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Abstract 

 

We have developed a new Deep Boosted Molecular Dynamics (DBMD) method. Probabilistic 

Bayesian neural network models were implemented to construct boost potentials that exhibit 

Gaussian distribution with minimized anharmonicity, thereby allowing for accurate energetic 

reweighting and enhanced sampling of molecular simulations. DBMD was demonstrated on model 

systems of alanine dipeptide and the fast-folding protein and RNA structures. For alanine 

dipeptide, 30ns DBMD simulations captured up to 83-125 times more backbone dihedral 

transitions than 1µs conventional molecular dynamics (cMD) simulations and were able to 

accurately reproduce the original free energy profiles. Moreover, DBMD sampled multiple folding 

and unfolding events within 300ns simulations of the chignolin model protein and identified low-

energy conformational states comparable to previous simulation findings. Finally, DBMD 

captured a general folding pathway of three hairpin RNAs with the  GCAA, GAAA, and UUCG 

tetraloops. Based on Deep Learning neural network, DBMD provides a powerful and generally 

applicable approach to boosting biomolecular simulations. DBMD is available with open source 

in OpenMM at https://github.com/MiaoLab20/DBMD/. 

Keywords: Probabilistic neural networks, Molecular dynamics, Protein folding, RNA folding, 

Free energy profiles. 
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Molecular dynamics (MD) is a powerful computational technique for simulating biomolecular 

dynamics at an atomistic level1. With recent advances in computing hardware and software 

developments, timescales accessible to MD simulations have significantly increased2, 3. However, 

conventional MD (cMD) is often limited to tens to hundreds of microseconds4 for simulations of 

typical biomolecular systems, and cannot attain the timescales required to observe many biological 

processes of interest, which typically occur over milliseconds or longer with high energy barriers 

(e.g., 8-12 kcal/mol)5. 

Many enhanced sampling techniques have been developed during the last several decades to 

overcome the challenges mentioned above6. In particular, Gaussian accelerated molecular 

dynamics (GaMD) is an enhanced sampling that technique works by applying a harmonic boost 

potential to smooth biomolecular potential energy surface7. Since this boost potential exhibits a 

near Gaussian distribution, cumulant expansion to the second order (“Gaussian approximation”) 

can be applied to achieve proper energetic reweighting8. GaMD allows for simultaneous 

unconstrained enhanced sampling and free energy calculations of large biomolecules 7. GaMD has 

been successfully demonstrated on enhanced sampling of ligand binding, protein folding, protein 

conformational change, as well as protein-membrane, protein-protein, and protein-nucleic acid 

interactions3. GaMD has been implemented in widely used simulation packages including 

AMBER7, NAMD9, OpenMM10, GENESIS11, and TINKER-HP12. 

 Recently, Machine Learning/Deep Learning techniques (ML/DL) have been combined with 

MD methods to enhance the sampling of biomolecular simulations. DeepDriveMD is a DL driven 

adaptive MD method designed specifically to simulate protein folding13. In DeepDriveMD, DL 

was utilized to reduce the dimensionality of MD simulations to automatically build latent 

representations that correspond to biophysically relevant collective variables (CVs) and drive MD 
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simulations to automatically sample potentially novel conformational states based on the CVs13. 

DeepDriveMD has been demonstrated to speed up the folding simulations of Fs-peptide and the 

fast-folding variant of the villin head piece protein by at least 2.3 folds13. The State Predictive 

Information Bottleneck (SPIB) approach was applied as a deep neural network to learn a priori CV 

for well-tempered metadynamics from undersampled trajectories14. The well-tempered 

metadynamics performed along the biased SPIB-learned CVs were shown to achieve > 40 times 

acceleration in simulating the left- to right-handed chirality transitions in a synthetic helical peptide 

and permeation of a small benzoic acid molecule through a synthetic, symmetric phospholipid 

bilayer14. Moreover, denoising diffusion probabilistic models were combined with replica 

exchange MD to achieve superior sampling of biomolecular energy landscape at temperatures that 

were not simulated without the assumption of particular slow degrees of freedom15. The 

temperature was treated as a fluctuating random variable and not a control parameter to allow for 

the direct sampling from the joint probability distribution in configuration and temperature space. 

The procedure was shown to discover transition and metastable states that were previously unseen 

at the temperature of interest and bypass the need to perform simulations for a wide range of 

temperatures15. 

 In this work, we have developed a new Deep Boosted Molecular Dynamics (DBMD) method. 

In DBMD, probabilistic Bayesian neural network models were used to construct boost potentials 

that exhibit Gaussian distribution with minimized anharmonicity for accurate energetic 

reweighting and enhanced sampling (Figure 1). DBMD has been demonstrated on model systems 

of the alanine dipeptide in explicit and implicit solvent, the chignolin fast-folding protein, and 

three hairpin RNAs with the GCAA, GAAA, and UUCG tetraloops. 
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DBMD simulations were performed on alanine dipeptide on alanine dipeptide (Figure 2a) in 

explicit and implicit solvent. Representative distributions of randomly generated boost potentials 

and the boost potentials generated by DL for alanine dipeptide in explicit and implicit solvent are 

shown in Figure 2b and 2c, respectively. DL was able to reduce the anharmonicity from 0.153 for 

the randomly generated boost potentials to 0.019 and 0.006 in two iterations of the explicit-solvent 

simulation (Figure 2b), and from 0.295 to 0.013 and 0.006 in two iterations of the implicit-solvent 

simulation (Figure 2c).  

The time courses of the effective harmonic force constants (k0P and k0D) as well as the total and 

dihedral boost potential parameters (Vmin, Vmax, and E) during the equilibration of the alanine 

dipeptide in explicit and implicit solvent are shown in Figure S1. During the one round of 1ns 

DBMD equilibration in explicit solvent, the total and dihedral effective harmonic force constants 

k0P and k0D stayed at 0.35 and 1.0, respectively (Figure S1a). The minimum total and dihedral 

potential energies VminP and VminD also remained constant at -5,966.96 kcal/mol and 5.92 kcal/mol, 

respectively (Figure S1b-S1c). However, the maximum total and dihedral potential energy VmaxP 

and VmaxD increased from -5,742.44 kcal/mol and 25.18 kcal/mol to -5,690.89 kcal/mol and 33.16 

kcal/mol, respectively (Figure S1b-S1c). The reference total and dihedral potential energy for 

applying boosts were the same as the maximum potential energies. The effective harmonic force 

constants as well as extrema and reference potential energies in the implicit-solvent equilibration 

followed similar trends as the explicit-solvent simulation (Figure S1e-S1g). 

Three independent 30ns DBMD simulations of alanine dipeptide in both explicit and implicit 

solvent captured more dihedral transitions compared to 1µs cMD simulations (Figure S2). In 

particular, DBMD sampled ~15, ~14, and ~10 Φ dihedral transitions during the 30ns of Sim1, 

Sim2, and Sim3, respectively, compared to only ~4 dihedral transitions observed in the 1µs cMD 
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of alanine dipeptide in explicit solvent (Figure S2a-S2d). In the implicit-solvent simulations, 

Sim1, Sim2, and Sim3 sampled ~17, ~28, and ~28 Φ dihedral transitions during the 30ns 

simulations, respectively, compared to the ~26 Φ dihedral transitions observed in the 1µs cMD 

simulation (Figure S2e-S2h). Therefore, DBMD accelerated the explicit-solvent simulations by 

~83-125 times and implicit-solvent simulations by ~22-36 times. Furthermore, the boost potentials 

applied in DBMD simulations of alanine dipeptide followed Gaussian distributions, with low 

anharmonicity of 6.2 x 10-3 in the explicit-solvent and 1.7 x 10-4 in implicit-solvent simulations 

(Figure S3a-S3b). The averages and standard deviations of the added boost potentials were 

recorded to be 11.2 ± 2.8 and 11.3 ± 2.3 kcal/mol in the explicit and implicit solvent simulations, 

respectively. 

