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Minimal Demonstrations on 
Single Object Class

Test on Out-of-Distribution Objects in Unseen Poses

Fig. 1: Given minimal (5-10) real world demonstrations of grasping and picking up two different upright mugs, Local Neural Descriptor
Field can successfully grasp and pick up a set of geometrically distinct objects at arbitrary SE(3) poses.

Abstract— A robot operating in a household environment will
see a wide range of unique and unfamiliar objects. While a
system could train on many of these, it is infeasible to predict all
the objects a robot will see. In this paper, we present a method
to generalize object manipulation skills acquired from a limited
number of demonstrations, to novel objects from unseen shape
categories. Our approach, Local Neural Descriptor Fields (L-
NDF), utilizes neural descriptors defined on the local geometry
of the object to effectively transfer manipulation demonstra-
tions to novel objects at test time. In doing so, we leverage
the local geometry shared between objects to produce a more
general manipulation framework. We illustrate the efficacy of
our approach in manipulating novel objects in novel poses –
both in simulation and in the real world. Project website, videos,
and code: https://elchun.github.io/lndf/.

I. INTRODUCTION

A robot operating autonomously in an household envi-
ronment will encounter a wide variety of unseen objects.
While individual objects may be novel in shape, many can be
decomposed into a set of previously seen constituent parts.
Consider the novel objects illustrated in Fig. 1 – while a
bottle with a handle may be unseen, both bottles and mugs
are individually known. Therefore, one may propose that
a robot manipulate the novel object via skills learned on
both bottles and mugs. In this paper, we investigate enabling
such generalization using an imitation learning paradigm. In
particular, we wish to construct a system which, when given
a small set (5 - 10) of manipulation demonstrations on a
single category of objects, can successfully execute this skill
on novel objects types in arbitrary SE(3) orientations.

To enable efficient learning, we build on the Neural
Descriptor Fields (NDF) system [23]. NDF assigns a dense

Correspondence to: yilundu@mit.edu

descriptor to each point in a shape, with similar points
across different objects in a given category assigned similar
descriptors. Object manipulation may be generalized to novel
objects in the same category by finding a corresponding
set of dense descriptors in the novel object. A limitation of
NDF, however, is that it relies on a single global latent to
encode all geometric aspects of a shape in a given category.
When given an object of a new category, this representation
cannot capture the resultant geometry, preventing NDF from
transferring object manipulation to new categories of objects.

We circumvent this problem by using a voxel grid of
latents to locally capture the geometry and descriptors of
a shape (see Fig. 2); where each latent encodes a local
spatial region. With this encoding scheme, descriptors of
shapes in new categories can be more accurately encoded, as
individual patches of the new shape correspond to patches
from various categories of training object. We illustrate how
this encoding enables generalization of object manipulation
to new categories, referring to our approach as Local Neural
Descriptor Fields (L-NDF).

An issue that arises when encoding descriptors locally is
that descriptors of a portion of an object may change as the
object is transformed. For example, the handle of a mug is
represented with different voxel latents when it is translated
and rotated. To ensure that descriptors are consistent across
rigid object transformations, we propose a contrastive loss
which explicitly enforces descriptor consistency when objects
are transformed.

To transfer object manipulation demonstrations from one
object to another, we must find corresponding sets of
descriptors between the objects. In NDFs, a global gradi-
ent optimization procedure is used to minimize descriptor
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distance. With L-NDF, a similar global optimization procedure
is difficult to run, as descriptors of an object are only
locally encoded – lacking a consistent global direction in
which descriptors are changing in a shape. To overcome
this difficulty, we propose to initialize optimization across a
diverse set of positions in a shape – running local optimization
to choose the descriptor with a minimal descriptor distance
as our final, matching, descriptor.

We demonstrate that L-NDFs can be reliably used to gen-
eralize object manipulation to both novel objects and objects
at unseen SE(3) poses. Given only (5-10) demonstration, our
framework is able to manipulate novel objects (such as a tea
cup or a bowl with a handle attached) in both simulation as
well as on a real robot.

