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In this work, we revisit several families of standard Hamiltonians
that appear in the literature and discuss their symmetries and
conserved quantities in the language of commutant algebras. In
particular, we start with families of Hamiltonians defined by
parts that are local, and study the algebra of operators that
separately commute with each part. The families of models
we discuss include the spin-1/2 Heisenberg model and its de-
formations, several types of spinless and spinful free-fermion
models, and the Hubbard model. This language enables a de-
composition of the Hilbert space into dynamically disconnected
sectors that reduce to the conventional quantum number sec-
tors for regular symmetries. In addition, we find examples of
non-standard conserved quantities even in some simple cases,
which demonstrates the need to enlarge the usual definitions of
symmetries and conserved quantities. In the case of free-fermion
models, this decomposition is related to the decompositions
of Hilbert space via irreducible representations of certain Lie
groups proposed in earlier works, while the algebra perspective
applies more broadly, in particular also to arbitrary interacting
models. Further, the von Neumann Double Commutant Theorem
(DCT) enables a systematic construction of local operators with
a given symmetry or commutant algebra, potentially eliminating
the need for ‘‘brute-force’’ numerical searches carried out in the
literature, and we show examples of such applications of the
DCT. This paper paves the way for both systematic construction
of families of models with exact scars and characterization of
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such families in terms of non-standard symmetries, pursued in
a parallel paper Moudgalya and Motrunich (2022) (https://arxiv
.org/abs/2209.03377).

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Symmetries play an important role in many parts of physics. In equilibrium quantum many-
body physics, the study of symmetries of a system allows for a systematic understanding of phases
of matter, their low-energy excitations, and transitions between them [1–3]. In non-equilibrium
quantum many-body physics, symmetries and conserved quantities are crucial in the study of
quantum dynamics and thermalization, e.g., the conserved quantities appear in the definitions of
thermodynamic ensembles that the systems equilibriate to [4,5]. The most natural symmetries that
appear in the quantum many-body physics are examples of ‘‘on-site’’ symmetries, which include
usual Abelian symmetries such as U(1) particle number conservation or non-Abelian ones such as
SU(2) spin conservation. An on-site symmetry is represented by a global unitary operator that is a
tensor product of single-site unitary operators that form representations of a group that is referred
to as the symmetry group of the system, and continuous on-site symmetries are accompanied by
local conserved quantities that are sums of single-site terms. However, not all symmetries are of
this type, and the exploration beyond ‘‘conventional’’ global symmetries, including systems with
non-on-site symmetries has only been recently initiated in various contexts [6–9].

In the context of dynamics of isolated quantum many-body systems, focusing solely on the
conventional on-site symmetries has also proven to be insufficient in many ways, as particularly
evident from the study of phenomena of ‘‘weak-ergodicity breaking’’ [10–12]. In particular, the phe-
nomenon of Hilbert space fragmentation [13–16] was identified to be a violation of the conventional
form of the Eigenstate Thermalization Hypothesis (ETH) [4,5,17–20] that dictates the thermalization
properties of non-integrable systems. However, the conventional paradigm of thermalization only
takes into account conventional on-site symmetries, whereas systems exhibiting Hilbert space
fragmentation show evidence for a more restricted form of thermalization (dubbed Krylov-restricted
thermalization) [11,15,16], which demands the consideration of additional non-local conserved
quantities beyond the standard ones [8].

Surprisingly, a clear definition of a conserved quantity in an isolated quantum system is far
from obvious. For example, allowing arbitrary operators that commute with the Hamiltonian to be
conserved quantities is problematic, since exponentially many eigenstate projectors can be written
down for such a system with a finite-dimensional Hilbert space, and restricting to local conserved
quantities is not enough to capture the physics of certain phenomena such as weak ergodicity
breaking. In [8], we discussed a recipe to ameliorate this problem in the context of Hilbert space
fragmentation by studying conserved quantities of families of Hamiltonians (instead of restricting
the form of the conserved quantities of a particular Hamiltonian), and this naturally results in a
precise definition. In particular, a family of Hamiltonians is associated with an algebra of operators
generated by the terms of the Hamiltonian, which we referred to as the ‘‘bond algebra’’, and there is
also algebra of operators that commute with each term of the Hamiltonian (i.e., the centralizer of the
bond algebra), which we referred to as the ‘‘commutant algebra’’, or more simply the ‘‘commutant’’.
The commutant is the algebra of conserved quantities of the family of Hamiltonians, and since no
restriction is imposed by hand on the conserved quantities in the commutant, this provides a more
general definition of conserved quantities. For example, the commutant can include non-on-site or
even non-local operators, and it need not have any simple underlying group structure, as illustrated
by examples in [8].

While our focus in [8] was only on systems exhibiting Hilbert space fragmentation, the formalism
of bond and commutant algebras is completely general and can be applied to a variety of systems. In
fact, as briefly discussed there, conventional on-site symmetries can also be understood within this
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formalism, and the commutant algebra in this case is the algebra generated by the local conserved

quantities. Correspondingly, there is a bond algebra associated with any on-site symmetry that is

generated from a set of strictly local (few-site) operators. In this work, we slightly generalize the

formalism to consider ‘‘local algebras’’ instead of ‘‘bond algebras’’, where we allow the generators

to also consist of sums of strictly local operators, and revisit some of the ‘‘standard models’’ of

condensed matter physics, including free-fermion models and the Hubbard model, and discuss them

in detail in the language of local and commutant algebras. In addition to systematically recovering

well-known results in the literature, we find this language to be illuminating in many ways, and

we highlight a few of our main results below.

First, the generalized definition of conserved quantities that the commutant algebra language

provides is necessary even in some commonly-studied cases. For example, this perspective clearly

illustrates the difference between the on-site regular SU(2) symmetry and the non-on-site dynami-

cal SU(2) symmetry [21,22] (also sometimes referred to as a Spectrum Generating Algebra [23,24]),

which exist in several standard systems such as the Hubbard model. Moreover, we find that the

full commutant need not have a standard underlying group structure even in some classes of

simple quadratic fermion models and explains the degeneracies between certain eigenstates that

conventional symmetry groups miss.

Second, this language provides a decomposition of the Hilbert space into dynamically discon-

nected subspaces that generalizes conventional symmetry quantum number sectors, as previously

illustrated in the context of Hilbert space fragmentation [8]. As we discuss in this work, this de-

composition also explains the Hilbert space decompositions in terms of irreducible representations

of certain Lie groups, recently also used by Pakrouski et al. to understand Quantum Many-Body

Scars as group-invariant states [25–27]. Such decompositions were first noted in the context of

tensor models [28], which led to the discovery of rather mysterious Casimir identities [29] between

Casimir elements of different Lie groups. As we will show, the commutant language also provides a

natural origin of these identities, and generalizes such decompositions to large classes of systems.

Third, perhaps most importantly, this formalism potentially provides a systematic way to

construct local symmetric operators that commute with a given set of conserved quantities, due to

a result known as the von Neumann Double Commutant Theorem (DCT) [30]. Given a commutant

C corresponding to a local algebra A, the DCT guarantees that all operators that commute with the

conserved quantities in the commutant C belong to the local algebra A. Since the local algebra A

is generated by a simple set of local operators, this property allows us to exhaustively construct

all local Hamiltonians with a given set of conserved quantities, in principle eliminating the need

for numerical methods [31,32] that perform ‘‘brute-force’’ searches for operators of a fixed form or

range (e.g., two-site, three-site, and so on) that commute with the given set of conserved quantities.

The DCT is applicable to many kinds of models, and in this work we discuss its implications

in several well-known models. In particular, for the Hubbard models, this approach provides a

systematic approach to identify perturbations that preserve the dynamical symmetries/Spectrum

Generating Algebra, previously achieved by guesswork or numerics in the literature [23,33]. In

addition to formally specifying all symmetric operators, the DCT also allows us to derive additional

constraints due to locality (e.g., rule out the existence of local Hamiltonians that possess only certain

conserved quantities) or show some general properties of the spectra of local Hamiltonians with a

given set of conserved quantities (e.g., the appearance of equally spaced towers of states).

This paper is organized as follows. In Section 2, we review the concepts of bond, local, and

commutant algebras, as well as discuss the Double Commutant Theorem (DCT) and Hilbert space

decomposition that we use in the rest of this work. In Section 3, we study a few simple examples

of spin systems with conventional symmetries such as Z2, U(1), or SU(2), and also discuss the

implications of the DCT in those cases. In Sections 4 and 5, we study examples of bond, local, and

commutant algebras that naturally appear in free-fermion systems and Hubbard models respec-

tively, and we discuss implications of the DCT in those cases. We conclude with open questions in

Section 6.
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2. Bond, local, and commutant algebras

We now review or introduce the concepts of bond and commutant algebras, and also introduce
the terminology and notations used in the rest of this work. The concept of locality of operators will
play an important role throughout this work. In this work, we will use the phrase local operator to
either refer to strictly local operators, with a support over a few sites in close vicinity, or extensive
local operators that are sums of strictly local terms throughout the system.1

2.1. Definition and properties

In quantum many-body physics, the commutant algebras naturally arise when studying symme-
try algebras of families of Hamiltonians [8]. For concreteness, we focus on systems with a tensor
product Hilbert space H of local degrees of freedom on some lattice, and we are interested in
Hamiltonians of the form

H =
∑

α

JαĤα, (1)

where {Ĥα} is some set of local operators (in the above generalized sense), and {Jα} is an arbitrary
set of coefficients. The commutant algebra, denoted by C, is the symmetry algebra of Eq. (1), i.e., the
algebra of operators that commute with the entire family of Hamiltonians of the form Eq. (1). This
in turn implies that any operator Ô ∈ C separately commutes with each term in H , i.e.,

[Ĥα, Ô] = 0 ∀α, (2)

which is a stronger condition than a regular symmetry for a particular instance of the Hamiltonian.
As we will also discuss in Section 3, for families of Hamiltonians with only conventional symmetries,
e.g., U(1)-symmetric Hamiltonians or SU(2)-symmetric Hamiltonians, the commutant C is the
associative algebra generated by the local conserved quantities [8].

Due to Eq. (2), any Ô ∈ C also commutes with arbitrary products and linear combinations of the
Ĥα ’s, or, in other words, Ô commutes with the full algebra generated by the Ĥα ’s. We denote this
algebra by

A = ⟨⟨{Ĥα}⟩⟩, (3)

where we have introduced the notation ⟨⟨· · ·⟩⟩ to denote the associative algebra generated by
(linear combinations with complex coefficients and arbitrary products of) the enclosed elements
and the identity operator 1.2 In our previous work [8], we referred to the algebra A as the
‘‘bond algebra’’ [34–36], since we were only interested in families of Hamiltonians where Ĥα ’s are
the strictly local terms of the Hamiltonian with support on a few sites in close vicinity (usually
associated with bonds on a lattice). In this work, we will allow the Ĥα to either be strictly local
or extensive local operators, hence we refer to algebras A generated by such local operators more
generally as ‘‘locally-generated algebras’’ or simply ‘‘local algebras’’. Note that when all the Ĥα ’s are
strictly local operators (e.g., the strictly local terms in a Hamiltonian), we will continue to refer to
A as a ‘‘bond algebra’’. Further, in this work, we will be typically interested in systems where A is
non-Abelian (i.e., the case where the different Ĥα ’s do not all commute with each other). Both the
algebras A and C can be viewed as subalgebras of L(H), the algebra of all linear operators on the
Hilbert space H.3

1 Note that strictly local and extensive local operators differ in the scaling of their Frobenius (Hilbert–Schmidt) norm

with system size, where the norm is defined as ∥̂O∥F := Tr(̂O†Ô)/Tr(1). The norm of the former is independent of system

size, whereas the norm of the latter scales linearly in system size.
2 Although 1 operator might not be generatable using the terms enclosed in ⟨⟨· · ·⟩⟩ (e.g., from the terms {Ĥα} in Eq. (3)),

we will always implicitly include it in the algebras A and C, since adding a constant to the Hamiltonian or its conserved

quantities has no physical effect.
3 Throughout this work, we restrict ourselves to a fixed D-dimensional tensor product Hilbert space. Hence we do not

attempt to distinguish between the algebra and its D-dimensional representation, and we always mean the latter when

we say the former.
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We review three important properties of the local algebras A and their commutant algebras C,
which were also discussed in the context of bond and commutant algebras in [8]. First, A and C are
both closed associative algebras and are generically non-commutative, i.e., for any Ô1, Ô2 ∈ A/C,
α1Ô1 + α2Ô2 ∈ A/C for any α1, α2 ∈ C, and Ô1Ô2, Ô2Ô1 ∈ A/C. Second, A and C are both unital

algebras, i.e., they contain the identity operator 1. For C, this follows directly from Eq. (2), and for
A we include it in the definition in Eq. (3). Finally, A and C are both †-algebras, i.e., they are closed
under Hermitian conjugation (̂O ∈ A/C H⇒ Ô† ∈ A/C), and it is easy to see that this follows from
the Hermiticity of the generators {Ĥα} of A (w.l.o.g. required by the Hermiticity of Hamiltonians),
and Eq. (2). A and C are thus examples of von Neumann algebras [30,37,38], which refers to any
algebra that satisfies these three properties above.

2.2. Double Commutant Theorem

We now discuss the Double Commutant Theorem (DCT) for von Neumann algebras, also known
as the double centralizer theorem or the bicommutant theorem, and its implications for the algebras
A and C. Note that to avoid any confusion in the nomenclature, we will reserve the use of
‘‘commutant’’ to refer to C and use ‘‘centralizer’’ to refer to the algebra that commutes with the
given algebra. As a direct consequence of Eqs. (2) and (3), the commutant algebra C is the centralizer
of the algebra A in the algebra of all operators on the Hilbert space, L(H). Denoting the centralizer
of C in L(H) by D, it is straightforward to show that A ⊆ D. However, since A is a von Neumann
algebra, D = A as a consequence of the DCT.

Theorem 2.1 (DCT). Given a unital †-algebra A and its centralizer C in L(H), the centralizer of C in

L(H) is equal to A.

While DCT can be proven in complete generality for all von Neumann algebras, including
infinite-dimensional ones under appropriate operator topologies, we will only be working with
finite-dimensional Hilbert spaces. For operator algebras on a finite-dimensional Hilbert space H, the
proof of DCT is remarkably simple, and we reproduce it in Appendix A for convenience. We refer
readers to [30,37,38] for clear and more detailed discussions of finite-dimensional von Neumann
algebras and their properties.

The DCT has some deep implications when applied to local algebras and the corresponding
commutant algebras. When the commutant algebra C is viewed as a symmetry algebra (i.e., the
algebra of some set of conserved quantities), DCT implies that A is the algebra of operators that
commute with operators in C, hence A can be viewed as the algebra of all symmetric operators in
the Hilbert space. Hence, if we know a family of Hamiltonians of the form

∑
α JαĤα for which C

is the full symmetry algebra, the DCT states that all operators that commute with C should be a
part of A = ⟨⟨{Ĥα}⟩⟩, i.e., any such operator should be expressible as some polynomial in terms of
the local operators {Ĥα}’s. This provides a way of systematically determining (at least in principle)
all local operators that commute with some set of conserved quantities, starting from one set of
local operators (i.e., the Ĥα ’s) with only those conserved quantities. In Section 3, we will discuss
particular examples of this principle in action in the context of conventional symmetries.

We highlight a few aspects and consequences of the DCT. First, the DCT makes it evident that
conserved quantities or symmetries can be thought of in terms of a pair of algebras (A, C) that
are centralizers of each other in the algebra of all operators L(H). In the case of conventional
symmetries, A and C are simply the algebra of symmetric operators and the algebra of conserved
quantities respectively.

Second, given two pairs of algebras (A1, C1) and (A2, C2), if A1 is strictly contained within A2

(i.e., A1 ⊂ A2), it is easy to show using DCT that C2 is strictly contained within C1 (i.e., C2 ⊂ C1).
Further, the converse is also true, i.e., if C2 ⊂ C1, the DCT implies that A1 ⊂ A2. Intuitively, enlarging
the family of Hamiltonians (i.e., going from A1 to A2) leads to a smaller set of conserved quantities
(i.e., C1 gets reduced to C2) and vice versa. We will use this intuition in several places in the rest of
this work.

Finally, in quantum matter applications, we often impose further locality conditions on the
Hamiltonians. For example, we may require that terms in a Hamiltonian have at most fixed range
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rmax. Hence we are usually interested in cases where A is generated by some set of strictly local
operators that are distributed homogeneously on a regular lattice, and the possible commutants C

one can obtain with that constraint. Here, we quickly realize that such a set of local Hamiltonians
is a linear space but not an algebra, hence is only a subset of A, and additional considerations are
needed when using results such as the DCT theorem. As we will discuss with the help of examples
in Section 3 and Appendix B, the combination of DCT and locality leads to interesting constraints
on Hamiltonians that can be written down with particular conserved quantities. We highlight some
important results below. Consider the case of on-site symmetries, when a commutant algebra C is
fully generated by (a family of) on-site unitary operators Û = ∏

j ûj, and the bond algebra A is
generated by a homogeneous set of strictly local terms on a regular lattice. We obtain the following
lemmas, proven in Appendix B.1.

Lemma 2.1. Any strictly local operator hR with support only within a contiguous region R that is
symmetric under an on-site unitary symmetry can be generated from the set of generators of the bond
algebra A restricted to a bounded region R′ ⊇ R.

Lemma 2.2. An extensive local operator H that is symmetric under an on-site unitary symmetry
can always be expressed as H = ∑

R hR, where each strictly local term hR has support in a bounded
contiguous region R and is symmetric under the same on-site unitary symmetry.

