DL, the anharmonicity reduced from

0.135 for the randomly generated boost potentials to 0.016, 0.015, and 0.009 in three iterations of



the GCAA RNA system simulation (Figure 4a). For GAAA, DL lowered the anharmonicity from
0.137 for the random boost potentials to 0.012, 0.01, and 0.008 in three iterations (Figure 5a). For
UUCG, the anharmonicity reduced from 0.147 to 0.014 to 0.013 and 0.008 (Figure 6a).

The time courses of the effective harmonic force constants (kop and kop) as well as the total and
dihedral boost potential parameters (Vmin, Vmax, and E) during the equilibration of the hairpin RNAs
with GCAA, GAAA, and UUCG tetraloop in implicit solvent are shown in Figures S6-S8. During
the three rounds of 5ns DBMD equilibration of the GCAA RNA tetraloop system, the total
effective harmonic force constant kgp decreased from 0.20 in round one to 0.10 in round two but
increased to 0.17 in round three, while the dihedral effective harmonic force constant kyp decreased
from 0.84 in round one to 0.56 in round two and 0.51 in round three (Figure S6a). The minimum
total potential energy Vyinp fluctuated from -2867.79 kcal/mol in round one to -2930.46 kcal/mol
in round two to -2871.63 kcal/mol in round three (Figure S6b). The maximum total potential
energy Vmap also fluctuated between -2509.02 kcal/mol, -2366.52 kcal/mol, and -2458.10
kcal/mol among the three (Figure S6b). The minimum dihedral potential energy Vinp fluctuated
from 291.14 kcal/mol in round one to 326.13 kcal/mol in round two to 314.70 kcal/mol in round
three, whereas the maximum dihedral potential energy V...p decreased from 400.88 kcal/mol to
391.04 and 368.91 kcal/mol from round one to round three (Figure Sé6c). The reference total and
dihedral potential energies Ep and Ep were mostly identical to the maximum total and dihedral
potential energies Viuap and Viyaxp, except during round one for the Ep (Figure S6c¢).

For the GAAA RNA tetraloop system, the total and dihedral effective harmonic force constants
kop and kop decreased from 1.0 and 0.33 in round one to 0.15 and 0.98 in round two to 0.098 and
0.51 in round three (Figure S7a). The minimum total potential energy Vuinp decreased from -

2621.20 kcal/mol in round one to -2746.68 kcal/mol in round two to -2799.21 kcal/mol in round



three, whereas the maximum total potential energy V..p fluctuated between -2380.18 kcal/mol, -
2177.94 kcal/mol, and -2265.46 kcal/mol during the three rounds of DBMD equilibration (Figure
S7b). The minimum dihedral potential energy Vuinp increased from 289.55 kcal/mol to 323.12
kcal/mol and 331.20 kcal/mol from round one to round three, while the maximum dihedral
potential energy Vo decreased from 396.04 kcal/mol to 387.99 and 380.68 kcal/mol from round
one to three (Figure S7c¢). The reference total and dihedral potential energies were identical to the
maximum total and dihedral energies.

For the UUCG RNA tetraloop system, the total and dihedral effective harmonic force constants
kop and kop fluctuated between 0.12 and 1.0 in round one to 0.27 and 0.32 in round two to 0.19 and
0.46 in round three (Figure S8a). The minimum total potential energy Vuinp also fluctuated
between -3360.51 kcal/mol, -3189.11 kcal/mol, and -3258.47 kcal/mol from round one to three of
DBMD equilibration, whereas the maximum total potential energy Vuup increased from -2900.68
kcal/mol in round one to -2831.27 kcal/mol and -2733.89 kcal/mol in round two and three,
respectively (Figure S8b). The minimum dihedral potential energy V,..p fluctuated between
341.78 kcal/mol, 337.89 kcal/mol, and 327.41 kcal/mol from round one to three of DBMD
equilibration, whereas the maximum dihedral potential energy Vawap decreased from 416.37
kcal/mol to 411.57 kcal/mol to 407.42 kcal/mol from round one to three (Figure S8c). The
reference total and dihedral potential energies were the same as the maximum potential energies
during the DBMD equilibration of the UUCG RNA tetraloop system.

Multiple independent 2us DBMD simulations were performed on the hairpin RNAs with
GCAA, GAAA, and UUCG tetraloops in implicit solvent, starting from their extended
conformations (Figures 4-6). Remarkably, DBMD was able to capture multiple folding and

unfolding events for all three hairpin RNAs within 2ps of simulations. In particular, a total of 18,
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16, and 11 different stable folding-unfolding events were observed within 2us DBMD simulations
of the RNAs with GCAA, GAAA, and UUCG tetraloops, respectively (Figures S9a-S11a). The
DBMD boost potentials exhibited Gaussian distributions, with low anharmonicity of 8.3 x 1073,
3.9 x 10#, and 2.9 x 1073 in the GCAA, GAAA, and UUCG RNA tetraloop simulations (Figures
S9c¢, S10c, and S11c). Furthermore, the boost potentials were recorded to be 37.0 £ 4.5 kcal/mol
for the GCAA, 32.9 + 3.1 kcal/mol for GAAA, and 27.6 + 3.4 for UUCG system, given the
different np and 1np used for the RNA systems.

The 2D PMF free energy profiles of the hairpin RNAs with tetraloops were calculated using
the heavy-atom RMSDs of the whole RNAs relative to respective PDB structures (1ZIH!7 for
GCAA, 2ADT! for GAAA, and 2KOC" for UUCG) and the G1-U12, C1-G12, and G1-C14
center-of-mass (COM) distances as RCs. DBMD sampled three different low-energy
conformational states, including “Folded”, intermediate “I”, and “Unfolded”, for the RNA with
GCAA tetraloop (Figure 4b), four different low-energy conformational states, namely “Folded”,
intermediate “I1” and “I2”, and “Unfolded”, for the GAAA tetraloop (Figure 5b), and three
different low-energy conformational states, including “Folded”, intermediate “I”, and “Unfolded”,
for the UUCG tetraloop (Figure 6b).