II. RELATED WORK

A. Generalizable Manipulation

Our work follows a long line of work on using imitation
learning for manipulation. When object models are known,
pose estimation may be used for manipulation [22, 30, 31].
When the precise geometry of objects is unknown, template
matching with coarse 3D primitives [10, 16, 27] or nonrigid
registration [22] can be used; but such methods still suffer
when objects deviate substantially from templates. Recent
work has explored more flexible representations for imitation
learning, such as keypoint [8, 9, 14] or dense descriptors [6,
23, 26]. Most similar to our work – DON [6] and NDF
explore 2D and 3D dense descriptors for object manipulation
– but both only demonstrate generalization within the same
category of objects. In contrast, our approach enables object
manipulation for novel categories of shapes at test time.

B. Neural Implicit Representations for Robotics

Neural implicit representations [15, 19] have emerged
as a promising representation of 3D geometry in robotics.
Different works have explored how implicit representations
may be used in navigation [1], localization [7, 17, 28],
SLAM [18, 25, 32], and manipulation [12, 13, 21, 23, 24,
29]. In the context of manipulation, [12, 29] utilize NeRF as
an approach to extract the underlying 3D geometry of a scene.
In contrast, [21, 23, 24] build on the Neural Descriptor Field
framework for learning manipulation skills, where underlying
high-dimensional neural descriptors are used to transfer and
generalize demonstrations. Our work extends NDFs to work
with locally conditioned implicit representations.

III. BACKGROUND: MANIPULATION WITH NEURAL
DESCRIPTOR FIELDS

A Neural Descriptor Field (NDF) [23] encodes the shape
of an object using a function f that maps a 3D point x ∈ R3

and an partial object point cloud P ∈ R3×N to a spatial
descriptor in Rd:

f(x|P) : R3 × R3×N → Rd. (1)
NDFs are also trained to learn correspondence over objects
in the same category, so that points near similar geometric
features of different instances (e.g., a point near the neck of
two different bottles) are mapped to similar descriptor values.

NDFs can be generalized to assign descriptors to full SE(3)
poses, rather than individual points. This is achieved by
concatenating the descriptors of the individual points in a
rigid set of query points X ∈ R3×Nq , i.e., a set of three or
more non-collinear points xi, i = 1...Nq , that are constrained
to transform together rigidly. This construction allows NDFs
to represent an SE(3) pose T via its action on X , i.e., via
the points of the transformed query point cloud TX :

Z = F (T|P) =
⊕
xi∈X

f(Txi|P) (2)

Thus, F maps a point cloud P and an SE(3) pose T to a
category-level pose descriptor Z ∈ Rd×Nq .
Few-Shot Manipulation Learning with NDFs. Next, we
discuss how to leverage NDF for few-shot learning of
object manipulation skills. Consider a set of K demon-
strations, {Di}Ki=1, where each demonstration, Di =
(Pi,Ti

pick,T
i
place) consists of a object Pi, and two poses:

the end-effector pose before grasping, Ti
pick, and the relative

pose of the placement surface Ti
place. We define a set of

query points Xpick and Xplace to represent the gripper and
placement surface, respectively. We then utilize (2) to encode
each pose Ti

∗ into its vector of descriptors Zi
∗, conditional on

the respective object point cloud Pi, obtaining a set of spatial
descriptor tuples {(Zi

pick,Zi
rel)}Ki=1. The set of descriptors

is averaged over the K demonstrations to obtain single pick
and place descriptors Z̄pick and Z̄rel

When a new object is placed in the scene at test time, we
obtain a point cloud Ptest and leverage (3) to recover Ttest

pick

and Ttest
rel by minimizing the distance to spatial descriptors

Z̄pick and Z̄rel.
T̄ = argmin

T
‖F (T|P)− F (T̂|P̂)‖ (3)

We rely on off-the-shelf inverse kinematics and motion
planning algorithms to execute the final predicted poses.