 The PMF free energy profiles of alanine dipeptide were calculated for the Φ and Ψ dihedral 

angles. The 1D PMF free energy profiles were in excellent agreement between DBMD and cMD 

for both Φ and Ψ in explicit and implicit solvent (Figure S3c-S3f). Moreover, the 2D PMF free 

energy profiles of the (Φ, Ψ) backbone dihedrals showed high degrees of similarity between 

DBMD and cMD simulations (Figure 2d-2g). In particular, DBMD simulations in explicit solvent 

sampled five different low-energy conformational states of alanine dipeptide, which centered 

around (-150°, 159°) in the b-sheet, (-72°, 162°) in the polyproline II (PII), (48°, 18°) in the left-

handed a helix (aL), and (-148°, 0°) and (-69°, -17°) in the right-handed a helix (aR) conformation 

(Figure 2d). In implicit solvent, DBMD also identified five low-energy conformational states of 

alanine dipeptide, including b-sheet centered around (-160°, 150°), PII around (-62°, 140°) and (-

90°, 61°), aL around (56°, 34°), and aR around (-70°, -27°) (Figure 2e). The 1D and 2D free energy 

profiles of (Φ, Ψ) calculated from DBMD simulations were in excellent agreements with previous 

GaMD simulations performed by AMBER7, NAMD9, and OpenMM10. Therefore, simulations of 
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alanine dipeptide have demonstrated the enhanced sampling capability as well as accuracy of 

DBMD for both explicit and implicit solvent systems. 

Representative distributions of randomly generated dual boost potentials and the boost 

potentials generated by DL for chignolin folding are shown in Figure 3a. With the use of DL, the 

anharmonicity reduced from 0.17 for the randomly generated boost potentials to 0.01 and 0.005 in 

two iterations (Figure 3a).  

The time courses of the effective harmonic force constants (k0P and k0D) as well as the total and 

dihedral boost potential parameters (Vmin, Vmax, and E) during the equilibration of the chignolin 

fast-folding protein in explicit solvent are shown in Figure S4. During the two rounds of 5ns 

DBMD equilibration, the dihedral effective harmonic force constant k0D remained at 1.0, while the 

total effective harmonic force constant k0P decreased from 0.94 in round one to 0.89 in round two 

(Figure S4a). The minimum total potential energy VminP increased from -21,388.36 kcal/mol in 

round one to -20,761.33 kcal/mol in round two (Figure S4b). The maximum total potential energy 

VmaxP increased from -20,742.03 kcal/mol to -20,234.95 kcal/mol and -19,671.23 kcal/mol at the 

end of round one and two, respectively (Figure S4b). The minimum dihedral potential energy 

VminD increased from 87.50 kcal/mol in round one to 94.88 kcal/mol in round two (Figure S4c). 

The maximum dihedral potential energy VmaxD increased from 120.52 kcal/mol to 139.37 kcal/mol 

at the end of round one and 143.53 kcal/mol at the end of round two (Figure S4c). While the 

reference dihedral potential energy ED was identical to the maximum dihedral potential energy 

VmaxD, the reference total potential energy EP was slightly higher than the maximum total potential 

energy VmaxP (Figure S4b).  

Three independent 300ns DBMD simulations of chignolin in explicit solvent starting from its 

extended conformation were able to capture multiple folding and unfolding events of the protein 



 8 

(Figure S5). In particular, six, seven, and ten different folding-unfolding events were sampled in 

Sim1, Sim2, and Sim3 of chignolin (Figure S5a). Here, chignolin was considered folded if the 

Ca-atom RMSD of residues Y2-W9 was ≤ 1.0 Å. Furthermore, the boost potentials applied in 

DBMD simulations of chignolin followed the Gaussian distribution, with an anharmonicity of 7.1 

x 10-3 (Figure S5c) and an average of 23.1 ± 5.1 kcal/mol.  

 The 2D PMF free energy profile of chignolin folding was calculated using the Ca-atom RMSD 

relative to the 1UAO16 PDB structure and Rg of residues Y2-W9 as RCs. Three different low-

energy conformational states of chignolin were identified from the free energy profile, namely 

“Folded”, intermediate “I”, and “Unfolded” (Figure 3b). The “Folded” low-energy 

conformational state of chignolin centered around 0.4 Å and 4.1 Å of RMSD and Rg, respectively. 

In this state, terminal residues Y2-D3 formed b-sheets with residues G7-W9 of chignolin, while 

the loop formed by the backbone atoms of residues P4-T6 closely matched with the 1UAO16 PDB 

structure (Figure 3c). In the intermediate “I” low-energy conformational state, the Ca-atom RMSD 

and Rg were ~4.0 Å and ~5.2 Å. Transitioning from the “Folded” to intermediate “I” state, the b-

strands were broken apart due to the opposite movement of residues G1-D3 and T8-G10. However, 

the core loop of chignolin was somewhat maintained with the hydrophilic side chains of residues 

E5-T6 exposed to the solvent (Figure 3d). Finally, in the “Unfolded” low-energy conformational 

state, chignolin was fully extended with all amino acids exposed to the solvent, resulting in a 

RMSD of ~5.0 Å and Rg of ~6.5 Å (Figure 3e).  

Representative distributions of randomly generated dual boost potentials and the boost 

potentials generated by DL for the hairpin RNAs with the GCAA, GAAA, and UUCG tetraloops 

are shown in Figures 4a-6a, respectively. With the use of DL, the anharmonicity reduced from 

0.135 for the randomly generated boost potentials to 0.016, 0.015, and 0.009 in three iterations of 
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the GCAA RNA system simulation (Figure 4a). For GAAA, DL lowered the anharmonicity from 

0.137 for the random boost potentials to 0.012, 0.01, and 0.008 in three iterations (Figure 5a). For 

UUCG, the anharmonicity reduced from 0.147 to 0.014 to 0.013 and 0.008 (Figure 6a).  

The time courses of the effective harmonic force constants (k0P and k0D) as well as the total and 

dihedral boost potential parameters (Vmin, Vmax, and E) during the equilibration of the hairpin RNAs 

with GCAA, GAAA, and UUCG tetraloop in implicit solvent are shown in Figures S6-S8. During 

the three rounds of 5ns DBMD equilibration of the GCAA RNA tetraloop system, the total 

effective harmonic force constant k0P decreased from 0.20 in round one to 0.10 in round two but 

increased to 0.17 in round three, while the dihedral effective harmonic force constant k0D decreased 

from 0.84 in round one to 0.56 in round two and 0.51 in round three (Figure S6a). The minimum 

total potential energy VminP fluctuated from -2867.79 kcal/mol in round one to -2930.46 kcal/mol 

in round two to -2871.63 kcal/mol in round three (Figure S6b). The maximum total potential 

energy VmaxP also fluctuated between -2509.02 kcal/mol, -2366.52 kcal/mol, and -2458.10 

kcal/mol among the three (Figure S6b). The minimum dihedral potential energy VminD fluctuated 

from 291.14 kcal/mol in round one to 326.13 kcal/mol in round two to 314.70 kcal/mol in round 

three, whereas the maximum dihedral potential energy VmaxD decreased from 400.88 kcal/mol to 

391.04 and 368.91 kcal/mol from round one to round three (Figure S6c). The reference total and 

dihedral potential energies EP and ED were mostly identical to the maximum total and dihedral 

potential energies VmaxP and VmaxD, except during round one for the ED (Figure S6c).  

For the GAAA RNA tetraloop system, the total and dihedral effective harmonic force constants 

k0P and k0D decreased from 1.0 and 0.33 in round one to 0.15 and 0.98 in round two to 0.098 and 

0.51 in round three (Figure S7a). The minimum total potential energy VminP decreased from -

2621.20 kcal/mol in round one to -2746.68 kcal/mol in round two to -2799.21 kcal/mol in round 
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three, whereas the maximum total potential energy VmaxP fluctuated between -2380.18 kcal/mol, -

2177.94 kcal/mol, and -2265.46 kcal/mol during the three rounds of DBMD equilibration (Figure 

S7b). The minimum dihedral potential energy VminD increased from 289.55 kcal/mol to 323.12 

kcal/mol and 331.20 kcal/mol from round one to round three, while the maximum dihedral 

potential energy VmaxD decreased from 396.04 kcal/mol to 387.99 and 380.68 kcal/mol from round 

one to three (Figure S7c). The reference total and dihedral potential energies were identical to the 

maximum total and dihedral energies.  