In the “Folded” low-energy conformational state of the 12-mer hairpin RNA with the GCAA
tetraloop, the heavy-atom RMSD relative to the 1ZIH'7 PDB structure was ~1.1 A, and the COM
distance between terminal nucleotides G1 and U12 was ~10.7 A. This “Folded” low-energy
conformational state was maintained by the Watson-Crick base pairs between nucleotides G2-C11,
G3-C10, and C4-G9 and base stacking between nucleotides C6-A7-A8 of the GCAA tetraloop
(Figure 4c¢). With transition from the “Folded” to the intermediate “I” state, most of the Watson-

Crick base pairs distorted, with the side chains of nucleotides G9, C11, and U12 flipping out and
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exposing themselves to the solvent, while the base stacking between nucleotides C6-A7-A8 of the
GCAA tetraloop was intact as observed in a conformation at ~8.3A heavy-atom RMSD relative to
the 1ZIH'7 PDB structure and ~6.5A G1-U12 COM distance (Figure S12). In the intermediate
“I” low-energy conformational state, the RNA began extending, with nucleotides G1-C4 and C10-
Ul2 extending in opposite directions. The base stacking between nucleotides C6-A7-A8 was
mostly broken, with nucleotide A8 flipping out to base stack with nucleotide A9. In this state, the
heavy-atom RMSD relative to the 1ZIH'7 PDB structure was ~9.2 A, and the G1-U12 COM
distance was ~12.9 A (Figure 4d). In the “Unfolded” low-energy conformational state, the RNA
was completely stretched out, with a heavy-atom RMSD of ~14.5 A and G1-U12 COM distance
of ~48.3 A (Figure 4e).

In the “Folded” low-energy conformational state of the 12-mer hairpin RNA with the GAAA
tetraloop, the heavy-atom RMSD relative to the 2ADT'® PDB structure was ~1.3 A, and the COM
distance between terminal nucleotides C1 and G12 was ~10.3 A. Similar to the GCAA system,
this “Folded” state of the GAAA system was maintained by the Watson-Crick base pairs between
nucleotides C1-G12 and G4-C9 as well as the base stacking between nucleotides A6-A7-A8 of the
GAAA tetraloop (Figure 5c¢). The heavy-atom RMSD increased to ~7.8 A, whereas the C1-G12
COM distance decreased to ~7.5 A in the intermediate “I1” low-energy conformation. In this state,
both the Watson-Crick base pairs and base stacking in the GAAA tetraloop were broken, with
nucleotides G3, G4, A7, A8, C9, U10 flipping out and exposing to the solvent. However, base
stacking was observed between nucleotides G5 and A6 of the GAAA tetraloop (Figure 5d). In the
“I2” intermediate state, the heavy-atom RMSD the 2ADT'® PDB structure was ~9.5 A, and the
COM distance between terminal nucleotides C1 and G12 was ~17.9 A. The 12-mer RNA was

mostly distorted, with random base stacking formed between nucleotides G5-G12 and A6-A8. The

12



side chains of the other nucleotides flipped out and exposed to the solvent (Figure 5e). In the
“Unfolded” low-energy conformational state, the RNA was completely stretched out, with a
heavy-atom RMSD of ~13.5 A and C1-G12 COM distance of ~45.0 A (Figure 5f).

The “Folded” low-energy conformational state of the 14-mer hairpin RNA with the UUCG
tetraloop has a heavy-atom RMSD relative to the 2KOC!® PDB structure of ~2.3 A and COM
distance between terminal nucleotides G1 and C14 of ~9.8 A. In this state, Watson-Crick base
pairs were formed between nucleotides G2-C13, C3-G12, A4-U11, and C5-G10. However, unlike
the GCAA and GCAA systems, no base stacking was observed between the nucleotides in the
UUCG tetraloop (Figure 6¢). In the “I” intermediate state, the heavy-atom RMSD increased to
~9.3 A and the G1-C14 COM distance decreased to ~7.6 A. The RNA was mostly distorted, with
random base stacking formed between nucleotides G2 and G10. Most of the other nucleotides
flipped out and exposed to the solvent (Figure 6d). In the “Unfolded” low-energy conformational
state, the heavy-atom RMSD relative to the 2KOC'? PDB structure further increased to ~14.3 A
and the COM distance between nucleotides G1 and C14 increased to ~43.4 A. The RNA was
mostly stretched out (Figure 6e). Therefore, DBMD was able to capture repetitive folding and
unfolding of RNA tetraloop structure in 2us simulations, thereby enabling characterization of the
RNA folding free energy landscapes.

In this work, we have developed DBMD, which generates boost potentials with Gaussian
distribution using DL to reduce energy barriers and enhanced conformational sampling of
biomolecules. Probabilistic Bayesian DL models are trained using potential energies of finished
simulation frames to build the boost potentials that exhibit Gaussian distribution with
anharmonicity y < 0.01. We have demonstrated DBMD on the simulations of alanine dipeptide

in explicit and implicit solvent and folding of the chignolin protein and hairpin RNAs with the
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GCAA, GAAA, and UUCG tetraloops. Overall, DBMD was able to greatly enhance
conformational transitions and characterize the protein and RNA folding free energy landscapes.
DBMD captured multiple folding and unfolding events of chignolin within 300 ns of
simulations (Figure S5a). Compared to previous aMD?° simulations of chignolin folding, DBMD
sped up the folding-unfolding transition by 1.35 times. Furthermore, DBMD accelerated the
folding-unfolding transition of chignolin by 6 times compared to previous GaMD simulations

performed using AMBER” and NAMD?. It should be noted that DBMD was developed to apply

