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Abstract

Efficient planning in continuous state and action spaces is
fundamentally hard, even when the transition model is de-
terministic and known. One way to alleviate this challenge is
to perform bilevel planning with abstractions, where a high-
level search for abstract plans is used to guide planning in
the original transition space. Previous work has shown that
when state abstractions in the form of symbolic predicates
are hand-designed, operators and samplers for bilevel plan-
ning can be learned from demonstrations. In this work, we
propose an algorithm for learning predicates from demon-
strations, eliminating the need for manually specified state
abstractions. Our key idea is to learn predicates by optimiz-
ing a surrogate objective that is tractable but faithful to our
real efficient-planning objective. We use this surrogate objec-
tive in a hill-climbing search over predicate sets drawn from a
grammar. Experimentally, we show across four robotic plan-
ning environments that our learned abstractions are able to
quickly solve held-out tasks, outperforming six baselines.

1 Introduction
Hierarchical planning is a powerful approach for decision-
making in environments with continuous states, continuous
actions, and long horizons. A crucial bottleneck in scaling
hierarchical planning is the reliance on human engineers to
manually program domain-specific abstractions. For exam-
ple, in bilevel sample-based task and motion planning (Sri-
vastava et al. 2014; Garrett et al. 2021), an engineer must de-
sign (1) symbolic predicates; (2) symbolic operators; and (3)
samplers that propose different refinements of the symbolic
operators into continuous actions. However, recent work has
shown that when predicates are given, operators and sam-
plers can be learned from a modest number (50–200) of
demonstrations (Silver et al. 2021; Chitnis et al. 2022). Our
objective in this work is to learn predicates that can then be
used to learn operators and samplers.

Predicates in bilevel planning represent a discrete state
abstraction of the underlying continuous state space (Li,
Walsh, and Littman 2006; Abel, Hershkowitz, and Littman
2017). For example, On(block1, block2) is an ab-
straction that discards the exact continuous poses of
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block1 and block2. State abstraction alone is useful for
decision-making, but predicates go further: together with
operators, predicates enable the use of highly-optimized
domain-independent AI planners (Helmert 2006).

We consider a problem setting where a small set of goal
predicates are available and sufficient for describing task
goals, but practically insufficient for bilevel planning. For
example, in a block stacking domain (Figure 1), we start
with On and OnTable, but have no predicates for describ-
ing whether a block is currently held or graspable. Our aim
is to invent new predicates to enrich the state abstraction be-
yond what can be expressed with the goal predicates alone,
leading to stronger reasoning at the abstract level.

What objective should we optimize to learn predicates for
bilevel planning? First, consider our real objective: we want
a predicate set such that bilevel planning is fast and suc-
cessful, in expectation over a task distribution, when we use
those predicates to learn operators and samplers for plan-
ning. Unfortunately, this real objective is far too expensive
to use directly, since even a single evaluation requires neural
network sampler training and bilevel planning.

In this work, we propose a novel surrogate objective that
is deeply connected to our real bilevel-planning objective,
but is tractable for predicate learning. Our main insight is
that demonstrations can be used to analytically approximate
bilevel planning time. To leverage this objective for pred-
icate learning, we take inspiration from the program syn-
thesis literature (Menon et al. 2013; Ellis et al. 2020), and
learn predicates via a hill-climbing search through a gram-
mar, with the search guided by the objective. After predicate
learning, we use the predicates to learn operators and sam-
plers. All three components can then be used for efficient
bilevel planning on new tasks.

In experiments across four robotic planning environ-
ments, we find predicates, operators, and samplers learned
from 50–200 demonstrations enable efficient bilevel plan-
ning on held-out tasks that involve different numbers of ob-
jects, longer horizons, and larger goal expressions than seen
in the demonstrations. Furthermore, predicates learned with
our proposed surrogate objective substantially outperform
those learned with objectives inspired by previous work,
which are based on prediction error (Pasula, Zettlemoyer,
and Kaelbling 2007; Jetchev, Lang, and Toussaint 2013),
bisimulation (Konidaris, Kaelbling, and Lozano-Perez 2018;
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Figure 1: Overview of our framework. Given a small set of goal predicates (first panel, top), we use demonstration data to learn new
predicates (first panel, bottom). In this Blocks example, the learned predicates P1 – P4 intuitively represent Holding, NotHolding,
HandEmpty, and NothingAbove respectively. Collectively, the predicates define a state abstraction that maps continuous states x in the
environment to abstract states s. Object types are omitted for clarity. After predicate invention, we learn abstractions of the continuous action
space and transition model via planning operators (second panel). For each operator, we learn a sampler (third panel), a neural network that
maps continuous object features in a given state to continuous action parameters for controllers which can be executed in the environment.
In this example, the sampler proposes different placements on the table for the held block. With these learned representations, we perform
bilevel planning (fourth panel), with search in the abstract spaces guiding planning in the continuous spaces.

Curtis et al. 2021), and inverse planning (Baker, Saxe, and
Tenenbaum 2009; Ramı́rez and Geffner 2010; Zhi-Xuan
et al. 2020). We compare against several other baselines and
ablations of our system to further validate our results.

2 Problem Setting
We consider learning from demonstrations in determinis-
tic planning problems. These problems are goal-based and
object-centric, with continuous states and hybrid discrete-
continuous actions. Formally, an environment is a tuple
〈Λ, d, C, f,ΨG〉, and is associated with a distribution T over
tasks, where each task T ∈ T is a tuple 〈O, x0, g〉.

Λ is a finite set of object types, and the map d : Λ → N
defines the dimensionality of the real-valued feature vector
for each type. Within a task, O is an object set, where each
object has a type drawn from Λ; this O can (and typically
will) vary between tasks.O induces a state space XO (going
forward, we simply write X when clear from context). A
state x ∈ X in a task is a mapping from each o ∈ O to a
feature vector in Rd(type(o)); x0 is the initial state of the task.
C is a finite set of controllers. A controller

C((λ1, . . . , λv),Θ) ∈ C can have both discrete typed
parameters (λ1, . . . , λv) and a continuous real-valued
vector of parameters Θ. For instance, a controller Pick
for picking up a block might have one discrete parameter
of type block and a Θ that is a placeholder for a specific
grasp pose. The controller set C and object set O induce an
action space AO (going forward, we write A when clear).
An action a ∈ A in a task is a controller C ∈ C with both
discrete and continuous arguments: a = C((o1, . . . ov), θ),
where the objects (o1, . . . ov) are drawn from the object set
O and must have types matching the controller’s discrete
parameters (λ1, . . . , λv). Transitions through states and
actions are governed by f : X × A → X , a known,
deterministic transition model that is shared across tasks.

A predicate ψ is characterized by an ordered list of types
(λ1, . . . , λm) and a lifted binary state classifier cψ : X ×
Om → {true, false}, where cψ(x, (o1, . . . , om)) is defined
only when each object oi has type λi. For instance, the pred-
icate Holdingmay, given a state and two objects, robot and

block, describe whether the block is held by the robot in this
state. A lifted atom is a predicate with typed variables (e.g.,
Holding(?robot, ?block)). A ground atom ψ con-
sists of a predicate ψ and objects (o1, . . . , om), again with
all type(oi) = λi (e.g., Holding(robby, block7)).
Note that a ground atom induces a binary state classifier cψ :

X → {true, false}, where cψ(x) , cψ(x, (o1, . . . , om)).

ΨG is a small set of goal predicates that we assume are
given and sufficient for representing task goals, but insuf-
ficient practically as standalone state abstractions. Specifi-
cally, the goal g of a task is a set of ground atoms over pred-
icates in ΨG and objects in O. A goal g is said to hold in a
state x if for all ground atoms ψ ∈ g, the classifier cψ(x) re-
turns true. A solution to a task is a plan π = (a1, . . . , an), a
sequence of actions a ∈ A such that successive application
of the transition model xi = f(xi−1, ai) on each ai ∈ π,
starting from x0, results in a final state xn where g holds.

The agent is provided with a set of training tasks from
T and a set of demonstrations D, with one demonstration
per task. We assume action costs are unitary and demon-
strations are near-optimal. Each demonstration consists of a
training task 〈O, x0, g〉 and a plan π∗ that solves the task.
Note that for each π∗, we can recover the associated state
sequence starting at x0, since f is known and deterministic.
The agent’s objective is to efficiently solve held-out tasks
from T using anything it chooses to learn from D.

3 Predicates, Operators, and Samplers

Since the agent has access to the transition model f , one ap-
proach for optimizing the objective described in Section 2
is to forgo learning entirely, and solve any held-out task by
running a planner over the state state X and action space
A. However, searching for a solution directly in these large
spaces is highly infeasible. Instead, we propose to learn ab-
stractions using the provided demonstrations. In this section,
we will describe representations that allow for fast bilevel
planning with abstractions (Section 4). In Section 5, we then
describe how to learn these abstractions.



We adopt a very general definition
of an abstraction (Konidaris and Barto
2009): mappings from X and A to alter-
native state and action spaces. We first
characterize an abstract state space SΨ

and a transformation from states in X
to abstract states. Next, we describe an
abstract action space Ω and an abstract
transition model F : SΨ × Ω→ SΨ that
can be used to plan in the abstract space.
Finally, we define samplers Σ for refin-
ing abstract actions back into A, i.e., ac-
tions that can be executed. See the diagram on the right for
a summary.

(1) An abstract state space. We use a set of predicates
Ψ (as defined in Section 2) to induce an abstract state space
SΨ. Recalling that a ground atom ψ induces a classifier cψ
over states x ∈ X , we have:

Definition 1 (Abstract state). An abstract state s is the set of
ground atoms under Ψ that hold true in x:

s = ABSTRACT(x,Ψ) , {ψ : cψ(x) = true, ∀ψ ∈ Ψ}.