IV. LOCAL NEURAL DESCRIPTOR FIELDS

Given a set of K, single object class, pick and place
demonstrations, {Di}Ki=1, where each demonstration, Di =
(Pi,Ti

pick,T
i
place), consists of a partial object point cloud Pi,

end-effector pick pose Ti
pick and place pose Ti

place, we are
interested in generalizing the tasks to a set of new objects P′

from unseen object classes. To solve this problem, we develop
an approach using locally defined descriptors and propose
suitable modifications of the NDF pipeline (Section III) to
utilize such descriptors.

In particular, in Section IV-A, we introduce Local Neural
Descriptor Fields and illustrate how they may be used to
locally encode the geometry of objects. In Section IV-B,
we discuss how we may build SE(3) equivariance into the
underlying descriptor of L-NDF. Finally, in Section IV-C, we
discuss how to modify the underlying optimization procedure
to allow us to search for an ideal pose within the local
descriptor field landscape.

A. Local Descriptor Fields

A global NDF model cannot generalize effectively to new
categories of objects. To solve this problem, we use local
descriptor fields for objects: each element of a voxel grid
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Fig. 2: Local Neural Descriptor Field Architecture – A L-NDF
takes any coordinate in 3D space, x, and a conditioning point
cloud P. It then uses an encoder ε(P) to encode P into a 3D
feature volume from which the voxel containing x is queried. These
feature are passed into an MLP decoder where the activations of the
decoder’s final layer are extracted to create the spatial descriptor, z.

contains a latent vector representation of the object’s local
shape near that voxel.

In L-NDF, we use a convolutional occupancy network
encoder [20], ε(P), to encode a partial point cloud P into a
voxel grid of latents (illustrated in Fig. 2). When querying a
particular point, x, the corresponding voxel from the latent
feature, ε(P), is retrieved and processed through MLP layers.
The final set of MLP activations are then concatenated to
produce a latent code z. Formally, this encoder is defined as
(4).

z = f(x|P) = Φ(x|ε(P)bxc). (4)
Following [23], we utilize occupancy reconstruction to train
and learn features for NDFs.

B. Training and Learning SE(3) Equivariance

To ensure that our models generalize to rigid transforma-
tions of the target object, we design a training regime that
enforces the descriptors at the same point of an object (in its
local frame) to remain invariant under SE(3)transformations
of the object.
Enforcing SE(3) Equivariance. In contrast to [23], our
system is not inherently SE(3) equivariant. Instead, we utilize
a contrastive loss term to shape the network activations such
that they exhibit SE(3) equivariance. Formally, an encoder,
f(x|P), is SE(3) equivariance if, for any rigid body transform
T ∈ SE(3),

f(x|P) ≡ f(Tx|TP) (5)
A simple approach to enforce equivariance is to directly
enforce that the encoding of corresponding points should be
preserved across SE(3) transformations. However, directly
enforcing this constraint was problematic as we found f to
map all inputs to the same encoding. Therefore, we considered
directly enforcing an additional constraint, that different input
points produce different encodings, but found the resultant
descriptors were no longer semantically consistent between
shapes.

We found that a robust alternative to construct descriptors
that are both SE(3) equivariant and semantically consistent
was to enforce (6), that descriptor similarity between two
points is roughly proportional to their inverse distance across
different rigid transformations T (illustrated in Fig. 3).

sim(f(x1|P ), f(Tx2|TP )) ∝ 1

‖x1 − x2‖+ ε
, (6)

Cosine Similarity

Euclidean 
Distance

Fig. 3: Contrastive Loss Term for L-NDF – The spatial descriptor
of a 3D coordinate, x, with respect to an observed point cloud, P, is
similar across any transform, T ∈ SE(3). Additionally, geometrically
farther points have decreasingly similar descriptors.

Bottle-like Objects Mugs-like Objects

SE(3) Equivariance of Descriptors

Fig. 4: SE(3) Equivariance of Object Encoding – Heat map
of cosine descriptor difference from selected point (in red). The
descriptor field remains consistent across different objects in arbitrary
SE(3) transformations.

This constraint enforces that descriptors are both equivari-
ant across rigid transformations of a shape, but also that they
vary smoothly with respect to small Euclidean perturbations
of the point.