Vmax—Vmin

- as default, which corresponds to
0

boost potential with the reference energy E = Vi, +

the upper-bound reference energy in GaMD (iE = 2). The reference energy E is automatically
switched to V., (iE = 1 or lower-bound reference energy in GaMD) if E > V. + 17| Viaxl,
with 1 being the reference energy factor (valued between 0 and 1). n was introduced to avoid
exceedingly large reference energy E. In contrast, previous GaMD simulations of chignolin were
performed with the reference energy set to the default lower bound, i.e., E = V,,,,. In this regard,
the reference total potential energy Ep for applying the boost potential in DBMD simulations of
chignolin were found to be significantly greater than V},,, (Figure S4b). Therefore, the boost
potential in the DBMD simulations of chignolin were recorded to be 23.1 + 5.1 kcal/mol, which
was approximately ~2.4 and ~2.1 times larger than in the previous GaMD simulations performed
using AMBER (AV =9.54 + 2.44 kcal/mol)’” and NAMD (AV = 11.2 + 2.8 kcal/mol)°, respectively.
Nevertheless, even with the larger average and standard deviation, the boost potential in DBMD
simulations still exhibited relatively smaller anharmonicity (y = 7.1 x 103) than in GaMD
simulations with AMBER’ (y = 9.2 x 10%) and NAMD? (y = 9.7 x 10°%). This was apparently one
advantage of using DL to generate the Gaussian boost potentials. On the other hand, DBMD still

provided a 2D free energy profile of the Cy-atom RMSD and Rg of residues Y2-W9 with high
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degrees of similarity compared to previous GaMD simulations of chignolin performed with
AMBER and NAMD?-?. In particular, DBMD sampled all three low-energy conformational states
(“Folded”, intermediate “I”, and “Unfolded”) as GaMD in AMBER’ and the two low-energy
conformations (“Folded” and “I”) as GaMD in NAMD® (Figure 3). Moreover, the folding
mechanism uncovered by DBMD was relatively similar to that by GaMD in AMBER’. Starting
from the extended conformation of the “Unfolded” state (Figure 3e), the terminal residues of
chignolin was brought closer due to the interactions between residues P4 and G7 in the
intermediate “I” state (Figure 3d). With transition from the intermediate “I” to the “Folded” state,
antiparallel 3-sheets were formed between residues G1-D3 and G7-G10, with the hydrophilic side
chains of residues D3, E5, T6, and T8 exposed to the solvent (Figure 3c¢).

For the simulations of the hairpin RNAs with GCAA, GAAA, and UUCG tetraloops, the total
number of folding and unfolding events captured by AIMBD simulations reduced from the GCAA
to GAAA to UUCG simulation system, which was in good agreement with previous studies by
Tan et al.?! and Chen et al.?2. This also demonstrated the importance of the base stacking within
the tetraloop for RNA folding. In particular, while nucleotides C6-A7-A8 of the GCAA tetraloop
and A6-A7-A8 of the GAAA tetraloop base-stacked in their respective “Folded” low-energy
conformations, no base stacking was observed within the “Folded” hairpin RNA with UUCG
tetraloop (Figures 4c-6¢). Furthermore, the folding mechanisms uncovered by DBMD were
similar among the hairpin RNAs with GCAA, GAAA, and UUCG tetraloop (Figures 4-6). Starting
from the extended conformation in the “Unfolded” low-energy conformational states (Figures 4e,
5f, and 6e), Watson-Crick base pairs began to form from terminal nucleotides towards the cores
and tetraloops of the RNAs. Finally, base stacking between the nucleotides of the tetraloops were

formed to enable the stable folding of the hairpin RNAs (Figures 4¢ and Sc). This general
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mechanism of RNA folding showed high degrees of similarity to the previous study by Chen et
al.??, even though they used shorter RNA strands, a different force field parameter set, and a
different solvation model.

In conclusion, we have developed DBMD, a DL-based enhanced sampling technique that
allows for accurate energetic reweighting and enhanced sampling of biomolecular systems.

DBMD is available with open source in OpenMM at https://github.com/MiaoLab20/DBMD/. As

demonstrated on the model systems, DBMD captured multiple dihedral transitions of alanine
dipeptide as well as folding-unfolding events of the chignolin protein and hairpin RNAs with
tetraloops within relatively short simulation lengths. The performance of DBMD on simulations
of larger biological systems (such as membrane proteins and molecular motors) and using different
force fields other than AMBER will be examined in future studies. DBMD is expected to facilitate

the simulations and free energy calculations of a wide range of biomolecules.

Methods

Theory of DBMD

In DBMD, boost potentials AV are optimized using DL to follow Gaussian distribution with
minimized anharmonicity. Considering a system comprised of N atoms with coordinates r =
{ri, ..., 7y} and momenta p = {p,, ..., py}, the system Hamiltonian can be expressed as:

H(r,p) =K(p) +V(r), (M
where K (p) and V (r) are the system kinetic and total potential energies, respectively. To enhance
biomolecular conformational sampling, boost potentials can be added to the system potential
energies. According to the DBMD algorithm, the boost potential can be calculated as the

following’:
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1
AV(r) = Fk(E - V), V@) <E )
0, V(@)=E.

where E is the reference energy for adding boost potential and & is the harmonic force constant.
Here, the reference energy can be set in a range: Vg < E < Vipin + % The harmonic force

Ko

constant is calculated as k = , with the effective harmonic force constant k, € (0,1].

max~ ¥V min

Accordingly, the reference energy can be expressed as E = Vi, +W. Here, E = V4

when ky = 1, and the smaller the k, values, the higher the reference energy E. In DBMD, we
introduce a parameter called the reference energy factor (n) valued between 0 and 1 to avoid
exceedingly large E and control the acceleration during simulations. Physically, Vo + 1 * [Vipaxl

represents the upper limit of the reference energy E.

Vimax = Vimin (3)
ko

E = Vmin +
if E> Vinax + 1 * [Vinaxl, then: E = Vipqx
Therefore, the boost potential can be rewritten as:

ko
AV(T’) = 2(Vmax - Vmin)

4
E-VG): V) <E @

0, V@)=E.
To characterize the extent to which AV follows a Gaussian distribution, its distribution

anharmonicity yis calculated as:

1 * 5
Y = Spmax — Say = Eln(eredAZV) + J p(AV) In(p(AV)) dAV, )
0

where AV is dimensionless as divided by kzT with kg and T being the Boltzmann constant and

1

system temperature, respectively, and Sy, = Eln(ZneaAZV) is the maximum entropy of AV,

When y is zero, AV follows exact Gaussian distribution with sufficient sampling. Reweighting by

approximating the ensembled-averaged Boltzmann factor with cumulant expansion to the 2" order
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(“Gaussian approximation™) can accurately recover the original free energy landscape’ 2. As y
increases, the AV distribution becomes less harmonic, and the reweighted free energy profile
obtained from cumulant expansion to the 2" order would deviate from the original’. The
anharmonicity of AV distribution serves as an indicator of the enhanced sampling convergence and

accuracy of the reweighted free energy’.

