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Task-Directed Exploration in Continuous POMDPs
for Robotic Manipulation of Articulated Objects
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Abstract— Representing and reasoning about uncertainty is
crucial for autonomous agents acting in partially observable
environments with noisy sensors. Partially observable Markov
decision processes (POMDPs) serve as a general framework for
representing problems in which uncertainty is an important
factor. Online sample-based POMDP methods have emerged
as efficient approaches to solving large POMDPs and have
been shown to extend to continuous domains. However, these
solutions struggle to find long-horizon plans in problems with
significant uncertainty. Exploration heuristics can help guide
planning, but many real-world settings contain significant
task-irrelevant uncertainty that might distract from the task
objective. In this paper, we propose STRUG, an online POMDP
solver capable of handling domains that require long-horizon
planning with significant task-relevant and task-irrelevant un-
certainty. We demonstrate our solution on several temporally
extended versions of toy POMDP problems as well as robotic
manipulation of articulated objects using a neural perception
frontend to construct a distribution of possible models. Our
results show that STRUG outperforms the current sample-
based online POMDP solvers on several tasks.

I. INTRODUCTION

Typical model-based approaches to robotics make deci-
sions based on the most likely state of the world. While a
point estimate of the world state is tolerable for some appli-
cations, it is not sufficient for problems that require actions
to improve the model estimate, or in cases where optimal
plans under incorrect model assumptions have adverse and
irreversible effects. For instance, the robot in Figure 1 has a
head-mounted camera that can noisily estimate the state of
a cabinet object. The robot also has access to controllers
(e.g., OpenDrawer) that it can use to affect the world.
Executing one of those controllers under an incorrect world
model could lead to unintended effects, such as pulling the
cabinet off the table or breaking something. An optimal
strategy might be to partially execute a controller, observe
the effect, and then execute the correct controller under the
new estimated model. Finding such an optimal plan requires
a representation of model uncertainty and a decision-making
strategy that reasons about uncertainty.

Decision-making under uncertainty is a widely studied
topic that spans many research areas [1] including motion
planning [2], control theory [3], reinforcement learning [4],
and task and motion planning [5], [6]. The most general for-
mulation of the problem is as a partially observable Markov
decision process (POMDP). Unfortunately, finding optimal
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Fig. 1. Visualization of an articulated object robotic manipulation task
(OPENDOOR) with snapshots of the robot looking at the articulated object
(top left), opening the cabinet door (top right), picking up the target object
(bottom left), and placing the object inside the cabinet (bottom right).

solutions to POMDPs can be computationally intractable.
Online POMDP solvers have an advantage over optimal
solvers because they consider only sections of the belief
space reachable from the current state, which enables them to
be applied to larger state spaces. Online POMDP solvers such
as POMCP [7] and DESPOT [8] that use a particle-based
representation of uncertainty have proven to be the most
efficient in large state spaces and have even been applied
to problems with continuous observations and actions [9].
Although these approaches are capable of working in
large and continuous state spaces, they struggle with long-
horizon planning when information-gathering is necessary
for reducing model uncertainty due to the doubly exponential
nature of the search tree. These issues can sometimes be
overcome by augmenting the reward or regularizing the value
function to explicitly incentivize uncertainty reduction [10].
Other approaches propose active learning, exclusively for un-
certainty reduction, followed by maximum likelihood model-
based planning [11], which works when all of the uncertainty
about the model is relevant to the task. However, for many
real-world tasks, there is a significant amount of uncertainty
about components of the state that are irrelevant to the task.
A robot that tries to reduce all uncertainty in the task shown
in Figure 1 will interact with all of the drawers to learn each
joint parameter, even when only one drawer is necessary.
In this paper, we propose Search with Task Relevant
Uncertainty Guidance (STRUG), a particle-based online
POMDP solver capable of finding long-horizon paths to



the goal with significant task-relevant and task-irrelevant
uncertainty. STRUG uses a domain-independent strategy for
identifying task-relevant information-gathering actions. At a
high level, STRUG relies on a fast heuristic-based forward
search planner to find per-particle plans and then uses these
plans to identify subgoals that reduce model uncertainty.
Our work presents two key contributions. First, we develop
a novel metric for task-relevant uncertainty and show use-
fulness in the context of an online belief tree policy search.
Second, we demonstrate the effectiveness of our approach
by showing how robotic manipulation tasks with complex
kinematics can be modeled as a POMDP with information
gathering actions and solved using task-relevant uncertainty.