The (discrete) abstract state space induced by Ψ is de-
noted SΨ. Throughout this work, we use predicate sets Ψ
that are supersets of the given goal predicates ΨG. However,
only the goal predicates are given, and they alone are typ-
ically very limited; in Section 5, we will discuss how the
agent can use data to invent predicates that will make up the
rest of Ψ. See Figure 1 (first panel) for an example.

(2) An abstract action space and abstract transition
model. We address both by having the agent learn operators:

Definition 2 (Operator). An operator is a tuple ω =
〈PAR, PRE, EFF+, EFF−,CON〉 where:
• PAR is an ordered list of parameters: variables with
types drawn from the type set Λ.
• PRE, EFF+, EFF− are preconditions, add effects, and
delete effects, each a set of lifted atoms over Ψ and PAR.
• CON is a tuple 〈C, PARCON〉 where C((λ1, . . . , λv),Θ)
is a controller and PARCON is an ordered list of con-
troller arguments, each a variable from PAR. Further-
more, |PARCON| = v, and each argument i must be of the
respective type λi.

We denote the set of operators as Ω. See Figure 1 (second
panel) for an example. Unlike in STRIPS (Fikes and Nils-
son 1971), our operators are augmented with controllers and
controller arguments, which will allow us to connect to the
task actions in (3) below. Now, given a task with object set
O, the set of all ground operators defines our (discrete) ab-
stract action space for a task:

Definition 3 (Ground operator / abstract action). A ground
operator ω = 〈ω, δ〉 is an operator ω and a substitution
δ : PAR → O mapping parameters to objects. We use
PRE, EFF+, EFF−, and PARCON to denote the ground pre-
conditions, ground add effects, ground delete effects, and
ground controller arguments of ω, where variables in PAR
are substituted with objects under δ.

We denote the set of ground operators (the abstract action
space) as Ω. Together with the abstract state space SΨ, the
preconditions and effects of the operators induce an abstract
transition model for a task:

Definition 4 (Abstract transition model). The abstract tran-
sition model induced by predicates Ψ and operators Ω is a
partial function F : SΨ × Ω → SΨ. F (s, ω) is only de-
fined if ω is applicable in s: PRE ⊆ s. If defined, F (s, ω) ,
(s− EFF−) ∪ EFF+.

(3) A mechanism for refining abstract actions into task
actions. A ground operator ω induces a partially specified
controller, C((o1, . . . ov),Θ) with (o1, . . . ov) = PARCON,
where object arguments have been selected but continuous
parameters Θ have not. To refine this abstract action ω into
a task-level action a = C((o1, . . . ov), θ), we use samplers:

Definition 5 (Sampler). Each operator ω ∈ Ω is associated
with a sampler σ : X ×O|PAR| → ∆(Θ), where ∆(Θ) is the
space of distributions over Θ, the continuous parameters of
the operator’s controller.

Definition 6 (Ground sampler). For each ground opera-
tor ω ∈ Ω, if ω = 〈ω, δ〉 and σ is the sampler associ-
ated with ω, then the ground sampler associated with ω is
a state-conditioned distribution σ : X → ∆(Θ), where
σ(x) , σ(x, δ(PAR)).

We denote the set of samplers as Σ. See Figure 1 (third
panel) for an example.

What connects the transition model f , abstract transi-
tion model F , and samplers Σ? While previous works
enforce the downward refinability property (Marthi, Rus-
sell, and Wolfe 2007; Pasula, Zettlemoyer, and Kaelbling
2007; Jetchev, Lang, and Toussaint 2013; Konidaris, Kael-
bling, and Lozano-Perez 2018), it is important in robotics
to be robust to violations of this property, since learned ab-
stractions will typically lose critical geometric information.
Therefore, we only require our learned abstractions to sat-
isfy the following weak semantics: for every ground opera-
tor ω with partially specified controller C((o1, . . . , ov),Θ)
and associated ground sampler σ, there exists some x ∈
X and some θ in the support of σ(x) such that F (s, ω)
is defined and equals s′, where s = ABSTRACT(x,Ψ),
a = C((o1, . . . , ov), θ), and s′ = ABSTRACT(f(x, a),Ψ).
Note that downward refinability (Marthi, Russell, and Wolfe
2007) makes a much stronger assumption: that this state-
ment holds for every x ∈ X where F (s, ω) is defined.

4 Bilevel Planning
To use the components of an abstraction — predicates Ψ,
operators Ω, and samplers Σ — for efficient planning, we
build on bilevel planning techniques (Srivastava et al. 2014;
Garrett et al. 2021). We conduct an outer search over ab-
stract plans using the predicates and operators, and an inner
search over refinements of an abstract plan into a task solu-
tion π using the predicates and samplers.

Definition 7 (Abstract plan). An abstract plan π̂ for
a task 〈O, x0, g〉 is a sequence of ground operators
(ω1, . . . , ωn) such that applying the abstract transition



PLAN(x0, g, Ψ, Ω, Σ )
// Parameters: nabstract, nsamples.

1 s0 ← ABSTRACT(x0,Ψ)
2 for π̂ in GENABSTRACTPLAN(s0, g, Ω, nabstract)
3 if π ∼ REFINE(π̂, x0, Ψ, Σ, nsamples) then
4 return π

Algorithm 1: Pseudocode for our bilevel planning algorithm.
The inputs are an initial state x0, goal g, predicates Ψ, op-
erators Ω, and samplers Σ; the output is a plan π. An outer
loop runs GENABSTRACTPLAN, which generates plans in the
abstract state and action spaces. An inner loop runs REFINE,
which attempts to refine each abstract plan π̂ into a plan π. If
REFINE succeeds, then the found plan π is returned as the so-
lution; if REFINE fails, then GENABSTRACTPLAN continues.

model si = F (si−1, ωi) successively starting from s0 =
ABSTRACT(x0,Ψ) results in a sequence of abstract states
(s0, . . . , sn) that achieves the goal, i.e., g ⊆ sn. This
(s0, . . . , sn) is called the expected abstract state sequence.

Because downward refinability does not hold in our set-
ting, an abstract plan π̂ is not guaranteed to be refinable into
a solution π for the task, which necessitates bilevel planning.
We now describe the planning algorithm in detail.

The overall structure of the planner is outlined in Algo-
rithm 1. For the outer search that finds abstract plans π̂,
denoted GENABSTRACTPLAN (Alg. 1, Line 2), we lever-
age the STRIPS-style operators and predicates (Fikes and
Nilsson 1971) to automatically derive a domain-independent
heuristic popularized by the AI planning community, such as
LMCut (Helmert and Domshlak 2009). We use this heuris-
tic to run an A∗ search over the abstract state space SΨ and
abstract action space Ω. This A∗ search is used as a genera-
tor (hence the name GENABSTRACTPLAN) of abstract plans
π̂, outputting one at a time1. Parameter nabstract governs the
maximum number of abstract plans that can be generated
before the planner terminates with failure.

For each abstract plan π̂, we conduct an inner search that
attempts to REFINE (Alg. 1, Line 3) it into a solution π
(a plan that achieves the goal under the transition model
f ). While various implementations of REFINE are possi-
ble (Chitnis et al. 2016), we follow Srivastava et al. (2014)
and perform a backtracking search over the abstract actions
ωi ∈ π̂. Recall that each ωi induces a partially specified con-
troller Ci((o1, . . . , ov)i,Θi) and has an associated ground
sampler σi. To begin the search, we initialize an indexing
variable i to 1. On each step of search, we sample con-
tinuous parameters θi ∼ σi(xi−1), which fully specify an
action ai = Ci((o1, . . . , ov)i, θi). We then check whether
xi = f(xi−1, ai) obeys the expected abstract state sequence,
i.e., whether si = ABSTRACT(xi,Ψ). If so, we continue on
to i← i+ 1. Otherwise, we repeat this step, sampling a new

1This usage of A∗ search as a generator is related to top-k plan-
ning (Katz et al. 2018; Ren, Chalvatzaki, and Peters 2021). We
experimented with off-the-shelf top-k planners, but chose A∗ be-
cause it was faster in our domains. Note that the abstract plan gen-
erator is used heavily in learning (Section 5).

ETPT(x0, g, Ψ, Ω, π∗)
// Note: does not take in samplers!
// Parameters: nabstract, tupper.

1 s0 ← ABSTRACT(x0,Ψ)
2 pterminate ← 0.0
3 texpected ← 0.0
4 for π̂ in GENABSTRACTPLAN(s0, g, Ω, nabstract)
5 prefined ← ESTIMATEREFINEPROB(π̂, π∗)
6 pterminate ← (1− pterminate) · prefined
7 titer ← ESTIMATETIME(π̂, x0 , Ψ, Ω)
8 texpected ← texpected + pterminate · titer
9 texpected ← texpected + (1− pterminate) · tupper

10 return texpected

Algorithm 2: Pseudocode for Estimate Total Planning Time
in our predicate invention surrogate objective. Commonalities
with Algorithm 1 are shown in blue. See Section 5 for details.

θi ∼ σi(xi−1). Parameter nsamples governs the maximum
number of times we invoke the sampler for a single value of
i before backtracking to i ← i − 1. REFINE succeeds if the
goal g holds when i = |π̂|, and fails when i backtracks to 0.

If REFINE succeeds given a candidate π̂, the planner ter-
minates with success (Alg. 1, Line 4) and returns the plan
π = (a1, . . . , a|π̂|). Crucially, if REFINE fails, we continue
with GENABSTRACTPLAN to generate the next candidate
π̂. In the taxonomy of task and motion planners (TAMP),
this approach is in the “search-then-sample” category (Sri-
vastava et al. 2014; Dantam et al. 2016; Garrett et al. 2021).
As we have described it, this planner is not probabilistically
complete, because abstract plans are not revisited. Exten-
sions to ensure completeness are straightforward (Chitnis
et al. 2016), but are not our focus in this work.