Such locality considerations, when combined with a DCT, allow for a systematic and exhaustive
characterization of the local symmetric operators in a A. We will also encounter other examples of
local Hamiltonians with such range constraints that have additional features in their spectra such
as fixed spacings of certain energy levels, e.g., the appearance of equally spaced towers of levels,
which do not follow from the algebra/commutant considerations alone but allow similar systematic
characterization, see Section 3.2 and Lemma 3.1 below.

Finally, there are situations where entire bond algebras generated from terms with rmax ≤ rc for
some ‘‘critical range’’ rc asked to commute with certain conserved quantities necessarily have larger
commutants than just the algebra generated by the requested conserved quantities. One example
of this is models with dipole conservation leading to Hilbert space fragmentation [8,13–15] for any
finite rc . However, we will not be considering such situations in this paper.

2.3. Hilbert space decomposition and singlets

Given algebras A and C that are centralizers of each other in L(H), their irreps can be used to
construct a virtual bipartition [8,39–41] of the Hilbert space as follows [42]

H =
⨁

λ

(
H

(A)
λ ⊗ H

(C)
λ

)
, (4)

where H
(A)
λ and H

(C)
λ respectively denote Dλ- and dλ-dimensional irreps of A and C. Eq. (4) can be

simply be viewed as a tensored basis in which all the operators in A are simultaneously (maximally)
block-diagonal. That is, in the basis of Eq. (4), any operator ĥA in A and ĥC in C have the matrix
representations

ĥA =
⨁

λ

(Mλ (̂hA) ⊗ 1), ĥC =
⨁

λ

(1 ⊗ Nλ (̂hC)), (5)

where Mλ (̂hA) and Nλ (̂hC) are Dλ-dimensional and dλ-dimensional matrices respectively. Further-
more, A and C contain operators realizing arbitrary such matrices Mλ and Nλ respectively. (In
particular, when C or A is Abelian, we have all the dλ = 1 or all the Dλ = 1 respectively.)
Another consequence of the DCT is that the centers of the algebras A and C (i.e., the subalgebra
that commutes with all the elements in the algebra) coincide, and can be written as Z = A∩ C. (In
particular, when C or A is Abelian, we obtain that Z = C ⊆ A or Z = A ⊆ C respectively.) In the
basis specified by Eq. (4), any operator ĥZ in Z has the matrix representation

ĥZ =
⨁

λ

(cλ (̂hZ )1 ⊗ 1) (6)

6
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where cλ (̂hZ ) is a c-number; furthermore, arbitrary values of cλ are realized in the operators in
Z . Hence the different blocks labeled by λ’s in Eq. (4) can be uniquely specified by eigenvalues
under elements in the center Z , in particular, under a minimal set of generators of Z . Note that
these blocks determine the unique partitioning of the Hilbert space if we demand that operators in
⟨⟨A ∪ C⟩⟩ act irreducibly within each block.

Since the Hamiltonians we study belong to the local algebra A, this decomposition can be used to
precisely define dynamically disconnected ‘‘Krylov subspaces’’ of the Hamiltonian [8]. In particular,
for each λ, Eq. (4) implies the existence of dλ number of identical Dλ-dimensional Krylov subspaces,
which, in systems with only conventional symmetries such as U(1) or SU(2), correspond to regular
quantum number sectors. These subspaces can be uniquely labeled by eigenvalues under a minimal
set of generators of any maximal Abelian subalgebra of C [8]. Note that any maximal Abelian
subalgebra of C partitions the Hilbert space into blocks such that operators in A act irreducibly
within each of the blocks. In general any Abelian subalgebra of C can be used to partition the
Hilbert space into blocks that are closed under the actions of operators in A; although operators in
A do not act irreducibly within the blocks unless the subalgebra is a maximal Abelian subalgebra.
Further, unless the Abelian subalgebra of C is the center Z , the partitions defined by the subalgebra
are not closed under the action of operators in the C. These properties will be important in
Section 4.3, where we connect the decomposition of Eq. (4) to group decompositions of earlier
works [25,26,28,29].

Note that it is possible to have Dλ = 1 for some λ, which correspond to one-dimensional
Krylov subspaces, i.e., simultaneous eigenstates of all the operators in the algebra A, including
the family of Hamiltonians we are interested in. We refer to these eigenstates as ‘‘singlets’’ of the
algebra A, since they transform under one-dimensional representations of A.4 For every λ such
that Dλ = 1, there are dλ degenerate singlets, i.e., all with the same eigenvalue under operators
in A, and we represent these singlets by {|ψλ,α⟩}, where 1 ≤ α ≤ dλ. In general, A could have
many sets of singlets that are non-degenerate between the sets, e.g., when it has irreps such that
Dλ = Dλ′ = 1 for some λ ̸= λ′, and the different sets of singlets differ by their eigenvalues under
operators in A. All singlets have a nice property that the projectors onto the singlet states are a
part of the commutant algebra C, i.e., |ψλ,α⟩⟨ψλ,α| commutes with all the elements in A. These are
thus examples of eigenstate projectors that can be viewed as conserved quantities of the family
of Hamiltonians we are interested in. More generally, this property also extends to any ‘‘ket-bra’’
operator of the form |ψλ,α⟩⟨ψλ,β | for degenerate singlets |ψλ,α⟩ and |ψλ,β⟩ where α ̸= β .

3. Conventional examples

We now discuss some examples of local and commutant algebras, especially with regard to
singlets and the application of the double commutant theorem. We refer readers to [8] for a
more detailed discussion that focuses on the decomposition of Eq. (4) in various systems. For
concreteness, we restrict ourselves to spin-1/2 systems with L spins, and we represent the three
on-site spin matrices on a site j by {Sxj , S

y

j , S
z
j }. A few of the examples we discuss are summarized in

Table 1. Note that although we only discuss one-dimensional lattices here, all these cases generalize
straightforwardly to higher dimensions.

3.1. Regular SU(2)

We start with systems with conventional symmetries, for example spin-1/2 systems with the
regular SU(2) symmetry. A family of SU(2)-symmetric systems are the Heisenberg models

HSU(2) =
∑

j

Jj(S⃗j · S⃗j+1), (7)

4 Note that the usage of the term ‘‘singlet’’ here differs from the conventional physics usage, which usually refers to

simultaneous eigenstates of all operators in C, i.e., those that transform under one-dimensional representations of C.
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Table 1

Some algebras and their commutants that naturally occur in the study of one-dimensional spin-1/2 (or hard-core boson)

models. The algebras are specified in terms of their generators, and although the full commutants C need not have a

conventional group interpretation with on-site unitary actions, they can have many such subgroups. Singlets of these

algebra A in all these cases can either be degenerate or non-degenerate, and all the singlets within {·} are degenerate.

The cases #1–#5 are usually associated with conventional ‘‘on-site’’ symmetry groups, and the algebras A are examples

of bond algebras. In cases #1 and #2, the bond algebras A and their commutants C are examples of Pauli string algebras

discussed in Section 3.3. Case #6 is an example that corresponds to a dynamical SU(2) symmetry, where the commutant

C does not have any obvious group interpretation and the algebra A is not a bond algebra. Note that in all these cases

we consider the system size L to be finite but large (L ≫ 1), since very small L can lead to additional ‘‘accidental’’

symmetries. The proofs for the commutant algebras are rather straightforward in #1–#4, the proof for #5 is discussed in

Appendix F.3, and the proof for #6 then follows straightforwardly.

# A C

Algebra Group Singlets Algebra Subgroups

#1 AZ2 ⟨⟨{Sxj Sxj+1}, {Szj }⟩⟩ – – CZ2 ⟨⟨∏j S
z
j ⟩⟩ Z2

#2 AZ2×Z2 ⟨⟨{Sxj Sxj+1}, {Szj Szj+1}⟩⟩ – – CZ2×Z2 ⟨⟨∏j S
x
j ,
∏

j S
z
j ⟩⟩ 2 × Z2

#3 AU(1) ⟨⟨{Sxj Sxj+1 + S
y

j S
y

j+1}, {Szj }⟩⟩ – {|F⟩}, {|F̄⟩} CU(1) ⟨⟨Sztot⟩⟩ U(1)

#4 AU(1)×Z2 ⟨⟨{Sxj Sxj+1 + S
y

j S
y

j+1}, {Szj Szj+1}⟩⟩ – {|F⟩, |F̄⟩} CU(1)×Z2 ⟨⟨∏j S
x
j , S

z
tot⟩⟩ U(1), Z2

#5 ASU(2) ⟨⟨{S⃗j · S⃗j+1}⟩⟩ SL {(S−
tot)

n|F⟩} CSU(2) ⟨⟨Sxtot, Sytot, Sztot⟩⟩ SU(2)

#6 Adyn-SU(2) ⟨⟨{S⃗j · S⃗j+1}, Sztot⟩⟩ – {{(S−
tot)

n|F⟩}} Cdyn-SU(2) ⟨⟨S⃗2tot, Sztot⟩⟩ U(1)

where S⃗j := (Sxj , S
y

j , S
z
j ). Denoting the total spin operators as

Sαtot :=
∑

j

Sαj , α ∈ {x, y, z,+,−}, (8)

the local algebra A and the corresponding commutant C for this family models are given by (see
#5 in Table 1)

ASU(2) = ⟨⟨{S⃗j · S⃗j+1}⟩⟩, CSU(2) = ⟨⟨Sxtot, Sytot, Sztot⟩⟩. (9)

CSU(2) is simply the associative algebra generated by the generators of the Lie algebra su(2), usually
referred to as the ‘‘Universal Enveloping Algebra’’ (UEA) of the Lie algebra and denoted by U(su(2)).
Since S⃗j · S⃗j+1 = 1

2
Pj,j+1 − 1

4
, where Pj,j+1 is the permutation operator between the states of the spins

on sites j and j + 1, we obtain ASU(2) = ⟨⟨{S⃗j · S⃗j+1}⟩⟩ = ⟨⟨{Pj,j+1}⟩⟩. Hence ASU(2) = C[SL], the group
algebra of the symmetric group SL with complex coefficients. Note that since ASU(2) is generated by
strictly local nearest-neighbor terms, it is an example of a bond algebra.

The Hilbert space decomposition of Eq. (4) in this case links the representations of the symmetric
group SL and the Lie group SU(2), a result known as the Schur–Weyl duality [42]. The common
center of the algebras ASU(2) and CSU(2) is given by ZSU(2) = ⟨⟨S⃗2tot⟩⟩, where S⃗2tot is the quadratic Casimir
of SU(2). Hence the λ in Eq. (4) runs over different values of the total spin angular momentum
Stot corresponding to eigenvalues Stot(Stot + 1) of S⃗2tot. The singlets of the algebra ASU(2) are simply
given by the ferromagnetic multiplet of states {(S−

tot)
n|F⟩}, where |F⟩ is the ferromagnetic state fully

polarized in the ẑ direction, defined as

|F⟩ := |↑ · · · ↑⟩, (10)

and S−
tot is the total SU(2) spin lowering operator. These are examples of degenerate singlets, and

it is easy to verify that they satisfy (S⃗j · S⃗j+1)(S
−
tot)

n|F⟩ = 1
4
(S−

tot)
n|F⟩ for all j and n. Indeed, these

singlets belong to a block in Eq. (4) that is labeled by eigenvalue L
2
( L
2

+ 1) under the generator

S⃗2tot of the center Z , and hence (Dλ, dλ) = (1, L + 1). Furthermore, for L > 2 there are no further
singlets. (Note that here and below we use the name ‘‘singlet’’ in the sense of the bond algebra
singlet defined above, Dλ = 1. This is different from the common usage in physics that refers to
Stot = 0, which is referring to the singlets of C, i.e., states that transform under one-dimensional
representations of C with dλ = 1.) Note that while the singlet projectors are part of the commutant

8
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CSU(2), they are included within U(su(2)), since they can all be expressed in terms of the operators

there [e.g., |F⟩⟨F | = ∏L/2−1

m=−L/2(S
z
tot − m)/(L/2 − m), and all other ‘‘ket-bra’’ operators of singlets can

be expressed by including the action of raising and lowering operators S+
tot, S

−
tot ∈ C.]

Given the pair of algebras (ASU(2), CSU(2)) of Eq. (9) that are centralizers of each other, we now
discuss the implication of the DCT of Theorem 2.1. The DCT, when applied to this case, states that
any operator Ô that commutes with operators in CSU(2), i.e., is SU(2)-symmetric, is a part of the
algebra ASU(2). In other words, DCT is the statement that all SU(2)-symmetric operators can be

generated from the operators {S⃗j · S⃗j+1}, or, equivalently, from the permutation operators {Pj,j+1}.
Since any permutation between arbitrary sites l and m (l ̸= m) can be generated from nearest-

neighbor permutations (e.g., Pj,j+2 = Pj,j+1Pj+1,j+2Pj,j+1), we deduce that S⃗l · S⃗m can be expressed

in terms of {S⃗j · S⃗j+1}. Finally, since all SU(2)-symmetric Hamiltonians can be expressed in terms

of some {S⃗l · S⃗m}, they can all be written in terms of {S⃗j · S⃗j+1}, and hence are a part of ASU(2).
Hence, as a consequence of the DCT, we are able to recover all the SU(2)-symmetric Hamiltonians
starting from one family of Hamiltonians with only SU(2) symmetry. Moreover, since the commutant
C corresponds to an on-site unitary symmetry, Lemmas 2.1 and 2.2 apply. In particular, we can show
that symmetric strictly local operators residing inside any contiguous local region R on the lattice
can be generated by {S⃗j · S⃗j+1} terms restricted to the region R, and all symmetric extensive local
operators are linear combinations of strictly local operators.

3.2. Dynamical SU(2)

We now turn to certain systems that break regular SU(2)-symmetry but nevertheless preserve
a part of it, e.g., Heisenberg Hamiltonians in a uniform magnetic field given by

Hdyn-SU(2) =
∑

j

Jj(S⃗j · S⃗j+1) + B
∑

j

Szj . (11)

This Hamiltonian satisfies the relations [Hdyn-SU(2), S
±
tot] = ±BS±

tot, where S±
tot are the total spin SU(2)

raising and lowering operators, and is an example of a ‘‘dynamical symmetry’’ [21,22] or a Spectrum
Generating Algebra [23,43]. Note that these commutation relations reduce to those of regular SU(2)
symmetry when B = 0. The local algebra and its corresponding commutant relevant for studying
the conserved quantities of the family of systems of Eq. (11) are (see #6 in Table 1)

Adyn-SU(2) = ⟨⟨{S⃗j · S⃗j+1}, Sztot⟩⟩, Cdyn-SU(2) = ⟨⟨S⃗2tot, Sztot⟩⟩. (12)

Note that Adyn-SU(2) is not a bond algebra since Sztot is not a strictly local operator, but is nevertheless
a local algebra.

Note that Cdyn-SU(2) in Eq. (12) is Abelian (in fact, it is a maximal Abelian subalgebra of CSU(2)),
hence the center of the two algebras is simply Zdyn-SU(2) = Cdyn-SU(2). The singlets of Adyn-SU(2) are
the same as that of ASU(2), and are given by {(S−

tot)
n|F⟩}. However, unlike in the SU(2) case, these are

non-degenerate, i.e., they belong to different blocks in Eq. (4) since they differ under the eigenvalues
of Sztot, which is now part of the center Zdyn-SU(2). Note that singlet projectors such as |F⟩⟨F | are part

of the commutant Cdyn-SU(2), since they can be expressed in terms of S⃗2tot, S
z
tot, and 1. Further, the

DCT applied to this case states that any operator in Cdyn-SU(2), i.e., that commutes with S⃗2tot and Sztot,

is a part of Adyn-SU(2), i.e., can be expressed in terms of {S⃗j · S⃗j+1} and Sztot.
Adding locality restrictions to DCT on Hamiltonians is more interesting in the dynamical-SU(2)

case than for the regular SU(2) symmetry. Since the dynamical SU(2) is not an on-site symmetry,
Lemmas 2.1 and 2.2 do not apply directly. Nevertheless, we are able to constrain the structure of
local operators, as we discuss in Appendix B. Most importantly, we prove the following Lemma.

Lemma 3.1. Any extensive local Hamiltonian with dynamical SU(2) symmetry (i.e., that commutes with

S⃗2tot and Sztot) is necessarily a linear combination of strictly local SU(2)-symmetric terms and a uniform

Zeeman field term Sztot. As a consequence, its spectrum necessarily has multiple towers of equally spaced

levels in its spectrum.

9
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Note that equally spaced towers appear when the levels degenerate due to regular SU(2) are
lifted by Sztot, hence the states in the tower differ in their eigenvalues under Sztot. While this equal
spacing might be interpreted as an analog of the exact degeneracy that occurs in the presence of
regular SU(2) symmetry, there is an important difference — the degeneracy in the regular SU(2)
occurs irrespective of the locality of the Hamiltonian, whereas the equal spacing in the case of the
dynamical SU(2) only occurs when finite-range locality is imposed.