For the UUCG RNA tetraloop system, the total and dihedral effective harmonic force constants 

k0P and k0D fluctuated between 0.12 and 1.0 in round one to 0.27 and 0.32 in round two to 0.19 and 

0.46 in round three (Figure S8a). The minimum total potential energy VminP also fluctuated 

between -3360.51 kcal/mol, -3189.11 kcal/mol, and -3258.47 kcal/mol from round one to three of 

DBMD equilibration, whereas the maximum total potential energy VmaxP increased from -2900.68 

kcal/mol in round one to -2831.27 kcal/mol and -2733.89 kcal/mol in round two and three, 

respectively (Figure S8b). The minimum dihedral potential energy VminD fluctuated between 

341.78 kcal/mol, 337.89 kcal/mol, and 327.41 kcal/mol from round one to three of DBMD 

equilibration, whereas the maximum dihedral potential energy VmaxD decreased from 416.37 

kcal/mol to 411.57 kcal/mol to 407.42 kcal/mol from round one to three (Figure S8c). The 

reference total and dihedral potential energies were the same as the maximum potential energies 

during the DBMD equilibration of the UUCG RNA tetraloop system. 

Multiple independent 2µs DBMD simulations were performed on the hairpin RNAs with 

GCAA, GAAA, and UUCG tetraloops in implicit solvent, starting from their extended 

conformations (Figures 4-6). Remarkably, DBMD was able to capture multiple folding and 

unfolding events for all three hairpin RNAs within 2µs of simulations. In particular, a total of 18, 
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16, and 11 different stable folding-unfolding events were observed within 2µs DBMD simulations 

of the RNAs with GCAA, GAAA, and UUCG tetraloops, respectively (Figures S9a-S11a). The 

DBMD boost potentials exhibited Gaussian distributions, with low anharmonicity of 8.3 x 10-3, 

3.9 x 10-4, and 2.9 x 10-3 in the GCAA, GAAA, and UUCG RNA tetraloop simulations (Figures 

S9c, S10c, and S11c). Furthermore, the boost potentials were recorded to be 37.0 ± 4.5 kcal/mol 

for the GCAA, 32.9 ± 3.1 kcal/mol for GAAA, and 27.6 ± 3.4 for UUCG system, given the 

different 𝜂! and 𝜂" used for the RNA systems. 

 The 2D PMF free energy profiles of the hairpin RNAs with tetraloops were calculated using 

the heavy-atom RMSDs of the whole RNAs relative to respective PDB structures (1ZIH17 for 

GCAA, 2ADT18 for GAAA, and 2KOC19 for UUCG) and the G1-U12, C1-G12, and G1-C14 

center-of-mass (COM) distances as RCs. DBMD sampled three different low-energy 

conformational states, including “Folded”, intermediate “I”, and “Unfolded”, for the RNA with 

GCAA tetraloop (Figure 4b), four different low-energy conformational states, namely “Folded”, 

intermediate “I1” and “I2”, and “Unfolded”, for the GAAA tetraloop (Figure 5b), and three 

different low-energy conformational states, including “Folded”, intermediate “I”, and “Unfolded”, 

for the UUCG tetraloop (Figure 6b).  

 In the “Folded” low-energy conformational state of the 12-mer hairpin RNA with the GCAA 

tetraloop, the heavy-atom RMSD relative to the 1ZIH17 PDB structure was ~1.1 Å, and the COM 

distance between terminal nucleotides G1 and U12 was ~10.7 Å. This “Folded” low-energy 

conformational state was maintained by the Watson-Crick base pairs between nucleotides G2-C11, 

G3-C10, and C4-G9 and base stacking between nucleotides C6-A7-A8 of the GCAA tetraloop 

(Figure 4c). With transition from the “Folded” to the intermediate “I” state, most of the Watson-

Crick base pairs distorted, with the side chains of nucleotides G9, C11, and U12 flipping out and 
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exposing themselves to the solvent, while the base stacking between nucleotides C6-A7-A8 of the 

GCAA tetraloop was intact as observed in a conformation at ~8.3Å heavy-atom RMSD relative to 

the 1ZIH17 PDB structure  and ~6.5Å G1-U12 COM distance (Figure S12). In the intermediate 

“I” low-energy conformational state, the RNA began extending, with nucleotides G1-C4 and C10-

U12 extending in opposite directions. The base stacking between nucleotides C6-A7-A8 was 

mostly broken, with nucleotide A8 flipping out to base stack with nucleotide A9. In this state, the 

heavy-atom RMSD relative to the 1ZIH17 PDB structure was ~9.2 Å, and the G1-U12 COM 

distance was ~12.9 Å (Figure 4d). In the “Unfolded” low-energy conformational state, the RNA 

was completely stretched out, with a heavy-atom RMSD of ~14.5 Å and G1-U12 COM distance 

of ~48.3 Å (Figure 4e).  

 In the “Folded” low-energy conformational state of the 12-mer hairpin RNA with the GAAA 

tetraloop, the heavy-atom RMSD relative to the 2ADT18 PDB structure was ~1.3 Å, and the COM 

distance between terminal nucleotides C1 and G12 was ~10.3 Å. Similar to the GCAA system, 

this “Folded” state of the GAAA system was maintained by the Watson-Crick base pairs between 

nucleotides C1-G12 and G4-C9 as well as the base stacking between nucleotides A6-A7-A8 of the 

GAAA tetraloop (Figure 5c). The heavy-atom RMSD increased to ~7.8 Å, whereas the C1-G12 

COM distance decreased to ~7.5 Å in the intermediate “I1” low-energy conformation. In this state, 

both the Watson-Crick base pairs and base stacking in the GAAA tetraloop were broken, with 

nucleotides G3, G4, A7, A8, C9, U10 flipping out and exposing to the solvent. However, base 

stacking was observed between nucleotides G5 and A6 of the GAAA tetraloop (Figure 5d). In the 

“I2” intermediate state, the heavy-atom RMSD the 2ADT18 PDB structure was ~9.5 Å, and the 

COM distance between terminal nucleotides C1 and G12 was ~17.9 Å. The 12-mer RNA was 

mostly distorted, with random base stacking formed between nucleotides G5-G12 and A6-A8. The 
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side chains of the other nucleotides flipped out and exposed to the solvent (Figure 5e). In the 

“Unfolded” low-energy conformational state, the RNA was completely stretched out, with a 

heavy-atom RMSD of ~13.5 Å and C1-G12 COM distance of ~45.0 Å (Figure 5f).  

 The “Folded” low-energy conformational state of the 14-mer hairpin RNA with the UUCG 

tetraloop has a heavy-atom RMSD relative to the 2KOC19 PDB structure of ~2.3 Å and COM 

distance between terminal nucleotides G1 and C14 of ~9.8 Å. In this state, Watson-Crick base 

pairs were formed between nucleotides G2-C13, C3-G12, A4-U11, and C5-G10. However, unlike 

the GCAA and GCAA systems, no base stacking was observed between the nucleotides in the 

UUCG tetraloop (Figure 6c). In the “I” intermediate state, the heavy-atom RMSD increased to 

~9.3 Å and the G1-C14 COM distance decreased to ~7.6 Å. The RNA was mostly distorted, with 

random base stacking formed between nucleotides G2 and G10. Most of the other nucleotides 

flipped out and exposed to the solvent (Figure 6d). In the “Unfolded” low-energy conformational 

state, the heavy-atom RMSD relative to the 2KOC19 PDB structure further increased to ~14.3 Å 

and the COM distance between nucleotides G1 and C14 increased to ~43.4 Å. The RNA was 

mostly stretched out (Figure 6e). Therefore, DBMD was able to capture repetitive folding and 

unfolding of RNA tetraloop structure in 2µs simulations, thereby enabling characterization of the 

RNA folding free energy landscapes.  

In this work, we have developed DBMD, which generates boost potentials with Gaussian 

distribution using DL to reduce energy barriers and enhanced conformational sampling of 

biomolecules. Probabilistic Bayesian DL models are trained using potential energies of finished 

simulation frames to build the boost potentials that exhibit Gaussian distribution with 

anharmonicity 𝛾	 < 0.01. We have demonstrated DBMD on the simulations of alanine dipeptide 

in explicit and implicit solvent and folding of the chignolin protein and hairpin RNAs with the 
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GCAA, GAAA, and UUCG tetraloops. Overall, DBMD was able to greatly enhance 

conformational transitions and characterize the protein and RNA folding free energy landscapes. 