5 Learning from Demonstrations
To use bilevel planning at evaluation time, we must learn
predicates, operators, and samplers at training time. We use
the methods of Chitnis et al. (2022) for operator learning
and sampler learning; see Section A.1 and Section A.3 for
descriptions. For what follows, it is important to understand
that operator learning is fast (O(|D|)), but sampler learning
is slow, and both require a given set of predicates. Our main
contribution is a method for predicate invention that pre-
cedes operator and sampler learning in the training pipeline.

Inspired by prior work (Bonet and Geffner 2019; Loula
et al. 2019; Curtis et al. 2021), we approach the predi-
cate invention problem from a program synthesis perspec-
tive (Stahl 1993; Lavrac and Dzeroski 1994; Cropper and
Muggleton 2016; Ellis et al. 2020). First, we define a com-
pact representation of an infinite space of predicates in the
form of a grammar. We then enumerate a large pool of can-
didate predicates from this grammar, with simpler candi-
dates enumerated first. Next, we perform a local search over
subsets of candidates, with the aim of identifying a good fi-
nal subset to use as Ψ. The crucial question in this step is:
what objective function should we use to guide the search
over candidate predicate sets?



Figure 2: Predicate invention via hill climbing. (Left) An example task in Blocks. (Middle) Hill climbing over predicate sets, starting with
the goal predicates ΨG. On each iteration, the single predicate that improves Jsurr the most is added to the set. The rightmost table column
shows success rates on held-out evaluation tasks. Each iteration of hill climbing adds a predicate that causes all abstract plans above the dotted
line to be pruned from consideration. At iteration 0, the robot believes it can achieve the goal by simply stacking b2 on b3 and b1 on b2,
even though it hasn’t picked up either block. The first step of this abstract plan (shown in red) is thus unrefinable. At iteration 1, a predicate
with the intuitive meaning Holding is added, which makes the A∗ only consider abstract plans that pick up blocks before stacking them.
Still, the abstract plan shown is unrefinable on the first step because b4 is obstructing b2 in the initial state. At iteration 2, a predicate with the
intuitive meaning NothingAbove is added, which allows the agent to realize that it must move b4 out of the way if it wants to pick up b2.
This plan is still unrefinable, though: the second step fails, because the abstraction still does not recognize that the robot cannot be holding
two blocks simultaneously. Finally, at iteration 3, a predicate with the intuitive meaning HandEmpty is added, and planning succeeds.

5.1 Scoring a Candidate Predicate Set
Ultimately, we want to find a set of predicates Ψ that will
lead to efficient planning, after we use the predicates to learn
operators Ω and samplers Σ. I.e., our real objective is:

Jreal(Ψ) , E(O,x0,g)∼T [TIME(PLAN(x0, g,Ψ,Ω,Σ))],

where Ω and Σ are learned using Ψ as we described in Sec-
tions A.1 and A.3, PLAN is the algorithm described in Sec-
tion 4, and TIME(·) measures the time that PLAN takes to
find a solution2. However, we need an objective that can be
used to guide a search over candidate predicate sets, mean-
ing the objective must be evaluated many times. Jreal is far
too expensive for this, due to two speed bottlenecks: sampler
learning, which involves training several neural networks;
and the repeated calls to REFINE from within PLAN, which
each perform backtracking search to refine an abstract plan.
To overcome this intractability, we will use a surrogate ob-
jective Jsurr that is cheaper to evaluate than Jreal, but that ap-
proximately preserves the ordering over predicate sets, i.e.,
Jsurr(Ψ) < Jsurr(Ψ

′) ⇐⇒ Jreal(Ψ) < Jreal(Ψ
′).

We propose a surrogate objective that uses the demon-
strations D to estimate the time it would take to solve the
training tasks under the abstraction induced by a candidate
predicate set Ψ, without using samplers or doing refinement.
Recalling that D has one demonstration π∗ for each training
task 〈O, x0, g〉, the objective is defined as follows:

Jsurr(Ψ) ,
1

|D|
∑

(O,x0,g,π∗)∈D

[ETPT(x0, g,Ψ,Ω, π
∗)],

where ETPT abbreviates Estimate Total Planning Time (Al-
gorithm 2). ETPT uses the candidate predicates and induced
operators to perform the first part of bilevel planning: A∗

2If no plan can be found (e.g., a task is infeasible under the abstrac-
tion), TIME would return a large constant representing a timeout.

search over abstract plans. However, for each generated ab-
stract plan, rather than learning samplers and calling RE-
FINE, we use the available demonstrations to estimate the
probability that refinement would succeed if we were to
learn samplers and call REFINE. Since bilevel planning ter-
minates upon the successful refinement of an abstract plan,
we can use these probabilities to approximate the total ex-
pected planning time. We now describe these steps in detail.

Estimating Refinement Probability ETPT maintains a
probability pterminate, initialized to 0 (Line 2), that planning
would terminate after each generated abstract plan. To up-
date pterminate (Lines 5-6), we must estimate both whether
PLAN would have terminated before this step, and whether
PLAN would terminate on this step. For the former, we can
use (1−pterminate). For the latter, since PLAN terminates only
if REFINE succeeds, we use a helper function ESTIMATERE-
FINEPROB to approximate the probability of successfully re-
fining the given abstract plan, if we were to learn samplers Σ
and then call REFINE. We use the following implementation:

ESTIMATEREFINEPROB(π̂, π∗) , (1−ε)ε|COST(π̂)−COST(π∗)|.

Here, ε > 0 is a small constant (10−5 in our experiments),
and COST(·) is in our case simply the number of actions
in the plan, due to unitary costs. The intuition for this ge-
ometric distribution is as follows. Since the demonstration
π∗ is assumed to be near-optimal, an abstract plan π̂ that is
cheaper than π∗ should look suspicious; if such a π̂ were re-
finable, then the demonstrator would have likely used it to
produce a better demonstration. If π̂ is more expensive than
π∗, then even though this abstraction would eventually pro-
duce a refinable abstract plan, it may take a long time for the
outer loop of the planner, GENABSTRACTPLAN, to get to it
(Section 4). We note that this scheme for estimating refin-
ability is surprisingly minimal, in that it needs only the cost
of each demonstration rather than its contents.



Estimating Time To approximate the total planning time,
ETPT estimates the time required for each generated ab-
stract plan, conditioned on its successful refinement, and
then uses the refinement probabilities to compute the total
expectation. The time estimate is maintained in texpected, ini-
tialized to 0 (Line 3). To update texpected on each abstract
plan (Lines 7-8), we use a helper function ESTIMATETIME,
which sums together estimates of the abstract search time
and of the refinement time. Since we are running abstract
search, we could exactly measure its time; however, to avoid
noise due to CPU speed, we instead use the cumulative
number of nodes created by the A∗ search. To estimate re-
finement time, recall that REFINE performs a backtracking
search, and so over many calls to REFINE, the potentially
several that fail will dominate the one or zero that succeed.
Therefore, we estimate refinement time as a large constant
(103 in our experiments) that captures the average cost of an
exhaustive backtracking search. Finally, we use a large con-
stant tupper (105 in our experiments) to penalize in the case
where no abstract plan succeeds (Line 9).

What is the ideal choice for nabstract, the maximum num-
ber of abstract plans to consider within ETPT? From an ef-
ficiency perspective, nabstract = 1 is ideal, but otherwise, it is
not obvious whether to prefer the value of nabstract that will
eventually be used with PLAN at evaluation time, or to in-
stead prefer nabstract = ∞. On one hand, we want ETPT
to be as much of a mirror image of PLAN as possible; on
the other hand, some experimentation we conducted sug-
gests that a larger value of nabstract can smooth the objective
landscape, which makes search easier. In practice, it may be
advisable to treat nabstract as a hyperparameter.

In summary, our surrogate objective Jsurr calculates and
combines two characteristics of a candidate predicate set Ψ:
(1) abstract plan cost “error,” i.e., |COST(π̂) − COST(π∗)|;
and (2) abstract planning time, i.e., number of nodes cre-
ated during A∗. The first feature uses only the costs of the
demonstrated plans, while the second feature does not use
the demonstrated plans at all. In Appendix A.7, we conduct
an empirical analysis to further unpack the contribution of
these two features to the overall surrogate objective, finding
them to be helpful together but insufficient individually.

5.2 Local Search over Candidate Predicate Sets
With our surrogate objective Jsurr established, we turn to the
question of how to best optimize it. We use a simple hill-
climbing search, initialized with Ψ0 ← ΨG, and adding a
single new predicate ψ from the pool on each step i:

Ψi+1 ← argmin
ψ 6∈Ψi

Jsurr(Ψi ∪ {ψ}).

We repeat until no improvement can be found, and use the
last predicate set as our final Ψ. See Figure 2 for an example
taken from our experiments in the Blocks environment.

Designing a Grammar of Predicates Designing a gram-
mar of predicates can be difficult, since there is a tradeoff
between the expressivity of the grammar and the practical-
ity of searching over it. For our experiments, we found that
a simple grammar similar to that of Pasula, Zettlemoyer,

and Kaelbling (2007) suffices, which includes single-feature
inequalities, logical negation, and universal quantification.
See Section A.4 for a full description and Figure 1 and Ap-
pendix A.7 for examples.

The costs accumulated over the production rules lead us
to a final cost associated with each predicate ψ, denoted
PEN(ψ), where a higher cost represents a predicate with
higher complexity. We use the costs to regularize Jsurr dur-
ing local search, with a weight small enough to primar-
ily prevent the addition of “neutral” predicates that neither
harm nor hurt Jsurr. The regularization term is Jreg(Ψ) ,
wreg

∑
ψ∈Ψ PEN(ψ), wherewreg = 10−4 in our experiments.

To generate our candidate predicate set for local search, we
enumerate ngrammar (200 in experiments) predicates from the
grammar, in order of increasing cost.