On a different note, if we consider strictly local operators and require them to commute with
S⃗2tot, it turns out that they necessarily commute with S⃗tot, i.e., they have the regular SU(2) spin

symmetry (in particular, they will be generated from local S⃗l · S⃗m terms). This shows an example
where the algebra generated by a conserved quantity – here ⟨⟨S⃗2tot⟩⟩ – cannot be realized as a
commutant of a bond algebra whose generators are strictly local operators and have range bounded
by a finite number: any such symmetric bond algebra necessarily has a larger commutant. Even if
we consider extensive local operators commuting with S⃗2tot, these must consist of SU(2)-symmetric
strictly local terms plus a uniform Zeeman field term, say Sztot, and no other terms; hence the

resulting commutant for such Hamiltonian instances is effectively ⟨⟨S⃗2tot, Sztot⟩⟩, which is larger than

the requested ⟨⟨S⃗2tot⟩⟩.5

3.3. Pauli string algebras

For additional illustrations, we discuss some examples and properties of so-called Pauli string
algebras. For example, consider the family of transverse-field Ising models given by

HZ2 =
∑

j

(
JjXjXj+1 + hjZj

)
, (13)

where {Xj, Yj, Zj} denote the three Pauli matrices on site j. Since Z2 is the only symmetry of the
family of Hamiltonians, the relevant bond and commutant algebras are given by (see #1 in Table 1)

AZ2 = ⟨⟨{XjXj+1}, {Zj}⟩⟩, CZ2 = ⟨⟨
∏

j

Zj⟩⟩. (14)

Another example appears in the context of families of spin-1/2 XYZ models, given by

HXYZ =
∑

j

(Jxj XjXj+1 + J
y

j YjYj+1 + Jzj ZjZj+1) . (15)

This family of models possesses two Z2 symmetries, and the corresponding bond and commutant
algebras are given by (see #2 in Table 1)

AZ2×Z2 = ⟨⟨{XjXj+1}, {ZjZj+1}⟩⟩,

CZ2×Z2 = ⟨⟨
∏

j

Xj,
∏

j

Zj⟩⟩. (16)

Note that the terms {YjYj+1} need not be explicitly included in the generators of AZ2×Z2 since they
can be generated from {XjXj+1} and {ZjZj+1}. Further, note that even though the symmetry of the
system is referred to as Z2 ×Z2, the two Z2 symmetries do not commute with each other unless the
system size is even.

Since the algebras AZ2 and AZ2×Z2 (and their commutants) are all generated by Pauli strings, we
refer to them as Pauli string algebras. Abelian Pauli string algebras are ubiquitous in the study of
stabilizer code models such as the toric code [44,45] or certain fraction models [46,47]. However,

5 Note that it is not the case that one cannot write down a local algebra that is the centralizer of C = ⟨⟨S⃗2tot⟩⟩ — in fact

such a local algebra can be shown to be A = ⟨⟨{S⃗j · S⃗j+1}, Sztot, Sxtot⟩⟩. However, any r-local Hamiltonian we choose from

this local algebra A always turns out to be a part of a smaller local algebra of the form A
′ = ⟨⟨{S⃗j · S⃗j+1}, Sαtot⟩⟩, where Sαtot

is the total spin operator in some direction, which then has a larger commutant than requested. That is, the commutant

of A
′ is C

′ = ⟨⟨S⃗2tot, Sαtot⟩⟩, which is strictly larger than C.

10
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such models are completely solvable [8] and are not relevant for the study of non-integrable
systems. On the other hand, non-integrable Hamiltonians can be constructed using non-Abelian
Pauli string algebras, examples of which can be found in a variety of models in the literature. For
example, such algebras naturally appear in the study of subsystem codes and operator quantum
error correction [48–50], and also in some systems with exotic subsystem symmetries [51–54]. We
mention in passing a few general observations on Pauli string algebras. First, the commutant of a
Pauli string algebra A is also a Pauli string algebra.6 As a consequence, it is sufficient to work with
the groups generated by the Pauli strings in A and C, instead of their (group) algebras. Second,
non-Abelian Pauli string algebras do not admit any singlets.7 Finally, since Pauli strings are on-site
unitary operators, Lemmas 2.1 and 2.2 apply for symmetric local operators in Pauli string algebras.
Moreover, all this discussion can also be straightforwardly generalized to Majorana string algebras,
i.e., algebras generated by strings of Majorana fermion operators [32].

3.4. Other examples

Similar to SU(2)-symmetric systems, we could also consider families of Hamiltonians with
other symmetries, for example U(1)-symmetric systems. In this case, the corresponding bond and
commutant algebras are given by (see #3 in Table 1)

AU(1) = ⟨⟨{Sxj Sxj+1 + S
y

j S
y

j+1}, {Szj }⟩⟩, CU(1) = ⟨⟨Sztot⟩⟩. (17)

For example, the spin-1/2 XX or XXZ model in the presence of a magnetic field is a part of this
bond algebra AU(1). Since CU(1) is Abelian, it is also the center of AU(1), and the λ’s in Eq. (4) are
labeled by the L + 1 eigenvalues of Sztot. The algebra AU(1) possesses two singlets, given by the

two ferromagnetic states |F⟩ = |↑ · · · ↑⟩ and |F̄⟩ = |↓ · · · ↓⟩. Since |F⟩ and |F̄⟩ are distinguished
by Sztot that is part of the center (as well as by Szj ’s that are part of AU(1)), they are examples
of non-degenerate singlets. Note that the projectors onto the singlets of course belong to CU(1),

[e.g., |F⟩⟨F | = ∏L/2−1

m=−L/2(S
z
tot − m)/(L/2 − m)].

An example of a system with both U(1) and Z2 symmetries occurs in families of XXZ models,
where the corresponding bond and commutant algebras are given by (see #4 in Table 1)

AU(1)×Z2 = ⟨⟨{Sxj Sxj+1 + S
y

j S
y

j+1}, {Szj Szj+1}⟩⟩,

CU(1)×Z2 = ⟨⟨Sztot,
∏

j

Sxj ⟩⟩. (18)

Note that families of XXZ models can be expressed in terms of the generators of this bond algebra.
Although the symmetry is sometimes referred to as U(1) × Z2, the generators of the symmetries
do not commute, hence the commutant is non-Abelian. The common center of the bond and
commutant algebra is thus given by ZU(1)×Z2 = ⟨⟨(Sztot)2⟩⟩, which can be verified to be a part of

both AU(1)×Z2 and CU(1)×Z2 . The singlets of AU(1)×Z2 are the same as those of AU(1), i.e., |F⟩ and |F̄⟩,
although they are now examples of degenerate singlets.

Many more examples of bond algebras in the literature were discussed in [8]. These capture
families of systems with quantum group symmetries such as SU(2)q, or even those with Hilbert
space fragmentation, where the dimension of the commutant grows exponentially with system size.

6 A simple proof is as follows. Suppose A = ⟨⟨{̂Sµ, µ ∈ MA}⟩⟩, generated by Pauli strings with labels in some set MA .

Consider an operator Ô ∈ C expanded over the basis of all Pauli strings, Ô = ∑
ν cν Ŝν . We require [̂O, Ŝµ] = ∑

ν cν [̂Sν , Ŝµ] =∑
ν,[̂Sν ,̂Sµ]̸=0 cν 2̂Sν Ŝµ = 0 for all µ ∈ MA , where the second equality follows from the fact that every pair of Pauli strings

either commute or anticommute. Since Ŝµ is invertible, we then obtain
∑

ν,[̂Sν ,̂Sµ]̸=0 cν Ŝν = 0 for each µ ∈ MA . Hence

cν = 0 for every Ŝν that anticommutes with at least one of the Ŝµ from µ ∈ MA , while cν can be arbitrary for Ŝν that

commutes with all Ŝµ , µ ∈ MA , showing that the commutant C is spanned by (hence generated by) Pauli strings.
7 To see this, any singlet |ψ⟩ is a simultaneous eigenstate of all the Pauli strings Ŝα ∈ A, i.e., Ŝα |ψ⟩ = sα |ψ⟩. If A

is non-Abelian, there is at least one pair of anticommuting Pauli strings in A, say Ŝα and Ŝβ with [̂Sα, Ŝβ ] = 2̂Sα Ŝβ , and

it is easy to see that either sα = 0 or sβ = 0. However, 0 cannot be an eigenvalue of any Pauli string (since they are

invertible), hence this is a contradiction.
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We note that in systems with Hilbert space fragmentation, the singlets of the bond algebras are
referred to as ‘‘frozen’’ [13–15] or ‘‘jammed’’ [55] states, since they are (typically product) states
invariant by the action of the Hamiltonian.

Regarding the application of the DCT to these examples, Lemmas 2.1 and 2.2 apply when the
commutants are generated by on-site unitary operators (e.g., for CU(1) and CU(1)×Z2 discussed above).
However, the commutants in systems with quantum group symmetries or fragmentation are not of
this form, and we defer a complete analysis of the interplay between locality and DCT in general to
future work.

4. Free fermion bond algebras

We now turn to the discussion of systems of non-interacting fermions in the language of bond
and commutant algebras. More precisely, we study bond algebras generated by fermionic bilinear
terms, and one application of the results for the commutants is the possibility of an exhaustive
inventory of all fermionic Hamiltonians (including interacting ones) that have the specific commu-
tants (i.e., the specific symmetries), in the same spirit as in Section 3 for spin models. As we will see
soon, since fermionic bilinears are closed under the commutator, the corresponding bond algebras
can be viewed as enveloping algebras of Lie algebras and can be characterized in the language of
Lie algebras or groups, and we will often refer to these algebras as free-fermion algebras. As a
consequence, the commutant algebra provides a different and systematic perspective on Casimir
identities and Hilbert space decompositions studied in the context of tensor models [25,26,28,29].
In addition, the study of simpler non-interacting models also sets the stage for the more interesting
Hubbard algebra which we will discuss in Section 5, which captures the symmetries of the Hubbard
model. A complete characterization of these free-fermion bond algebras and their singlets is useful
for the study of quantum many-body scars, which we discuss in a parallel paper [56]. It is this
application that explains some emphasis on the singlets of the bond algebras in our presentation
of the results.

Consider a family of systems of 2N Majorana fermions with a Hamiltonian of the form

HFF ,1 :=
∑

A

JAĤA, ĤA := 1

4

∑

α,β

Aα,βγαγβ , (19)

where A runs over some fixed set of 2N ×2N antisymmetric purely imaginary (Hermitian) matrices
(i.e., A = −AT = −A∗), JA’s are arbitrary real coefficients, and the γα ’s are real Majorana fermion
operators (i.e., γ †

α = γα) that obey the usual anticommutation relations {γα, γβ} = 2δα,β . The local
algebra AFF ,1 in this case is the associative algebra generated by the quadratic fermion operators
involved,

AFF ,1 := ⟨⟨{ĤA}⟩⟩ = ⟨⟨{1
4

∑

α,β

Aα,βγαγβ}⟩⟩. (20)

Associative algebras generated by quadratic fermion operators of the form of Eq. (20) have an
additional structure in that they are enveloping algebras of Lie algebras with a relatively small
number O(poly(N)) of generators. This property is evident from the commutation relation of their
generators, which reads i[ĤA, ĤB] = Ĥi[A,B]. In particular, this relation shows that the Lie algebra

generated by {ĤA} is (a representation of) the (Lie) algebra generated by the specified set of 2N×2N
purely imaginary Hermitian matrices {A}, which is a Lie subalgebra of the Lie algebra so(2N,R)
of all 2N × 2N purely imaginary (or purely real in an alternative representation) antisymmetric
matrices. Further, the terms {ĤA} can then be interpreted as the generators of a Lie subgroup of
SO(2N,R) = SO(2N), and the associative algebra AFF ,1 is the UEA of the corresponding Lie algebra.

There are further simplifications in systems with particle number conservation. In this case, we
will be typically interested in Hamiltonians with N fermions of the form

HFF ,2 :=
∑

A

JAT̂A, T̂A :=
∑

α,β

Aα,βc
†
αcβ , (21)
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Table 2

Natural bond algebras generated by spinless free fermion terms with number conservation, their singlets, and

commutant algebras. The bond algebras are generated by natural subsets of elementary terms of Eq. (25),

and are associated with subgroups of U(N) (see Section 4.1). Multiple subsets of such elementary terms

can generate the same bond algebra, and different bond algebras can be isomorphic. Singlets of the bond

algebras can either be degenerate or non-degenerate, and all the singlets within {·} are degenerate. The

commutant algebras are specified in terms of their generators, and although the full commutants need not

have a conventional group interpretation with on-site unitary actions, they can have many such subgroups.

A detailed discussion of all the algebras and their centers is provided in Appendix C. Note that even though

the generators of the bond algebras are free fermion terms, the algebras also contain interacting terms that

can be constructed by linear combinations of products of free-fermion terms. The commutants for all of these

cases can be proven rigorously, following the methods discussed in Appendix F.

# A C

Algebra Group Singlets Algebra Subgroups

#1 Ac, µ ⟨⟨{T (∗)
j, k }nn, {nj}⟩⟩ U(N) {|Ω⟩}, {|Ω̄⟩} Cc, µ ⟨⟨Ntot⟩⟩ U(1)

#2 Ac
⟨⟨{T (r)

j, k}nn, {T
(i)
j, k}nn⟩⟩ SU(N)

{|Ω⟩, |Ω̄⟩}
Cc ⟨⟨Ntot, |Ω̄⟩⟨Ω|⟩⟩ U(1)

⟨⟨{T (r)
j, k}nn⟩⟩ non-bipartite

#3a Ai ⟨⟨{T (i)
j, k}nn⟩⟩ SO(N)

Ci ⟨⟨Ntot,QX ⟩⟩
U(1), Z2

#3b Ar ⟨⟨{T (r)
j, k}nn⟩⟩, bipartite Cr ⟨⟨Ntot, Q̃X ⟩⟩

where A runs over some fixed set of N×N Hermitian matrices, JA’s are arbitrary real coefficients, {c†
α}

and {cα} are complex fermion creation and annihilation operators that obey the usual anticommu-
tation relations {c†

α, c
†

β} = 0, {cα, c†

β} = δα,β . Note that α and β in Eq. (19) can be composite indices

that label the position and other properties such as the spin of the fermion. The corresponding local

algebra has the form

AFF ,2 := ⟨⟨{̂TA}⟩⟩ = ⟨⟨{
∑

α,β

Aα,βc
†
αcβ}⟩⟩. (22)

The terms T̂A obey the same commutation relations as ĤA, i.e., they satisfy

i[̂TA, T̂B] = T̂i[A,B], (23)

showing direct correspondence between Lie products of the quadratic fermion operators in the full

Fock Hilbert space and the N ×N Hermitian matrices [25]. Hence, the Lie algebra generated by {̂TA}
is a subalgebra of u(N), the terms {̂TA} can be interpreted as the generators of a Lie subgroup of

U(N) [25], and AFF ,2 is the UEA of the corresponding Lie algebra.

In the following, we discuss examples of such algebras that arise starting with quadratic

spinless or spinful fermion terms. For the sake of simplicity, we also restrict ourselves to systems

with fermion number conservation, and only focus on nearest-neighbor bond algebras, where the

fermions are arranged in a lattice, and the matrices A in the generators (e.g., in Eqs. (19) and

(21)) ‘‘couple’’ fermions that are on neighboring sites. Finally, we note that although the bond

algebras AFF arise from free-fermion terms, the algebras AFF also contain interaction terms that are

obtained by linear combinations of products of the quadratic terms (e.g., four-fermion terms), and

everything we discuss (in particular, the corresponding commutant algebras and singlets) also holds

for families of systems with such interaction terms. For example, the bond algebra corresponding

to a family of Hamiltonians
∑
j

Jj(iγjγj+1) is given by ⟨⟨{iγjγj+1}⟩⟩, and it also contains the interaction

term γjγj+1γj+2γj+3. Hence the conserved quantities in the commutant of this algebra are also

conserved quantities of families of Hamiltonians such as
∑
j

[
Jj(iγjγj+1) + J ′jγjγj+1γj+2γj+3

]
.

13



S. Moudgalya and O.I. Motrunich Annals of Physics 455 (2023) 169384

4.1. Spinless fermions

We start with bond algebras of spinless complex fermions on a lattice with N sites. We will be

interested in algebras of the form of Eq. (22), where α, β denote sites on a lattice, i.e.,

T̂A =
∑

j,k

Aj,kc
†

j ck, A = A†. (24)

All the T̂A’s in Eq. (24) can be expressed as linear combinations (with real coefficients) of the

‘‘elementary’’ terms

T
(r)
j,k := c

†

j ck + c
†

k cj, T
(i)
j,k := i(c

†

j ck − c
†

k cj), nj := c
†

j cj, (25)

where T
(r)
j,k and T

(i)
j,k correspond to real and imaginary hoppings respectively, and nj is the on-site

number operator (also referred to as a ‘‘chemical potential’’ term). Here, we will consider bond

algebras generated by some natural subset of these elementary terms on sites/bonds of a lattice,

and discuss the associated commutant algebras and singlets. We always start with elementary terms

between all nearest-neighboring sites on a lattice, and we denote such sets with the subscript

‘‘nn’’, e.g., {T (r)
j,k }nn or {T (i)

j,k}nn. Note that in many cases, we could in principle reduce the number

of generators even further (i.e., some elementary terms can be generated from a set of other

elementary terms); however, since we are interested in generic local many-body systems, it is

natural to include all relevant local terms from the outset. Further, we use the following shorthand

notations to denote sets of generators

{T (c)
j,k }nn := {T (r)

j,k }nn ∪ {T (i)
j,k}nn,

{T (∗)
j,k }nn := {T (r)

j,k }nn or {T (i)
j,k}nn or {T (c)

j,k }nn, (26)

which correspond to cases where both real and imaginary hopping terms are included in the set of

generators or if either of them can be included.