 DBMD captured multiple folding and unfolding events of chignolin within 300 ns of 

simulations (Figure S5a). Compared to previous aMD20 simulations of chignolin folding, DBMD 

sped up the folding-unfolding transition by 1.35 times. Furthermore, DBMD accelerated the 

folding-unfolding transition of chignolin by 6 times compared to previous GaMD simulations 

performed using AMBER7 and NAMD9. It should be noted that DBMD was developed to apply 

boost potential with the reference energy 𝐸 = 	𝑉#$% +
&!"#'&!$%

(&
 as default, which corresponds to 

the upper-bound reference energy in GaMD (𝑖𝐸 = 2). The reference energy 𝐸 is automatically 

switched to 𝑉#)* (𝑖𝐸 = 1 or lower-bound reference energy in GaMD) if 𝐸 > 	𝑉#)* + 𝜂|𝑉#)*|, 

with 𝜂 being the reference energy factor (valued between 0 and 1). 𝜂 was introduced to avoid 

exceedingly large reference energy 𝐸. In contrast, previous GaMD simulations of chignolin were 

performed with the reference energy set to the default lower bound, i.e., 𝐸 = 	𝑉#)*. In this regard, 

the reference total potential energy 𝐸! for applying the boost potential in DBMD simulations of 

chignolin were found to be significantly greater than 𝑉#)* (Figure S4b). Therefore, the boost 

potential in the DBMD simulations of chignolin were recorded to be 23.1 ± 5.1 kcal/mol, which 

was approximately ~2.4 and ~2.1 times larger than in the previous GaMD simulations performed 

using AMBER (∆V = 9.54 ± 2.44 kcal/mol)7 and NAMD (∆V = 11.2 ± 2.8 kcal/mol)9, respectively. 

Nevertheless, even with the larger average and standard deviation, the boost potential in DBMD 

simulations still exhibited relatively smaller anharmonicity (g = 7.1 ´ 10-3) than in GaMD 

simulations with AMBER7 (g = 9.2 ´ 10-3) and NAMD9 (g = 9.7 ´ 10-3). This was apparently one 

advantage of using DL to generate the Gaussian boost potentials. On the other hand, DBMD still 

provided a 2D free energy profile of the Ca-atom RMSD and Rg of residues Y2-W9 with high 
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degrees of similarity compared to previous GaMD simulations of chignolin performed with 

AMBER and NAMD7, 9. In particular, DBMD sampled all three low-energy conformational states 

(“Folded”, intermediate “I”, and “Unfolded”) as GaMD in AMBER7 and the two low-energy 

conformations (“Folded” and “I”) as GaMD in NAMD9 (Figure 3). Moreover, the folding 

mechanism uncovered by DBMD was relatively similar to that by GaMD in AMBER7. Starting 

from the extended conformation of the “Unfolded” state (Figure 3e), the terminal residues of 

chignolin was brought closer due to the interactions between residues P4 and G7 in the 

intermediate “I” state (Figure 3d). With transition from the intermediate “I” to the “Folded” state, 

antiparallel b-sheets were formed between residues G1-D3 and G7-G10, with the hydrophilic side 

chains of residues D3, E5, T6, and T8 exposed to the solvent (Figure 3c).  

 For the simulations of the hairpin RNAs with GCAA, GAAA, and UUCG tetraloops, the total 

number of folding and unfolding events captured by AIMBD simulations reduced from the GCAA 

to GAAA to UUCG simulation system, which was in good agreement with previous studies by 

Tan et al.21 and Chen et al.22. This also demonstrated the importance of the base stacking within 

the tetraloop for RNA folding. In particular, while nucleotides C6-A7-A8 of the GCAA tetraloop 

and A6-A7-A8 of the GAAA tetraloop base-stacked in their respective “Folded” low-energy 

conformations, no base stacking was observed within the “Folded” hairpin RNA with UUCG 

tetraloop (Figures 4c-6c). Furthermore, the folding mechanisms uncovered by DBMD were 

similar among the hairpin RNAs with GCAA, GAAA, and UUCG tetraloop (Figures 4-6). Starting 

from the extended conformation in the “Unfolded” low-energy conformational states (Figures 4e, 

5f, and 6e), Watson-Crick base pairs began to form from terminal nucleotides towards the cores 

and tetraloops of the RNAs. Finally, base stacking between the nucleotides of the tetraloops were 

formed to enable the stable folding of the hairpin RNAs (Figures 4c and 5c). This general 
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mechanism of RNA folding showed high degrees of similarity to the previous study by Chen et 

al.22, even though they used shorter RNA strands, a different force field parameter set, and a 

different solvation model. 

 In conclusion, we have developed DBMD, a DL-based enhanced sampling technique that 

allows for accurate energetic reweighting and enhanced sampling of biomolecular systems. 

DBMD is available with open source in OpenMM at https://github.com/MiaoLab20/DBMD/. As 

demonstrated on the model systems, DBMD captured multiple dihedral transitions of alanine 

dipeptide as well as folding-unfolding events of the chignolin protein and hairpin RNAs with 

tetraloops within relatively short simulation lengths. The performance of DBMD on simulations 

of larger biological systems (such as membrane proteins and molecular motors) and using different 

force fields other than AMBER will be examined in future studies. DBMD is expected to facilitate 

the simulations and free energy calculations of a wide range of biomolecules.   

 

Methods 

Theory of DBMD 

In DBMD, boost potentials ∆V are optimized using DL to follow Gaussian distribution with 

minimized anharmonicity. Considering a system comprised of N atoms with coordinates 𝑟	 ≡

	{𝑟+, … , 𝑟,} and momenta 𝑝	 ≡ 	 {𝑝+, … , 𝑝,}, the system Hamiltonian can be expressed as: 

𝐻(𝑟, 𝑝) = 𝐾(𝑝) + 𝑉(𝑟), (1) 

where 𝐾(𝑝) and 𝑉(𝑟) are the system kinetic and total potential energies, respectively. To enhance 

biomolecular conformational sampling, boost potentials can be added to the system potential 

energies. According to the DBMD algorithm, the boost potential can be calculated as the 

following7:  

https://github.com/MiaoLab20/DBMD/
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∆𝑉(𝑟) = ,
1
2
𝑘0𝐸 − 𝑉(𝑟)3

!
, 𝑉(𝑟) < 𝐸

0, 𝑉(𝑟) ≥ 𝐸.
 

(2) 

where E is the reference energy for adding boost potential and k is the harmonic force constant. 

Here, the reference energy can be set in a range: 𝑉#)* ≤ 𝐸 ≤ 𝑉#$% +
+
(
. The harmonic force 

constant is calculated as 𝑘 = (&
&!"#'&!$%

, with the effective harmonic force constant 𝑘- ∈ (0,1]. 

Accordingly, the reference energy can be expressed as 𝐸 = 	𝑉"#$ +
%!"#&%!$%

'&
. Here, 𝐸 = 𝑉#)* 

when 𝑘- = 1, and the smaller the 𝑘- values, the higher the reference energy 𝐸. In DBMD, we 

introduce a parameter called the reference energy factor (𝜂) valued between 0 and 1 to avoid 

exceedingly large 𝐸 and control the acceleration during simulations. Physically, 𝑉"() + 𝜂 ∗ |𝑉"()| 

represents the upper limit of the reference energy 𝐸.  

𝐸 =	𝑉"#$ +
𝑉"() − 𝑉"#$

𝑘*
 

𝑖𝑓	𝐸 > 	𝑉"() + 𝜂 ∗ |𝑉"()|, 𝑡ℎ𝑒𝑛:	𝐸 = 𝑉"() 

(3) 

 

Therefore, the boost potential can be rewritten as: 

∆𝑉(𝑟) = C
𝑘*

2(𝑉"() − 𝑉+,-)
(𝐸 − 𝑉(𝑟))!, 𝑉(𝑟) < 𝐸

0, 𝑉(𝑟) ≥ 𝐸.
 

(4) 

To characterize the extent to which ∆V follows a Gaussian distribution, its distribution 

anharmonicity g is calculated as: 

𝛾 = 𝑆"() − 𝑆∆% =
1
2
ln02𝜋𝑒𝜎∆%! 3 + J 𝑝(∆𝑉) ln0𝑝(∆𝑉)3 𝑑∆𝑉,

/

*
 

(5) 

where ∆V is dimensionless as divided by 𝑘.𝑇 with 𝑘. and 𝑇 being the Boltzmann constant and 

system temperature, respectively, and 𝑆#)* =
+
/
ln(2𝜋𝑒𝜎∆&/ ) is the maximum entropy of ∆V8. 

When 𝛾 is zero, ∆V follows exact Gaussian distribution with sufficient sampling. Reweighting by 

approximating the ensembled-averaged Boltzmann factor with cumulant expansion to the 2nd order 
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(“Gaussian approximation”) can accurately recover the original free energy landscape7, 23. As 𝛾 

increases, the ∆V distribution becomes less harmonic, and the reweighted free energy profile 

obtained from cumulant expansion to the 2nd order would deviate from the original7. The 

anharmonicity of ∆V distribution serves as an indicator of the enhanced sampling convergence and 

accuracy of the reweighted free energy7. 