6 Experiments
Our experiments are designed to answer the following ques-
tions: (Q1) To what extent do our learned abstractions help
both the effectiveness and the efficiency of planning, and
how do they compare to abstractions learned using other ob-
jective functions? (Q2) How do our learned state abstrac-
tions compare in performance to manually designed state ab-
stractions? (Q3) How data-efficient is learning, with respect
to the number of demonstrations? (Q4) Do our abstractions
vary as we change the planner configuration, and if so, how?

Experimental Setup We evaluate 10 methods across four
robotic planning environments. All results are averaged over
10 random seeds. For each seed, we sample a set of 50
evaluation tasks that involve more objects and harder goals
than were seen at training. Demonstrations are collected
by bilevel planning with manually defined abstractions (see
Manual method below). Planning is always limited to a 10-
second timeout. See Appendix A.6 for additional details.

Environments We now briefly describe the environments,
with further details in Appendix A.5. The first three environ-
ments were established in prior work by Silver et al. (2021),
but in that work, all predicates were manually defined; we
use the same predicates in the Manual baseline.
• PickPlace1D. A robot must pick blocks and place them

onto target regions along a table surface. All pick and
place poses are in a 1D line. Evaluation tasks require 1-4
actions to solve.

• Blocks. A robot in 3D must interact with blocks on a
table to assemble them into towers. This is a robotic ver-
sion of the classic blocks world domain. Evaluation tasks
require 2-20 actions to solve.

• Painting. A robot in 3D must pick, wash, dry, paint, and
place widgets into either a box or a shelf. Evaluation
tasks require 11-25 actions to solve.

• Tools. A robot operating on a 2D table surface must as-
semble contraptions with screws, nails, and bolts, using
a provided set of screwdrivers, hammers, and wrenches
respectively. This environment has physical constraints
that cannot be modeled by our predicate grammar. Eval-
uation tasks require 7-20 actions to solve.



Figure 3: Ours versus baselines. Percentage of 50 evaluation tasks solved under a 10-second timeout, for all four environments. All results
are averaged over 10 seeds. Black bars denote standard deviations. Learning times and additional metrics are reported in Appendix A.7.

Ours Manual Down Eval No Invent
Environment Succ Node Time Succ Node Time Succ Node Time Succ Node Time
PickPlace1D 98.6 4.8 0.006 98.4 6.5 0.045 98.6 4.8 0.008 39.6 14.1 1.369
Blocks 98.4 2949 0.296 98.6 2941 0.251 98.2 2949 0.318 3.2 427.7 1.235
Painting 100.0 501.8 0.470 99.6 2608 0.464 98.8 489.0 0.208 0.0 – –
Tools 96.8 1897 0.457 100.0 4771 0.491 42.8 152.5 0.060 0.0 – –

Table 1: Ours versus Manual and ablations. Percentage of 50 evaluation tasks solved under a 10-second timeout (Succ), number of nodes
created during GENABSTRACTPLAN (Node), and wall-clock planning time in seconds (Time). All results are averaged over 10 seeds. The
Node and Time columns average over solved tasks only. Standard deviations are provided in Appendix A.7.

Methods We evaluate our method, six baselines, a manu-
ally designed state abstraction, and two ablations. Note that
the Bisimulation, Branching, Boltzmann, and Manual base-
lines differ from Ours only in predicate learning.

• Ours. Our main approach.
• Bisimulation. A baseline that learns abstractions by ap-

proximately optimizing the bisimulation criteria (Givan,
Dean, and Greig 2003), as in prior work (Curtis et al.
2021). Specifically, this baseline learns abstractions that
minimize the number of transitions in the demonstra-
tions where the abstract transition model F is applicable
but makes a misprediction about the next abstract state.
Note that because goal predicates are given, goal distin-
guishability is satisfied under any abstraction.

• Branching. A baseline that learns abstractions by op-
timizing the branching factor of planning. Specifically,
this baseline learns predicates that minimize the number
of applicable operators over demonstration states.

• Boltzmann. A baseline that assumes the demonstrator
is acting noisily rationally under (unknown) optimal ab-
stractions (Baker, Saxe, and Tenenbaum 2009). For any
candidate abstraction, we compute the likelihood of the
demonstration under a Boltzmann policy using the plan-
ning heuristic as a surrogate for the true cost-to-go.

• GNN Shooting. A baseline that trains a graph neural
network (Battaglia et al. 2018) policy. This GNN takes in
the current state x, abstract state s, and goal g. It outputs
an action a, via a one-hot vector over C corresponding to
which controller to execute, one-hot vectors over all ob-
jects at each discrete argument position, and a vector of
continuous arguments. We train the GNN using behavior

cloning on the dataD. At evaluation time, we sample tra-
jectories by treating the outputted continuous arguments
as the mean of a Gaussian with fixed variance. We use
the transition model f to check if the goal is achieved,
and repeat until the planning timeout is reached.

• GNN Model-Free. A baseline that uses the same GNN,
but directly executes the policy instead of shooting.

• Random. A baseline that simply executes a random con-
troller with random arguments on each step. No learning.

• Manual. An oracle approach that plans with manually
designed predicates for each environment.

• Down Eval. An ablation of Ours that uses nabstract = 1
during evaluation only, in PLAN (Algorithm 1).

• No Invent. An ablation of Ours that uses Ψ = ΨG, i.e.,
only goal predicates are used for the state abstraction.

Results and Discussion We provide real examples of
learned predicates and operators for all environments in Ap-
pendix A.7. Figure 3 shows that our method solves many
more held-out tasks within the timeout than the baselines. A
major reason for this performance gap is that our surrogate
objective Jsurr explicitly approximates the efficiency of plan-
ning. The lackluster performance of the bisimulation base-
line is especially notable because of its prevalence in the lit-
erature (Pasula, Zettlemoyer, and Kaelbling 2007; Jetchev,
Lang, and Toussaint 2013; Bonet and Geffner 2019; Curtis
et al. 2021). We examined its failure modes more closely
and found that it consistently selects good predicates, but
not enough of them. This is because requiring the opera-
tors to be a perfect predictive model in the abstract spaces
is often not enough to ensure good planning performance.
For example, in the Blocks environment, the goal predi-



cates together with the predicate Holding(?block) are
enough to satisfy bisimulation on our data, while other pred-
icates like Clear(?block) and HandEmpty() are use-
ful from a planning perspective. Examining the GNN base-
lines, we see that while shooting is beneficial versus using
the GNN model-free, the performance is generally far worse
than Ours. Additional experimentation we conducted sug-
gests that the GNN gets better with around an order of mag-
nitude more data.

The figure
on the right
illustrates the
data efficiency
of Ours. Each
point shows
a mean over
10 seeds, with
standard devi-
ations shown
as vertical bars. We often obtain very good evaluation
performance within just 50 demonstrations.

In Table 1, the results for No Invent show that, as ex-
pected, the goal predicates alone are completely insuf-
ficient for most tasks. Comparing Ours to Down Eval
shows that assuming downward refinability at evaluation
time works for PickPlace1D, Blocks, and Painting, but
not for Tools. We also find that the learned predicates
(Ours) are on par with, and sometimes better than, hand-
designed predicates (Manual). For instance, consider Pick-
Place1D, where the learned predicates are 7.5x better.
The manually designed predicates were Held(?block)
and HandEmpty(), and the always-given goal predi-
cate Covers(?block, ?target). In addition to in-
venting two predicates that are equivalent to Held and
HandEmpty, Ours invented two more: P3(?block) ,
∀?t . ¬Covers(?block, ?t), and P4(?target) ,
∀?b . ¬Covers(?b, ?target). Intuitively, P3 means
“the given block is not on any target,” while P4 means “the
given target is clear.” P3 gets used in an operator precondi-
tion for picking, which reduces the branching factor of ab-
stract search. This precondition is sensible because there is
no use in moving a block once it is already on its target. P4
prevents considering non-refinable abstract plans that “park”
objects on targets that must be covered by other objects.

In Appendix A.8, we describe an additional experiment
where we vary the AI planning heuristic used in abstract
search. We analyze a case in Blocks where variation in the
invented predicates appears inconsequential upon initial in-
spection, but actually has substantial impact on planning ef-
ficiency. This result underscores the benefit of using a sur-
rogate objective for predicate invention that is sensitive to
downstream planning efficiency.

7 Related Work
Our work continues a long line of research on learning state
abstractions for decision-making (Bertsekas, Castanon et al.
1988; Andre and Russell 2002; Jong and Stone 2005; Li,
Walsh, and Littman 2006; Abel, Hershkowitz, and Littman

2017; Zhang et al. 2020). Most relevant are works that learn
symbolic abstractions compatible with AI planners (Lang,
Toussaint, and Kersting 2012; Jetchev, Lang, and Toussaint
2013; Ugur and Piater 2015; Asai and Fukunaga 2018;
Bonet and Geffner 2019; Asai and Muise 2020; Ahmetoglu
et al. 2020; Umili et al. 2021). Our work is particularly
influenced by Pasula, Zettlemoyer, and Kaelbling (2007),
who use search through a concept language to invent sym-
bolic state and action abstractions, and Konidaris, Kaelbling,
and Lozano-Perez (2018), who discover symbolic abstrac-
tions by leveraging the initiation and termination sets of op-
tions that satisfy an abstract subgoal property. The objectives
used in these prior works are based on variations of auto-
encoding, prediction error, or bisimulation, which stem from
the perspective that the abstractions should replace planning
in the original transition space, rather than guide it.