A summary of the results is provided in Table 2, and each of these cases is discussed in detail in

Appendix C. We discuss four examples of algebras generated by natural subsets of the elementary

terms, and we label the distinct algebras by distinct case numbers. Note that distinct choices of

elementary terms as generators can result in the same bond algebra (e.g., in case #2), and distinct

bond algebras can be isomorphic, which we denote as subcases (e.g., cases #3a and #3b). The

commutants of these algebras can be compactly expressed in terms of their generators, and we

find examples of both Abelian (case #1) and non-Abelian commutants (cases #2–#3b). Further, the

commutants we find do not necessarily have obvious group interpretations, i.e., they need not be

generated by unitary operators with on-site actions, although there are such natural subgroups

within the commutants. For example, due to the fermion number conservation in the terms of

Eq. (25), all the commutants we discuss contain a U(1) subgroup generated by

Ntot :=
∑

j

nj, (27)

which has an on-site action. Further, the cases #3a and #3b generated by purely imaginary and

real-bipartite hoppings respectively also possess extra discrete symmetries QX and Q̃X respectively,

defined as

QX := (−1)
N(N−1)

4

∏

j

(c
†

j + cj),

Q̃X ∼
∏

j∈I
(c

†

j − cj)
∏

j∈II
(c

†

j + cj), (28)

14



S. Moudgalya and O.I. Motrunich Annals of Physics 455 (2023) 169384

where I and II in the definition of Q̃X denote the two sublattices on a bipartite lattice.8 These are
operators that interchange particles and holes and have interpretations as Z2 symmetries with on-
site actions. On the other hand, in case #2 generated by complex hoppings, there are non-local
symmetries in the commutant that do not have a conventional unitary symmetry interpretation,
but they nevertheless explain features such as degeneracies in the spectra of Hamiltonians. In all
the considered cases, the only singlets of the bond algebra are the vacuum |Ω⟩ and the anti-vacuum
|Ω̄⟩, defined as

|Ω⟩ := |0 0 · · · 0⟩, |Ω̄⟩ :=
∏

j

c
†

j |Ω⟩, (29)

where 0 denotes an empty site. They are non-degenerate in the presence of the chemical potential
terms (case #1) but are degenerate in the other cases that exhibit non-Abelian commutants (cases
#2, #3a–b) — and the degeneracy can be traced to the symmetries QX and Q̃X in the cases #3a–b
respectively, and to the non-local symmetry in the case #2.

We now discuss the application of the DCT of Theorem 2.1 to the cases in Table 2. In particular,
we wish to construct extensive local Hamiltonians within the bond algebras shown. Note that
the commutants in cases #1 and #3a–b can be generated from purely on-site unitary operators
(corresponding to a U(1) symmetry in case #1 and U(1) and Z2 symmetries in cases #3a–b, see
Appendix C), hence Lemmas 2.1 and 2.2 directly apply. On the other hand, in case #2, the full
commutant cannot be understood in terms of an on-site symmetry. Nevertheless, we are able to use
the fact that |Ω⟩ and |Ω̄⟩ are product states and singlets of the bond algebra Ac,µ to extend some
of the results to case #2, see Appendix C.2.3. In particular, while the results on symmetric strictly
local operators hold, we need to restrict ourselves to symmetric translation-invariant extensive
local operators for the similar results to hold (see Appendix C.2.3 for details). These results reveal
the possible structures in symmetric local operators (i.e., local operators in the bond algebra), and
potentially provide a route for their systematic construction.

4.2. Spinful fermions

We now discuss examples of bond algebras that naturally appear in systems of spinful fermions
on a lattice with N sites. We will be interested in terms of the form of Eq. (22), where α, β now
label both the sites {j} of a lattice as well as the spins σ ∈ {↑,↓}. Further, we will only be interested
in terms that conserve spin (more precisely, one spin component) in addition to particle number,
i.e.,

T̂A =
∑

j,j′,σ

Aσj,j′c
†

j,σ cj′,σ , (Aσ )† = Aσ , σ ∈ {↑,↓}, (30)

where A can be viewed as a 2N × 2N block-diagonal matrix with two N × N blocks A↑ and A↓.
Applying the relations of Eq. (23), it is easy to see that the Lie algebra of the terms of Eq. (30) is a
subalgebra of u(N) ⊕ u(N) (two copies of the Lie algebra of N × N Hermitian matrices), and these
terms can thus be considered to be generators of a subgroup of U(N)×U(N). All the T̂A’s in Eq. (30)
can be expressed (generated) in terms of the following ‘‘elementary’’ terms:

T
(r)
j,k :=

∑

σ∈{↑,↓}
(c

†

j,σ ck,σ + c
†

k,σ cj,σ ),

T
(i)
j,k :=

∑

σ∈{↑,↓}
i(c

†

j,σ ck,σ − c
†

k,σ cj,σ ),

Kj := nj,↑ + nj,↓, Mj := nj,↑ − nj,↓, (31)

8 Note that the overall factor for QX is included to ensure Q 2
X = 1, and the precise overall phase factor for Q̃X that

ensures Q̃ 2
X = 1 depends on the number of sites on each sublattice but is not important here.
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Table 3

Natural bond algebras generated by spin-1/2 free fermion terms with particle number and spin conservation, their singlets

and commutant algebras. The bond algebras are generated by natural subsets of elementary terms of Eq. (31), and can

also be associated with subgroups of U(N) × U(N) (see Section 4.2). Multiple subsets of such elementary terms can

generate the same bond algebra, and different bond algebras can be isomorphic. Singlets of the bond algebras can either

be degenerate or non-degenerate, and all the singlets within {·} are degenerate. The commutant algebras are specified

in terms of their generators, and although the full commutants need not have a conventional group interpretation with

on-site unitary actions, they can have many such subgroups. A detailed discussion of all the algebras and their centers is

provided in Appendix D. Note that even though the generators of the bond algebras are free fermion terms, the algebra

also contains interacting terms that can be constructed by linear combinations of products of free-fermion terms. Although

the expressions for the commutants in all these cases are well-motivated conjectures, we do not have rigorous proofs

for them. We believe that they can be proven using the techniques discussed in Appendix F but with significantly more

effort.

# A C

Algebra Group Singlets Algebra Subgroups

#1a Ac,µ ⟨⟨{T (∗)
j, k }nn, {Kj}⟩⟩

U(N)
{(S−

tot)
n|F⟩}, {|Ω⟩}, {|Ω̄⟩} Cc, µ ⟨⟨{Sαtot}, Ntot⟩⟩

SU(2) × U(1)
#1b Ai,h ⟨⟨{T (i)

j, k}nn, {Mi}⟩⟩ {|F⟩}, {|F̄⟩}, {(η†0 )n|Ω⟩} Ci, h ⟨⟨Sztot, {ηα0 }⟩⟩

#1c Ar, h ⟨⟨{T (r)
j, k}nn, {Mi}⟩⟩ bipartite {|F⟩}, {|F̄⟩}, {(η†π )n|Ω⟩} Cr, h ⟨⟨Sztot, {ηαπ }⟩⟩

#2 Ac
⟨⟨{T (r)

j, k}nn, {T
(i)
j, k}nn⟩⟩ SU(N) {(S−

tot)
n|F⟩, |Ω⟩, |Ω̄⟩} Cc ⟨⟨{Sαtot},Ntot, |Ω̄⟩⟨Ω|, |F⟩⟨Ω|⟩⟩ SU(2) × U(1)

⟨⟨{T (r)
j, k}nn⟩⟩ non-bipartite

#3a Ai ⟨⟨{T (i)
j, k}nn⟩⟩ SO(N)

{(S−
tot)

n|F⟩, (η†0 )n|Ω⟩} Ci ⟨⟨{Sαtot}, {ηα0 }, {Q σ
X }⟩⟩ SU(2) × SU(2)

#3b Ar ⟨⟨{T (r)
j, k}nn⟩⟩ bipartite {(S−

tot)
n|F⟩, (η†π )n|Ω⟩} Cr ⟨⟨{Sαtot}, {ηαπ }, {Q̃ σ

X }⟩⟩ 2 × Z2

#4 Ac, µ, h ⟨⟨{T (∗)
j, k }nn, {Kj}, {Mj}⟩⟩ U(N) × U(N) {|F⟩}, {|F̄⟩}, {|Ω⟩}, {|Ω̄⟩} Cc, µ, h ⟨⟨Sztot, Ntot⟩⟩ U(1) × U(1)

#5 Ac, h
⟨⟨{T (r)

j, k}nn, {T
(i)
j, k}nn, {Mj}⟩⟩ U(N)×U(N)

U(1) {|F⟩}, {|F̄⟩}, {|Ω⟩, |Ω̄⟩} Cc, h ⟨⟨Sztot, Ntot, |Ω̄⟩⟨Ω|⟩⟩ U(1) × U(1)
⟨⟨{T (r)

j, k}nn, {Mj}⟩⟩ non-bipartite

where nj,σ := c
†

j,σ cj,σ . T
(r)
j,k and T

(i)
j,k respectively denote real and imaginary hopping terms (that

are symmetric between the two spins), Kj and Mj respectively denote the on-site particle number

operator (‘‘chemical potential’’ term) and the on-site spin operator (‘‘magnetic field’’ term). In the

following, we will consider bond algebras generated by some natural subsets of the elementary

terms of Eq. (31), and discuss the associated commutants and singlets. We will stick to the same

shorthand notations as in Eq. (26) for denoting sets of nearest-neighbor hopping terms.

We also sometimes consider a more restricted class of terms that are symmetric under the

interchange of the spins ↑ and ↓, i.e., we impose the condition that A↑ = A↓ in Eq. (30). Such terms

can be expressed as linear combinations of the elementary terms of Eq. (31) without the Mj’s, and

the Lie algebra generated by such terms is a subalgebra of that of N × N Hermitian matrices u(N),

and they generate a subgroup of U(N). The Lie algebras then turn out to be the same as the ones

generated by analogous elementary operators of Eq. (25) in the case of spinless fermions, although

the bond and commutant algebras are different due to the larger Hilbert space in the spinful case.

The cases #1a, #2, and #3a–b in Table 3 correspond to such examples, and we discuss them in

detail in Appendices D.1 and D.3.

A summary of the results is provided in Table 3, and each of the cases is discussed in detail in

Appendix D. We discuss eight examples of algebras generated by natural subsets of the elementary

terms, and we label the distinct algebras by distinct case numbers. Similar to the study of spinless

fermions, distinct choices of elementary terms as generators can result in the same bond algebra

(e.g., two sets of generators shown in each of the cases #2 and #5), and distinct bond algebras can

be isomorphic, which we denote as subcases (e.g., cases #1a–c and #3a–b).

The commutants of these algebras are expressed in terms of their generators, and can either

be Abelian (case #4) or non-Abelian (cases #1a–c, #2, #3a–b, #5). Similar to spinless fermions, the

commutants need not have obvious group interpretations in terms of unitary operators with on-site

actions, although there can be many such subgroups. For example, due to the fermion number and

spin conservation in the terms of Eq. (31), all the commutants we discuss contain a U(1) × U(1)
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subgroup generated by Ntot and Sztot, defined as

Ntot :=
∑

j

Kj, Sztot :=
∑

j

Mj/2, (32)

which have on-site actions as groups. Note that it is sometimes more convenient to use ηz0 :=
(Ntot − N)/2 instead of Ntot. In cases #1a, #2, and #3a–b, the U(1) generated by Sztot is enhanced to
a ‘‘spin’’ SU(2) symmetry generated by {Sαtot}, defined as

Sαtot := 1

2

∑

j,τ ,τ ′
c
†

j,τσ
α
τ,τ ′cj,τ ′ , α ∈ {x, y, z}, (33)

where {σ α} are the Pauli matrices in the usual spin basis. The Casimir operator corresponding to
this SU(2) symmetry is defined as S⃗2tot := ∑

α (S
α
tot)

2, and the raising and lowering operators are

defined as S±
tot := Sxtot ± iS

y
tot. In cases #1b-c and #3a–b, the U(1) generated by Ntot is enhanced to a

‘‘pseudospin’’ SU(2) symmetry generated by {ηα0/π } defined as

ηx0/π := 1

2
(η

†

0/π + η0/π ), η
y

0/π := 1

2i
(η

†

0/π − η0/π ),

ηz0/π := −i[ηx0/π , ηy0/π ] = 1

2
(Ntot − N) ,

η
†

0/π :=
∑

j

ζj,0/π c
†

j,↑c
†

j,↓, η0/π =
∑

j

ζj,0/π cj,↓cj,↑, (34)

where the subscripts 0 or π denote the ‘‘momenta’’ of the operators with periodic boundary
conditions, and ζj,0 := 1 while ζj,π = (−1)j on a bipartite lattice. Note that η†

π and ηπ are precisely
the η-pairing operators that are studied in the context of the Hubbard model [23,33,43,57]. The
Casimir operator corresponding to the pseudospin SU(2) symmetry can be defined as η⃗20/π :=∑
α

(ηα0/π )
2. Further, the cases #3a–b also possess extra discrete symmetries Q σ

X and Q̃ σ
X respectively

that interchange particles and holes of a particular spin; similar to Eq. (28) these are defined as

Q σ
X := (−1)

N(N−1)
4

∏

j

(c
†

j,σ + cj,σ ), σ ∈ {↑,↓},

Q̃ σ
X ∼

∏

j∈I
(c

†

j,σ − cj,σ )
∏

j∈II
(c

†

j,σ + cj,σ ), σ ∈ {↑,↓}, (35)

where I and II denote the two sublattices, and they have interpretations as two Z2 symmetries with
on-site actions. Note that Q̃ σ

X is precisely the Shiba transformation operator defined in the context
of the Hubbard model [57]. On the other hand, in cases #2 and #5, there are non-local symmetries
in the commutant that do not have a conventional unitary symmetry interpretation.

In all the considered cases, the vacuum |Ω⟩, anti-vacuum |Ω̄⟩, and the two spin-polarized
ferromagnetic states |F⟩ and |F̄⟩ are singlets of the bond algebra; these are defined as

|Ω⟩ := |0 0 · · · 0⟩, |Ω̄⟩ :=
∏

j

c
†

j,↑c
†

j,↓

|F⟩ :=
∏

j

c
†

j,↑|Ω⟩, |F̄⟩ :=
∏

j

c
†

j,↓|Ω⟩, (36)

where 0 denotes an empty site. In the cases where the U(1) symmetries are enhanced to SU(2),
the singlets also contain ‘‘towers’’ with extensive number of states — either the ‘‘eta-pairing’’ tower
generated by η

†

0/π from |Ω⟩ to |Ω̄⟩ and/or the ‘‘ferromagnetic’’ tower generated by S−
tot from |F⟩ to

|F̄⟩. The singlets can either be degenerate or non-degenerate, and any degeneracies can be traced
to some non-commuting (local or non-local) operators in the commutant.
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The application of the DCT of Theorem 2.1 to the spinful cases in Table 3 closely follows the
spinless cases discussed in the previous section. In particular, note that the commutants in cases
#1a–c, #3a–b, and #4 can be generated from purely on-site unitary operators (see Appendix C),
hence Lemmas 2.1 and 2.2 directly apply. On the other hand, in cases #2 and #5, the commutant
cannot be understood in terms of on-site symmetries. Nevertheless, we are able to extend some of
the results on the interplay between locality and DCT to these cases, see Appendices D.2.3 and D.5.3.
These results provide a potential route for a systematic construction of symmetric local operators
starting from the generators of the bond algebra.

4.3. Connection to group Hilbert space decomposition, Casimir relations, and group singlets

The bond and commutant algebra language in the case of free-fermion systems explains the
Hilbert space decompositions in terms of groups representations, and Casimir element relations
that appear in earlier literature. Refs. [25–29] identified several decompositions (partitionings) of
the full fermionic Fock Hilbert space in a way such that the states within each partition transform
under certain irreducible representations (irreps) of a group of the form G1 × G2, where G1 and G2

are Lie groups. In this case, each partition can be labeled by eigenvalues of all the (independent)

Casimir elements {CG1
α } and {CG2

α } of the Lie groups G1 and G2.
9 The representations of these

Casimir elements are not independent, and [28,29] derived relations between them that link the
representations of G1 to those of G2 by means of certain Casimir relations. For example, in some
cases, states that are singlets of (i.e., transform under one-dimensional representations of) the
group G1 can be highest-weight states under group G2. Such group decompositions of the Hilbert
space and corresponding Casimir operators are useful in understanding spectra of certain tensor
models [28,29,59,60]. These models are extensively studied in the high energy physics literature,
particularly in the context of toy models for black holes such as the Sachdev–Ye–Kitaev (SYK) model,
where the truncation of the Hilbert space to the subspace spanned by singlets is important for the
gauge-gravity correspondence [61–64].

Here we understand the origin of the Hilbert space partitioning discussed in that literature in
terms of Eq. (4), where the blocks labeled by different λ’s constitute a partitioning of main interest
to our problems. States within the same block, labeled by a given λ,transform under Dλ-dimensional
and dλ-dimensional irreps ofA and C respectively, and each such block can be also viewed as hosting
a (Dλdλ)-dimensional irrep of an algebra ⟨⟨A∪C⟩⟩. As discussed in Section 2.3, the states within each
block can be labeled by elements of (or just the generators of) Z , the common center of A and C. We
emphasize that Eq. (4) is the unique partitioning of the Hilbert space if we demand that operators
in A and C both (i.e., operators in ⟨⟨A∪C⟩⟩) act irreducibly within each partition. On the other hand,
if we relax the latter requirement, there can be multiple inequivalent ways to partition the Hilbert
space.