II. RELATED WORK

The topics of planning under uncertainty and estimating
articulated models for robot manipulation are widely studied.

Online POMDP solvers: Online POMDP solvers have
been shown to be effective in high-dimensional state spaces
in comparison to other POMDP solvers [7], [8], [12]. Recent
extensions have shown that these approaches also work in
continuous action and observation spaces [9] with several
applications to robotics [13], [14].

Planning with uncertainty: One approach to planning
with uncertainty is to model the uncertainty on various state
variables using parameterized continuous distributions and
define how certain actions will affect various statistics on
those distributions [15]. While this approach works well with
structured uncertainty and known action effects, it fails in the
presence of unstructured uncertainty. Another way of dealing
with uncertainty is to first reduce any model ambiguity
through active learning and then plan in the resulting model
[16], [17]. Other approaches try to merge the model learn-
ing and planning steps using entropy regularized objective
functions or reward augmentation to encourage information-
gathering [10], [11]. Although active learning and entropy-
regularized approaches to planning with uncertainty can
effectively reduce general uncertainty, they are overwhelmed
when there is significant goal-irrelevant uncertainty.

Kinematic Model Learning: Many approaches from
computer vision estimate articulated object models from a
sequence of observations [18], [19]. While these methods
produce impressive results, it is unclear where these image
sequences would come from in autonomous robotic sys-
tems. Other approaches have attempted to estimate kinematic
models from single images [20], [21], [22], [23]. These
approaches are more applicable but are error-prone due to
partial visibility and the ambiguity inherent in still images
of dynamic objects. Some works have experimented with
model-free learning for interaction with articulated objects
[24], [25], but these approaches tend to be less efficient in
real-world interactions and can be potentially dangerous in
safety-critical situations. The most closely related works to
ours model kinematic uncertainty and take actions to reduce
that uncertainty [26], [16], [27]. To our knowledge, we are
the first to attempt to reduce rask-relevant uncertainty for
estimating kinematic models in the context of a task.

III. BACKGROUND

In this section, we outline the POMDP formulation, de-
scribe one class of algorithms used in large and continuous
state spaces, and show an extension to the classic formulation
that allows for belief-dependent search guidance.

A. POMDPs

A standard infinite-horizon POMDP is defined by the tuple
(§,0,A,T,R,Z,v) where S, O, A are the state, observa-
tion, and actions spaces respectively, 7 defines the transition
probabilities that govern state transitions P(s;y1|s,a), R de-
fines the reward function R(s,a), Z defines the observation
function P(oyy1|s¢, at), and ~y is the discount factor.

While this is the standard formulation used for offline
solvers, online Monte-Carlo simulation methods use a gen-
erative model POMDP definition (G, R, by, ~y) where G is a
generative function G (s, a;) that yields (s¢y1,0¢+1) drawn
from P(S¢41,0t41|8t,a¢), and by defines the initial state
distribution P(sg). The initial belief by exists in a belief
space B, which is the space of probability distributions
over the state space. This generative formulation lifts the
restrictive assumption that the 7 can be represented in closed
form. A solution to a POMDP is a policy 7 : B — A that
maps beliefs in B to actions in .4 such that the value of the
initial belief is maximized, with value defined as follows

Vi (b) = E[i V' R(s:, w(bt))} . (1)
t=0

B. Belief Tree Policy Search

One class of approaches attempts to maximize V;(by) by
building a belief tree with by as the root node. Nodes in this
belief tree alternate between belief nodes and observation
nodes. Multiple actions can be taken from a belief node
and multiple observations branch from a single observation
node due to the stochasticity of the model and uncertainty
in the underlying state. At leaf nodes of the belief tree,
V. (b) is estimated by simulating action sequences using a
random or heuristic-guided policy. At intermediate nodes of
the belief tree, V;(b) is estimated from its children by taking
an argmax over possible actions and an expectation over
resulting observations. The value of an optimal policy 7*
at belief b is then defined as follows

Vs (b) = Zneaj(Eb[R(S’ a)l + v Z P(olb,a)Vz- (b)) . (2)
ocO

Where o' is the result of performing a belief update
using action a, observation o, and prior belief b. In settings
with particle belief representations in which a belief is
sets of possible states, the belief update is simply b =
{St+1 | St+1,0t = G(st,at),o = Ot}. Sample-based
POMDP solvers typically build this belief tree incrementally
in an approach similar to MCTS [7], [9], [8]. Given a belief
tree, a policy tree can be extracted by selecting the action
that maximizes value at each belief node, leaving a tree that
only branches on observations.