Recent works have also considered learning abstractions
for multi-level planning, like those in the task and motion
planning (TAMP) (Gravot, Cambon, and Alami 2005; Gar-
rett et al. 2021) and hierarchical planning (Bercher, Alford,
and Höller 2019) literature. Some of these efforts consider
learning symbolic action abstractions (Zhuo et al. 2009;
Nguyen et al. 2017; Silver et al. 2021; Aineto, Jiménez, and
Onaindia 2022) or refinement strategies (Chitnis et al. 2016;
Mandalika et al. 2019; Chitnis, Kaelbling, and Lozano-Pérez
2019; Wang et al. 2021; Chitnis et al. 2022; Ortiz-Haro
et al. 2022); our operator and sampler learning methods
take inspiration from these prior works. Recent efforts by
Loula et al. (2019) and Curtis et al. (2021) consider learn-
ing both state and action abstractions for TAMP, like we do
(Loula et al. 2019, 2020; Curtis et al. 2021). The main distin-
guishing feature of our work is that our abstraction learning
framework explicitly optimizes an objective that considers
downstream planning efficiency.

8 Conclusion and Future Work
In this paper, we have described a method for learning pred-
icates that are explicitly optimized for efficient bilevel plan-
ning. Key areas for future work include (1) learning better
abstractions from even fewer demonstrations by perform-
ing active learning to gather more data online; (2) expand-
ing the expressivity of the grammar to learn more sophis-
ticated predicates; (3) applying these ideas to partially ob-
served planning problems; and (4) learning the controllers
that we assumed given in this work.

For (1), we hope to investigate how relational exploration
algorithms (Chitnis et al. 2020) might be useful as a mecha-
nism for an agent to decide what actions to execute, toward
the goal of building better state and action abstractions. For
(2), we can take inspiration from program synthesis, espe-
cially methods that can learn programs with continuous pa-
rameters (Ellis et al. 2020). For (3) we could draw insights
from recent advances in task and motion planning in the par-
tially observed setting (Garrett et al. 2020). Finally, for (4),
we recently proposed a method for learning controllers from
demonstrations assuming known predicates (Silver et al.
2022). If we can remove the latter assumption, we will have
a complete pipeline for learning predicates, operators, sam-
plers, and controllers for bilevel planning.



Acknowledgements
We gratefully acknowledge support from NSF grant
2214177; from AFOSR grant FA9550-22-1-0249; from
ONR MURI grant N00014-22-1-2740; from the MIT-IBM
Watson Lab; and from the MIT Quest for Intelligence.
Tom, Nishanth and Willie are supported by NSF Graduate
Research Fellowships. We thank Michael Katz, Christian
Muise, Aidan Curtis, Jiayuan Mao, Zhutian Yang, and Am-
ber Li for helpful comments on an earlier draft.

References
Abel, D.; Hershkowitz, D. E.; and Littman, M. L. 2017. Near
optimal behavior via approximate state abstraction. arXiv
preprint arXiv:1701.04113.
Ahmetoglu, A.; Seker, M. Y.; Piater, J.; Oztop, E.; and Ugur,
E. 2020. Deepsym: Deep symbol generation and rule learn-
ing from unsupervised continuous robot interaction for plan-
ning. arXiv preprint arXiv:2012.02532.
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A Appendix
A.1 Operator Learning
Here we describe how to learn operators Ω, assuming that
the full set of predicates Ψ is already learned (Chitnis et al.
2022). This method makes two restrictions on the represen-
tation that together lead to very efficient operator learning
(linear time in the number of transitions in D). First, for
each CON and each possible effect set pair (EFF+, EFF−),
there is at most one operator with that (CON, EFF+, EFF−).
This restriction makes it impossible to learn multiple opera-
tors with different preconditions for the same controller and
effect sets. Second, each parameter in PAR must appear in
PARCON, EFF+, or EFF−. This restriction prevents modeling
“indirect effects,” where some object impacts the execution
of a controller without its own state being changed. Though
these two restrictions are limiting, we are willing to accept
them because predicate invention can compensate. For ex-
ample, an invented predicate can quantify out an object that
does not appear in the controller or the effects, to capture
indirect effects.

With these restrictions established, we learn operators
from our demonstrations D and predicates Ψ in three steps.
Note that each demonstration can be expressed as a sequence
of transitions {(x, a, x′)}, with x, x′ ∈ X and a ∈ A. First,
we use Ψ to ABSTRACT all states x, x′ in the demonstra-
tions D, creating a dataset of transitions {(s, a, s′)} with
s, s′ ∈ SΨ. Next, we partition these transitions using the
following equivalence relation: (s1, a1, s

′
1) ≡ (s2, a2, s

′
2) if

the effects and partially specified controllers unify, that is,
if there exists a mapping between the objects such that a1,
(s1 − s′1), and (s′1 − s1) are equivalent to a2, (s2 − s′2),
and (s′2 − s2) respectively. This partitioning step automati-
cally determines the number of operators that will ultimately
be learned: each equivalence class will induce one opera-
tor. Furthermore, the parameters PAR, controller tuple CON,
and effects (EFF+, EFF−) of the operators can now be es-
tablished as follows. For each equivalence class, we create
PAR by selecting an arbitrary transition (s, a, s′) and replac-
ing each object that appears in the controller or effects with a
variable of the same type. This further induces a substitution
δ : PAR → O for the objects O in this transition; the CON,
EFF+, and EFF− are then created by applying δ to a, (s′−s),
and (s− s′) respectively. By construction, for all other tran-
sitions τ in the same equivalence class, there exists an in-
jective substitution δτ under which the controller arguments
and effects are equivalent to the newly created CON, EFF+,
and EFF−. We use these substitutions for the third and final
step of operator learning: precondition learning. For this, we
perform an intersection over all abstract states in each equiv-
alence class (Bonet and Geffner 2019; Chitnis et al. 2022;
Curtis et al. 2021): PRE ←

⋂
τ=(s,·,·) δ

−1
τ (s), where δ−1

τ (s)

substitutes all occurrences of the objects in s with the pa-
rameters in PAR following an inversion of δτ , and discards
any atoms involving objects that are not in the image of δτ .
By this construction, only the parameters in PAR will be in-
volved in PRE, as desired. With PAR, PRE, EFF+, EFF−, and
CON now established for each equivalence class, we have
completed the operators Ω.

Soundness. We note that for any predicates Ψ, the op-
erator learning procedure is sound (Konidaris, Kaelbling,
and Lozano-Perez 2018) over the data, in the follow-
ing sense: for each transition τ = (x, a, x′), there ex-
ists some ω, a learned operator ground with objects in x,
such that F (ABSTRACT(x,Ψ), ω) is defined and equals
ABSTRACT(x′,Ψ). To see this, recall that τ belongs to an
equivalence class, and that this equivalence class was used
to learn an operator ω. Now, we show that the desired ω is
〈ω, δτ 〉, where δτ is the injective parameter-to-object substi-
tution defined above. The CON, EFF+, and EFF− of ω ex-
actly equal those in τ , by construction of the substitution δτ .
Additionally, because PRE was formed by taking an inter-
section of abstract states that included ABSTRACT(x,Ψ), it
must be the case that PRE ⊆ ABSTRACT(x,Ψ), since an
intersection must be a subset of every constituent set. By
Definition 4, then, the statement is satisfied. A corollary of
this soundness property is that our learned abstractions are
guaranteed to obey the semantics we defined in Section 3
with respect to the training data.

As a byproduct of operator learning, we have also deter-
mined “local” datasets for each operator, with each transi-
tion in the respective equivalence class defining an example
of the operator’s preconditions, controller, and effects. We
will use these local datasets and the corresponding substitu-
tions δτ during sampler learning Section A.3.

A.2 Operator Learning Extended Example
We conclude our discussion of operator learning with an ex-
tended example. We start with a small toy dataset and use it
to walk through each of the three steps in the procedure.

Step 1: Generate Dataset. In this example, our demon-
strations contain four transitions, which are tuples (x, a, x′).
For clarity, we will not write out the task-level states x and
x′. Additionally, for the sake of the example, we will as-
sume that in this environment there is only one controller C,
with no discrete arguments. We abstract these states with the
predicate set Ψ includes Held, On, IsPurple, IsRed,
IsGreen, IsStowable, and IsStowed, which leads to
four (s, a, s′) tuples:

1. ({On(o1, o2), On(o2, o3), IsPurple(o1)},
C(θ1),{Held(o1), On(o2, o3), IsPurple(o1)})

2. ({On(o4, o5), On(o5, o6), IsRed(o4)},
C(θ2),{Held(o4), On(o5, o6), IsRed(o4)})

3. ({Held(o1), IsStowable(o1), IsGreen(o2)},
C(θ3),{IsStowed(o1), IsStowable(o1),
IsGreen(o2)})

4. ({Held(o8), IsStowable(o8), IsGreen(o9)},
C(θ4),{IsStowed(o8), IsStowable(o8),
IsGreen(o9)})

Intuitively, the first and second transitions might occur
when picking up an object (o1 or o4 respectively), while the
third and fourth might occur when stowing an object (o1 or
o8 respectively). We begin by noting that we can ignore the
continuous parameters θi of C, since they do not matter for
operator learning (they would be used in sampler learning).



Step 2: Produce Equivalence Classes. Recall that two
transitions are in the same equivalence class if there ex-
ists a mapping between objects such that the controller,
controller discrete arguments, and effects are equivalent.
Since we only have one controller C with no discrete ar-
guments in this example, we must only check for effect
equivalence. The first transition has effects (EFF+, EFF−) =
({Held(o1)}, {On(o1, o2)}), while the second has effects
(EFF+, EFF−) = ({Held(o4)}, {On(o4, o5)}). These can
be unified with the mapping {o1 ↔ o4, o2 ↔ o5}. Sim-
ilarly, the third transition has effects (EFF+, EFF−) =
({IsStowed(o1)}, {Held(o1)}), while the fourth has ef-
fects (EFF+, EFF−) = ({IsStowed(o8)}, {Held(o1)}).
These can be unified with the mapping {o1 ↔ o8}.