Given the unique partioning in terms of the bond and commutant algebras, we can understand
situations in which this algebra partitioning can be understood as group partitioning in terms of
irreps of Lie groups of the form G1 × G2, and also situations where such an interpretation fails.
In Appendix E, we discuss various subtleties of the relations between the group and algebra
partitionings with the help of several examples from the spinless and spinful fermion algebras.
We assume A is the UEA of the Lie algebra corresponding to the group G1, and that the UEA of
the Lie algebra corresponding to group G2 is a subalgebra of the commutant C. These properties
always hold for the bond and commutant algebras discussed in Sections 4.1–4.2. Given a Lie group
G, we define its Casimir algebra ZG as the algebra generated by the independent Casimir elements
{CG
α } of G, i.e., ZG := ⟨⟨{CG

α }⟩⟩. Whether or not the group partitionings and Casimir relations apply
depends on the relations between the Casimir algebras ZG1 and ZG2 with the center Z := A ∩ C,

9 We remind the readers that a Lie group of rank r has at most r independent Casimir elements in any representation,

where the rank of a Lie group is defined as the number of elements in the Cartan subalgebra (i.e., the maximal Abelian

Lie subalgebra) of the corresponding Lie algebra. For example, SU(n + 1), U(n), SO(2n), and SO(2n + 1) all have ranks

n [58].
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Table 4

Some natural local algebras (‘‘Hubbard algebras’’) generated by spin-1/2 free fermion hopping terms with particle number

and spin conservation and interacting Hubbard terms, their singlets and commutant algebras. Singlets of the bond algebras

can either be degenerate or non-degenerate, and all the singlets within {·} are degenerate. The commutant algebras are

specified in terms of their generators, and although the full commutant need not have a conventional group interpretation

with on-site unitary actions, they can have many such subgroups. The bond algebras (#1a–b and #2) are generated by

natural subsets of elementary hopping terms defined in Eq. (31) and the on-site Hubbard terms defined in Eq. (38). Unlike

the bond algebras in Tables 2 and 3, these are generated by interacting terms and cannot be associated with any simple

Lie group. The local algebras with dynamical symmetries (#3a-d) are obtained by adding a uniform chemical potential

or a uniform magnetic field to the bond algebras. Note that we have not shown several algebras for the sake of brevity.

A detailed discussion of all these cases is provided in xrefapp:Hubbard. Although the expressions for the commutants in

all these cases are well-motivated conjectures, we do not have rigorous proofs for them.

# A C

Algebra Singlets Algebra Subgroups

#1a Ai,Hub ⟨⟨{T (i)
j, k}nn, {Vj}⟩⟩ {(S−

tot)
n|F⟩}, {(η†0 )n|Ω⟩} Ci,Hub ⟨⟨{Sαtot}, {ηα0 }⟩⟩

SU(2) × SU(2)

#1b Ar,Hub ⟨⟨{T (r)
j, k}nn, {Vj}⟩⟩ bipartite {(S−

tot)
n|F⟩}, {(η†π )n|Ω⟩} Cr,Hub ⟨⟨{Sαtot}, {ηαπ }⟩⟩

#2 Ac,Hub
⟨⟨{T (r)

j,k }nn, {T (i)
j, k}nn, {Vj}⟩⟩ {(S−

tot)
n|F⟩}, {|Ω⟩, |Ω̄⟩} Cc,Hub ⟨⟨{Sαtot}, Ntot, |Ω̄⟩⟨Ω|⟩⟩ SU(2) × U(1)

⟨⟨{T (r)
j, k}nn, {Vj}⟩⟩ non-bipartite

#3a A
(dyn-η)

i,Hub ⟨⟨{T (i)
j, k}nn, {Vj},Ntot⟩⟩ {(S−

tot)
n|F⟩}, {{(η†0 )n|Ω⟩}} C

(dyn-η)

i,Hub ⟨⟨{Sαtot}, η⃗20, ηz0⟩⟩
U(1) × SU(2)#3b A

(dyn-η)

r,Hub ⟨⟨{T (r)
j, k}nn, {Vj},Ntot⟩⟩ bipartite {(S−

tot)
n|F⟩}, {{(η†π )n|Ω⟩}} C

(dyn-η)

r,Hub ⟨⟨{Sαtot}, η⃗2π , ηzπ ⟩⟩

#3c A
(dyn-S)
i,Hub ⟨⟨{T (i)

j, k}nn, {Vj}, Sztot⟩⟩ {{(S−
tot)

n|F⟩}}, {(η†0 )n|Ω⟩} C
(dyn-S)
i,Hub ⟨⟨S⃗2tot, Sztot, {ηα0 }⟩⟩

#3d A
(dyn-S)
r,Hub ⟨⟨{T (r)

j, k}nn, {Vj}, Sztot⟩⟩ bipartite {{(S−
tot)

n|F⟩}}, {(η†π )n|Ω⟩} C
(dyn-S)
r,Hub ⟨⟨S⃗2tot, Sztot, {ηαπ }⟩⟩

and we analyze these relations case by case in Appendix E. In summary, these conditions demistify

the origins of the Casimir relations studied in the previous literature.

Finally, we note that due to the group interpretation of the bond algebra A, (i.e., as the UEA

of some Lie group G), the singlets of A can also be understood as singlets of the G. Indeed, since

the singlets of A are eigenstates of all the generators of the group G, they are also eigenstates of

the group elements themselves (which can be expressed as exponentials of a linear combination

of the generators), and they transform under one-dimensional representations of G. Hence these

singlets were referred to as group invariant states in [25,26]. However, strictly speaking, states that

are referred to as ‘‘group invariant’’ under a Lie group G satisfy ĝ|ψ⟩ = |ψ⟩ for any ĝ ∈ G (in other

words, the generators of G are required to vanish on the group invariant states). In this work, we

use the term singlets to refer to states |ψ⟩ that satisfy ĝ|ψ⟩ = α(ĝ)|ψ⟩, where α(ĝ) is a phase

[in other words, the singlets are eigenstates of all generators of G with any (zero or non-zero)

eigenvalues]. This general definition also incorporates the notion of degenerate and non-degenerate

sets of singlets. As we discuss in a parallel paper [56], when these algebras are used as stepping

stones to constructions of models with exact scars, the knowledge about degeneracies of the various

sets of singlets under the action of the bond algebra is necessary to understand the full set of scar

states that can be embedded in those models.

5. Hubbard algebras

We now discuss other examples of fermionic bond algebras that can no longer be understood as

being generated from any natural subset of elementary terms of Eq. (31). Specifically, we consider

algebras obtained by adding on-site Hubbard-like terms to the generators. The motivation for

studying such algebras is two-fold. First, such an algebra appears in the context of the well-known

Hubbard model ‘‘at half-filling’’ (i.e., at average density of one electron per site). Second, the Hubbard

model is known to have spin and pseudospin SU(2) symmetries, hence we expect the appropriate

commutant to be generated by {Sαtot} and {ηα0/π } [see Eqs. (33) and (34)]. As discussed in Section 2.2,

local and commutant algebras appear in pairs, and we can ask if there is a local algebra with
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this commutant.10 As we now discuss, there indeed exists such a local algebra that contains the
Hamiltonian of the Hubbard model. Moreover, we also find additional closely related algebras that
are applicable to the Hubbard model under various conditions, e.g., with complex hopping terms or
in the presence of a chemical potential or a magnetic field. We refer to these algebras as Hubbard

algebras.
We start with the families of Hubbard Hamiltonians of the form

HΥ ,Hub =
∑

⟨j,k⟩
tj,kT

(Υ )
j,k +

∑

j

ujVj − µ
∑

j

Kj − B
∑

j

Mj, (37)

where ⟨j, k⟩ denotes nearest-neighboring sites on a lattice, T
(Υ )
j,k , Kj, and Mj are the elementary terms

defined in Eq. (31), Υ ∈ {r, i, c} corresponding to real, imaginary, or complex hoppings, and Vj is
the on-site Hubbard term defined as

Vj :=
(
nj,↑ − 1

2

)(
nj,↓ − 1

2

)

= 1

2

[
(Kj − 1)2 − 1

2

]
= 1

2

[
1

2
− M2

j

]
. (38)

Further, {tj,k} and {uj} in Eq. (37) are arbitrary parameters, and µ and B are the chemical potential
and magnetic field strengths respectively that can either be arbitrary parameters or be set to zero to
obtain subfamilies of Hamiltonians of Eq. (37). The symmetries of various families of Hamiltonians
can be understood via the corresponding local algebras. As we summarize in Table 4, we find many
distinct Hubbard local algebras, depending on the choices of parameters and hoppings in Eq. (39).
If we focus on the family of Hubbard Hamiltonians with µ = B = 0 in Eq. (37), we find examples
of Hubbard bond algebras and commutants with spin and/or pseudospin SU(2) symmetries, each
similar to the SU(2) symmetry discussed in Section 3.1 in the context of the spin-1/2 Heisenberg
model. On the other hand, if we are interested in symmetries of larger families of Hamiltonians
allowing arbitrary non-zero values of µ and B, we find examples of dynamical symmetries similar
to ones discussed in Section 3.2. We summarize our results below and provide a more detailed
discussion in Appendix G.

5.1. Regular SU(2)

We start with the family of particle-hole symmetric on-site Hubbard terms, obtained by setting
µ = B = 0 in Eq. (37). We denote the corresponding bond algebras by AΥ ,Hub, and they are obtained
by adding the Hubbard terms {Vj} to the free-fermion bond algebras generated by the appropriate
hopping terms (cases #3a–b and #2 in Table 3), i.e.,

AΥ ,Hub := ⟨⟨{T (Υ )
j,k }nn, {Vj}⟩⟩, Υ ∈ {r, i, c}. (39)

Since the on-site Hubbard terms Vj can be expressed in terms of Kj or Mj, as shown in Eq. (38), it
follows that AΥ ,Hub is a part of the free-fermion algebras Ac,µ and AΥ ,h (defined in Table 3), and we

conjecture using plausible arguments that AΥ ,Hub = Ac,µ∩AΥ ,h.
11 While it is not a priori clear if the

Hubbard algebras are distinct from other free-fermion algebras in Table 3, i.e., if on-site terms such
as Kj and Mj can be generated from the generators of the Hubbard algebra AΥ ,Hub, the differences
between the algebras are already evident from (the degeneracies of) their singlets, which are listed

10 Note that all the free-fermion bond algebras in Table 3 with spin and pseudospin SU(2) symmetries in their respective

commutants necessarily have additional symmetries.
11 Note that it may seem strange that we invoke algebras with applied magnetic field AΥ ,h while the Hubbard algebras

considered here, as we will discuss, are all spin-SU(2)-symmetric. Such an algebra equality would not hold with just

AΥ , since AΥ ,Hub is evidently larger than AΥ . In the R.H.S., the intersection with Ac,µ guaranties spin-SU(2)-invariance

while the intersection with AΥ ,h guaranties that hoppings are Υ -type-generated and fixes the form of the Hubbard term;

and this writing allows to reuse free-fermion results. Alternatively, one could start with AΥ ⊆ AΥ ,Hub ⊆ Ac,µ and think

through some relatively simple analysis/plausible conjectures afresh.
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in Table 3. We discuss the properties of all these Hubbard algebras, their singlets, and commutants
in more detail in Appendix G.

We are primarily interested in the commonly-studied case with only real hopping terms [23,57,
65]. On a bipartite lattice the Hubbard bond algebra is isomorphic to the bond algebra generated
with purely imaginary hoppings (i.e., Ai,Hub), see Appendix G.2. The commutants Ci,Hub and Cr,Hub

in these cases possess a spin-SU(2) symmetry, generated by {Sαtot} defined in Eq. (33), as well as a
‘‘pseudospin’’ SU(2) symmetry generated by operators {ηαπ } or {ηα0 } defined in Eq. (34). For reasons
we discuss in Appendices G.1 and G.2, we conjecture that the commutants Cr,Hub and Ci,Hub are
completely generated by these two SU(2) symmetries.

On a non-bipartite lattice, the Hubbard algebra generated with real hoppings is equal to the
Hubbard algebra generated with complex hoppings (i.e., Ac,Hub). While the commutant Cc,Hub in this
case possesses the spin-SU(2) symmetry generated by {Sαtot}, the full pseudospin SU(2) generated
by {ηα0/π } is no longer present. A complete discussion of this algebra can be found in Appendix G.3.

5.2. Dynamical SU(2)

We now discuss examples of dynamical SU(2) symmetries that can occur in the family of
Hubbard Hamiltonians of Eq. (37). We start by setting B = 0 while allowing µ to be an arbitrary
parameter, which corresponds to the addition of a uniform chemical potential term

∑
j Kj = Ntot to

the bond algebra AΥ ,Hub, and motivates the study of the local algebra

A
(dyn-η)

Υ ,Hub = ⟨⟨{T (Υ )
j,k }, {Vj},Ntot⟩⟩. (40)

In fact, this algebra contains the most standard form of the Hubbard model, which is recovered
by setting Υ = r and uj = U , tj,k = −t in Eq. (37). With real hoppings on a bipartite lattice

or imaginary hoppings (i.e., Υ ∈ {r, i}), the commutant C
(dyn-η)

Υ ,Hub contains the regular spin SU(2)
symmetry along with a dynamical pseudospin SU(2) symmetry. This modification of the regular
pseudospin SU(2) symmetry to a dynamical pseudospin SU(2) symmetry upon the addition of a
uniform chemical potential is analogous to the modification of a regular SU(2) symmetry to a
dynamical SU(2) symmetry discussed in the context of the Heisenberg model in a uniform magnetic
field in Section 3.2.

Alternately, we could set µ = 0 and allow B to be an arbitrary parameter in Eq. (37), which
corresponds to the addition of a uniform magnetic field term

∑
j Mj = Sztot to the bond algebra

AΥ ,Hub, and motivates the study of the local algebra

A
(dyn-S)
Υ ,Hub = ⟨⟨{T (Υ )

j,k }, {Vj}, Sztot⟩⟩. (41)

Similar to the previous case, this results in the modification of the regular spin SU(2) symmetry in
the commutant to a dynamical spin SU(2) symmetry, and this happens with any type of hopping
(i.e., for Υ ∈ {r, i, c}). Finally, we could allow both µ and B to be arbitrary in Eq. (37), which
corresponds to the addition of a uniform chemical potential and a uniform magnetic field to the
bond algebra AΥ ,Hub. In this case, both the regular spin and pseudospin SU(2) symmetries in the
commutant CΥ ,Hub get modified into dynamical SU(2) symmetries. A complete discussion of these
algebras can be found in Appendix G.

5.3. Application of DCT

We now discuss the application of the DCT to the Hubbard algebras in Table 4. We restrict
ourselves to the physically interesting case with real hoppings on a bipartite lattice or purely
imaginary hoppings, where the commutants have spin and pseudospin (regular or dynamical) SU(2)
symmetries.

We start with the discussion of Ai,Hub; all these results also hold for Ar,Hub due to the iso-
morphism discussed in Appendix G.2. As a consequence of DCT of Theorem 2.1, any operator that
commutes with spin and pseudospin SU(2) symmetries generated by {Sαtot} and {ηα0 } should belong
to the Hubbard algebra Ai,Hub. Since the commutant Ci,Hub can be understood as being completely
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generated by the family of on-site unitary operators that correspond to the spin and pseudospin
SU(2) symmetries, Lemmas 2.1 and 2.2 apply. A systematic numerical search for such one-site and
two-site nearest neighbor symmetric operators was performed in [33], and they found 10 linearly
independent terms that commute with the spin and pseudospin symmetries, see Tab. III, part A,

there.12 Indeed, we find that the dimension of the two-site Hubbard algebra, i.e., ⟨⟨T (i)
j,j+1, Vj, Vj+1⟩⟩,

is 10, and we have verified that the 10 terms obtained in [33] span this algebra. Although the

expressions of the operators there in terms of the two-site generators T
(i)
j,j+1, Vj, Vj+1 can in general

be complicated, some expressions are particularly simple. For example, the operator #2 in Tab. III

of [33] can be expressed as 4(Vj+1/4)(Vj+1+1/4), the operator #7 as 2(Vj+1/4)(Vj+1+1/4)
(
T
(r)
j,j+1

)2
(remembering that the system in [33] has real bipartite hopping), etc. The DCT now obviates the
toils to extend the numerical search in [33] to three- and more-site symmetric operators since we
know they can be produced from the basic bond algebra generators.

We then move on to the DCT in the context of the algebra A
(dyn-η)

i,Hub ; the following results

also hold for the algebras A
(dyn-η)

r,Hub , A
(dyn-S)
i,Hub , and A

(dyn-S)
r,Hub due to their isomorphisms discussed in

Appendix G. Since the commutant C
(dyn-η)

i,Hub consists of the full family of on-site unitaries of the

spin SU(2) symmetry, the Lemmas 2.1 and 2.2 apply w.r.t. this symmetry. Further, since C
(dyn-η)

i,Hub

contains a dynamical pseudospin SU(2) symmetry, Lemma 3.1 can also be applied w.r.t. this

symmetry. These arguments show that strictly local operators in A
(dyn-η)

i,Hub possess both regular spin
and pseudospin SU(2) symmetries, hence are a part of Ai,Hub. Moreover, extensive local operators

in A
(dyn-η)

i,Hub are necessarily linear combinations of Ntot and other strictly local terms with regular spin
and pseudospin SU(2) symmetries (i.e., that are a part of Ai,Hub). Similar to the case discussed in

Section 3.2, this shows that any local Hamiltonian in the algebra A
(dyn-η)

i,Hub necessarily has towers of
equally spaced levels in its spectrum, consisting of levels from quantum number sectors labeled by
different eigenvalues under Ntot. This is in addition to degenerate eigenstates consisting of levels
from quantum number sectors labeled by different eigenvalues under Sztot.