To enforce this loss, we sample k points within the
bounding box of the object. We designate the first point, x0,
as the point we compute descriptor similarity with respect to
in the remaining k − 1 points. For each point, we compute
the cosine similarity, si, between f(x0|P) and f(Txi|TP),

si =
f(x0|P) · f(Txi|TP)

max(||f(x0|P)|| · ||f(Txi|TP)||, ε)
(7)

We compute corresponding target similarity values for each
xi with respected to the first point x0

ti =
1

d(x0,xi) + β
, (8)

and enforce that similarities are roughly proportional to the
inverse distance. As illustrated in Fig. 4, this loss successfully
enables SE(3)equivariance across objects.

C. Pose optimization

When using L-NDFs for few shot task learning, we must
optimize a pose, T, on a new point cloud P, to match a
desired reference pose, T∗ on a reference point cloud P.
This optimization procedure is described in (3). Conventional
NDFs run global optimization on a set of query points to
obtain the optimal pose T, where optimization is initialized
at a random orientation centered at the origin of the object.
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Fig. 5: Selecting Query Points – Relative size of query points for
each executed task. For grasp and rack placement tasks, we use
query points similar in size to contact geometry of the known object
(gripper and peg size). For placement surfaces, we find larger query
point selections performs well.

However, this method fails when using Local NDFs. Since
L-NDFs only aggregate information across local geometry,
there is little information relating distant geometric features.
To mitigate these challenges, we introduce two techniques:
initial translation and query point selection.
Initial translation. In contrast to conventional NDFs, we
initialize query points at random rotations and translations
within the bounding box of the observed point cloud. When
using a sufficient number of query points instances (We found
20 to be adequate), we find that at least one of the translated
query point sets will initialize close to our target geometric
feature. Subsequent pose optimization tunes the query point
cloud to the correct target location.
Query Point Tuning. We find that query point selection
is critical to the performance of L-NDFs. If a query point
cloud is too large, it encodes confounding geometry and
empty space. If a query point cloud is too small, it does
not capture enough local geometry. We find that for precise
manipulation, query points can be sampled near the expected
contact geometry of the known object. For more general
poses (such as placing on a surface), a query point cloud
which maximizes the expected volume of observed objects
contained within the point cloud while minimizing the volume
of empty space contained produces robust results. See Fig. 5
for additional details.

V. EXPERIMENTS: DESIGN AND SETUP

We design our experiments to test the following: (1) How
well do L-NDF’s generalize to unseen objects classes? (2)
Can L-NDF’s be used on a real robot to achieve generalization
from a small number of single object class demonstrations?

A. Robot Environment Setup

Our environment consists of a Franka Panda arm mounted
on a table. Depth cameras are placed at each corner of the
table, all calibrated to obtain fused point clouds of objects
within the robot’s reach. We use four depth cameras in
simulation, and two depth cameras in real life. Our simulation
cameras produce a complete point cloud, while the real life
cameras produce a partial point cloud. Depending on the task,
a rack or shelf is placed on the table. For quantitative data,
this setup is simulated in Pybullet [4]. For our simulation
setup, refer to Fig. 6. For our real world setup, refer to Fig. 7.

B. Task Setup

We test four tasks: (1) Grasping a mug-like object by its
rim and hanging it on a rack by its handle. (2) Grasping a
bowl-like object by its rim and placing it upright on a shelf.
(3) Grasping a bottle-like object by its neck and placing it
upright on a shelf. (4) Grasping a handle placed on an object
from an arbitrary object class. Tasks 1, 2, and 3 use demos
containing normal mugs, bowls, and bottles, respectively. Task
4 uses demos of normal mugs.

We define mug-like objects as standard mugs and bowls
with handles attached to them; bowl-like objects as standard
bowls, standard mugs, and bowls with handles attached to
them; and bottle-like objects as standard bottles and bottles
with handles attached to them.