 

Deep Learning of Potential Energies 

In DBMD, the probabilistic Bayesian neural network model, developed based on Bayes’ 

theorem24, within the TensorFlow Probability25 module was applied to minimize the 

anharmonicity of boost potentials ∆V.  The probabilistic model was initiated with the definition of 

a prior distribution. A standard normal distribution was adopted as the prior distribution since the 

central limit theorem asserts that a properly normalized sum of samples will approximate a normal 

distribution26, 27. Here, a multivariate normal distribution with a diagonal covariance matrix was 

used, with the mean values initialized to zero and the variances 𝜎$/ to one26.  

𝚺 = M
𝜎0! 0 …
0 𝜎!! …
⋮ ⋮ ⋱

Q. 
(6) 

The posterior distribution was also set to be a multivariate Gaussian distribution, but the off-

diagonal elements in the covariance matrix were allowed to be non-zero. This was achieved with 

a lower-triangular matrix 𝐋 with positive-valued diagonal entries such that 𝚺 = 𝐋𝐋1, and the 

triangular matrix can be obtained through Cholesky decomposition of the covariance matrix26.  

𝐋 = S
𝐿00 0 …
𝐿!0 𝐿!! …
⋮ ⋮ ⋱

U. 
(7) 

Finally, the probabilistic layers were defined using the DenseVariational function of the 

TensorFlow Probability module25-27. Our Bayesian neural network model consisted of two or four 
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dense variational layers of two different types, namely L1 and L2. The first dense variational layer 

L1 had 64 filters, with a sigmoid activation function to enable the fitting of non-linear data26, 27. 

The second dense variational layer L2 used the IndependentNormal25 function to parameterize a 

normal distribution and capture aleatoric uncertainty, with an event shape equal to one26, 27. The 

prior and posterior distributions used in both L1 and L2 were specified above. Testing simulations 

have showed us that the number of the second dense variational layer L2 could significantly affect 

the average and standard deviation of the output boost potentials after DL. Overall, the lower the 

numbers of L2, the wider the distributions and the higher the average boost potentials. Therefore, 

to balance between the stability and sampling of the simulations as well as the learning speed, we 

included one L2 layer in the DL model for explicit-solvent simulations and three L2 layers for 

implicit-solvent simulations. The input and output shape were set to one since both the potential 

energies and boost potentials were scalars.  

 

Workflow of DBMD 

The workflow of DBMD is shown in Figure 1. First, a short cMD was performed on the biological 

system of interest, and the potential statistics (Vmin and Vmax) were collected as parameters for pre-

equilibration of DBMD simulation. During the pre-equilibration, the effective harmonic force 

constants (k0P and k0D) were kept fixed at (1.0, 1.0) for explicit-solvent simulations and (0.05, 1.0) 

for implicit-solvent simulations. The boost potentials were calculated based on equation (4), and 

the potential statistics (Vmin and Vmax) were updated during pre-equilibration. The system total and 

dihedral potential energies from the pre-equilibration were then collected (Figure 1a), which 

served as the X inputs for the probabilistic Bayesian DL models25, 26 (Figure 1b). Initial boost 

potentials were randomly generated from the system potential energies and randomly assigned k0 
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using equations (3-4) and used as the Y inputs for DL (Figure 1c). DL was carried out in multiple 

iterations until the output boost potentials followed Gaussian distribution with anharmonicity 𝛾 <

0.01 (Figure 1d). If 𝛾 ≥ 0.01, the generated boost potentials were used as Y inputs to retrain the 

DL model until 𝛾 < 0.01 (Figure 1e). Based on the potential statistics learnt until the last frame 

of the pre-equilibration (Vmin, Vmax, V, and ∆V), the effective harmonic force constants were 

calculated as following: 

𝑘* = S
V2∆𝑉(𝑉"() − 𝑉"#$) − V2∆𝑉(𝑉"() − 𝑉"#$) − 4(𝑉"#$ − 𝑉)(𝑉"() − 𝑉"#$)

2(𝑉"#$ − 𝑉)
U
!

 

𝑖𝑓	𝑘* > 1	𝑜𝑟	𝐸 > 	𝑉"() + 𝜂 ∗ |𝑉"()|, 𝑡ℎ𝑒𝑛:  

𝑘* =
2∆𝑉(𝑉"() − 𝑉"#$)

(𝐸 − 𝑉)!
 

𝑘* = min(1.0, 𝑘*). 

(8) 

and used as input alongside Vmin and Vmax to equilibrate the simulation system (Figure 1f). The 

equilibration usually consisted of multiple rounds, with the effective harmonic force constants (k0P 

and k0D) kept fixed and potential statistics (Vmin and Vmax) updated in each round. DL was carried 

out at the end of each round using the updated potential energies as inputs, with the same DL 

model as obtained at the end of the pre-equilibration (Figure 1). This multi-round equilibration 

approach also allows users to easily select a simulation checkpoint before running the production 

simulations. Finally, the effective harmonic force constants (k0P and k0D) and potential statistics 

(Vmin and Vmax) taken from the last round of the equilibration were used as input parameters for 

DBMD production simulations (Figure 1f), during which the effective harmonic force constants 

and potential statistics were kept fixed, and boost potentials were calculated based on equation 

(4).  
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System Setup and Simulation Protocols 

Simulations of the alanine dipeptide and chignolin were performed using the AMBER ff99SB 

force field parameter set28. The LEaP module in the AmberTools package28 were used to build the 

simulation systems. For the DBMD simulations in explicit solvent, alanine dipeptide was solvated 

in a TIP3P29 water box that extended ~8 Å from the solute surface. The unfolded chignolin with a 

sequence of 10 residues (GYDPETGTWG)16 was solvated in a TIP3P29 water box that extended 

~10 Å from the solute surface. The final system for alanine dipeptide in explicit solvent, alanine 

dipeptide in implicit solvent, and chignolin in explicit solvent contained 1912, 22, and 6773 atoms, 

respectively. 

 Simulations of the hairpin RNAs with the GCAA, GAAA, and UUCG tetraloops were carried 

out using the AMBER Shaw force field parameter set21, starting from their unfolded states. The 

sequences of the hairpin RNAs with GCAA, GAAA, and UUCG tetraloops were 

GGGCGCAAGCCU (12 nucleotides)17, CGGGGAAACUUG (12 nucleotides)18, and 

GGCACUUCGGUGCC (14 nucleotides)19, respectively. The final systems of the hairpin RNAs 

with GCAA, GAAA, and UUCG tetraloops in implicit solvent contained 389, 390, and 447 atoms, 

respectively. All simulations were carried out at 300K temperature.  

 For the explicit-solvent simulations, periodic boundary conditions were applied, and bonds 

containing hydrogen atoms were restrained with the SHAKE30 algorithm. Weak coupling to an 

external temperature and pressure bath was necessary to control both temperature and pressure31. 

The electrostatic interactions were calculated using the particle mesh Ewald (PME) summation32 

with a cutoff of 8.0-9.0 Å for long-range interactions. For the implicit-solvent simulations, the 

generalized Born solvent model 2 (GBn2)33 parameters were used. No nonbonded cutoff was set 

and no periodic boundary condition was used in the implicit-solvent simulations. The solute and 
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solvent dielectric constants were set to 1.0 and 78.5, respectively, and the effect of a non-zero salt 

concentration was achieved by setting the Debye-Huckel screening parameter34 to 1.0/nm. A 2-fs 

timestep with the SHAKE30 algorithm applied was used in all simulations.  

For alanine dipeptide, the simulations consisted of a 2ns short cMD, followed by a 2ns DBMD 

pre-equilibration, one round of 2ns DBMD equilibration, and three independent 30ns DBMD 

production simulations. The reference energy factors were set to zero for both total and dihedral 

potential energy (𝜂! and 𝜂"), i.e., E = Vmax. For chignolin, the simulation involved a 5ns cMD, a 

2ns DBMD pre-equilibration, two rounds of 5ns DBMD equilibration, and three independent 

300ns DBMD production simulations, with 𝜂! and 𝜂" both set to 0.05. For the hairpin RNAs with 

GCAA, GAAA, and UUCG tetraloops, the simulations consisted of a 20ns cMD, followed by a 

5ns DBMD pre-equilibration, three rounds of 5ns DBMD equilibration, and three-four 

independent 2µs DBMD production simulations. 𝜂! and 𝜂" were set to 0.05 and 0.05 for GCAA, 

0.05 and 0.0 for GAAA, and 0.0 and 0.0 for UUCG RNA tetraloops. The simulation frames were 

saved every 0.1 ps. The CPPTRAJ35 tool was used for simulation trajectory analysis. 