Deep Learning of Potential Energies

In DBMD, the probabilistic Bayesian neural network model, developed based on Bayes’
theorem?*, within the TensorFlow Probability”®> module was applied to minimize the
anharmonicity of boost potentials AV. The probabilistic model was initiated with the definition of
a prior distribution. A standard normal distribution was adopted as the prior distribution since the
central limit theorem asserts that a properly normalized sum of samples will approximate a normal
distribution®® 27, Here, a multivariate normal distribution with a diagonal covariance matrix was

used, with the mean values initialized to zero and the variances 6/ to one?®.

g2 0 .. (6)

The posterior distribution was also set to be a multivariate Gaussian distribution, but the off-
diagonal elements in the covariance matrix were allowed to be non-zero. This was achieved with
a lower-triangular matrix L with positive-valued diagonal entries such that £ = LLT, and the

triangular matrix can be obtained through Cholesky decomposition of the covariance matrix?S.
Ly 0 .. %
Finally, the probabilistic layers were defined using the DenseVariational function of the

TensorFlow Probability module?-?’. Our Bayesian neural network model consisted of two or four
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dense variational layers of two different types, namely L7 and L2. The first dense variational layer
L1 had 64 filters, with a sigmoid activation function to enable the fitting of non-linear data®-2’.
The second dense variational layer L2 used the IndependentNormal® function to parameterize a
normal distribution and capture aleatoric uncertainty, with an event shape equal to one?® 27, The
prior and posterior distributions used in both L/ and L2 were specified above. Testing simulations
have showed us that the number of the second dense variational layer L2 could significantly affect
the average and standard deviation of the output boost potentials after DL. Overall, the lower the
numbers of L2, the wider the distributions and the higher the average boost potentials. Therefore,
to balance between the stability and sampling of the simulations as well as the learning speed, we
included one L2 layer in the DL model for explicit-solvent simulations and three L2 layers for

implicit-solvent simulations. The input and output shape were set to one since both the potential

energies and boost potentials were scalars.

Workflow of DBMD

The workflow of DBMD is shown in Figure 1. First, a short cMD was performed on the biological
system of interest, and the potential statistics (Vmin and Viax) were collected as parameters for pre-
equilibration of DBMD simulation. During the pre-equilibration, the effective harmonic force
constants (kop and kop) were kept fixed at (1.0, 1.0) for explicit-solvent simulations and (0.05, 1.0)
for implicit-solvent simulations. The boost potentials were calculated based on equation (4), and
the potential statistics (Vmin and Vy,ax) were updated during pre-equilibration. The system total and
dihedral potential energies from the pre-equilibration were then collected (Figure 1a), which
served as the X inputs for the probabilistic Bayesian DL models?> 26 (Figure 1b). Initial boost

potentials were randomly generated from the system potential energies and randomly assigned ko
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using equations (3-4) and used as the Y inputs for DL (Figure 1¢). DL was carried out in multiple
iterations until the output boost potentials followed Gaussian distribution with anharmonicity y <
0.01 (Figure 1d). If y > 0.01, the generated boost potentials were used as Y inputs to retrain the
DL model until y < 0.01 (Figure 1e). Based on the potential statistics learnt until the last frame
of the pre-equilibration (Viin, Vimar, V, and AV), the effective harmonic force constants were

calculated as following:

0=

\/ZAV(Vmax - Vmin) - \/ZAV(Vmax - Vmin) - 4’(Vmin - V) (Vmax - Vmin) : (8)
2(Vmin - V)

if ko >10rE > Vpypay + 1% [Vipaxl, then:

_ ZAV(Vmax - Vmin)
° (E ~V)?

ko = min(1.0, k).
and used as input alongside Viuin and Vi to equilibrate the simulation system (Figure 1f). The
equilibration usually consisted of multiple rounds, with the effective harmonic force constants (kop
and kop) kept fixed and potential statistics (Vmin and Viuax) updated in each round. DL was carried
out at the end of each round using the updated potential energies as inputs, with the same DL
model as obtained at the end of the pre-equilibration (Figure 1). This multi-round equilibration
approach also allows users to easily select a simulation checkpoint before running the production
simulations. Finally, the effective harmonic force constants (kop and kop) and potential statistics
(Vmin and Vinax) taken from the last round of the equilibration were used as input parameters for
DBMD production simulations (Figure 1f), during which the effective harmonic force constants

and potential statistics were kept fixed, and boost potentials were calculated based on equation

4.
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System Setup and Simulation Protocols
Simulations of the alanine dipeptide and chignolin were performed using the AMBER {f99SB

t28. The LEaP module in the AmberTools package?® were used to build the

force field parameter se
simulation systems. For the DBMD simulations in explicit solvent, alanine dipeptide was solvated
in a TIP3P?° water box that extended ~8 A from the solute surface. The unfolded chignolin with a
sequence of 10 residues (GYDPETGTWG)!¢ was solvated in a TIP3P?° water box that extended
~10 A from the solute surface. The final system for alanine dipeptide in explicit solvent, alanine
dipeptide in implicit solvent, and chignolin in explicit solvent contained 1912, 22, and 6773 atoms,
respectively.

Simulations of the hairpin RNAs with the GCAA, GAAA, and UUCG tetraloops were carried

out using the AMBER Shaw force field parameter set?!

, starting from their unfolded states. The
sequences of the hairpin RNAs with GCAA, GAAA, and UUCG tetraloops were
GGGCGCAAGCCU (12 nucleotides)!”, CGGGGAAACUUG (12 nucleotides)'®, and
GGCACUUCGGUGCC (14 nucleotides)', respectively. The final systems of the hairpin RNAs
with GCAA, GAAA, and UUCG tetraloops in implicit solvent contained 389, 390, and 447 atoms,
respectively. All simulations were carried out at 300K temperature.