C. Belief-Dependent Rewards

An important variant of this problem, and the one that we
use in this paper, formulates the reward to be a function of the
belief R(s,a,b) where b is computed from a history of ac-
tion, observation pairs [28]. This formulation has been used
to augment the reward to encourage information-gathering
actions that reduce entropy in the agent’s belief [11], [29].

Active learning approaches directly optimize for reduc-
tion in belief state entropy E[log(bs)]. Other task-directed
POMDP solvers augment the reward function with the belief
state entropy to encourage actions that lead to low uncer-
tainty along a trajectory [10], [30], [11]:

R(s,a,b) = R(s,a) + BE[log(b)] 3)

where 3 is a hyperparameter that determines the explo-

ration exploitation tradeoff. Our approach formulates a new

augmented belief-dependent reward function that includes a
measure of task-relevant uncertainty.

IV. METHOD

This section describes our method for solving POMDPs
with belief-dependent reward functions. We call our approach
STRUG for search with task-relevant uncertainty guidance.
At a high level, STRUG samples particles, or possible
states, from the initial belief and uses an uncertainty-free
heuristic planner to find maximum-reward plans for each
particle. The particle-specific plans are then evaluated on
the other particles sampled from the initial state distribution
yielding a probability of success for each particle’s plan on
each other particle. We then run a search in belief space
with an augmented reward function that incentivizes actions
leading to observations that separate particles with mutually
incompatible plans. Our key insight is that dissimilar states in
the state space often share successful plans, especially when
there is a significant degree of task-irrelevant uncertainty.

A. Task-Relevant Uncertainty

We first define task-relevant uncertainty (TRU) of a policy
to be the expected variance in value under trajectories
sampled from the policy and transition model. We want to
incentivize our search to find a policy m with low task-
relevant uncertainty (TRU) defined

TRU(b) = By, p | Var, o [Vaes. (sﬁ]] : @)

This is notably different from energy-based or distance-based
objectives that express uncertainty in state. A reasonable
approach for estimating this objective during planning is
to sample a number of candidate action sequences with a
random policy, evaluate the value for each simulated action
sequence, and find the sample variance.

However, random actions are unlikely to obtain any reward
in sparse-reward environments, resulting in a TRU estimate
of zero even when TRU is high. A more accurate TRU
estimate in sparse environments requires a denser sampling
in the support of the reward function. To obtain this denser
sampling, we can identify a set of action sequences with high

likelihood of reaching the goal for some particular particle
using an uncertainty-free planner. Subsequent sections de-
scribe how this metric is calculated and used in the context
of an online sample-based POMDP solver for both discrete
and continuous action and observation spaces.

B. STRUG Algorithm

We start by sampling a set of M particles X =
{x],...,zb} from the initial belief state by. A determinized
search is then performed to obtain a maximum-reward plan
a = ((ab,xb),..., (a4, x%)) on each particle z € X.
We then estimate the expected value of each plan on each
sampled particle z; € X by executing plan @’ K times from

state «;, inducing K state trajectory rollouts (z57, ..., xZTj k-
This results in an M x M plan compatibility matrix
o1 Kl o
57 =% S AR (5)

k=0 t=0
See Algorithm 1 for details. Element (7, ) in matrix S
indicates the expected value of executing particle i’s optimal
plan in particle j. It follows that TRU is calculated from S
in the following way:

M . M .. M . .o\ 2
TRUS, (b) = >_b(x) Y- (57 = X b(ai)$y7) - ©
j=0 i=0 §'=0

In order to apply our TRU estimate to an online tree-based
POMDP solver, we need a way of calculating the incremental
TRU, or the TRU gain from taking a certain action in a
certain belief state. Incremental TRU is defined recursively
as a function of the current belief state and action:

ATRU(b, a) = Eoco |TRUg,, (') — TRUg, (B)| . (7)

Unfortunately, calculating TRU at every belief node in the
belief tree is computationally burdensome, with the primary
bottleneck being per-particle planning time and quadratic
plan evaluation time. To resolve this, we make an approx-
imation of ATRU that uses a cached version of the plan
compatibility matrix Sp, instead of recomputing it at each
belief node during search. Approximate ATRU is defined as