  Finally, the PyReweighting toolkit8 was used to compute the potential of mean force (PMF) 

profiles of the backbone dihedrals Phi and Psi (Φ and Ψ) in the alanine dipeptide (Figure 2a). The 

Ca-atom root-mean-square deviation (RMSD) of residues Y2-W9 of chignolin relative to the 

1UAO16 PDB and Ca-atom radius of gyration (Rg) of residues Y2-W9 were selected as RCs to 

calculate the PMF profiles in the simulations of chignolin folding. The heavy-atom RMSD of the 

whole hairpin RNAs with tetraloops relative to respective PDB structures (1ZIH17 for GCAA, 

2ADT18 for GAAA, and 2KOC19 for UUCG) and the G1-U12, C1-G12, and G1-C14 center-of-

mass (COM) distances were used as RCs to calculate the PMF profiles in the simulations of hairpin 

RNAs with tetraloops. A bin size of 6°, 1.0 Å, and 1.0-2.0 Å and cutoff of 10, 100, and 100-500 
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in one bin were used for reweighting of DBMD simulations of alanine dipeptide, chignolin, and 

hairpin RNAs with tetraloops, respectively.  

 

Supporting Information 

Algorithm (pseudo-code) and example input file of DBMD in OpenMM, along with description 

of input parameters. Time courses of the effective harmonic force constants, boost potential 

parameters, the reaction coordinates selected for the calculations of PMF profiles and distributions 

of the boost potentials applied in the DBMD simulations of alanine dipeptide, chignolin, and RNA 

hairpins with GCAA, GAAA, and UUCG tetraloops. 
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Figure Captions 

Figure 1. Summary of Deep Boosted Molecular Dynamics (DBMD). (a) First, molecular 

dynamics (MD) simulation is performed on the system of interest. (b) The system potential 

energies from finished simulation frames (V1, V2, ..., VM) are collected as the X inputs for the 

probabilistic Bayesian Deep Learning (DL) model. (c) Reference boost potentials (∆V1, ∆V2, ..., 

∆VM) were generated from the collected system potential energies and randomized effective 

harmonic force constants k0 to serve as the Y inputs for the DL. (d) The probabilistic Bayesian 

neural network was trained to generate boost potentials that follow Gaussian distribution with the 

probability density function 𝑓(∆𝑉). Here, ∆𝑉 is boost potential, and 𝜇 and 𝜎 are the average and 

standard deviation of the boost potentials. DL is carried out in multiple iterations until the 

anharmonicity of output boost potentials 𝛾 < 0.01. (e) If the anharmonicity of output boost 

potential 𝛾 is ≥ 0.01, the generated boost potentials are used as Y inputs to retrain the DL model 

until 𝛾 < 0.01. (f) Finally, the effective harmonic force constants k0 are calculated from the system 

potential energy (VM) and used as input alongside the minimum and maximum of potential energy 

(Vmin and Vmax) (b) for the next round of enhanced sampling simulation. 

Figure 2. DBMD simulations of alanine dipeptide. (a) Schematic representation of backbone 

dihedrals Phi (Φ) and Psi (Ψ) dihedrals of alanine dipeptide. (b-c) Representative distributions of 

randomly generated dual boost potentials and DL-generated boost potentials iterated until g < 0.01 

from the potential energies collected from the pre-equilibration of the alanine dipeptide in explicit 

solvent (b) and implicit solvent (c). The legends include the anharmonicity and average ± standard 

deviation of the dual boost potentials. (d-g) 2D Potential of mean force (PMF) free energy profile 

of backbone dihedrals (Φ, Ψ) of alanine dipeptide calculated from three 30ns DBMD simulations 

(d-e) compared to 1µs cMD simulations (f-g) in explicit solvent (d, f) and implicit solvent (e, g). 
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The low-energy states are labeled corresponding to the right-handed a helix (aR), left-handed a 

helix (aL), b-sheet (b), and polyproline II (PII) conformations. 

Figure 3. Folding of chignolin in explicit solvent captured by DBMD. (a) Representative 

distributions of randomly generated dual boost potentials and DL-generated boost potentials 

iterated until g < 0.01 from the potential energies collected from the pre-equilibration of chignolin. 

The legends include the anharmonicity and average ± standard deviation of the dual boost 

potentials. (b) 2D PMF free energy profile of the Ca-atom root-mean-square deviation (RMSD) of 

residues Y2-W9 of chignolin relative to the 1UAO PDB and Ca-atom radius of gyration (Rg) of 

residues Y2-W9. The low-energy conformational states are labeled “Folded”, “I”, and “Unfolded”. 

(c) The “Folded” low-energy conformational state compared to the 1UAO PDB structure, for 

which the RMSD is ~0.4 Å and the Rg is ~4.1 Å. (d) The intermediate “I” low-energy 

conformational state compared to the 1UAO PDB structure, for which the RMSD is ~4.0 Å and 

the Rg is ~5.2 Å. (e) The “Unfolded” low-energy conformational state compared to the 1UAO 

PDB structure, for which the RMSD is ~5.0 Å and the Rg is ~6.5 Å. The low-energy 

conformational states are colored red, and the 1UAO PDB structure is colored blue. 

Figure 4. Folding of the 12-mer hairpin RNA with GCAA tetraloop in implicit solvent 

captured by DBMD. (a) Representative distributions of randomly generated dual boost potentials 

and DL-generated boost potentials iterated until g < 0.01 from the potential energies collected from 

the pre-equilibration of the 12-mer hairpin RNA with GCAA tetraloop. The legends include the 

anharmonicity and average ± standard deviation of the dual boost potentials. (b) 2D PMF free 

energy profile of the heavy-atom RMSD of the 12-mer hairpin RNA relative to the 1ZIH PDB and 

the center of mass (COM) distance between terminal nucleotides G1 and U12. The low-energy 

conformational states are labeled “Folded”, “I”, and “Unfolded”. (c) The “Folded” low-energy 



 29 

conformational state compared to the 1ZIH PDB structure, for which the RMSD is ~1.1 Å and the 

G1-U12 distance is ~10.7 Å. (d) The intermediate “I” low-energy conformational state compared 

to the 1ZIH PDB structure, for which the RMSD is ~9.2 Å and the G1-U12 distance is ~12.9 Å. 

(e) The “Unfolded” low-energy conformational state compared to the 1ZIH PDB structure, for 

which the RMSD is ~14.5 Å and the G1-U12 distance is ~48.3 Å. The low-energy conformational 

states are colored red, and the 1ZIH PDB structure is colored blue. 

Figure 5. Folding of the 12-mer hairpin RNA with GAAA tetraloop in implicit solvent 

captured by DBMD. (a) Representative distributions of randomly generated dual boost potentials 

and DL-generated boost potentials iterated until g < 0.01 from the potential energies collected from 

the pre-equilibration of the 12-mer hairpin RNA with GAAA tetraloop. The legends include the 

anharmonicity and average ± standard deviation of the dual boost potentials. (b) 2D PMF free 

energy profile of the heavy-atom RMSD of the 12-mer hairpin RNA relative to the 2ADT PDB 

and the COM distance between terminal nucleotides C1 and G12. The low-energy conformational 

states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (c) The “Folded” low-energy 

conformational state compared to the 2ADT PDB structure, for which the RMSD is ~1.3 Å and 

the C1-G12 distance is ~10.3 Å. (d) The intermediate “I1” low-energy conformational state 

compared to the 2ADT PDB structure, for which the RMSD is ~7.8 Å and the C1-G12 distance is 

~7.5 Å. (e) The intermediate “I2” low-energy conformational state compared to the 2ADT PDB 

structure, for which the RMSD is ~9.5 Å and the C1-G12 distance is ~17.9 Å. (f) The “Unfolded” 

low-energy conformational state compared to the 2ADT PDB structure, for which the RMSD is 