For the explicit-solvent simulations, periodic boundary conditions were applied, and bonds
containing hydrogen atoms were restrained with the SHAKE?? algorithm. Weak coupling to an
external temperature and pressure bath was necessary to control both temperature and pressure?!.
The electrostatic interactions were calculated using the particle mesh Ewald (PME) summation??
with a cutoff of 8.0-9.0 A for long-range interactions. For the implicit-solvent simulations, the

generalized Born solvent model 2 (GBn2)* parameters were used. No nonbonded cutoff was set

and no periodic boundary condition was used in the implicit-solvent simulations. The solute and
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solvent dielectric constants were set to 1.0 and 78.5, respectively, and the effect of a non-zero salt
concentration was achieved by setting the Debye-Huckel screening parameter** to 1.0/nm. A 2-fs
timestep with the SHAKE?? algorithm applied was used in all simulations.

For alanine dipeptide, the simulations consisted of a 2ns short cMD, followed by a 2ns DBMD
pre-equilibration, one round of 2ns DBMD equilibration, and three independent 30ns DBMD
production simulations. The reference energy factors were set to zero for both total and dihedral
potential energy (np and 1p), i.e., E = Vyax. For chignolin, the simulation involved a 5Sns cMD, a
2ns DBMD pre-equilibration, two rounds of 5ns DBMD equilibration, and three independent
300ns DBMD production simulations, with np, and 1, both set to 0.05. For the hairpin RNAs with
GCAA, GAAA, and UUCG tetraloops, the simulations consisted of a 20ns cMD, followed by a
5ns DBMD pre-equilibration, three rounds of 5ns DBMD equilibration, and three-four
independent 2us DBMD production simulations. 17, and 1, were set to 0.05 and 0.05 for GCAA,
0.05 and 0.0 for GAAA, and 0.0 and 0.0 for UUCG RNA tetraloops. The simulation frames were
saved every 0.1 ps. The CPPTRAJ?® tool was used for simulation trajectory analysis.

Finally, the PyReweighting toolkit® was used to compute the potential of mean force (PMF)
profiles of the backbone dihedrals Phi and Psi (® and ) in the alanine dipeptide (Figure 2a). The
Co-atom root-mean-square deviation (RMSD) of residues Y2-W9 of chignolin relative to the
1UAO'® PDB and Cg-atom radius of gyration (Rg) of residues Y2-W9 were selected as RCs to
calculate the PMF profiles in the simulations of chignolin folding. The heavy-atom RMSD of the
whole hairpin RNAs with tetraloops relative to respective PDB structures (1ZIH!7 for GCAA,
2ADT" for GAAA, and 2KOC'" for UUCG) and the G1-U12, C1-G12, and G1-C14 center-of-
mass (COM) distances were used as RCs to calculate the PMF profiles in the simulations of hairpin

RNAs with tetraloops. A bin size of 6°, 1.0 A, and 1.0-2.0 A and cutoff of 10, 100, and 100-500
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in one bin were used for reweighting of DBMD simulations of alanine dipeptide, chignolin, and

hairpin RNAs with tetraloops, respectively.

Supporting Information

Algorithm (pseudo-code) and example input file of DBMD in OpenMM, along with description
of input parameters. Time courses of the effective harmonic force constants, boost potential
parameters, the reaction coordinates selected for the calculations of PMF profiles and distributions
of the boost potentials applied in the DBMD simulations of alanine dipeptide, chignolin, and RNA

hairpins with GCAA, GAAA, and UUCG tetraloops.
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Figure Captions

Figure 1. Summary of Deep Boosted Molecular Dynamics (DBMD). (a) First, molecular
dynamics (MD) simulation is performed on the system of interest. (b) The system potential
energies from finished simulation frames (V;, V2, ..., Vi) are collected as the X inputs for the
probabilistic Bayesian Deep Learning (DL) model. (¢) Reference boost potentials (AV;, AV, ...,
AVuy) were generated from the collected system potential energies and randomized effective
harmonic force constants ko to serve as the Y inputs for the DL. (d) The probabilistic Bayesian
neural network was trained to generate boost potentials that follow Gaussian distribution with the
probability density function f (AV). Here, AV is boost potential, and u and o are the average and
standard deviation of the boost potentials. DL is carried out in multiple iterations until the
anharmonicity of output boost potentials y < 0.01. (e) If the anharmonicity of output boost
potential y is > 0.01, the generated boost potentials are used as Y inputs to retrain the DL model
until y < 0.01. (f) Finally, the effective harmonic force constants ko are calculated from the system
potential energy (V) and used as input alongside the minimum and maximum of potential energy
(Vimin and Vyax) (b) for the next round of enhanced sampling simulation.

Figure 2. DBMD simulations of alanine dipeptide. (a) Schematic representation of backbone
dihedrals Phi (@) and Psi (V) dihedrals of alanine dipeptide. (b-¢) Representative distributions of
randomly generated dual boost potentials and DL-generated boost potentials iterated until y < 0.01
from the potential energies collected from the pre-equilibration of the alanine dipeptide in explicit
solvent (b) and implicit solvent (¢). The legends include the anharmonicity and average + standard
deviation of the dual boost potentials. (d-g) 2D Potential of mean force (PMF) free energy profile
of backbone dihedrals (@, V) of alanine dipeptide calculated from three 30ns DBMD simulations

(d-e) compared to 1us cMD simulations (f-g) in explicit solvent (d, f) and implicit solvent (e, g).
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The low-energy states are labeled corresponding to the right-handed a helix (ar), left-handed o
helix (av), B-sheet (), and polyproline II (P11) conformations.

Figure 3. Folding of chignolin in explicit solvent captured by DBMD. (a) Representative
distributions of randomly generated dual boost potentials and DL-generated boost potentials
iterated until y <0.01 from the potential energies collected from the pre-equilibration of chignolin.
The legends include the anharmonicity and average + standard deviation of the dual boost
potentials. (b) 2D PMF free energy profile of the Cy-atom root-mean-square deviation (RMSD) of
residues Y2-W9 of chignolin relative to the 1TUAO PDB and Cq-atom radius of gyration (Rg) of
residues Y2-W9. The low-energy conformational states are labeled “Folded”, “I”, and “Unfolded”.
(c) The “Folded” low-energy conformational state compared to the ITUAO PDB structure, for
which the RMSD is ~0.4 A and the Rg is ~4.1 A. (d) The intermediate “I” low-energy
conformational state compared to the 1UAO PDB structure, for which the RMSD is ~4.0 A and
the Rg is ~5.2 A. (e) The “Unfolded” low-energy conformational state compared to the 1UAO
PDB structure, for which the RMSD is ~5.0 A and the Rg is ~6.5 A. The low-energy
conformational states are colored red, and the 1UAO PDB structure is colored blue.