Note that in this unification procedure, the atoms which
were unchanged, such as IsPurple(o1), do not play a role.
Furthermore, the fact that the objects are the same between
transitions 1 and 3 is unimportant, because these transitions
belong to different equivalence classes.

Selecting an arbitrary transition from each equivalence
class and substituting objects with variables, we get the fol-
lowing:
• Equivalence class 1:

– PAR: [?x, ?y]
– EFF+: {Held(?x)}
– EFF−: {On(?x, ?y)}
– CON: 〈 C, [] 〉
– Transitions contained: 1 and 2
– δ1 (substitution for transition 1): {?x→ o1, ?y→ o2}
– δ2 (substitution for transition 2): {?x→ o4, ?y→ o5}

• Equivalence class 2:
– PAR: [?z]
– EFF+: {IsStowed(?z)}
– EFF−: {Held(?z)}
– CON: 〈 C, [] 〉
– Transitions contained: 3 and 4
– δ3 (substitution for transition 3): {?z→ o1}
– δ4 (substitution for transition 4): {?z→ o8}

Note that the parameter list PAR for each equivalence
class contains all parameters that appear in PARCON, EFF+,
or EFF−.

Step 3: Learn Operator Preconditions. We now have
all the ingredients of the operators except for their precondi-
tions. For each transition in each equivalence class, we first
discard any atom from the abstract state swhich involves ob-
jects not in the image of that transition’s substitution δ. For
instance, the first transition has δ1 = {?x→ o1, ?y→ o2}.
The image is {o1, o2}, which excludes o3. This means that
the atom On(o2, o3) is discarded from s.

After discarding atoms appropriately, we end up with
these abstract states for each transition:
1. {On(o1, o2), IsPurple(o1)}
2. {On(o4, o5), IsRed(o4)}
3. {Held(o1), IsStowable(o1)}

4. {Held(o8), IsStowable(o8)}
Now, the preconditions for each equivalence class are ob-

tained by applying each δ−1
i to these abstract states and

taking intersections. This produces the final operator set Ω,
which does not contain any extraneous atoms related to ob-
ject color:

• Operator 1 (from equivalence class 1):
– PAR: [?x, ?y]
– PRE: {On(?x, ?y)}
– EFF+: {Held(?x)}
– EFF−: {On(?x, ?y)}
– CON: 〈 C, [] 〉

• Operator 2 (from equivalence class 2):
– PAR: [?z]
– PRE: {Held(?z), IsStowable(?z)}
– EFF+: {IsStowed(?z)}
– EFF−: {Held(?z)}
– CON: 〈 C, [] 〉

A.3 Learning Samplers
The role of a sampler σ ∈ Σ is to refine its associated opera-
tor ω, suggesting continuous parameters of actions that will
transition the environment from a state where the precon-
ditions hold to a state where the effects follow. Recall that
a sampler σ : X × O|PAR| → ∆(Θ) defines a conditional
distribution P (θ | x, o1, . . . , ok), where θ are continuous
parameters for the controller C in ω, and (o1, . . . , ok) rep-
resent a set of objects that could be used to ground ω, with
|PAR| = k. Using the same demonstration dataset D, we
learn samplers of the following form, one per operator:

σ(x, o1, . . . , ok) = rσ(x[o1]⊕ · · · ⊕ x[ok]),

where x[o] denotes the feature vector for o in x, the ⊕ de-
notes concatenation, and rσ is the model to be learned.

To learn samplers, we use the local datasets created during
operator learning (Section A.1), to create datasets for super-
vised sampler learning, with one dataset per sampler. Con-
sider any (non-abstract) transition τ = (x, a, ·) in the equiv-
alence class associated with an operator ω. To create a data-
point for the associated sampler, we can reuse the substitu-
tion δτ found during operator learning to create an input vec-
tor x[δτ (v1)]⊕ · · · ⊕ x[δτ (vk)], where (v1, . . . , vk) = PAR.
The corresponding output for supervised learning is the con-
tinuous parameter vector θ in the action a.

With these datasets created, one could use any method
for multidimensional distributional regression to learn each
rσ . In this work, we learn two neural networks to pa-
rameterize each sampler. The first neural network takes in
x[o1]⊕· · ·⊕x[ok] and regresses to the mean and covariance
matrix of a Gaussian distribution over θ; here, we are assum-
ing that the desired distribution has nonzero measure, but the
covariances can be arbitrarily small in practice. This neu-
ral network is a sampler in its own right, but its expressive
power is limited, e.g., to unimodal distributions. To improve
representational capacity, we learn a second neural network



that takes in x[o1] ⊕ · · · ⊕ x[ok] and θ, and returns true or
false. This classifier is then used to rejection sample from
the first network. To create negative examples, we use all
transitions τ ′ such that the controller in τ ′ matches that in
CON, but the effects in τ ′ are different from (EFF+, EFF−).

A.4 Predicate Grammar Details
Here we detail the grammar over predicate candidates used
in our experiments. Note that the grammar is the same for all
environments (up to the object types and goal predicates).
• The base grammar includes two kinds of predicates: all

the goal predicates ΨG, and single-feature inequality
classifiers. These inequality classifiers are less-than-or-
equal-to expressions that compare a constant against
an individual feature dimension from {1, . . . , d(λ)},
for some object type λ ∈ Λ. For the constant, we
consider an infinite stream of numbers in the pattern
0.5, 0.25, 0.75, 0.125, 0.375, 0.625, 0.875, . . ., which
represent normalized values of the feature, based on the
range of values it takes on across all states in the dataset
D. We use this pattern because we want our grammar
to describe an infinite stream of classifiers, starting
from the median values in D. As an example, a type
block might have a feature dimension corresponding
to its size, and a classifier could be block.size ≤
0.5. All goal predicates have cost 0. All single-feature
inequality classifiers have cost computed based on the
normalized constant, with cost 0 for constant 0.5, cost 1
for constants 0.25 and 0.75, cost 2 for constants 0.125,
0.375, 0.625, 0.875, etc.

• We include all negations of predicates in the base gram-
mar. Negating a predicate adds a cost of 1.

• We include two types of universally quantified predi-
cates over the predicates thus far: (1) quantifying over
all variables, and (2) quantifying over all but one vari-
able. An example of the first is P() = ∀ ?x, ?y . On(?x,
?y), while an example of the second is P(?y) = ∀ ?x .
On(?x, ?y). Universally quantifying adds a cost of 1.

• We include all negations of universally quantified predi-
cates. Negating a predicate adds a cost of 1.

• Following prior work (Curtis et al. 2021), we prune out
candidate predicates if they are equivalent to any previ-
ously enumerated predicate, in terms of all groundings
that hold in every state in the dataset D. Finally, we dis-
card the goal predicates ΨG from the grammar, since
they are included in every candidate predicate set Ψ of
our search already.

A.5 Additional Environment Details
• PickPlace1D. In this toy environment, a robot must

pick blocks and place them onto target regions along
a table surface. All pick and place poses are in a 1D
line. The three object types are block, target, and robot.
Blocks and targets have two features for their pose and
width, and robots have one feature for the gripper joint
state. The block widths are larger than the target widths,
and the goal requires each block to be placed so that
it completely covers the respective target region, so

ΨG = {Covers}, where Covers is an arity-2 pred-
icate. There is only one controller, PickPlace, with
no discrete arguments; its Θ is a single real number de-
noting the location to perform either a pick or a place,
depending on the current state of the robot’s gripper.
Each action updates the state of at most one block, based
on whether any is in a small radius from the continu-
ous parameter θ. Both training tasks and evaluation tasks
involve 2 blocks, 2 targets, and 1 robot. In each task,
with 75% probability the robot starts out holding a ran-
dom block; otherwise, both blocks start out on the table.
Evaluation tasks require 1-4 actions to solve. This en-
vironment was established by Silver et al. (2021), but
that work involved manually defined state abstractions,
which we do not provide in this paper.

• Blocks. In this environment, a robot in 3D must interact
with blocks on a table to assemble them into towers. This
is a robotics adaptation of the blocks world domain in
AI planning. The two object types are block and robot.
Blocks have four features: an x/y/z pose and a bit for
whether it is currently grasped. Robots have four fea-
tures: x/y/z end effector pose and the (symmetric) value
of the finger joints. The goals involve assembling towers,
so ΨG = {On,OnTable}, where the former has arity
2 and describes one block being on top of another, while
the latter has arity 1. There are three controllers: Pick,
Stack, and PutOnTable. Pick is parameterized by
a robot and a block to pick up. Stack is parameterized
by a robot and a block to stack the currently held one
onto. PutOnTable is parameterized by a robot and a
2D place pose representing normalized coordinates on
the table surface at which to place the currently held
block. Training tasks involve 3 or 4 blocks, while evalua-
tion tasks involve 5 or 6 blocks; all tasks have 1 robot. In
all tasks, all blocks start off in collision-free poses on the
table. Evaluation tasks require 2-20 actions to solve. This
environment was established by Silver et al. (2021), but
that work involved manually defined state abstractions,
which we do not provide in this paper.