ATRU(b, a) = Eoco [TRUSbO(b’)fTRUSbO(b)] L ®

Intuitively, we want to take actions that result in informa-
tion that would be useful at the initial belief state. This
approximation makes two important assumptions. First is
that the uncertainty in the problem can be represented by a
possibly infinite set of latent parameters that do not change
throughout the problem [11], [31]. The second is that the
actions that gather information pertaining to the unchanging
hidden variables do not lead to irreversible effects from
which the goal cannot be achieved. For example, actions
such as dropping a vase on the floor to see if it is made
of glass would violate this assumption. The original reward
function is augmented with the exploration reward to yield
the final belief-dependent reward:

ﬁ(St,at, bt) = R(St,at) + ﬁ AT/R\[J(bt, at) s (9)
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Visualization of sample trajectories from three POMDP solvers on the LightDark2D Task. The agent starts with uncertainty in its position, and

has to navigate to the goal region (vertical green bar). The top wall reduces uncertainty about the y position, and the right wall reduces uncertainty about
the x position. POMCPOW fails to take any information-gathering actions, ENTROPY REGULARIZED reduces all state uncertainty before going to the
goal. STRUG reduces only task-relevant uncertainty before reaching the goal.

where [ is a hyperparameter specifying the importance
of gathering task-relevant information. The full algorithm
description including TRU augmentation can be seen in 2
In our experiments, we err on the side of selecting large
importance values (8 = 10) because the TRU term will
approach zero after all task-relevant information is gathered.

Algorithm 1 COMPATIBILITY MATRIX
Require: POMDP model p
1: P < Sample M particles b ~ by

22 F+{},D <« {},S < zeros(M, M)

3: formel: M do

4 D < D UPLAN(P[m])

5: forme1l: M do

6: for d; € 1:|D| do

7: for ke1l: K do

8: R+ 0

9: for a € reverse(D]d;]) do

10: s, 0,1+ G(s,a)

11: R+ YR+

12: S[m,d;] < S[m,d;] + R/ K
return S

C. Hierarchical Progressive Widening

Sampling continuous actions during tree search is typ-
ically performed using Progressive widening (PW), dou-
ble progressive widening (DPW), or Voronoi progressive
widening (VPW) [32], [9], [33]. These all work by limiting
the number of child nodes of a certain parent node. For
example, progressive widening limits the number of child
action nodes to kN“ where N is the number of samples
reaching the parent node, and k,« are hyperparameters of
the search process. This strategy does not easily extend
from fixed-dimensional purely continuous action spaces to
the hybrid discrete-continuous actions spaces that are typical
in robotic planning applications. Typical robotic planning

Algorithm 2 STRUG
Require: POMDP model p, Initial belief distribution b
1: procedure SOLVE(p, by)
2 S <— COMPATIBILITYMATRIX(p)
3 t < EMPTYTREE
4: for i € tree_samples do
5
6

SIMULATE(t, p, bo)
return argmaxt.Q(bg, a)
a

7. procedure SIM(t, p,b)

8: s < sample(b)

9: a <+ HPW(s,p.A,t.N)

10: b, 0,1+ G(b,a)

11 s’ « sample(b’)

12: if . N(b) = 1 then -

13: r < r+yRoLLOUT(s") + BATRU (Y, a)
14: else -

15: r 1+ ySM(t,p,b') + BATRU(V , a)
16: t.Q(s,a) « t.Q(s,a) + (r —t.Q(s',a))/t.N(s',a)
17: return r

applications define a number of controllers a € A, each
with a unique set of continuous parameters 6, [34]. A
naive extension of double progressive widening might use
a fixed-size continuous search space with dimensionality
maxge 4 |64/, ignoring the extraneous continuous parameters
for controllers with fewer parameters. Unfortunately, this
approach is highly inefficient due to redundancy. We propose
a new Hierarchical Progressive Widening (HPW) strategy
that splits action selection into a sequence of decisions about
discrete action parameters followed by a joint selection of
the continuous parameters with progressive widening con-
straints. HPW uses the standard UCB criterion at each step of
the action selection process, giving priority to exploration of
the continuous parameters of promising controllers without
unnecessary redundancy [35]:



Algorithm 3 HPW

Require: State s, action schemas A, state-action counts N
1: a < []
2: for © € A.discrete do

3: a < a @ argmax UCB(s,a;)
a; €0

aq < a

: for © € A.continuous do

if |Os[aq]| < EN(s,a)* then
Oglag] + Osagy] U sample(O)

a < a @ argmax UCB(s, a;)
a; €O;[aq]

® >0k

return a

log N(s)

UCB(s,a) = Q(s,a) + ¢ NG a)

(10)

Q(s,a) is the estimated value of an action in a particular
state, N(s) is the state sample count, N(s,a) is the state-
action sample counts, and c is the exploration parameter. In
our experiments we set ¢ to be the maximum reward. See
Algorithm 3 for details.