~13.5 Å and the C1-G12 distance is ~45.0 Å. The low-energy conformational states are colored 

red, and the 2ADT PDB structure is colored blue. 
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Figure 6. Folding of the 14-mer hairpin RNA with UUCG tetraloop in implicit solvent 

captured by DBMD. (a) Representative distributions of randomly generated dual boost potentials 

and DL-generated boost potentials iterated until g < 0.01 from the potential energies collected from 

the pre-equilibration of the 14-mer hairpin RNA with UUCG tetraloop. The legends include the 

anharmonicity and average ± standard deviation of the dual boost potentials. (b) 2D PMF free 

energy profile of the heavy-atom RMSD of the 14-mer hairpin RNA relative to the 2KOC PDB 

and the COM distance between terminal nucleotides G1 and C14. The low-energy conformational 

states are labeled “Folded”, “I”, and “Unfolded”. (c) The “Folded” low-energy conformational 

state compared to the 2KOC PDB structure, for which the RMSD is ~2.3 Å and the G1-C14 

distance is ~9.8 Å. (d) The intermediate “I” low-energy conformational state compared to the 

2KOC PDB structure, for which the RMSD is ~9.3 Å and the G1-C14 distance is ~7.6 Å. (e) The 

“Unfolded” low-energy conformational state compared to the 2KOC PDB structure, for which the 

RMSD is ~14.3 Å and the G1-C14 distance is ~43.4 Å. The low-energy conformational states are 

colored red, and the 2KOC PDB structure is colored blue. 
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Algorithm of Deep Boosted Molecular Dynamics (DBMD) 

DBMD { 
 // Stage 1: Conventional molecular dynamics 
 For i = 1, ..., conventional_md_steps: 
  If (i == conventional_md_steps): 
   Vmin = min(V1, V2, ..., Vi) 
   Vmax = max(V1, V2, ..., Vi) 
 End 
 
 // Stage 2: Pre-equilibration 
 If (simulation_type == “explicit”): 
  k0P = 1.0 
  k0D = 1.0 
 Else: // (simulation_type == “protein.implicit” or “RNA.implicit”) 
  k0P = 0.05 
  k0D = 1.0 
 Set refE_factor 
 For i = 1, ..., pre_equilibration_steps: 
  Record V 
  E = Vmin + (Vmax – Vmin) / k0 
  If (E > Vmax + refE_factor*abs(Vmax)): 
   E = Vmax 
  If (V < E): 
   ∆V = (1/2)*k0*(E – V)^2 / (Vmax – Vmin) 
   V = V + ∆V 
  Vmin = min(V, Vmin) 
  Vmax = max(V, Vmax) 
 End 
 

// Stage 3: Equilibration 
// Deep Learning model 
Set mu, sigma   // default mu = 0.0, sigma = 1.0 for standard normal distribution 
Define PriorModel: 
 PriorModel = Sequential { 

DistributionLambda(MultivariateNormalDiag(loc=mu*ones, scale_diag=sigma*ones) 
} 

Define PosteriorModel: 
 PosteriorModel = Sequential { 
  VariableLayer(MultivariateNormalTriL) 
  MultivariateNormalTriL 
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  } 
Define BayesianNeuralNetworkModel: 
 If (simulation_type == “explicit”):  
  L2 = 1 
 Else: // (simulation_type == “protein.implicit” or “RNA.implicit”) 
  L2 = 3 
 BayesianNeuralNetworkModel = Sequential { 
  DenseVariational(64, input_dim = 1,  

prior_function = PriorModel, posterior_function = PosteriorModel, 
activation = “sigmoid”) 

   For _ = 1, ..., L2: 
    DenseVariational(IndependentNormal(1),  
       prior_function = PriorModel, posterior_function = PosteriorModel) 
   End 
   IndependentNormal(1) // output layer 
   } 
  Compile(loss = Kullback-LeiberDivergence, optimizer = Adam(learning_rate=0.0003) 
  

// Deep Learning 
 Collect {V1, V2, ..., VM}, Vmin, Vmax from the M-step pre-equilibration 
 For i = 1, ..., M: 
  k0 = random(0, 1] 
  E = Vmin + (Vmax – Vmin) / k0 
  ∆V = (1/2)*k0*(E – V)^2 / (Vmax – Vmin) 
 End     

Collect {∆V1, ∆V2, ..., ∆VM} 
While (anharmocity(∆V) >= 0.01): 
 training_set, validation_set = train_test_split({V1, V2, ..., VM}, {∆V1, ∆V2, ..., ∆VM}, 

test_size = 0.2) 
  BayesianNeuralNetworkModel.fit(training_set, epochs = 100, batch_size = 100, 
validation_set) 
 ∆VM = BayesianNeuralNetworkModel.predict(VM) 
 k0 = ((sqrt(2*∆VM*(Vmax – Vmin)) – sqrt(2*∆VM*(Vmax – Vmin) – 4*(Vmin – 
VM)*(Vmax – Vmin))) / (2*(Vmin – VM)))^2 
 E = Vmin + (Vmax – Vmin) / k0   
 If ((k0 > 1.0) or (E > Vmax + refE_factor*abs(Vmax))): 
  E = Vmax 
  k0 = (2*∆VM*(Vmax – Vmin)) / (E – VM)^2 
  k0 = min(1.0, k0)  
 Collect Vmin, Vmax, k0 for equilibration 
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// Muti-round equilibration 

 For i = 1, ..., equilibration_rounds: 
  For j = 1, ..., equilibration_steps_per_round: 
   Record V 
   E = Vmin + (Vmax – Vmin) / k0 
   If (E > Vmax + refE_factor*abs(Vmax)): 
    E = Vmax 
   If (V < E): 
    ∆V = (1/2)*k0*(E – V)^2 / (Vmax – Vmin) 
    V = V + ∆V 
   Vmin = min(V, Vmin) 
   Vmax = max(V, Vmax) 
  Collect {V1, V2, ..., VN}, Vmin, Vmax from the N-step equilibration round 
  For i = 1, ..., N: 
   k0 = random(0, 1] 
   E = Vmin + (Vmax – Vmin) / k0 
   ∆V = (1/2)*k0*(E – V)^2 / (Vmax – Vmin) 
  End     

Collect {∆V1, ∆V2, ..., ∆VN} 
While (anharmocity(∆V) >= 0.01): 

  training_set, validation_set = train_test_split({V1, V2, ..., VN}, {∆V1, ∆V2, ..., ∆VN}, 
test_size = 0.2) 
   BayesianNeuralNetworkModel.fit(training_set, epochs = 100, batch_size = 100, 
validation_set) 
  ∆VN = BayesianNeuralNetworkModel.predict(VN) 
  k0 = ((sqrt(2*∆VN*(Vmax – Vmin)) – sqrt(2*∆VN*(Vmax – Vmin) – 4*(Vmin – 
VN)*(Vmax – Vmin))) / (2*(Vmin – VN)))^2 
  E = Vmin + (Vmax – Vmin) / k0   
  If ((k0 > 1.0) or (E > Vmax + refE_factor*abs(Vmax))): 
   E = Vmax 
   k0 = (2*∆VN*(Vmax – Vmin)) / (E – VN)^2 
   k0 = min(1.0, k0)  
  Collect Vmin, Vmax, k0 for the next equilibration round 
  If (i = equilibration_rounds): 
   Collect Vmin, Vmax, k0 for production 
  End 
 End 
  

// Stage 4: Production 
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For i = 1, ..., production_steps: 
  E = Vmin + (Vmax – Vmin) / k0 
   If (E > Vmax + refE_factor*abs(Vmax)): 
    E = Vmax 
   If (V < E): 
    ∆V = (1/2)*k0*(E – V)^2 / (Vmax – Vmin) 
    V = V + ∆V 
 End 
} 
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Example Input Python File for DBMD Simulation with OpenMM 

parmFile = "dip.top"  # topology file 
crdFile = "dip.crd"  # coordinate file 
simType = "explicit"  # "explicit", "protein.implicit", "RNA.implicit" 
 
temperature = 300 # simulation temperature  
 
ntcmd = 1000000 # number_of_conventional_MD_steps 
cmdRestartFreq = 100  # conventional_MD_restart_frequency  
 
ncycebprepstart, ncycebprepend = 0, 1  # pre_equilibration_start and _end_round_indices 
ntebpreppercyc = 1000000  # number_of_pre_equilibration_steps_per_round  
ebprepRestartFreq = 100  # pre_equilibration_restart_frequency 
 
ncycebstart, ncycebend = 0, 1  # equilibration_start and _end_round_indices  
ntebpercyc = 1000000  # number_of_equilibration_steps_per_round     
ebRestartFreq = 100  # equilibration_restart_frequency 
 
ncycprodstart, ncycprodend = 0, 3  # production_start and _end_round_indices 
ntprodpercyc = 5000000  # number_of_production_steps_per_round   
prodRestartFreq = 10   # production_restart_frequency 
 
refEP_factor, refED_factor = 0.0, 0.0  # reference energy factor; value between 0 and 1 
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Description of DBMD Parameters in Input Python File for Simulation with OpenMM 

parmFile Path to the system topology file, usually a parm7 or prmtop file. 
crdFile Path to the system coordinate file, usually a crd or rst7 file. 
simType Solvation model and type of biomolecules simulated. Three variables 

are accepted: 
• “explicit” (explicit-solvent simulations),  
• “protein.implicit” (implicit-solvent simulations of proteins), 
• “RNA.implicit” (implicit-solvent simulations of RNAs). 