Note that a similar analysis can be carried out for the algebraA
(dyn-S,dyn-η)

i,Hub (which is isomorphic to

A
(dyn-S,dyn-η)

r,Hub ), which possesses spin and pseudospin dynamical SU(2) symmetries. Using Lemma 3.1,
we can again show that extensive local operators in this algebra are linear combinations of Sztot, Ntot,
and other terms with regular spin and pseudospin SU(2) symmetries. This shows that any local

Hamiltonian in the algebra A
(dyn-S,dyn-η)

i,Hub necessarily has two towers of equally spaced levels in its
spectrum, each consisting of levels from quantum number sectors labeled by different eigenvalues
under Sztot or Ntot.

6. Conclusions and Outlook

In this work, we expanded on the framework of commutant algebras introduced in [8], and
illustrated its application to understand the conserved quantities in several standard models includ-
ing the spin-1/2 Heisenberg model, various non-interacting fermionic models, and the electronic
Hubbard model. These Hamiltonians can all be understood as being parts of a larger family of
local Hamiltonians, and the commutant algebra framework provides a systematic way to define
conserved quantities solely based on this family. In particular, the commutant algebra is the
centralizer of the algebra generated by individual local terms that define the family, which is
referred to as a bond algebra if all the individual terms are strictly local, or more generally as a
local algebra if the individual terms can include extensive local operators.

The commutant algebra framework hence provides a systematic way to identifying conserved
quantities without imposing restrictions on their forms, in contrast to the conventional approach
of restricting to conserved quantities that are on-site unitary operators or sums of local operators.
Without such restrictions, the commutant language captures features that are not explained by
conventional symmetries such as the existence of non-obvious dynamically disconnected subspaces

12 Note that the entries #1, #5, and #6 there each correspond to two linearly independent operators. In addition, the

identity as well as all one-site operators are included in the span of the operators #1–#7 listed there.
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in fragmented systems [8] or unexpected degeneracies in the spectrum in free-fermion models
(with some examples presented in this work, see the spinless and spinful bond algebra Ac in
Tables 2 and 3). At the same time, when applied to well-known models with only on-site unitary
symmetries, the commutant language is equivalent to the conventional symmetry language, and
the commutant algebra can be understood as being fully generated by the family of on-site unitary
operators. Among the models we study, the commutants in the spin-1/2 Heisenberg model, several
of the non-interacting fermionic models, and the Hubbard model are all generated by on-site unitary
symmetry operators, whereas the commutants in certain non-interacting fermionic models contain
‘‘unconventional’’ non-local conserved quantities.

Understanding conserved quantities in terms of the commutant has several additional benefits.
For example, the association of the commutant algebras to families of Hamiltonians directly explains
several features that are not immediately clear a priori, e.g., the persistence of η-pairing in the
Hubbard model with some types of disorder [23,33,66]. Further, in the free-fermion cases, the com-
mutant provides a different perspective on the Hilbert space decomposition in terms of irreducible
representations of Lie groups mostly introduced in the high-energy physics literature [25–29],
and motivates the associated ‘‘Casimir relations’’ (see Section 4.3). The commutant language is
also useful when applied to conserved quantities that do not have an obvious underlying group
structure or when identifying ‘‘symmetry groups’’ in conserved quantities is ambiguous (e.g., SO(4)
versus SU(2) × SU(2) symmetry in the Hubbard model), since it avoid invoking groups by focusing
directly on a minimal set of conserved quantities that generate all operators that commute with
that Hamiltonian.

Focusing on the associative algebra structure of the conserved quantities, as done in this work,
instead of the Lie algebra or Lie group structures, e.g., as studied in previous works [25,34,36,67–69],
is more insightful particularly due to the Double Commutant Theorem (DCT). The DCT provides
a way to generate all operators that have some desired symmetry; for example, all spin-1/2
SU(2) symmetric operators can be generated from (i.e., can be expressed in terms of products
and linear combinations of) the nearest-neighbor Heisenberg terms. Along with some locality
considerations, this provides a systematic way to construct all strictly local or extensive local
operators with the desired symmetry, allowing us to provide an ‘‘exhaustive’’ description of families
of such symmetric Hamiltonians. For example, for commutants corresponding to on-site unitary
symmetries, we showed that extensive local symmetric operators can be written as a sum of
strictly local symmetric operators (see Lemma 2.2). In a parallel work [56], we show that such a
statement is not true for more general non-standard commutants; in particular there we construct
‘‘Type II’’ symmetric Hamiltonians that cannot be expressed as sums of strictly local symmetric
operators, which can be contrasted with ‘‘Type I’’ symmetric Hamiltonians that can be expressed
so. Further, in the case of dynamical symmetries, we showed that all extensive local symmetric
Hamiltonians necessarily have equally spaced eigenvalues in their spectra (see Lemma 3.1). Such
applications of the DCT potentially eliminate need of brute-force searches for constructing operators
with a desired symmetry [31,32], as we demonstrated in the case of the Hubbard model, where
we analytically recovered nearest-neighbor operators with the spin and pseudospin symmetries
previously discovered numerically [33]. Looking forward, it would be interesting to extend this kind
of analysis to place constraints on the nature or structure of symmetric unitary or Floquet operators.

Some of the results discussed in this work are also helpful in understanding other phenomena
involving ‘‘unconventional conserved quantities’’ within the commutant framework. As we will dis-
cuss in a parallel work [56], the singlets of the algebras we studied here also play an important role
in understanding models with exact Quantum Many-Body Scars (QMBS) [10–12], and in particular
we show that local algebras can be constructed such that the projectors onto the QMBS eigenstates
can themselves be viewed as non-local conserved quantities exhausting the commutant. In addition,
in another upcoming work [70], we show that some examples of strong zero modes [71,72] can
also be understood within the commutant framework. It is also clear from examples studied in this
work that proving the exhaustions of the commutants, i.e., showing that the entire commutant is
generated from a given set of simple operators, can be tedious even in simple cases, and we found
it necessary to resort to numerical checks on small system sizes. In another work [73], we elaborate
on these numerical techniques and demonstrate their application on some of the examples studied
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in this work. We hope that all these results, along with results for Hilbert space fragmentation [8],
might provide a way towards a unified and exhaustive understanding of both conventional and
unconventional conserved quantities that appear in local Hamiltonians.

Finally, this framework also demonstrates parallels between symmetries in quantum systems
and decoherence-free subspaces or noiseless subsystems studied in the quantum information
literature [74,75]. In particular, when the terms of the Hamiltonians, or the generators of the local
algebra A, are interpreted as sources of ‘‘noise’’ in the system, information in the subspaces that

transform under irreducible representations of C, i.e., the {H(C)
λ } in Eq. (4), are ‘‘protected’’ against

such a noise. While decoherence-free subspaces have mostly been explored for few-qubit systems, it
might be interesting to use this framework to systematically explore many-body decoherence-free
subspaces and their applications for realistic noise sources.
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Appendix A. The Double Commutant Theorem (DCT)

In this appendix, we sketch a proof of the DCT of Theorem 2.1, focusing on finite-dimensional
Hilbert spaces, closely following the discussion in [30].

Proof. Let us denote the centralizer of C as D. Since we know that A ⊆ D, to show that D = A,
it is sufficient to show D ⊆ A. Consider an orthonormal basis {|v1⟩, |v2⟩, . . . , |vD⟩} for the Hilbert
space H. We then need to show that for any operator T ∈ D, there exists an operator S ∈ A such
that T |vi⟩ = S|vi⟩ ∀i, 1 ≤ i ≤ D. For some particular |vi⟩, we can consider the subspace Mi ⊆ H

defined as Mi := {A|vi⟩ : A ∈ A}, and the orthogonal projector Πi onto Mi. It straightforwardly
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follows that the subspace Mi is invariant under the action of any operator in A, and we obtain

AΠiH ⊆ ΠiH if A ∈ A. Hence we obtain

Π⊥
i AΠi = 0 H⇒ AΠi = ΠiAΠi, (A.1)

where Π⊥
i := 1−Πi is the projector onto the orthogonal subspace. Further, since A is a †-algebra,

we can w.l.o.g. choose A in Eq. (A.1) to be a Hermitian (i.e., A = A†) basis element of A, and take

the Hermitian conjugate of both sides of Eq. (A.1) to obtain

ΠiA = ΠiAΠi H⇒ [Πi, A] = 0 ∀ A ∈ A H⇒ Πi ∈ C. (A.2)

Since any T ∈ D satisfies [T ,Πi] = 0 by definition, we obtain

TΠi|vi⟩ = Πi(T |vi⟩) ∈ Mi. (A.3)

Since A is a unital algebra, 1|vi⟩ = |vi⟩ ∈ Mi, hence using the definition ofΠi, we haveΠi|vi⟩ = |vi⟩.
Then, using Eq. (A.3) we obtain T |vi⟩ ∈ Mi. Finally, using the definition of Mi, we have T |vi⟩ = S|vi⟩
for some S ∈ A.

While this completes the proof for a particular |vi⟩, we also need to show that there exists such

an operator S ∈ A that is i-independent. Hence we work with a different space H
(D) := ⨁D

i=1 H

that consists of D copies of the original Hilbert space. We then define the vector |v⟩ := ⨁D

i=1 |vi⟩,
such that |vi⟩ is in the ith copy of H. The vector |v⟩ can be considered as a specific 1 × D (block-

)column vector whose entries are |v1⟩, |v2⟩, . . . , |vD⟩. Operators on this space, denoted by L(H(D))

can be considered to be D × D (block-)matrices with entries from the space of operators L(H).

We can further define the algebra A
(D) := {⨁D

i=1 A| A ∈ A} ⊆ L(H(D)); this consists of diagonal

(block-)matrices with the same A ∈ A on the diagonal. A(D) inherits several properties of A, and

in particular it is a unital †-algebra. Further, it is easy to show that any element of the centralizer

of A(D) in L(H(D)) is a D × D matrix with elements in the commutant algebra C. As a consequence,

any operator of the form T (D) := ⨁D

i=1 T , where T ∈ D, belongs to the centralizer of the centralizer

(or, the double-centralizer) of A(D), which we denote by D
(D). We can then follow the logic in the

previous paragraph, with the appropriate substitutions |vi⟩ → |v⟩, A → A
(D), H → H

(D), and

deduce that for any T (D) ∈ D
(D), there exists an operator S(D) ∈ A

(D) such that T (D)|v⟩ = S(D)|v⟩.
Since S(D) = ⨁D

i=1 S for some S ∈ A, this shows that for any T ∈ D, we have T |v1⟩ ⊕ · · · ⊕ T |vD⟩ =
S|v1⟩ ⊕ · · · ⊕ S|vD⟩, showing that T = S ∈ A. This concludes the proof that D = A. □

Appendix B. Locality and the DCT

In this appendix, we discuss some aspects of the restrictions on local terms with a given set of

conserved quantities due to the DCT of Theorem 2.1, and also prove Lemmas 2.1 and 2.2. Specifically,

suppose we want to find all local Hamiltonians that commute with some desired set of conserved

quantities. We will assume that these conserved quantities generate a commutant algebra that is the

centralizer of a local algebra, where the latter is generated from some strictly local bond terms and

perhaps also few extensive local operators as in the dynamical SU(2) case of Section 3.2. Using the

DCT, we know that any such symmetric Hamiltonian can be produced by the generators of the local

algebra. However, the DCT does not tell us how many generators are needed and does not exclude

possibility that this involves products of an extensive number of generators spread over the entire

system. Some variants of concern are that perhaps some linear combination of products of extensive

numbers of bond generator terms can turn out to be a local or an extensive local operator due to

some cancellations, or that something like this happens for combinations involving products of an

extensive local generator (or its powers) and an extensive number of bond generator terms. (Of

course, an extensive local generator multiplied by a finite number of bond generators is a non-local

operator and would not be allowed as a Hamiltonian, but the DCT does not provide any restrictions

on the number of factors and summands.) As we will see, in some cases we can impose restrictions

on the range of the local terms we are interested in and still use the DCT to restrict their structure.
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B.1. Arbitrary on-site symmetries

We start with the discussion of on-site symmetries such as Z2, U(1), or regular SU(2), shown in

cases of #1 - #5 of Table 1. As we discuss in Sections 4.1 and 4.2, these results are also applicable

to cases #1 and #3a–b of Table 2 and also to cases #1a–c, #3a–b, and #4 of Table 3. In the case of

on-site symmetries, the commutant algebra C of a bond algebra A can be considered to be generated

by the (full family of) on-site unitaries themselves, i.e., we have

Û(g) =
∏

j

ûj(g), C = ⟨⟨{Û(g)}⟩⟩. (B.1)

where ûj(g) is a unitary operator on site j with a label g , usually chosen from a discrete or Lie group.

For example, in the case of Z2 symmetry, we have non-trivial ûj(g) = σ z
j . In the case of a continuous

on-site symmetry, there is a continuous family of unitary operators {Û(g)}. For example, in spin-

1/2 systems, U(1) symmetry is represented by the unitary Û of Eq. (B.1) with ûj(θ ) = exp(iθσ z
j ) for

arbitrary θ ; whereas ûj(α⃗) = exp(iα⃗ · σ⃗j) in the case of SU(2) symmetry for arbitrary values of α⃗,
where σ⃗j is the vector of Pauli matrices (σ x

j , σ
y

j , σ
z
j ). Since the unitary of Eq. (B.1) is on-site, we can

also define a natural restriction of the unitary and commutant to a region R as

ÛR(g) :=
∏

j∈R
ûj(g), CR = ⟨⟨{ÛR(g)}⟩⟩, (B.2)

where a region is simply defined to be a collection of lattice sites. We now move onto the proofs

of the important lemmas, restated here for easy reference.

Proof. Consider any strictly local operator hR = Ôloc-R in a contiguous region R that is symmetric

under an on-site symmetry. By definition it commutes with the algebra generated by the (family

of) unitary operators Û(g) of the form of Eq. (B.1). Hence it is clear that any such operator should

commute with the unitary restricted to the region R, i.e.,

[̂Oloc-R, Û(g)] = 0 H⇒ [̂Oloc-R, ÛR(g)] = 0, ∀g, (B.3)

where ÛR(g) is the unitary restricted to the region R, defined in Eq. (B.2). Hence, applying the DCT to

the region R, Ôloc-R is part of the centralizer of CR w.r.t. the many-body Hilbert space on the region

R, which is the algebra of all operators with support in the region R that commute with the family

of on-site unitaries ÛR(g), which we refer to as AR. However, depending on the shape of the region

R, this might not be the same as the algebra Agen∈R, which is generated by the generators of the

original bond algebra A that have support completely in the region R.

For a general proof, we need to introduce a ‘‘regular generation’’ assumption on the bond algebras

A corresponding to the commutant C generated by the on-site unitary symmetry. In particular we

assume that the bond and commutant algebras are centralizers of each other for sufficiently regular

finite lattices of varying sizes, which is equivalent to saying that for any such regular region R,

the commutant of the bond algebra Agen∈R is precisely CR. This usually holds for bond algebras

generated by some homogeneous set of generators of bounded range on the lattice and is checked

as part of specific commutant exhaustion proofs such as those in Appendix F. In particular for many

examples of bond algebras generated by on-site and nearest-neighbor terms, it is easy to check in

each case that the algebra AR is generated by the subset of generators of A that lie completely

within the region R, and also that Agen∈R = AR in the notation used above. For example, in the Z2
case we can directly check that the bond algebra generated by {SxjkS

x
jk+1, k = 1, 2, . . . ,m − 1} and

{Szjk , k = 1, 2, . . . ,m} has commutant precisely generated by
∏m

k=1 Zjk , where the sites {jk} can be
any contiguous region of m sites arranged in any geometry in any number of dimensions; for such

regions Agen∈R = AR in the notation used above. Another example is the SU(2) case, where from a

proof similar to Appendix F.3 we know that any SU(2)-symmetric operator on sites j1, j2, . . . , jm can
be generated by {S⃗jk · S⃗jk+1

, k = 1, 2, . . . ,m − 1}, where again {jk} can label any contiguous region

of m sites.
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With this ‘‘regular generation’’ assumption, it is clear that even if the region R is itself not regular,
i.e., if AR ̸= Agen∈R, one can always embed it in a bounded regular region R′ ⊇ R such that the

algebra Agen∈R′ = A
′
R ⊇ AR. Hence any operator Ôloc-R that satisfies Eq. (B.3) can be generated by

the generators of the A restricted to a bounded region R′. □

Proof. Moving on to extensive-local operators, consider a Hamiltonian H of the form

H = Ôext-loc =
∑

R

ÂR, (B.4)

where ÂR is any operator with support everywhere13 in a local region R (which can be any group of
sites with separation bounded by some fixed number rmax), and the sum over R runs over distinct
regions distributed all over the entire lattice. We typically have in mind cases where Ôext-loc is
translation invariant, i.e., where ÂR1 and ÂR2 have the same ‘‘form’’ for regions R1 and R2 that are
related by a simple translation. However, the following argument is completely general and holds
for all operators Ôext-loc that can be decomposed as Eq. (B.4) where the sum runs over some set
of distinct regions (not necessarily extensively many of them) with no relations among the ÂR’s.
Symmetric operators of the form of Eq. (B.4) should satisfy

[
∑

R

ÂR, Û] = 0, H⇒
∑

R

ÛR̄ [̂AR, ÛR] = 0, (B.5)

where R̄ is the complement of the region R. We now show that terms that appear in Eq. (B.5)
corresponding to distinct regions R1 and R2 are orthogonal to each other. In particular, we wish
to show that the Frobenius inner product between the terms in Eq. (B.5) vanishes, i.e.,

Tr([̂AR1 , ÛR1 ]†Û
†

R̄1
ÛR̄2

[̂AR2 , ÛR2 ]) = 0. (B.6)

Without loss of generality, we assume ÂR is traceless and we can expand ÂR in terms of ‘‘Pauli
strings’’ (or its generalizations) {̂PµR } with support precisely in the region R (i.e., with non-trivial Pauli

matrices everywhere in R and identity matrices everywhere in the region R̄) as ÂR = ∑
µ cµP̂

µ

R . The
terms that appear in the expansion of the LHS of Eq. (B.6) after using this Pauli string expansion
are of one of the following forms:

Tr(̂P
µ

R1
Û

†

R1
Û

†

R̄1
ÛR̄2

P̂νR2 ÛR2 ), Tr(Û
†

R1
P̂
µ

R1
Û

†

R̄1
ÛR̄2

P̂νR2 ÛR2 ), Tr(̂P
µ

R1
Û

†

R1
Û

†

R̄1
ÛR̄2

ÛR2 P̂
ν
R2
), Tr(Û

†

R1
P̂
µ

R1
Û

†

R̄1
ÛR̄2

ÛR2 P̂
ν
R2
).