We provide 10 demonstrations per task and test on 200
unseen objects at randomly generated poses, orientations, and
uniform scalings. We assume the environment remains static
between demonstrations and test and that (potentially partial)
point clouds of the object can be obtained. In simulation,
we use Shapenet [3] objects for each in-distribution class,
filtering objects that are incompatible with our tasks. For
out-of-distribution objects, we modified Shapenet objects as
required. Refer to Fig. 6 for examples.

C. Training Details

We pre-train NDFs and L-NDF’s by using each system’s
occupancy network to reconstruct objects from partial depth
images. We train each system for 300,000 iterations on a joint
dataset containing objects from all three object categories
at random rotations and translations. For each object, point
cloud data is gathered by placing the object in a PyBullet
simulation and taking depth images.

At test time, we gather a small number (10 in simulation
and 4-6 in real life) of task specific demonstrations using a
single object class. These demonstrations are then used by
the systems to execute the desired tasks on the demonstration
object class, as well as on unseen object classes.

D. Evaluation Metrics

In simulation, we evaluate each method by measuring grasp
success (stable contact between object and end effector), place
success (stable contact with placement surface in the correct
orientation), and overall task success, for which both grasp
success and place success must have occurred. On the physical
robot, human evaluators assert whether the object has been
grasped and placed in the correct location.

E. Baselines

For each of the tasks, we compare L-NDF performance to
conventional NDFs and a geometric approach. The L-NDF
query points were selected using the heuristics described
above. NDF query points are extracted from the codebase
provided by [23]. The geometric approach uses ICP and
RANSAC [2, 5] for pose estimation.
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Fig. 6: Experimental Setup – We provide ten simulated demonstrations of each task, then execute each on a set of 200 unseen objects.
We measure grasp success, place success, and overall success. Grasp and place success check that the simulated object is in a stable
configuration. Overall success checks if both grasp and place success occurred.

Upright Pose Mug Demo Bowl Demo Bottle Demo Mug Handle Demo
Mug Bowl∗ Bottle∗ Bowl Bowl∗ Mug Bottle Bottle∗ Mug Bowl∗ Bottle∗ Bowl

Geom Grasp 0.945 0.245 0.170 0.670 0.605 0.305 0.675 0.605 0.350 0.375 0.510 0.215
Place 0.360 0.455 0.330 0.890 0.870 0.625 0.875 0.885 - - - -
Overall 0.335 0.160 0.060 0.590 0.530 0.205 0.625 0.545 0.350 0.375 0.510 0.215

NDF Grasp 1.000 0.615 0.010 0.925 0.725 0.265 0.805 0.695 0.805 0.305 0.235 0.000
Place 0.925 0.620 0.225 0.910 0.730 0.145 0.935 0.870 - - - -
Overall 0.925 0.450 0.000 0.885 0.670 0.125 0.805 0.665 0.805 0.305 0.235 0.000

L-NDF Grasp 1.000 0.950 0.160 0.990 0.985 0.970 0.875 0.760 0.980 0.730 0.915 0.190
Place 0.995 0.830 0.900 0.990 0.990 0.865 0.975 0.670 - - - -
Overall 0.995 0.800 0.135 0.985 0.975 0.845 0.850 0.590 0.980 0.730 0.915 0.190

Arbitrary Pose Mug Demo Bowl Demo Bottle Demo Mug Handle Demo
Mug Bowl∗ Bottle∗ Bowl Bowl∗ Mug Bottle Bottle∗ Mug Bowl∗ Bottle∗ Bowl

Geom Grasp 0.570 0.170 0.150 0.730 0.690 0.555 0.660 0.570 0.345 0.420 0.440 0.250
Place 0.345 0.380 0.330 0.905 0.880 0.665 0.850 0.860 - - - -
Overall 0.215 0.075 0.065 0.665 0.615 0.400 0.600 0.525 0.345 0.420 0.440 0.250

NDF Grasp 0.900 0.460 0.045 0.675 0.575 0.150 0.575 0.385 0.555 0.105 0.190 0.070
Place 0.735 0.370 0.235 0.840 0.800 0.565 0.955 0.955 - - - -
Overall 0.655 0.250 0.010 0.655 0.565 0.120 0.570 0.365 0.555 0.105 0.190 0.070