V. EXPERIMENTS

Our baselines include planning methods that handle un-
certainty and aim to trade off information-gathering with
reward exploitation. Namely, we evaluate POMCP [7] and
its continuous variant POMCPOW [9]. To apply POMCP to
continuous problem domains, we followed the procedure de-
scribed in [9] to discretize the action and observation spaces.
The Entropy Regularized uses the augmented reward in
Equation 9 to explicitly encourage entropy reduction. Lastly,
Active Learning separates the problem into two steps: an
active learning step that explicitly aims to minimize model
entropy and an exploitation step that uses MCTS to find an
optimal plan under the most likely model.

We perform experiments on several temporally extended
versions of toy POMDP problems and on tasks involving
robotic manipulation of articulated objects that relies on
perception with a neural network for object-detection to con-
struct a distribution of possible model states. We evaluate on
the following tasks that all require some form of information-
gathering in addition to goal-directed actions to achieve good
performance. For tasks involving robotic manipulation, we
use the Fetch robot [36] in the Issac gym simulation [37].

o Tiger [38]: The agent stands in front of two doors.
Opening one door reveals a tiger (negative reward), and
the other reveals treasure (positive reward). The waiting
action incurs a slight negative reward but results in a
noisy observation of the tiger’s location.

« ExtendedTiger: A modified version of the Tiger prob-
lem that requires several repeated wait actions before
any observations are received.

o LightDark1D/2D [39]: The agent is uncertain about its
current position, and has to navigate to a goal region.

It can gain information about its position by moving
toward the light region(s). In the 2D environment,
moving to particular walls reduce uncertainty about
specific dimensions of the agent’s location (see Fig. 2).
o Shelf Manipulation: The robot is placed in front of
a piece of storage furniture (shelf) from the Partnet
Mobility dataset [40] with both hinge and door joints
and a spam object is placed on a table from the YCB
object set. A reward is received when the object is
placed inside the storage furniture. Although the agent
is uncertain about many aspects of the shelf model, it
does not need to reduce uncertainty to achieve the goal.
¢ Open Drawer (Door): The same setup as the Shelf
problem, but the articulated object has changed to only
have prismatic (hinge) joints. The agent is uncertain
about many aspects but only needs to reduce uncertainty
about a single drawer (door) to achieve the goal.

A. Robotics Task Details

1) Dynamics & Reward: Our simulated experiments were
performed in the Pybullet [41] physics simulator and visual-
ized in IsaacGym [37]. The physics simulator served as the
dynamics function f of our POMDP. As shown in Figure 1,
we use a mobile-base Fetch robot model [36] with articulated
object models from the Sapien Partnet Mobility dataset [40].
Initial state distributions are generated by sampling multiple
camera perspectives with the robot RGBD camera and pass-
ing the images through a MaskRCNN object detection model
that predicts articulated object link masks, joint types, and
joint parameters [20]. If the base of the kinematic model
moved more than 0.1 meters, the environment terminated,
and a reward of -10 was returned. If the task was completed
successfully the environment was terminated, and a reward
of 10 was given. A maximum of 10 steps was allowed.

2) Initial State Distribution: The MaskRCNN was fine-
tuned from the Detectron2 model [42] using simulated data
captured in IsaacGym on objects from the Partnet Mobility
dataset not used during evaluation. Because the trained model
had a tendency to be confidently incorrect, we additionally
added noise to the input images, class predictions, and output
joint parameters. Example bounding boxes, and predicted
masks can be seen in Figure 3 (top).

3) Observation Function: The observation function is
defined using the Hausdorff distance, H between the expected
and received pointcloud observation:

Z(o|s,a) = N'(H(o,PcD(f(s,a)), 02) , (11)

where PCD is the simulated observation that results from
execution of action a on state s. We used o = 1073,

4) Action Space: The actions consisted of parame-
terized controllers OpenDrawer (?g), OpenDoor (?g),
Pick (?0),Place(?0, ?p),Push(?g),PullV(?qg),
PullH (?g) where 2o is the discrete object to manipulate,
?p is a 6 DoF object pose, and 2?g is a 6 DoF gripper pose.
To increase the potential for the pull controllers to impact
the kinematic model state, we biased the controller parameter
sampling using the Where2Act model [25]. The Where2Act



Fig. 3. A visualization of the perceptual model results used to construct the POMDP problem. Top: Results of the MaskRCNN detection module for link
mask prediction. Bottom: The combined, thresholded, and filtered Where2act heatmap for the Pull controller

TABLE I
EXPERIMENTAL RESULTS ON THE TASKS DESCRIBED IN SECTION V. THE MEAN DISCOUNTED REWARD AND STANDARD ERROR ACROSS 100 SEEDS.