• Painting. In this challenging environment, a robot in
3D must pick, wash, dry, paint, and place widgets into
either a box or a shelf, as specified by the goal. The five
object types are widget, box, shelf, box lid, and robot.
Widgets have eight features: an x/y/z pose, a dirtiness
level (requiring washing), a wetness level (requiring
drying), a color, a bit for whether it is currently grasped,
and the 1D gripper rotation with which it is grasped
if so. Boxes and shelves have one feature for their
color. Box lids have one feature for whether or not
they are open. Robots have one feature for the gripper
joint state. The goals involve painting the widgets to
be the same color as either a box or a shelf, and then
placing each widget into the appropriate one, so ΨG =
{InBox,InShelf,IsBoxColor,IsShelfColor},
all of which have arity 2 (a widget, and either a box
or a shelf). There are two physical constraints in this
environment: (1) placing into a box can only succeed
if the robot is top-grasping a widget, while placing into
a shelf can only succeed if the robot is side-grasping



it; (2) a box can only be placed into if its respective
lid is open. There are six controllers: Pick, Wash,
Dry, Paint, Place, and OpenLid. All six are
discretely parameterized by a robot argument; Pick
is additionally parameterized by a widget to pick up,
and OpenLid by a lid to open. Pick has 4 continuous
parameters: a 3D grasp pose delta from that widget’s
center of mass, and a gripper rotation. Wash, Dry, and
Paint have 1 continuous parameter each: the amount
of washing, the amount of drying, and the desired new
color, respectively. Place has 3 continuous parameters:
a 3D place pose corresponding to where the currently
held widget should be placed. Training tasks involve
2 or 3 widgets, while evaluation tasks involve 3 or 4
blocks; all tasks have 1 box, 1 shelf, and 1 robot. In each
task, with 50% probability the robot starts out holding
a random widget; otherwise, all widgets start out on
the table. Also, in each task, with 30% probability the
box lid starts out open. Evaluation tasks require 11-25
actions to solve. This environment was established
by Silver et al. (2021), but that work involved manually
defined state abstractions, which we do not provide in
this paper.

• Tools. In this challenging environment, a robot operat-
ing on a 2D table surface must assemble contraptions by
fastening screws, nails, and bolts, using a provided set
of screwdrivers, hammers, and wrenches respectively.
This environment has physical constraints outside the
scope of our predicate grammar, and therefore tests
the learner’s ability to be robust to an insurmountable
lack of downward refinability. The eight object types
are contraption, screw, nail, bolt, screwdriver, hammer,
wrench, and robot. Contraptions have two features: an
x/y pose. Screws, nails, bolts, and the three tools have
five features: an x/y pose, a shape, a size, and a bit
indicating whether it is held. Robots have one feature
for the gripper joint state. The goals involve fastening
the screws, nails, and bolts onto target contraptions,
so ΨG includes ScrewPlaced, NailPlaced,
BoltPlaced, ScrewFastened, NailFastened,
and BoltFastened. The first three have arity 2 (a
screw/nail/bolt and which contraption it is placed on);
the last three have arity 1. There are three physical
constraints in this environment: (1) a screwdriver can
only be used to fasten a screw if its shape is close
enough to that of the screw; (2) some screws have a
shape that does not match any screwdriver’s, and so
these screws must be fastened by hand; (3) the three
tools cannot be picked up if their sizes are too large.
There are eleven controllers: Pick{Screw, Nail,
Bolt, Screwdriver, Hammer, Wrench},
Place, FastenScrewWithScrewdriver,
FastenScrewByHand,
FastenNailWithHammer, and
FastenBoltWithWrench. All eleven are dis-
cretely parameterized by a robot argument; Pick
controllers are additionally parameterized by an object
to pick up, and Fasten controllers by a screw/nail/bolt
and tool (except FastenScrewByHand, which does

not have a tool argument). Place has 2 continuous
parameters: a 2D place pose corresponding to where
the currently held object should be placed, which can
be either onto the table or onto a contraption (only if
the currently held object is not a tool). Training tasks
involve 2 screws/nails/bolts and 2 contraptions, while
evaluation tasks involve 2 or 3 screws/nails/bolts and 3
contraptions; all tasks have 3 screwdrivers, 2 hammers,
1 wrench, and 1 robot. Evaluation tasks require 7-20
actions to solve.

A.6 Additional Experimental Details
All experiments were conducted on a quad-core Intel Xeon
Platinum 8260 processor. All sampler neural networks are
fully connected, with two hidden layers of size 32 each, and
trained with the Adam optimizer (Kingma and Ba 2014)
for 1K epochs using learning rate 1e-3. The regressor net-
works are trained to predict a mean and covariance ma-
trix of a multivariate Gaussian; this covariance matrix is re-
stricted to be diagonal and PSD with an exponential linear
unit (Clevert, Unterthiner, and Hochreiter 2015). For train-
ing the classifier networks, we subsample data to ensure a
1:1 balance between positive and negative examples. All AI
planning heuristics are implemented using Pyperplan (Alk-
hazraji et al. 2020); all experiments use the LMCut heuris-
tic unless otherwise specified. The planning parameters are
nabstract = 1000 for Tools and 8 for the other environments,
and nsamples = 1 for Tools and 10 for the other environments.

A.7 Additional Experimental Results
Table 3 provides learning times for all experiments. Tables 4,
5, and 6 report success rates, nodes created, and wall-clock
time respectively for all evaluation tasks.

Figure 4 analyzes the two main features used by our surro-
gate objective function. See caption for further description.

We now go through each of our four environments, pro-
viding an example of learned predicates and operators from
a single seed randomly chosen among successful ones. We
also provide additional statistics for our main method, to
supplement the other results we have provided. Note that
the evaluation plan length statistics are averaged over both
10 seeds and 50 evaluation tasks per seed, with standard de-
viations over seed only.

PickPlace1D Statistics for our main method, averaged
over 10 random seeds (standard deviations parenthe-
sized):
• Average number of predicates in Ψ (both invented and

goal predicates): 5.9 (0.54)
• Average number of operators in Ω: 2.1 (0.3)
• Average plan length during evaluation: 2.44 (0.09)

See Figure 5 for example learned predicates and operators
for a randomly chosen successful seed.

Blocks Statistics for our main method, averaged over 10
random seeds (standard deviations parenthesized):
• Average number of predicates in Ψ (both invented and

goal predicates): 6.0 (0.0)
• Average number of operators in Ω: 4.0 (0.0)



Ours Manual
Heuristic Succ Node Time Succ Node Time
LMCut 98.4 2949 0.296 98.6 2941 0.251
hAdd 98.6 121.6 0.115 97.8 3883 0.235

Table 2: Varying planning heuristic. See text for details.

• Average plan length during evaluation: 9.17 (0.69)
See Figure 6 for example learned predicates and operators

for a randomly chosen successful seed.

Painting Statistics for our main method, averaged over 10
random seeds (standard deviations parenthesized):
• Average number of predicates in Ψ (both invented and

goal predicates): 22.1 (1.45)
• Average number of operators in Ω: 11.2 (0.6)
• Average plan length during evaluation: 14.76 (0.29)
See Figures 7 and 8 for example learned predicates and

operators for a randomly chosen successful seed.

Tools Statistics for our main method, averaged over 10
random seeds (standard deviations parenthesized):
• Average number of predicates in Ψ (both invented and

goal predicates): 27.4 (4.39)
• Average number of operators in Ω: 17.8 (0.98)
• Average plan length during evaluation: 10.1 (0.12)
See Figures 9 and 10 for example learned predicates and

operators for a randomly chosen successful seed.

A.8 Varying the Planner Heuristic
Table 2 shows an additional experiment we conducted where
we varied the AI planning heuristic used by the GENAB-
STRACTPLAN routine of our bilevel planner in the Blocks
environment. Recall that our predicate invention method
uses GENABSTRACTPLAN as well, so it too is affected
by this heuristic change. All numbers show a mean over
10 seeds. Interestingly, while the gap in performance is
limited when using LMCut, our system shows a massive
improvement (over 30x fewer nodes created) versus Man-
ual when using hAdd. These results are especially surpris-
ing because A∗ with hAdd is generally considered infe-
rior to other heuristic search algorithms.3 Inspecting the
learned abstractions, we find that our approach invents four
unary predicates with the intuitive meanings Holding,
NothingAbove, HandEmpty, and NotOnAnyBlock,
to supplement the given goal predicates On and OnTable.
Comparing these to Manual, which has the same predicates
and operators as those in the International Planning Com-
petition (IPC) (Bacchus 2001), we see the following dif-
ferences: Clear is omitted4, and NothingAbove and
NotOnAnyBlock are added.

We observe that NothingAbove and
NotOnAnyBlock are logical transformations of predicates
used in the standard IPC representation. This motivated

3We also experimented with GBFS instead of A∗, and hFF, hSA,
and hMax instead of hAdd. A∗ with hAdd performed best.

4In the standard encoding, “clear” means “nothing above and not
holding.”

us to run a separate, symbolic-only experiment, where
we collected IPC blocks world problems and transformed
them to use these learned predicates. We found that using
A∗ and hAdd, planning with our learned representations
is much faster than planning with the IPC representa-
tions. For example, in the hardest problem packaged with
Pyperplan, which contains 17 blocks, planning with our
operators requires approximately 30 seconds and 841 node
expansions, whereas planning with the standard encoding
requires 560 seconds and 17,795 expansions. We also tried
Fast Downward (Helmert 2006) (again with A∗ and hAdd)
on a much harder problem from IPC 2000 with 36 blocks.
With our learned representations, planning succeeds in 12.5
seconds after approximately 7,000 expansions, whereas
under the standard encoding the planner fails to find a plan
within a 2 hour timeout. Note that all of these results are
specific to Blocks, A∗, and hAdd, and that is exactly the
point: even when using an unconventional combination of
search algorithm and heuristic, our planner-aware method
learns abstractions that optimize the efficiency of the given
planner in the given environment.

Why exactly do our learned predicates and operators
outperform the standard ones when planning with A∗ and
hAdd? First, we note that it is highly uncommon to use
hAdd with A∗ in practice with hand-defined PDDL repre-
sentations, because hAdd is inadmissible and suffers greatly
from overestimation issues (Bonet and Geffner 2001). Nev-
ertheless, the interesting phenomenon in our work is that our
system is able to learn an abstraction that copes with the
faults of this combination of search algorithm and heuristic.
To understand this further, we make the following observa-
tions:

• In both cases, the planner must escape from a local min-
imum with almost every pick operation. For example, in
a small problem with 5 blocks where the hand is initially
empty, the hAdd values of the states in the plan found
are [9, 13, 9, 11, 6, 8, 4, 5, 2, 1, 0] when planning with
the standard operators, and [14, 16, 11, 10, 6, 7, 4, 4, 2,
1, 0] when planning with our learned operators. Note the
alternation of increasing and decreasing values; the ideal
scenario for planning would instead be that these values
decrease smoothly.