L-NDF Grasp 0.770 0.755 0.110 0.910 0.960 0.880 0.790 0.720 0.930 0.540 0.815 0.130
Place 0.960 0.635 0.850 0.985 0.940 0.885 0.970 0.820 - - - -
Overall 0.735 0.470 0.095 0.905 0.820 0.795 0.775 0.635 0.930 0.540 0.815 0.130

TABLE I: Unseen instance pick-and-place success rates in simulation. Given demonstrations using a single object class, we test
performance on a variety of other object classes. NDF performs well on unseen objects from the demonstration object class but struggles
with new object classes. L-NDF performs well with unseen objects from both the demonstration and analogous object classes at upright
and arbitrary rotations. An ICP and RANSAC implementation (Geom) is provided as reference. Green indicates that the test object is the
same class as the demonstrations; blue indicates that the test object is from an analogous class to the demonstrations; red indicates that the
test object is from a substantially different class. ∗Objects are modified to include a handle. See illustrations of each task in Fig. 6.

VI. EXPERIMENTS: RESULTS

We conduct experiments in simulation to compare the
performance of the geometric approach, NDFs, and L-NDF’s
on each of the four tasks (illustrated in Fig. 6) with relevant
in and out of distribution objects. We then perform ablation
studies to examine the effect of different loss functions and
different 3D feature volumes on L-NDF performance. Finally,
we apply L-NDFs on a physical robot and validate that the
proposed method generalizes to out-of-distribution poses and
objects classes in the real world.

A. Simulation Experiments

In-distribution objects. We first consider how skills are
transferred to unseen objects from the demonstration class
in novel upright or arbitrarily rotated poses. Referring to the
green columns of Table I, we find that in all pick and place
tasks, L-NDFs outperform conventional NDFs – sometimes
in excess of a 0.25 increase in success rate. Furthermore, we
find that L-NDFs dramatically outperform NDFs on handle

grasping, achieving a 0.38 improvement over NDFs in task
success on arbitrarily rotated mug handles (Table I, last
green column). We note that the geometric approach does
demonstrate some task succcess; however it lags behind both
NDFs and L-NDFs. We observe that NDF’s handle grasp
failures occur when a grasp is found near the desired location,
but at a slight offset or rotation from the expected location.
Given the fully connected nature of NDFs, we hypothesize
that the descriptor fields near an observed object’s salient
features may be confounded by the irrelevant geometry of
the object itself, an issue which local fields address.

Analogous Out-of-distribution objects. We next consider
a more difficult task. We still wish to transfer skills from
demonstrations to test objects at novel upright or arbitrarily
rotated poses. However, now the test objects have analogous
geometry to the demonstration objects, but in different
arrangements or with confounding features. Referring to the
first and last blue columns of Table I, we find that on tasks
where the rearranged geometry is integral to the task success,
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Bowl with Handle Cardboard Box Roll of Tape Mug

Fig. 7: Real world Execution – We provide four real world demonstrations of grasping and placing two different bowls. We then
successfully grasp and place a variety of unseen objects using a Franka Panda arm. Refer to our supplementary video for additional results.

Random L-NDF Occupancy Only Hard Contrast Distance Contrast

G P O G P O G P O G P O

0.02 0.73 0.02 0.70 0.66 0.47 0.64 0.63 0.39 0.79 0.97 0.78

TABLE II: Effect of Loss Function. We test a randomly initialized
system and systems trained with pure 3d reconstruction, simple
contrastive loss, and our distance based contrastive loss.

NDF performance drops substantially. In contrast, L-NDF
performance does fall, but significantly less than NDF does.
In many cases, we observe that tuning NDF query points to
more closely match L-NDF query points can recoup some
of this performance loss. However, we still find that NDF
performance lags behind L-NDF success.