Figure 4. Folding of the 12-mer hairpin RNA with GCAA tetraloop in implicit solvent
captured by DBMD. (a) Representative distributions of randomly generated dual boost potentials
and DL-generated boost potentials iterated until y < 0.01 from the potential energies collected from
the pre-equilibration of the 12-mer hairpin RNA with GCAA tetraloop. The legends include the
anharmonicity and average + standard deviation of the dual boost potentials. (b) 2D PMF free
energy profile of the heavy-atom RMSD of the 12-mer hairpin RNA relative to the 1ZIH PDB and
the center of mass (COM) distance between terminal nucleotides G1 and U12. The low-energy

conformational states are labeled “Folded”, “I”, and “Unfolded”. (¢) The “Folded” low-energy
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conformational state compared to the 1ZIH PDB structure, for which the RMSD is ~1.1 A and the
G1-U12 distance is ~10.7 A. (d) The intermediate “I”” low-energy conformational state compared
to the 1ZIH PDB structure, for which the RMSD is ~9.2 A and the G1-U12 distance is ~12.9 A.
(e) The “Unfolded” low-energy conformational state compared to the 1ZIH PDB structure, for
which the RMSD is ~14.5 A and the G1-U12 distance is ~48.3 A. The low-energy conformational
states are colored red, and the 1ZIH PDB structure is colored blue.

Figure 5. Folding of the 12-mer hairpin RNA with GAAA tetraloop in implicit solvent
captured by DBMD. (a) Representative distributions of randomly generated dual boost potentials
and DL-generated boost potentials iterated until y < 0.01 from the potential energies collected from
the pre-equilibration of the 12-mer hairpin RNA with GAAA tetraloop. The legends include the
anharmonicity and average + standard deviation of the dual boost potentials. (b) 2D PMF free
energy profile of the heavy-atom RMSD of the 12-mer hairpin RNA relative to the 2ADT PDB
and the COM distance between terminal nucleotides C1 and G12. The low-energy conformational
states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (¢) The “Folded” low-energy
conformational state compared to the 2ADT PDB structure, for which the RMSD is ~1.3 A and
the C1-G12 distance is ~10.3 A. (d) The intermediate “I1” low-energy conformational state
compared to the 2ADT PDB structure, for which the RMSD is ~7.8 A and the C1-G12 distance is
~7.5 A. (e) The intermediate “I2” low-energy conformational state compared to the 2ADT PDB
structure, for which the RMSD is ~9.5 A and the C1-G12 distance is ~17.9 A. (f) The “Unfolded”
low-energy conformational state compared to the 2ADT PDB structure, for which the RMSD is
~13.5 A and the C1-G12 distance is ~45.0 A. The low-energy conformational states are colored

red, and the 2ADT PDB structure is colored blue.
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Figure 6. Folding of the 14-mer hairpin RNA with UUCG tetraloop in implicit solvent
captured by DBMD. (a) Representative distributions of randomly generated dual boost potentials
and DL-generated boost potentials iterated until y < 0.01 from the potential energies collected from
the pre-equilibration of the 14-mer hairpin RNA with UUCG tetraloop. The legends include the
anharmonicity and average + standard deviation of the dual boost potentials. (b) 2D PMF free
energy profile of the heavy-atom RMSD of the 14-mer hairpin RNA relative to the 2KOC PDB
and the COM distance between terminal nucleotides G1 and C14. The low-energy conformational
states are labeled “Folded”, “I”, and “Unfolded”. (¢) The “Folded” low-energy conformational
state compared to the 2KOC PDB structure, for which the RMSD is ~2.3 A and the G1-C14
distance is ~9.8 A. (d) The intermediate “I” low-energy conformational state compared to the
2KOC PDB structure, for which the RMSD is ~9.3 A and the G1-C14 distance is ~7.6 A. (e) The
“Unfolded” low-energy conformational state compared to the 2KOC PDB structure, for which the
RMSD is ~14.3 A and the G1-C14 distance is ~43.4 A. The low-energy conformational states are

colored red, and the 2KOC PDB structure is colored blue.
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Figure 2
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Figure 4
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Figure 5
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Figure 6
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Algorithm of Deep Boosted Molecular Dynamics (DBMD)

DBMD {
// Stage 1: Conventional molecular dynamics
Fori=1, ..., conventional md_steps:
If (i == conventional md_steps):
Vmin =min(V1, V2, ..., Vi)
Vmax = max(V1, V2, ..., Vi)
End

/I Stage 2: Pre-equilibration
If (simulation_type == “explicit”):
kOP=1.0
kOD =1.0
Else: // (simulation_type == “protein.implicit” or “RNA.implicit”)
kOP = 0.05
kOD =1.0
Set refE_factor
Fori=1, ..., pre_equilibration_steps:
Record V
E = Vmin + (Vmax — Vmin) / kO
If (E > Vmax + refE_factor*abs(Vmax)):
E = Vmax
If (V<E):
AV = (1/2)*k0*(E — V)2 / (Vmax — Vmin)
V=V +AV
Vmin = min(V, Vmin)
Vmax = max(V, Vmax)
End

// Stage 3: Equilibration
// Deep Learning model
Set mu, sigma  // default mu = 0.0, sigma = 1.0 for standard normal distribution
Define PriorModel:
PriorModel = Sequential {
DistributionLambda(MultivariateNormalDiag(loc=mu*ones, scale diag=sigma*ones)
}
Define PosteriorModel:
PosteriorModel = Sequential {
VariableLayer(MultivariateNormalTriL)
MultivariateNormal TriL



}
Define BayesianNeuralNetworkModel:

If (simulation_type == “explicit”):

L2=1
Else: // (simulation_type == “protein.implicit” or “RNA.implicit”)
L2=3

BayesianNeuralNetworkModel = Sequential {

DenseVariational(64, input dim =1,
prior_function = PriorModel, posterior function = PosteriorModel,
activation = “sigmoid”)

For =1,..,L2:

DenseVariational(IndependentNormal(1),

prior_function = PriorModel, posterior function = PosteriorModel)

End

IndependentNormal(1)  // output layer

}

Compile(loss = Kullback-LeiberDivergence, optimizer = Adam(learning rate=0.0003)

// Deep Learning
Collect {V1, V2, ..., VM}, Vmin, Vmax from the M-step pre-equilibration
Fori=1, .., M:
kO = random(0, 1]
E = Vmin + (Vmax — Vmin) / kO
AV = (1/2)*k0*(E — V)2 / (Vmax — Vmin)
End
Collect {AV1, AV2, ..., AVM}
While (anharmocity(AV) >= 0.01):
training_set, validation_set = train_test split({V1, V2, ..., VM}, {AV1, AV2, ..., AVM},
test_size = 0.2)
BayesianNeuralNetworkModel fit(training_set, epochs = 100, batch size = 100,
validation_set)
AVM = BayesianNeuralNetworkModel.predict(VM)
kO = ((sqrt2*AVM*(Vmax — Vmin)) — sqrt(2*AVM*(Vmax — Vmin) — 4*(Vmin —
VM)*(Vmax — Vmin))) / (2*(Vmin — VM)))"2
E = Vmin + (Vmax — Vmin) / kO
If (kO > 1.0) or (E > Vmax + refE_factor*abs(Vmax))):
E = Vmax
kO = (2*AVM*(Vmax — Vmin)) / (E - VM)"2
kO = min(1.0, k0)
Collect Vmin, Vmax, kO for equilibration



// Muti-round equilibration
Fori=1, ..., equilibration rounds:
For j=1, ..., equilibration_steps per round:
Record V
E = Vmin + (Vmax — Vmin) / kO
If (E > Vmax + refE_factor*abs(Vmax)):
E = Vmax
If (V<E):
AV = (1/2)*k0*(E — V)2 / (Vmax — Vmin)
V=V +AV
Vmin = min(V, Vmin)
Vmax = max(V, Vmax)
Collect {V1, V2, ..., VN}, Vmin, Vmax from the N-step equilibration round
Fori=1, .. N:
kO = random(0, 1]
E = Vmin + (Vmax — Vmin) / kO
AV = (1/2)*k0*(E — V)2 / (Vmax — Vmin)
End
Collect {AV1, AV2, ..., AVN}
While (anharmocity(AV) >= 0.01):
training_set, validation_set =train_test split({V1, V2, ..., VN}, {AV1,AV2, .., AVN},
test_size = 0.2)
BayesianNeuralNetworkModel.fit(training_set, epochs = 100, batch size = 100,
validation_set)
AVN = BayesianNeuralNetworkModel.predict(VN)
kO = ((sqrt(2*AVN*(Vmax — Vmin)) — sqrt(2*AVN*(Vmax — Vmin) — 4*(Vmin —
VN)*(Vmax — Vmin))) / (2*(Vmin — VN)))"2
E = Vmin + (Vmax — Vmin) / kO
If (kO > 1.0) or (E > Vmax + refE_factor*abs(Vmax))):
E = Vmax
kO = (2*AVN*(Vmax — Vmin)) / (E — VN)"2
kO = min(1.0, k0)
Collect Vmin, Vmax, kO for the next equilibration round
If (i = equilibration_rounds):
Collect Vmin, Vmax, kO for production
End
End

// Stage 4: Production



Fori=1, ..., production_steps:
E = Vmin + (Vmax — Vmin) / kO
If (E > Vmax + refE_factor*abs(Vmax)):
E = Vmax
If (V<E):
AV = (1/2)*k0*(E — V)2 / (Vmax — Vmin)
V=V +AV
End



Example Input Python File for DBMD Simulation with OpenMM

parmFile = "dip.top" # topology file

crdFile = "dip.crd" # coordinate file

simType = "explicit" # "explicit", "protein.implicit”, "RNA.implicit"
temperature = 300 # simulation temperature

ntcmd = 1000000 # number of conventional MD steps

cmdRestartFreq = 100 # conventional MD restart frequency

ncycebprepstart, ncycebprepend = 0, 1 # pre_equilibration start and end round indices
ntebpreppercyc = 1000000 # number of pre equilibration_steps per round
ebprepRestartFreq = 100 # pre_equilibration_restart frequency

ncycebstart, ncycebend = 0, 1 # equilibration_start and end round indices
ntebpercyc = 1000000 # number of equilibration_steps per round

ebRestartFreq = 100 # equilibration_restart frequency

ncycprodstart, ncycprodend = 0, 3 # production_start and end round indices
ntprodpercyc = 5000000 # number of production_steps per round

prodRestartFreq = 10 # production_restart frequency

refEP_factor, refED factor =0.0,0.0  # reference energy factor; value between 0 and 1



Description of DBMD Parameters in Input Python File for Simulation with OpenMM

parmFile Path to the system topology file, usually a parm7 or prmtop file.
crdFile Path to the system coordinate file, usually a erd or rst7 file.
simType Solvation model and type of biomolecules simulated. Three variables
are accepted:
o “explicit” (explicit-solvent simulations),
e “protein.implicit” (implicit-solvent simulations of proteins),
e “RNA.implicit” (implicit-solvent simulations of RNAs).
temperature Simulation temperature in Kelvins (K).
ntcmd Number of simulation steps in the conventional MD (cMD) stage.
cmdRestartFreq Number of simulation steps per which the cMD trajectories and
simulation checkpoints are outputted.
ncycebprepstart DBMD pre-equilibration can be carried out in multiple rounds. The
index of the starting round in DBMD pre-equilibration simulation.
ncycebprepend The index of the final round in DBMD pre-equilibration simulation.
ntebpreppercyc Number of simulation steps per round in the DBMD pre-equilibration.
ebprepRestartFreq Number of simulation steps per which the pre-equilibration trajectories
and simulation checkpoints are outputted.
ncycebstart DBMD equilibration can be carried out in multiple rounds. The index
of the starting round in DBMD equilibration simulation.
ncycebend The index of the final round in DBMD equilibration simulation.
ntebpercyc Number of simulation steps per round in the DBMD equilibration.
ebRestartFreq Number of simulation steps per which the equilibration trajectories
and simulation checkpoints are outputted.
ncycprodstart DBMD production can be carried out in multiple rounds. The index of
the starting round in DBMD production simulation.
ncycprodend The index of the final round in DBMD production simulation.
ntprodpercyc Number of simulation steps per round in the DBMD production.
prodRestartFreq Number of simulation steps per which the production trajectories and

simulation checkpoints are outputted.