(B.7)

Since all the operators that appear within the parentheses in these terms are on-site operators,

i.e., they can be expressed as
∏
j

ôj for single-site operators {ôj}, the trace decomposes as follows:

Tr(
∏
j

ôj) = ∏
j

Tr(ôj). Further, using the expressions in Eq. (B.7), it is easy to show that as long as

R1 ̸= R2, for each of those terms there is at least one site j (can be any site that belongs to only one
of the two regions) for which one of the following holds:

ôj = û
†

j σ
µj

j ûj, ôj = û
†

j ûjσ
µj

j , ôj = σ
µj

j û
†

j ûj, (B.8)

where σ
µj

j is some Pauli matrix that is not the identity. In all the cases in Eq. (B.8), it is easy to see

that Tr(ôj) = 0. Hence all the terms in Eq. (B.7) vanish when R1 ̸= R2, proving Eq. (B.6). Since the

sum in Eq. (B.5) runs over distinct regions R, using Eq. (B.6) we obtain that [̂AR, ÛR] = 0 for any
extensive local symmetric operator of the form of Eq. (B.4) (and the specified precise localization
conditions on AR, which can be always achieved for any extensive-local operator). This completes
the proof of the Lemma that any extensive local operator or Hamiltonian H that is symmetric under
an on-site symmetry can be expressed as a sum of strictly local terms {hR} that are also symmetric,
i.e., H = ∑

R hR.

13 A precise definition using expansions in terms of Pauli strings is given below.
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Combined with Lemma 2.1 under the regular generation assumption (which was not needed
until this point), we can conclude that for any R the corresponding ÂR can be generated by bond
generators contained completely within a sufficiently regular region R′ covering R as described
earlier. In the case of several examples of bond algebras A generated by homogeneous nearest-
neighbor and on-site terms, this can also be generated by bond generators contained strictly within
the region R, as also discussed earlier. □

Note that Lemmas 2.1 and 2.2 are very general and apply to all on-site symmetries, including

U(1), SU(2), and Z2. Further, it also generalizes straightforwardly to systems with multiple on-site

symmetries.

B.2. Dynamical SU(2) symmetry

The situation is a bit more complicated but also more interesting in the dynamical SU(2) case
where the commutant is generated by S⃗2tot and Sztot. In contrast to other examples discussed in

Table 1, the dynamical SU(2) is not an on-site symmetry, hence the arguments of the previous

section do not apply. Nevertheless, we will show that any extensive local Hamiltonian that com-
mutes with S⃗2tot must be a sum of an SU(2)-invariant extensive local operator and a Zeeman term

proportional to Sztot.

We again start by considering a strictly local operator Ôloc-R that commutes with S⃗2tot. Here the

localization region R again means a collection of sites that are separated by at most rmax and are

not necessarily contiguous, i.e., a local set of points; this is the meaning for R’s everywhere below.

We can write

S⃗2tot = (S⃗R,tot + S⃗R̄,tot)
2 = S⃗2R,tot + S⃗2

R̄,tot
+ 2S⃗R,tot · S⃗R̄,tot , (B.9)

where R̄ is a complement to the region R in the whole system and S⃗R̄,tot ≡ ∑
j∈R̄ S⃗j = ∑

j̸∈R S⃗j. Since

Ôloc-R commutes with S⃗R̄,tot, we can write

[̂Oloc-R, S⃗
2
tot] = [̂Oloc-R, S⃗

2
R,tot] + 2[̂Oloc-R, S⃗R,tot] · S⃗R̄,tot. (B.10)

For this commutator to be zero (assuming non-empty regions R and R̄) we clearly must have
[̂Oloc-R, S⃗R,tot] = 0. This also implies that [̂Oloc-R, S⃗tot] = 0; hence Ôloc-R must have the regular SU(2)

symmetry, thus reducing to the case considered in the previous subsection. Hence all strictly local

operators with the dynamical SU(2) symmetry that are localized within a region R can be generated
using regular SU(2)-symmetric bond generators {S⃗j·S⃗j+1} restricted to a contiguous region containing

R. Note that this also shows that it is not possible to write down a bond algebra (i.e., an algebra
generated by strictly local operators) that has the full commutant as Cdyn-SU(2) = ⟨⟨S⃗2tot, Sztot⟩⟩ – any
such bond algebra will have the larger algebra CSU(2) = ⟨⟨Sxtot, Sytot, Sztot⟩⟩ as its commutant. We now

use this result to prove Lemma 3.1.

Proof. Consider now an extensive local operator as in Eq. (B.4). Using Eq. (B.10) we see that
[̂Oext-loc, S⃗

2
tot] can be expressed as

[̂Oext-loc, S⃗
2
tot] =

∑

R

[̂AR, S⃗
2
R,tot] + 2

∑

R

[̂AR, S⃗R,tot] · S⃗R̄,tot =
∑

R

[̂AR, S⃗
2
R,tot] + 2

∑

R

∑

α

∑

ℓ∈R̄
[̂AR, S

α
R,tot]Sαℓ .

(B.11)

We then expand the contributions in terms of Pauli strings (or its generalizations). We again assume
w.l.o.g. that each ÂR contains only Pauli strings with support precisely in the region R (i.e., with non-
identity matrices on all sites in the region); we denote such Pauli strings as {̂PµR }. It is clear that

[̂AR, S
α
R,tot] also contains only precisely such Pauli strings, while [̂AR, S⃗

2
R,tot] can contain in addition

strings with identity on one of the sites (to be precise, we will denote this larger set of Pauli strings

28



S. Moudgalya and O.I. Motrunich Annals of Physics 455 (2023) 169384

as { ˆ̃P µ̃R } but the only thing that is important below is that they are all supported in a subset of the
region R). Writing these commutators explicitly, the expression in Eq. (B.11) has the following form

[̂AR, S⃗
2
R,tot] =

∑

µ̃

aRµ̃
ˆ̃
P
µ̃

R , [̂AR, S
α
R,tot] =

∑

µ

bRµα P̂
µ

R H⇒ [̂Oext-loc, S⃗
2
tot] =

∑

R,µ̃

aRµ̃
ˆ̃
P
µ̃

R + 4
∑

R,µ,α,ℓ∈R̄
bRµα P̂

µ

R σ
α
ℓ ,

(B.12)

{aRµ}, {bRµα} are some sets of coefficients and σ αℓ is the Pauli matrix on site ℓ. Focusing on the
second sum in Eq. (B.12), consider the summand for a particular ℓ that is sufficiently far away from
the region R, e.g., separated by more than (rmax + 1) from every site in R (we implicitly assume
sufficiently large system size L that such ℓ exists). It is easy to see that for every region R with
number of sites |R| ≥ 2, there is an appropriate choice of ℓ such that the Pauli string P̂

µ

R σ
ν
ℓ , which

has a support in the region R∪{ℓ}, is orthogonal to any other Pauli string that appears in Eq. (B.12).
Hence by imposing [̂Oext-loc, S⃗

2
tot] = 0, we necessarily obtain that bRµα = 0 or [̂AR, S⃗R,tot] = 0 for every

region R such that |R| ≥ 2. Hence any such term in Ôext-loc with |R| ≥ 2 should be SU(2)-symmetric,
and the question of their generatability is already answered in the previous subsection.

We still need to consider the case where the regions R consist of a single site, i.e., |R| = 1. In that

case, the most general extensive local operator is of the form Ôext-loc = ∑
j,µ

hj,µσ
µ

j . Using Eq. (B.12),

we obtain

[̂Oext-loc, S⃗
2
tot] = 1

2

∑

j,µ,α

∑

ℓ̸=j

hj,µ[σµj , σ αj ]σ αℓ = i
∑

j,µ,α,β

∑

ℓ̸=j

ϵµαβhj,µσ
β

j σ
α
ℓ = i

∑

(j,ℓ)

∑

µ,α,β

(ϵµαβhj,µ + ϵµβαhℓ,µ)σ
β

j σ
α
ℓ ,

(B.13)

where we have used Sαj = σ αj /2, the sum over (j, ℓ) denotes unordered pairs of distinct sites on
the lattice, and ϵαβγ is the totally antisymmetric Levi-Civita symbol. It is easy to see that imposing

[̂Oext-loc, S⃗
2
tot] = 0 in Eq. (B.13) requires that hj,µ = hℓ,µ for all pairs of sites (j, ℓ); hence Ôext-loc that

satisfies that condition should be a Zeeman term of the form Ôext-loc = ∑
µ

cµS
µ
tot. Further requiring

that [̂Oext-loc, S
z
tot] = 0, we obtain Ôext-loc = Sztot as the unique extensive local operator of the form

of Eq. (B.4) with the regions R that satisfy |R| = 1.
This leads to the conclusion that any extensive local Hamiltonian with the dynamical SU(2)

symmetry is a linear combination of strictly local SU(2)-symmetric terms along with a Zeeman
field term, e.g., Sztot. Hence for any such extensive local Hamiltonian, all multiplets that would be
degenerate in the regular SU(2)-invariant case (e.g., the ferromagnetic multiplet with the largest
Stot = L/2) will be split into towers of equally-spaced states with the same splitting given by the
strength of the Zeeman field term Sztot. □

Appendix C. Details on spinless free-fermion bond algebras

We discuss examples of free-fermion bond algebras generated starting from a natural subset of

elementary terms of Eq. (25), the results discussed here are summarized in Table 2. We start by

listing some useful set of commutators of elementary terms, which can be derived using Eq. (23):

i[T (r)
j,k , T

(r)
k,l ] = T

(i)
j,l , i[T (r)

j,k , T
(i)
k,l] = −T

(r)
j,l , i [T (i)

j,k, T
(i)
k,l] = −T

(i)
j,l , (C.1)

i [nj, T
(r)
j,k ] = T

(i)
j,k, i [nj, T

(i)
j,k] = −T

(r)
j,k , i [T (r)

j,k , T
(i)
j,k] = 2(nj − nk). (C.2)

As we will see below, natural subsets of these generators provide representations of standard

Lie algebras. We will often use the familiar names of these algebras to also refer to the specific

representations in the full fermionic Hilbert spaces.
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C.1. Hoppings with chemical potentials

We start with the most general case where the bond algebra Ac,µ is generated by all the
nearest-neighbor hopping terms and on-site chemical potential terms, i.e.,

Ac,µ := ⟨⟨{T (Υ )
j,k }nn, {nj}⟩⟩, Υ ∈ {r, i, c}. (C.3)

The equivalence between the three cases – only real hoppings, only imaginary hoppings, or both
real and imaginary hoppings – follows from Eq. (C.2), i.e., they can be generated from one another
in the presence of chemical potential terms. Ac,µ is the bond algebra that corresponds to families of
free-fermion systems with nearest-neighbor hopping terms and on-site chemical potential terms.
Although only nearest-neighbor hopping terms are included in the bond algebra generators, it is
easy to see that repetitive applications of Eqs. (C.1) and (C.2) on the generators can be used to
construct hopping terms between any pair of sites on any lattice, hence they are all part of the

algebra Ac,µ. In fact, we could reduce the number of generators even further, e.g., to T
(i)
j,k along one

path visiting all sites of the lattice and a single nj; however, it is natural to include all relevant local
terms from the start. The Lie algebra generated by these terms in this case is (a representation of)
u(N), the full algebra of N×N Hermitian matrices. The corresponding bond algebra is the enveloping
algebra U(u(N)), and the terms in the Lie algebra can also be interpreted as generators of the group
U(N).

The bond algebra Ac,µ has two singlets – the vacuum state |Ω⟩ with no fermions, and the fully

occupied state |Ω̄⟩ with N fermions. Indeed, all hopping terms {T (c)
j,k }nn annihilate these states and

they are eigenstates of the chemical potential terms {nj}, and it is easy to see that there are no

other simultaneous eigenstates of all {nj} and {T (c)
j,k }nn. These singlets are non-degenerate, since they

differ in their eigenvalues under the operators {nj}. Hence, apart from the algebra generated by Ntot

(denoted by ⟨⟨Ntot⟩⟩), the singlet projectors |Ω⟩⟨Ω| and |Ω̄⟩⟨Ω̄| should be a part of the commutant
Cc,µ of Ac,µ. However, these projectors are both included in the algebra ⟨⟨Ntot⟩⟩, since they can

be expressed in terms of Ntot [e.g., |Ω̄⟩⟨Ω̄| =
N−1∏
m=0

(Ntot − m)/(N − m)]. Hence the full commutant

algebra is just given by

Cc,µ = ⟨⟨Ntot⟩⟩. (C.4)

Moreover, the commutant can also be viewed as being generated by the full family of on-site
unitaries of the form exp(iαNtot) = ∏

j exp(iαnj). As discussed in Section 4.1, this property is useful
for the application of the DCT since Lemmas 2.1 and 2.2 apply. Note that since these unitaries can
be viewed as elements of a U(1) group, the symmetry is typically referred to as U(1).

Since the commutant Cc,µ is Abelian, the common center of Ac,µ and Cc,µ is simply the
commutant itself (see Section 2.3), i.e., Zc,µ = Cc,µ = ⟨⟨Ntot⟩⟩.

C.2. Complex hoppings without chemical potentials

C.2.1. Bond and commutant algebra

We now include complex hopping terms and exclude the chemical potentials {nj}, and study the
algebra

Ac = ⟨⟨{T (c)
j,k }nn⟩⟩ := ⟨⟨{T (r)

j,k }nn, {T (i)
j,k}nn⟩⟩. (C.5)

Ac is the bond algebra that corresponds to families of free-fermion systems with complex hopping
terms and no on-site potentials. As discussed in Appendix C.1, using Eq. (C.1), it is easy to show that
complex hopping terms between any pair of sites on any lattice can be generated from the set of
nearest-neighbor complex hopping terms, and they are all part of Ac . Furthermore, using the last
of Eq. (C.2) we can also generate nj − nk. The Lie algebra of all the N(N − 1)/2 complex hopping
terms and N − 1 independent nj − nk terms is the Lie algebra of traceless N ×N Hermitian matrices
{A} in Eq. (24), which is su(N). These hopping terms form the generators of the group SU(N), and
the associative bond algebra Ac is the UEA U(su(N)) [25].
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The bond algebra Ac has two singlets – the vacuum state |Ω⟩, and the fully occupied state |Ω̄⟩
– same as those of the algebra Ac,µ. However, in this case, the singlets are degenerate, since all

generators {T (c)
j,k }nn annihilate these states. Apart from the algebra generated by Ntot (denoted by

⟨⟨Ntot⟩⟩), the operators |Ω⟩⟨Ω|, |Ω⟩⟨Ω̄|, |Ω̄⟩⟨Ω|, and |Ω̄⟩⟨Ω̄| are all part of the commutant Cc of Ac .
As discussed in Appendix C.1, the projectors onto the singlets |Ω⟩⟨Ω| and |Ω̄⟩⟨Ω̄| are included in
the algebra ⟨⟨Ntot⟩⟩, hence the full commutant in this case is

Cc = ⟨⟨Ntot, |Ω̄⟩⟨Ω|⟩⟩, (C.6)

where we have abused notation for ⟨⟨· · ·⟩⟩ to implicitly include closure under the Hermitian
conjugate † operation. Another way to obtain this expression for the commutant is to observe
that the operators

∏
j c

†

j (= |Ω̄⟩⟨Ω|) and
∏

j cj (= |Ω⟩⟨Ω̄| up to a sign due to fermion ordering)

straightforwardly commute with all of the generators {T (c)
j,k }nn (hence are part of Cc) but do not

commute with Ntot (hence are not part of ⟨⟨Ntot⟩⟩). Note that we do not know of any useful ‘‘group’’
representation of Cc that is analogous to the U(1) interpretation of Cc,µ, and it is more convenient
to think of it as an algebra.