temperature Simulation temperature in Kelvins (K). 
ntcmd Number of simulation steps in the conventional MD (cMD) stage. 
cmdRestartFreq Number of simulation steps per which the cMD trajectories and 

simulation checkpoints are outputted. 
ncycebprepstart DBMD pre-equilibration can be carried out in multiple rounds. The 

index of the starting round in DBMD pre-equilibration simulation. 
ncycebprepend The index of the final round in DBMD pre-equilibration simulation. 
ntebpreppercyc Number of simulation steps per round in the DBMD pre-equilibration. 
ebprepRestartFreq Number of simulation steps per which the pre-equilibration trajectories 

and simulation checkpoints are outputted. 
ncycebstart DBMD equilibration can be carried out in multiple rounds. The index 

of the starting round in DBMD equilibration simulation. 
ncycebend The index of the final round in DBMD equilibration simulation. 
ntebpercyc Number of simulation steps per round in the DBMD equilibration. 
ebRestartFreq Number of simulation steps per which the equilibration trajectories 

and simulation checkpoints are outputted. 
ncycprodstart DBMD production can be carried out in multiple rounds. The index of 

the starting round in DBMD production simulation. 
ncycprodend The index of the final round in DBMD production simulation. 
ntprodpercyc Number of simulation steps per round in the DBMD production. 
prodRestartFreq Number of simulation steps per which the production trajectories and 

simulation checkpoints are outputted. 
refEP_factor The reference total potential energy factor (𝜂!) for applying total boost 

potentials. This parameter, valued between 0 and 1, is introduced to 
avoid exceedingly large reference potential energy. The upper limit for 
the reference total potential energy 𝐸! is 𝑉"#$! + 𝜂!|𝑉"#$!|. 

refED_factor The reference dihedral potential energy factor (𝜂%) for applying 
dihedral boost potentials. This parameter, valued between 0 and 1, is 
introduced to avoid exceedingly large reference potential energy. The 
upper limit for the reference dihedral potential energy 𝐸% is 𝑉"#$% +
𝜂%|𝑉"#$%|. 
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Figure S1. (a-d) Time courses of the effective harmonic force constants (k0P and k0D) (a), total (b) 

and dihedral (c) boost potential parameters (Vmin, Vmax, and E), and Phi dihedral (d) of alanine 

dipeptide calculated from one round of 2ns DBMD equilibration in explicit solvent. (e-h) Time 

courses of the effective harmonic force constants (k0P and k0D) (e), total (f) and dihedral (g) boost 

potential parameters (Vmin, Vmax, and E), and Phi (Φ) dihedral (h) of alanine dipeptide calculated 

from one round of 2ns DBMD equilibration in implicit solvent. 
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Figure S2. (a-d) Time courses of the Phi (Φ) dihedral of alanine dipeptide calculated from three 

30ns DBMD simulations (a-c) and one 1µs cMD simulation (d) in explicit solvent. (e-h) Time 

courses of the Phi (Φ) dihedral of alanine dipeptide calculated from three 30ns DBMD simulations 

(e-g) and one 1µs cMD simulation (h) in implicit solvent. 
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Figure S3. (a-b) Distributions of the boost potentials ∆V applied in the DBMD simulations of 

alanine dipeptide in explicit solvent (a) and implicit solvent (b). (c-f) Potential of mean force 

(PMF) free energy profiles of the Φ (c-d) and Ψ (e-f) dihedrals of alanine dipeptide calculated 

from three 30ns DBMD simulations compared to 1µs cMD simulations in explicit solvent (c, e) 

and implicit solvent (d, f). 
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Figure S4. Time courses of the effective harmonic force constants (k0P and k0D) (a), total (b) and 

dihedral (c) boost potential parameters (Vmin, Vmax, and E), and Ca-atom RMSD of residues Y2-

W9 of chignolin relative to the 1UAO PDB (d) calculated from two rounds (R1 and R2) of 5ns 

DBMD equilibration of chignolin in explicit solvent.  
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Figure S5. (a-b) Time courses of the Ca-atom RMSD of residues Y2-W9 of chignolin relative to 

the 1UAO PDB (a) and Ca-atom Rg of residues Y2-W9 (b) calculated from three 300ns DBMD 

simulations of chignolin in explicit solvent. (c) Distribution of the boost potentials ∆V applied in 

the DBMD simulations of chignolin in explicit solvent. 
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Figure S6. Time courses of the effective harmonic force constants (k0P and k0D) (a), total (b) and 

dihedral (c) boost potential parameters (Vmin, Vmax, and E), and heavy-atom RMSD of the hairpin 

RNA relative to the 1ZIH PDB (d) calculated from three rounds (R1, R2, and R3) of 5ns DBMD 

equilibration of the 12-mer hairpin RNA with GCAA tetraloop in implicit solvent.  
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Figure S7. Time courses of the effective harmonic force constants (k0P and k0D) (a), total (b) and 

dihedral (c) boost potential parameters (Vmin, Vmax, and E), and heavy-atom RMSD of the hairpin 

RNA relative to the 2ADT PDB (d) calculated from three rounds (R1, R2, and R3) of 5ns DBMD 

equilibration of the 12-mer hairpin RNA with GAAA tetraloop in implicit solvent.  
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Figure S8. Time courses of the effective harmonic force constants (k0P and k0D) (a), total (b) and 

dihedral (c) boost potential parameters (Vmin, Vmax, and E), and heavy-atom RMSD of the hairpin 

RNA relative to the 2KOC PDB (d) calculated from three rounds (R1, R2, and R3) of 5ns DBMD 

equilibration of the 14-mer hairpin RNA with UUCG tetraloop in implicit solvent.  
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Figure S9. (a-b) Time courses of the heavy-atom RMSD of the 12-mer hairpin RNA with GCAA 

tetraloop relative to the 1ZIH PDB (a) and the COM distance between terminal nucleotides G1 

and U12 (b) calculated from three 2000ns DBMD simulations of the 12-mer hairpin RNA with 

GCAA tetraloop in implicit solvent. (c) Distribution of the boost potentials ∆V applied in the 

DBMD simulations of the 12-mer hairpin RNA with GCAA tetraloop in implicit solvent. 
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Figure S10. (a-b) Time courses of the heavy-atom RMSD of the 12-mer hairpin RNA with GAAA 

tetraloop relative to the 2ADT PDB (a) and the COM distance between terminal nucleotides C1 

and G12 (b) calculated from three 2000ns DBMD simulations of the 12-mer hairpin RNA with 

GAAA tetraloop in implicit solvent. (c) Distribution of the boost potentials ∆V applied in the 

DBMD simulations of the 12-mer hairpin RNA with GAAA tetraloop in implicit solvent. 
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Figure S11. (a-b) Time courses of the heavy-atom RMSD of the 14-mer hairpin RNA with UUCG 

tetraloop relative to the 2KOC PDB (a) and the COM distance between terminal nucleotides G1 

and C14 (b) calculated from four 2000ns DBMD simulations of the 14-mer hairpin RNA with 

UUCG tetraloop in implicit solvent. (c) Distribution of the boost potentials ∆V applied in the 

DBMD simulations of the 14-mer hairpin RNA with UUCG tetraloop in implicit solvent. 

 

  



 19 

Figure S12. Conformation of the 12-mer hairpin RNA with the GCAA tetraloop at (~8.3 Å, ~6.5 

Å) of the heavy-atom RMSD relative to the 1ZIH47 PDB structure and G1-U12 COM distance. 

 

 

 

 

 

 