refEP_factor

The reference total potential energy factor (1p) for applying total boost
potentials. This parameter, valued between 0 and 1, is introduced to
avoid exceedingly large reference potential energy. The upper limit for
the reference total potential energy Ep iS Viyaxr + el Vinaxp |-

refED factor

The reference dihedral potential energy factor (np) for applying
dihedral boost potentials. This parameter, valued between 0 and 1, is
introduced to avoid exceedingly large reference potential energy. The
upper limit for the reference dihedral potential energy Ej, is Vypgxp +

nD IVmaxD I :




Figure S1. (a-d) Time courses of the effective harmonic force constants (kop and kop) (), total (b)

and dihedral (c) boost potential parameters (Viumin, Vimar, and E), and Phi dihedral (d) of alanine

dipeptide calculated from one round of 2ns DBMD equilibration in explicit solvent. (e-h) Time

courses of the effective harmonic force constants (kop and kop) (e), total (f) and dihedral (g) boost

potential parameters (Vuin, Viax, and E), and Phi (®) dihedral (h) of alanine dipeptide calculated

from one round of 2ns DBMD equilibration in implicit solvent.
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Figure S2. (a-d) Time courses of the Phi (@) dihedral of alanine dipeptide calculated from three
30ns DBMD simulations (a-c¢) and one 1us ¢cMD simulation (d) in explicit solvent. (e-h) Time
courses of the Phi (@) dihedral of alanine dipeptide calculated from three 30ns DBMD simulations

(e-g) and one 1pus cMD simulation (h) in implicit solvent.
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Figure S3. (a-b) Distributions of the boost potentials AV applied in the DBMD simulations of
alanine dipeptide in explicit solvent (a) and implicit solvent (b). (c-f) Potential of mean force
(PMF) free energy profiles of the @ (¢-d) and ¥ (e-f) dihedrals of alanine dipeptide calculated
from three 30ns DBMD simulations compared to 1pus cMD simulations in explicit solvent (c, €)

and implicit solvent (d, f).
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Figure S4. Time courses of the effective harmonic force constants (kop and kop) (a), total (b) and
dihedral (c) boost potential parameters (Vuin, Vmax, and E), and Cq-atom RMSD of residues Y2-
W9 of chignolin relative to the 1TUAO PDB (d) calculated from two rounds (R/ and R2) of 5ns

DBMD equilibration of chignolin in explicit solvent.
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Figure SS. (a-b) Time courses of the Cy-atom RMSD of residues Y2-W9 of chignolin relative to
the ITUAO PDB (a) and Cy-atom Rg of residues Y2-W9 (b) calculated from three 300ns DBMD
simulations of chignolin in explicit solvent. (¢) Distribution of the boost potentials A} applied in

the DBMD simulations of chignolin in explicit solvent.
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Figure S6. Time courses of the effective harmonic force constants (kop and kop) (a), total (b) and

dihedral (¢) boost potential parameters (Viuin, Viax, and E), and heavy-atom RMSD of the hairpin

RNA relative to the 1ZIH PDB (d) calculated from three rounds (R/, R2, and R3) of S5Sns DBMD

equilibration of the 12-mer hairpin RNA with GCAA tetraloop in implicit solvent.
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Figure S7. Time courses of the effective harmonic force constants (kop and kop) (a), total (b) and

dihedral (¢) boost potential parameters (Viuin, Viax, and E), and heavy-atom RMSD of the hairpin

RNA relative to the 2ADT PDB (d) calculated from three rounds (R/, R2, and R3) of 5Sns DBMD

equilibration of the 12-mer hairpin RNA with GAAA tetraloop in implicit solvent.
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Figure S8. Time courses of the effective harmonic force constants (kop and kop) (a), total (b) and
dihedral (¢) boost potential parameters (Viuin, Viax, and E), and heavy-atom RMSD of the hairpin
RNA relative to the 2KOC PDB (d) calculated from three rounds (R/, R2, and R3) of Sns DBMD

equilibration of the 14-mer hairpin RNA with UUCG tetraloop in implicit solvent.
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Figure S9. (a-b) Time courses of the heavy-atom RMSD of the 12-mer hairpin RNA with GCAA
tetraloop relative to the 1ZIH PDB (a) and the COM distance between terminal nucleotides G1
and U12 (b) calculated from three 2000ns DBMD simulations of the 12-mer hairpin RNA with
GCAA tetraloop in implicit solvent. (¢) Distribution of the boost potentials AV applied in the

DBMD simulations of the 12-mer hairpin RNA with GCAA tetraloop in implicit solvent.
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Figure S10. (a-b) Time courses of the heavy-atom RMSD of the 12-mer hairpin RNA with GAAA
tetraloop relative to the 2ADT PDB (a) and the COM distance between terminal nucleotides C1
and G12 (b) calculated from three 2000ns DBMD simulations of the 12-mer hairpin RNA with
GAAA tetraloop in implicit solvent. (¢) Distribution of the boost potentials AV applied in the

DBMD simulations of the 12-mer hairpin RNA with GAAA tetraloop in implicit solvent.
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Figure S11. (a-b) Time courses of the heavy-atom RMSD of the 14-mer hairpin RNA with UUCG
tetraloop relative to the 2KOC PDB (a) and the COM distance between terminal nucleotides G1
and C14 (b) calculated from four 2000ns DBMD simulations of the 14-mer hairpin RNA with
UUCG tetraloop in implicit solvent. (¢) Distribution of the boost potentials AV applied in the

DBMD simulations of the 14-mer hairpin RNA with UUCG tetraloop in implicit solvent.
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Figure S12. Conformation of the 12-mer hairpin RNA with the GCAA tetraloop at (~8.3 A, ~6.5

A) of the heavy-atom RMSD relative to the 1ZIH*” PDB structure and G1-U12 COM distance.

(RMSD: ~8.3 A, G1-U12: ~6.5 A)
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