In the middle three blue columns of Table I, we find that,
in tasks where the additional feature acts as a confounding
feature, NDF and L-NDF overall task success drops by similar
amounts. We note that in NDFs, this drop in performance is
attributed to both drops in both grasp and placement success.
However, with L-NDFs, this drop is mostly attributed to a
decrease in placement success. We hypothesize that, while
grasping is a highly local task – only concerned with the
location of the manipulator fingers; placement reflects a global
task where the orientation of an object is largely defined by
its aggregate geometry. Thus, the advantages of using a local
field are diminished in placement and confounding features
still affect performance.
Substantially Different Out-of-distribution objects. Fi-
nally, we test the limits of L-NDF’s generalization capabilities
by testing on objects that are substantially different from the
demonstration object class. Of particular interest is placing a
bottle with handle on a rack, given mug demos, and grasping
the ”handle” of a bowl with no handle (shown in the red
columns of Table I). In these extreme cases, we find that
NDFs fail completely, achieving negligible success. L-NDFs
fare slightly better, achieving between 10% and 20% success.
The geometric approach also shows some success, surpassing
L-NDFs in the rightmost task. Interestingly, L-NDFs achieved
above 80% place success on bottles with handles. As expected,
these overall success rates are unsuitable for general robotic
manipulation, but suggest that local fields may be a promising
direction to explore for more general robotic manipulation.

B. Ablation Analysis

Next, we run an ablation study on L-NDF using the
arbitrary rotation bottle placement task.

323 643 1283

Grasp Place Overall Grasp Place Overall Grasp Place Overall

0.63 0.90 0.56 0.77 0.96 0.75 0.79 0.97 0.78

TABLE III: Effect of 3D Feature Volume Size. We examine the
effect of 3D feature volume size (in voxels) on L-NDF performance.
All systems are trained using our distance based contrastive loss

Teapot Grasp Blob Grasp

Fig. 8: Operating in Clutter – We provide four real world demos
of grasping a mug in an uncluttered scene. We then grasp a teapot
and blob in a cluttered environment using partial point clouds. We
used Mask R-CNN [11] for scene segmentation. Please see our
supplementary video for additional results.

Loss Function. First, we analyze the impact of the loss
function on L-NDF performance. In Table II, we find that
a random network achieves negligible grasp success and
subpar place success. This indicates that pretraining L-NDF
is important. A simple contrastive loss function where similar
points have ground truth similarity of 1 and different points
have ground truth similarity of 0 performs poorly as well.
We hypothesize that enforcing this sort of loss incorrectly
describes our objectives for the network, as different example
points should, intuitively, have different costs. Solely training
on reconstructive tasks performs better than simple contrastive
loss, but yields poor performance at arbitrary rotations.
However, our distance based contrastive loss dramatically
improves on both methods, enforcing SE(3) equivariance
while preserving reconstruction quality.
3D Feature Volume Size. We next analyze the impact of
voxel size on L-NDF performance. Referring to Table III,
we find that task success monotonically increases with 3D
feature volume size. Increasing the feature volume from 323

voxels to 643 voxels produces a dramatic improvement, while
increasing from 643 voxels to 1283 voxels produces increased
success, but at a diminishing rate. We elect to use the 1283

voxel system as it ran in similar time to the 643 voxel while
providing slightly higher success rates.

C. Real world

Finally, we evaluate our system in a real world environment.
We collect 5-10 task demonstrations for handle grasping and



bowl pick and place using upright objects, then evaluate
our system on a variety of unseen objects in arbitrary
poses. Additionally, we evaluate our system in a cluttered
environment, using Mask R-CNN [11] for scene segmentation
and L-NDF for pose estimation. As can be seen in Fig. 8,
the resultant point clouds from scene segmentation are often
incomplete and noisy, yet LNDF successfully deduces object
pose. Please see Fig. 1 and Fig. 7 for our single object trials,
Fig. 8 for our evaluation in cluttered environments, and our
website for additional details and qualitative results.

VII. CONCLUSION

We introduce Local Neural Descriptor Fields, an object
representation that allow few-shot imitation learning of
manipulation tasks on potentially novel categories of shapes
at test time. We illustrate the capability of our work to exhibit
strong generalization – given only examples of grasping the
handle of a mug, we can generalize to shapes such as teacups
or bottles in both simulation and the real world.
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