• In states that follow a pick, the hAdd values consistently
overestimate the true cost-to-go, in both cases. For ex-
ample, after the first pick with the standard operators, the
hAdd value and true cost-to-go are 13 and 9 respectively;
for the learned operators, they are 16 and 9 respectively.

• Here is the main difference: in states that precede a pick,
the hAdd values from the standard operators sometimes
underestimate the true cost-to-go. In the example above,
the initial state has an hAdd value of 9, but the true cost-
to-go is 10. In harder problems, these underestimations
occur with higher frequency; for example, in a problem
with 20 blocks, there are 8 cases in the plan found where
states preceding picks underestimate the true cost-to-go.
In contrast, the hAdd values from our learned operators
do not ever seem to underestimate the true cost-to-go, in
the problems that we analyzed.



Environment Ours Bisimulation Branching Boltzmann GNN Sh GNN MF Manual No Invent
PickPlace1D 625 (134) 176 (3) 219 (145) 264 (17) 1951 (85) 1951 (85) 177 (147) 66 (0)
Blocks 10237 (853) 800 (44) 1561 (98) 9798 (1688) 4047 (209) 4047 (209) 102 (5) 84 (2)
Painting 18395 (28153) 872 (380) 2883 (144) 9457 (3421) 9185 (166) 9185 (166) 565 (457) 260 (2)
Tools 18666 (2815) 573 (20) 5524 (747) 9716 (1000) 7362 (197) 7362 (197) 167 (3) 141 (3)

Table 3: Learning times in seconds for all experiments. All numbers are means over 10 seeds, with standard deviations in
parentheses. For the GNN-based methods, learning time encompasses training the neural networks. For the other methods,
learning time encompasses learning predicates, operators, and samplers (i.e., all components of the abstraction). Even though
our main method performs well (Ours), this does come at the cost of increased learning time (although the learning is purely
offline). Note that the Manual approach only manually specifies a state abstraction (predicates); operators and samplers must
still be learned, contributing to the non-zero learning time. Thus, comparing Ours and Manual shows that the large majority of
learning time in our system is spent on predicate invention.

Environment Ours Bisimulation Branching Boltzmann GNN Sh GNN MF Random Manual Down Eval No Invent
PickPlace1D 98.6 (1.6) 98.4 (1.5) 98.4 (1.5) 98.4 (1.5) 100.0 (0.0) 15.2 (8.7) 19.2 (5.4) 98.4 (1.5) 98.6 (1.6) 39.6 (4.8)
Blocks 98.4 (1.5) 19.0 (4.9) 98.4 (1.5) 64.8 (23.5) 27.8 (4.0) 35.4 (6.8) 0.6 (0.9) 98.6 (1.6) 98.2 (1.4) 3.2 (2.0)
Painting 100.0 (0.0) 0.0 (0.0) 20.2 (7.1) 88.6 (29.7) 59.2 (17.3) 0.6 (0.9) 0.0 (0.0) 99.6 (0.8) 98.8 (1.8) 0.0 (0.0)
Tools 96.8 (4.7) 26.2 (5.6) 75.8 (8.4) 64.2 (3.7) 25.6 (9.0) 22.0 (8.9) 0.0 (0.0) 100.0 (0.0) 42.8 (10.4) 0.0 (0.0)

Table 4: Percentage of evaluation tasks solved for all experiments. All numbers are means over 10 seeds, with 50 evaluation
tasks per seed, and with standard deviations in parentheses.

• Furthermore, this underestimation occurs regularly in
states that are local minima, immediately preceding
states where the heuristic will be an overestimate, so A∗
struggles greatly. Since nodes are expanded in order of
f = g + h, that is, cost of the plan so far plus heuristic
value, A∗ will spend time exploring large subtrees rooted
at nodes that underestimate true cost-to-go before mov-
ing onto the nodes that overestimate it, including those
that will ultimately be included in the plan.

For reproducibility, we provide the complete opera-
tors used to conduct this experiment. We started from
the standard blocks domain PDDL downloaded from the
planning.domains Github repository, removed the
Clear predicate, and added the two predicates our sys-
tem learned, with the intuitive meanings NothingAbove
and NotOnAnyBlock. Problem files were updated ac-
cordingly. We ran Fast Downward with the --search
astar(add) option. Here is the domain file, with changes
highlighted in red (deletion) and green (addition):



Environment Ours Bisimulation Branching Boltzmann Manual Down Eval No Invent
PickPlace1D 4.8 (0.2) 4.7 (0.2) 4.7 (0.2) 5.3 (0.2) 6.5 (0.3) 4.8 (0.2) 14.1 (4.0)
Blocks 2948.5 (1293.2) 46.9 (18.0) 2948.5 (1293.2) 7844.0 (6655.4) 2940.5 (1299.1) 2948.5 (1293.2) 427.7 (83.7)
Painting 501.8 (180.0) – 876.6 (509.7) 4008.8 (3851.3) 2607.5 (1117.2) 489.0 (190.2) –
Tools 1897.2 (1404.0) 5247.7 (2560.6) 167.8 (78.4) 909.9 (174.1) 4770.9 (886.8) 152.5 (27.6) –

Table 5: Number of nodes created by abstract search during planning in evaluation tasks. All numbers are means over
solved tasks only across 10 seeds, with 50 evaluation tasks per seed, and with standard deviations in parentheses.

Environment Ours Bisimulation Branching Boltzmann GNN Sh GNN MF Random Manual Down Eval No Invent
PickPlace1D 0.006 (0.0) 0.006 (0.0) 0.006 (0.0) 0.005 (0.0) 0.436 (0.1) 0.014 (0.0) 0.004 (0.0) 0.045 (0.0) 0.008 (0.0) 1.369 (0.6)
Blocks 0.296 (0.1) 0.158 (0.1) 0.284 (0.1) 0.954 (0.3) 0.138 (0.1) 0.249 (0.1) 0.006 (0.0) 0.251 (0.1) 0.318 (0.1) 1.235 (1.3)
Painting 0.470 (0.2) – 4.186 (0.9) 0.600 (0.3) 2.077 (1.2) 0.073 (0.0) – 0.464 (0.1) 0.208 (0.0) –
Tools 0.457 (0.3) 0.699 (0.3) 0.109 (0.0) 0.247 (0.0) 0.311 (0.2) 0.043 (0.0) – 0.491 (0.1) 0.060 (0.0) –

Table 6: Total time in seconds for evaluation tasks. These results encompass planning time (when applicable) and policy
or plan inference time (the time taken to produce an action at each step, given the current state). All numbers are means over
solved tasks only across 10 seeds, with 50 evaluation tasks per seed, and with standard deviations in parentheses.



Figure 4: Decomposing the surrogate objective. In these plots, each column corresponds to one environment. The x-axes
correspond to sets of manually designed predicates. The predicate sets grow in size from left to right, starting with the goal
predicates alone, adding one predicate at each tick mark, and concluding with the full set of manual predicates for the respective
environment. The order that the predicates are added was determined by hill climbing with respect to the surrogate objective.
The top row shows the surrogate objective itself; the middle row shows the plan cost error |COST(π̂)− COST(π∗)| minimized
over the first 8 skeletons generated by abstract search; and the bottom row shows the total number of nodes created by the
abstract search (our measure of abstract search time), cumulative over the 8 skeletons. There are two key takeaways from this
plot. (1) The surrogate objective (first row) monotonically decreases in all environments; this smoothness makes local search
over candidate predicate sets an attractive option. (2) Neither of the two components that make up the surrogate objective —
plan cost error (second row) or abstract search time (third row) — has the same monotonically decreasing property on its own,
suggesting that both parts are necessary for making our predicate invention pipeline work. All results are means over 10 seeds.



(define (domain blocks)
(:predicates

(on ?v0 ?v1)
(ontable ?v0)
(clear ?v0)
(nothingabove ?v0)
(notonanyblock ?v0)
(handempty)
(holding ?v0)

)
(:action pick-up

:parameters (?x)
:precondition (and

(clear ?x)
(nothingabove ?x)
(notonanyblock ?x)
(ontable ?x)
(handempty))

:effect (and
(not (clear ?x))
(not (ontable ?x))
(not (handempty))
(holding ?x))

)
(:action put-down

:parameters (?x)
:precondition (and

(holding ?x)
(nothingabove ?x)
(notonanyblock ?x))

:effect (and
(clear ?x)
(not (holding ?x))
(handempty)
(ontable ?x))

)

(:action stack
:parameters (?x ?y)
:precondition (and

(holding ?x)
(clear ?y)
(nothingabove ?x)
(notonanyblock ?x)
(nothingabove ?y))

:effect (and
(not (holding ?x))
(not (clear ?y))
(clear ?x)
(not (nothingabove ?y))
(not (notonanyblock ?x))
(handempty)
(on ?x ?y))

)
(:action unstack

:parameters (?x ?y)
:precondition (and

(on ?x ?y)
(clear ?x)
(nothingabove ?x)
(handempty))

:effect (and
(holding ?x)
(clear ?y)
(not (clear ?x))
(nothingabove ?y)
(notonanyblock ?x)
(not (handempty))
(not (on ?x ?y)))

))



Figure 5: PickPlace1D learned abstractions (top: predicates, bottom: operators).



Figure 6: Blocks learned abstractions (top: predicates, bottom: operators).



Figure 7: Painting learned abstractions (top: predicates, bottom: operators part 1 of 2).



Figure 8: Painting learned abstractions (operators part 2 of 2).



Figure 9: Tools learned abstractions (top: predicates, bottom: operators part 1 of 2).



Figure 10: Tools learned abstractions (operators part 2 of 2).
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