REWARDS ARE BETWEEN -10 AND 10. SCORES WITHIN 2 POINTS OF THE HIGHEST-SCORING ALGORITHM ARE BOLDED

Tiger ExtendedTiger  LightDark 1D LightDark 2D Shelf Open Drawer Open Door
Random —-1.62+098 —-021+089 —543+£0.65 —3.13+£0.14 —-9.34+0.20 —-9.474+0.05 —9.54+0.04
POMCP (Disc) 5.67+0.75 —0.024+0.98 1.30 £0.98 —-0.57+0.12 9.02£0.00 —-1.00£0.33 —1.50+0.41
POMCPOW 6.49+0.66 —0.37£0.81 2.60 £ 0.97 -1.20+£0.89 8.62+0.19 1.30 £0.71 0.20£0.71
Entropy Regularized  6.25 +0.31 3.95+0.34 0.12+£0.94 1.26 £0.41 3.91+0.11 0.34 £1.18 —0.15+0.97
Active Learning 5.59 + 0.28 3.96 +£0.33 5.50 + 0.82 2.13+1.29 1.62 +£0.92 1.49 £1.91 1.03 £0.84
STRUG 6.34 +£0.31 2.31£0.25 5.80 £ 0.62 3.55+£0.91 9.02 £ 0.00 4.22 +1.60 5.21+1.39

models generate heatmaps of pull locations for horizontal and
vertical orientations that highlight handles, buttons, and other
likely object interfaces on unseen articulated objects. The
Where2Act models are also trained from a simulated dataset
using Partnet Mobility models. An example combined hori-
zontal and vertical pull heatmap is shown in Fig. 3 (bottom).

B. Results & Discussion

Our results show all POMDP methods work on the sim-
plest Tiger problem with relatively equal performance. In
the more difficult ExtendedTiger problem, we observe that
only approaches that perform explicit uncertainty reduction
(Entropy Regularized, Active Learning, and STRUG) per-
form well. A similar trend is apparent in the LightDark 1D
and LightDark 2D domains. We see the Entropy Regularized
baseline struggle in the 1D version of this domain, and both
Entropy Reduction and Active Learning perform worse in
the 2D version. A few qualitative results shown in Figure 2
help elucidate the problem. Methods that reduce general
uncertainty perform better than standard POMDP solvers but
are less efficient than STRUG, which reduces only task-
relevant uncertainty. For the shelf robotics task, we can
see that the standard POMDP methods solve it effortlessly
since no additional information is needed to solve the goal.
However, the methods that reduce general uncertainty are
less efficient because they try to reduce uncertainty anyway.
Lastly, in the Open Drawer and Open Door robotics tasks,
we observe that only STRUG is capable of solving them.
Standard POMDP methods fail to consider information-

gathering actions due to the temporally extended nature of
the problem, and general information-gathering approaches
spend more time gathering unnecessary information.

Although our task selection does not highlight them,
STRUG does come with a set of assumptions and general
limitations. First, it cannot be used in environments with
irreversible actions that gain task-relevant information. Sec-
ond, using an approximation of TRU restricts STRUG to
environments in which the uncertain variables do not change
during the task. In future work, we hope to address some
of these shortcomings and move to larger task and motion
planning robotics domains with more controllers, objects,
and temporal dependencies.

VI. CONCLUSIONS

In this paper, we present STRUG, an approach for plan-
ning with model uncertainty that prioritizes information-
gathering actions the reduce task-relevant uncertainty. While
directly reducing task-relevant uncertainty is intractable, we
found a practical approximation under some assumptions.
We evaluated this approach on a number of POMDP prob-
lems, including robotic manipulation of articulated objects, a
task that contained model uncertainty arising naturally from
limitations in the robot’s perception. Our findings show that
augmenting reward with task-relevant uncertainty improves
performance over existing POMDP solvers in temporally
extended domains and outperforms approaches that reduce
general uncertainty instead of task-relevant uncertainty.
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