C.2.2. Center

Note that here the commutant Cc is non-Abelian, since Ntot and |Ω⟩⟨Ω̄| do not commute. We
expect the center of Cc to be generated by some polynomials of Ntot that commute with |Ω⟩⟨Ω̄|.
Consider such a polynomial P(Ntot) where P(x) = ∑

m>0 amx
m and we have excluded the identity x0

which is trivially in the center. Since |Ω⟩⟨Ω| and |Ω̄⟩ are eigenstates of Ntot with eigenvalues 0 and
N , commutation with |Ω⟩⟨Ω̄| is equivalent to requiring P(N) = P(0) where we know P(0) = 0. The
set of all such polynomials is given by f (Ntot)Ntot(N −Ntot), where f can be an arbitrary polynomial,
and the center can then be written as

Zc = ⟨⟨{Nαtot(N − Ntot) : α ≥ 1}⟩⟩. (C.7)

(The shown operators with α = 1, 2, . . .N −1, together with the identity operator, in fact span Zc .)
Note that we are not able to identify a simpler set of generators for Zc .

C.2.3. Double Commutant Theorem

We now discuss the application of the DCT (Theorem 2.1) to this case. In particular, we wish
to understand the structure of local operators within the algebra Ac by studying local operators
that commute with (the generators of) Cc . Since we know that Ac ⊂ Ac,µ, local operators in Ac

are also local operators in Ac,µ, where we understand their structure due to the on-site symmetry
structure of Cc,µ (see Section 4.1), and Lemmas 2.1 and 2.2 apply. Hence, local operators within Ac

are those in Ac,µ that commute with |Ω⟩⟨Ω̄| and |Ω̄⟩⟨Ω|, or equivalently and w.l.o.g., operators

that annihilate the states |Ω⟩ and |Ω̄⟩ (recalling that these are singlets of Ac,µ and 1 ∈ Ac,µ).

Focusing on strictly local operators ÔR ∈ Ac,µ and keeping in mind that |Ω⟩ and |Ω̄⟩ are product

states (vacuum state and the fully filled state respectively), the condition ÔR|Ω⟩ = 0 = ÔR|Ω̄⟩ is
equivalent to ÔR|Ω⟩R = ÔR|Ω̄⟩R = 0, where |Ω⟩R and |Ω̄⟩R are the vacuum and fully filled states
on the sites in the region R. Hence, applying the DCT to operators in the region R, ÔR should belong
to the centralizer of the algebra ⟨⟨NR,tot, (|Ω⟩⟨Ω̄|)R⟩⟩, where NR,tot := ∑

j∈R nj. For contiguous regions
R, it is easy to show that this is the algebra generated by nearest-neighbor complex hopping terms
restricted to the region R.

We then turn to operators that are sums of strictly local operators (which include extensive
local operators) that are of the form Ôext-loc = ∑

R ÂR, where ÂR has support everywhere in the
region R, and the sum over R is over distinct contiguous regions (not necessarily extensively many of
them). As we have shown in the previous section, for any Ôext-loc ∈ Ac,µ, the strictly local operators

{̂AR} are also a part of the bond algebra Ac,µ. Hence ÂR can be expressed as polynomials in the

generators of Ac,µ, i.e., ÂR = fR({nj}R, {T (∗)
j,k }R), where the {·}R denotes the restriction of the set to

operators with support completely within the region R, and fR is some polynomial that is generically
R-dependent. Requiring Ôext-loc to vanish on the states |Ω⟩ and |Ω̄⟩ and noting that these states

are singlets of the algebra Ac,µ, we obtain the conditions
∑

R fR({nj = 0}R, {T (∗)
j,k = 0}R) = 0 and
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∑
R fR({nj = 1}R, {T (∗)

j,k = 0}R) = 0. For completely arbitrary polynomials {fR}, we are not able to
additionally constrain the structure of the local terms. Indeed, there are operators of the form of
Ôext-loc that are in Ac , where it is clear that the individual parts ÂR cannot be expressed in terms of
generators of Ac restricted to the region R. One such example is Ôext-loc = nj − nk, where j and k

are two sites that are far from each other. Here, it is clear that nj and nk are not individually part

of the bond algebra Ac (since they do not commute with |Ω̄⟩⟨Ω|), but their difference is.
However, we can obtain additional constraints if we are interested in a restricted class of

extensive local operators, in particular ones where the individual terms ÂR1 and ÂR2 corresponding
to distinct regions R1 and R2 have the same ‘‘forms’’, i.e., they are related by translation. This class
of operators includes translation-invariant operators that frequently appear in physics applications.

For such operators, we can write ÂR = f ({nj}R, {T (∗)
j,k }R), where f is a polynomial independent of the

region R. The aforementioned conditions on Ôext-loc then imply that f ({nj = 0}R, {T (∗)
j,k = 0}R) =

f ({nj = 1}R, {T (∗)
j,k = 0}R) = 0, and hence ÂR|Ω⟩ = ÂR|Ω̄⟩ = 0. ÂR is hence a strictly local operator

within the algebra Ac , and arguments from earlier in this section apply. Hence all such extensive
local operators in Ac , including translation-invariant ones, are linear combinations of strictly local
operators in Ac .

We close this section with a few more words about the example of Ôext-loc = nj − nk ∈ Ac .
As already mentioned, its strictly 1-local parts nj and nk do not belong to Ac itself, which is
one specific distinction from the cases with only on-site unitary symmetries. On one hand, the
full term can be written as a sum of 2-local terms from Ac , e.g., on a one-dimensional chain

nj − nk = ∑k−1
ℓ=j (nℓ − nℓ+1) = ∑k−1

ℓ=j
i
2
[T (r)
ℓ,ℓ+1, T

(i)
ℓ,ℓ+1] [using Eq. (C.2)]. However, this expression

contains nearest-neighbor generators of Ac on a path between sites j and k, and the need for such
generators ‘‘in-between’’ j and k seems unavoidable. Indeed, suppose we could produce this operator
by generators localized in non-intersecting regions R1 and R2 containing j and k respectively,
nj−nk = ∑

γ AR1,γ AR2,γ , where the R.H.S. is the most general such form with AR1,γ , AR2,γ ∈ Ac (note
that AR1,γ and AR2,γ can also be identities). We can see that the R.H.S. has the same eigenvalue on

the states |Ω⟩ and |Ω̄⟩ containing ‘‘parts’’ |Ω⟩R1 ⊗ |Ω⟩R2 and |Ω̄⟩R1 ⊗ |Ω̄⟩R2 respectively and also

on product states containing |Ω⟩R1 ⊗ |Ω̄⟩R2 , which is not the case for the L.H.S., i.e., we have a
contradiction. At present, the significance of the need for ‘‘in-between’’ generators is not clear to
us. This example with j and k arbitrary far from each other hints at some additional ‘‘non-local’’
structure (even though this Ôext-loc can be written as a sum of 2-local terms generated from Ac),
but we are not able to quantify it more precisely. Moreover, we can also write down several other
types of one-dimensional examples that appear to have varying degrees of such ‘‘non-locality’’. For
example, we have Ô′

ext-loc = ∑
i(n2i − n2i+1) ∈ Ac where the individual 1-local parts also do not

belong to Ac , but its generation from the nearest-neighbor hopping generators feels more genuinely

local. On the other extreme, we also have Ô′′
ext-loc = ∑L/2

i=1 ni −
∑L

i=L/2+1 ni ∈ Ac , which can still be
written as a sum of 2-local terms generated from Ac , but any such writing necessarily involves
extensively large coefficients in front of the 2-local terms. We leave finding precise formulations
and locality distinctions of possible operators in Ac for future work.

C.3. Pure imaginary hoppings

We now remove real hoppings from the generators of Ac , and consider the bond algebra Ai

generated by only nearest-neighbor imaginary hoppings and no chemical potentials:

Ai = ⟨⟨{T (i)
j,k}nn⟩⟩. (C.8)

Starting from nearest-neighbor imaginary hopping terms, the repeated application of Eq. (C.1)
generates imaginary hopping terms of all ranges. The Lie algebra of all these imaginary hopping
terms is the algebra of N × N purely imaginary Hermitian (hence antisymmetric) matrices {A} in

Eq. (24), which is so(N). These terms {T (i)
j,k} can then be interpreted as generators of SO(N), and the

bond algebra is Ai = U(so(N)).
Similar to Ac in Appendix C.2, Ai possesses two degenerate singlets |Ω⟩ and |Ω̄⟩. A simple proof

is as follows. Any bond algebra singlet |Ψ ⟩ is by definition a simultaneous eigenstate of all T
(i)
j,k .
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Then using Eq. (C.1) we immediately conclude that T
(i)
j,k|Ψ ⟩ = 0 for any pair j, k. Finally, using

(T
(i)
j,k)

2 = nj+nk−2njnk = (nj−nk)
2, we conclude that such a |Ψ ⟩ cannot contain configurations with

unequal occupations for any pair of sites, hence it must be in the span of |Ω⟩ and |Ω̄⟩. Alternatively,
one can reach the same conclusion using the identity

∑
j<k(T

(i)
j,k)

2 = Ntot(N − Ntot).

In addition to Ntot, the commutant Ci of Ai contains a ‘‘particle-hole’’ Z2 symmetry, generated by

the unitary operator QX defined in Eq. (28). It is easy to verify that [QX , T
(i)
j,k] = 0 for all j, k. The full

commutant is then given by

Ci = ⟨⟨Ntot,QX ⟩⟩. (C.9)

(That this exhausts the commutant is proved in Appendix F). Note that Ci as defined also contains

the operators |Ω⟩⟨Ω̄| and |Ω̄⟩⟨Ω|, since QX |Ω⟩ = |Ω̄⟩ and |Ω⟩⟨Ω| is a part of ⟨⟨Ntot⟩⟩ (see discussion

in Appendix C.1). Some obvious subgroups of Ci are Z2, generated by QX , and U(1), generated by Ntot.

Moreover, the full commutant can also be viewed as being generated by the full family of on-site

unitaries corresponding to these groups, i.e., exp(iαNtot) = ∏
j exp(iαnj) for U(1) and QX for Z2. This

property is useful for the application of the DCT, as Lemmas 2.1 and 2.2 apply. Since QX and Ntot do
not commute (instead, they satisfy QXNtot +NtotQX = QXN or equivalently QXNtotQ

†

X = N−Ntot), the

full group generated by these is not a simple product of the two symmetry groups, and is usually

referred to as U(1) ⋊ Z2.

While the commutant Ci is non-Abelian since QX does not commute with Ntot, it is easy to check

that QX does commute with (Ntot − N
2
)2. Hence we conjecture that the center here is given by

Zi = ⟨⟨(Ntot − N

2
)2⟩⟩. (C.10)

One might wonder if a distinct bond algebra can be constructed by adding on-site chemical

potential terms to the list of generators of Ai. However, using Eq. (C.2), we obtain that this

combination can generate real hoppings; hence eventually pure imaginary hoppings and on-site

chemical potentials generate the algebra Ac,µ discussed in Appendix C.1.

C.4. Real hoppings

Finally, we briefly comment on the bond algebra generated from only nearest-neighbor real

hoppings, defined as,

Ar := ⟨⟨{T (r)
j,k }nn⟩⟩, (C.11)

analogous to Ai in Appendix C.3. Using Eq. (C.1), we note that imaginary hoppings can be generated

starting from real hoppings, hence the set of all real hopping terms between any pair of sites does

not form a closed algebra. On a non-bipartite lattice, this eventually generates all complex hoppings,

and the resulting bond algebra Ar is equal to Ac discussed in Appendix C.2.

Nevertheless, on a bipartite lattice, nearest-neighbor real hoppings do generate a different closed

Lie algebra that consists of real hoppings between different sublattices and imaginary hoppings

within the same sublattice. Using Eq. (C.1), it is easy to show that such an algebra is closed, and no

other hopping terms are generated. Indeed, in terms of the matrices {A} of Eq. (24), this is the Lie

algebra of N × N Hermitian matrices of the form
(

Im Re

Re Im

)
, (C.12)

in a grouping of basis by sublattice, where Im and Re denote purely imaginary and real entries

respectively, and the size of each diagonal block in Eq. (C.12) corresponds to the number of sites in

each sublattice. This Lie algebra is mathematically equivalent to the previous case of pure imaginary

hopping (i.e., the Lie algebra is so(N) and the bond algebra Ar is isomorphic to Ai), as they can
be mapped onto each other by transformation cj → icj (implemented using e−i π

2
njcje

i π
2
nj = icj)

on one of the sublattices. This also results in an isomorphism of the commutant Cr of Ar , and
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Ci = ⟨⟨Ntot,QX ⟩⟩ of Ai. While Ntot is invariant under the sublattice transformation, QX transforms

to Q̃X , where both are shown in Eq. (28). Hence we obtain

Cr = ⟨⟨Ntot, Q̃X ⟩⟩. (C.13)

Since Ntot remains invariant under the sublattice transformation, the center Zr is the same as Zi

and is given by Zr = ⟨⟨
(
Ntot − N

2

)2⟩⟩. Further, due to the isomorphism between the algebras (Ar , Cr )

and (Ai, Ci) all the results on the group structure of the commutant and the application of the DCT

discussed in Appendix C.3 apply here.

Appendix D. Details on Spinful free-fermion bond algebras

We discuss examples of free-fermion bond algebras generated starting from a natural subset

of spinful elementary terms of Eq. (31) and their commutants. The results presented here are

summarized in Table 3. Note that in many of the cases below, we are not able to prove that the

commutants are exhausted by the algebras we mention. However, in all such cases, we are able to

verify our conjectures using numerical techniques [73] up to fairly large system sizes. On the other

hand, the exhaustive determination of all singlets of the bond algebra is easier, and in all cases we

can prove our claims analytically (even if we do not always show the proofs).

We start by listing some useful set of commutators of elementary terms, which can be derived

using Eq. (23):

i[T (r)
j,k , T

(r)
k,l ] = T

(i)
j,l , i[T (r)

j,k , T
(i)
k,l] = −T

(r)
j,l , i [T (i)

j,k, T
(i)
k,l] = −T

(i)
j,l , (D.1)

i [Kj, T
(r)
j,k ] = T

(i)
j,k, i [Kj, T

(i)
j,k] = −T

(r)
j,k , i [T (r)

j,k , T
(i)
j,k] = 2(Kj − Kk), (D.2)

i [Mj, T
(r)
j,k ] = T̃

(i)
j,k, i [Mj, T

(i)
j,k] = −T̃

(r)
j,k , i [Mj, T̃

(r)
j,k ] = T

(i)
j,k, i [Mj, T̃

(i)
j,k] = −T

(r)
j,k , (D.3)

i[T (r)
j,k , T̃

(r)
k,l ] = T̃

(i)
j,l , i[T (r)

j,k , T̃
(i)
k,l] = i[̃T (r)

j,k , T
(i)
k,l] = −T̃

(r)
j,l , i [T (i)

j,k, T̃
(i)
k,l] = −T̃

(i)
j,l ,

i[̃T (r)
j,k , T̃

(r)
k,l ] = T

(i)
j,l , i[̃T (r)

j,k , T̃
(i)
k,l] = −T

(r)
j,l , i [̃T (i)

j,k, T̃
(i)
k,l] = −T

(i)
j,l , (D.4)

where we have defined

T̃
(r)
j,k :=

∑

σ∈{↑,↓}
sσ (c

†

j,σ ck,σ + c
†

k,σ cj,σ ), T̃
(i)
j,k :=

∑

σ∈{↑,↓}
isσ (c

†

j,σ ck,σ − c
†

k,σ cj,σ ), s↑ = +1, s↓ = −1.

(D.5)

Further, in this appendix, we also list some useful relations between Casimir elements in some
of the spinful cases discussed in Table 3. For concreteness, we use the following definition of
the quadratic Casimir of a Lie group G with generators {Ra} of the corresponding Lie algebra
(representations of {Ra

def}) [76]:

CG
2 :=

∑

a

(Ra)2, Tr(Ra
defR

b
def) = 1

2
δa,b in the defining representation. (D.6)

For example, the defining representation {Ra
def} is that of n × n matrices from the appropriate Lie

algebras for U(n), SU(n), and SO(n).

D.1. Hoppings with chemical potentials

D.1.1. Bond and commutant algebra

We start with the general case that is symmetric between the two spins, where the bond algebra
Ac,µ is generated by nearest-neighbor hopping elementary terms and on-site chemical potential
terms, i.e.,

Ac,µ := ⟨⟨{T (Υ )
j,k }nn, {Kj}⟩⟩, Υ ∈ {r, i, c}. (D.7)
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Similar to the spinless fermion cases discussed in Section 4.1, nearest-neighbor hopping terms along
with chemical potential terms are sufficient to generate complex hopping terms of all ranges as a
consequence of Eq. (D.1). The Lie algebra generated by the terms in Eq. (D.7) is then u(N), the algebra
of all matrices A in Eq. (30) with A↑ = A↓. The N2 terms in the Lie algebra are then generators of
the group U(N), and the bond algebra Ac,µ is the enveloping algebra U(u(N)).

In addition to conserving particle number and spin, all the elementary terms in the generators of
Ac,µ in Eq. (D.7) are spin-SU(2) symmetric, i.e., they all commute with the operators {Sαtot} defined
in Eq. (33). The full commutant of Ac,µ is given by

Cc,µ = ⟨⟨{Sαtot},Ntot⟩⟩. (D.8)

Note that Cc,µ also contains the SU(2) raising and lowering operators S+
tot and S−

tot as well as

the SU(2) Casimir operator S⃗2tot := ∑
α (S

α
tot)

2. Since the Sαtot’s are the generators of an SU(2)
Lie group and Ntot is the generator of a U(1) group that commutes with all of the Sαtot’s, the
commutant is associated with the group SU(2) × U(1). Moreover, the full commutant can also be
viewed as being generated by the full family of on-site unitaries corresponding to these groups,
i.e., exp(i

∑
α θαS

α
tot) = ∏

j exp(i
∑

α θαS
α
j ) for SU(2) and exp(iαNtot) = ∏

j exp(iαKj) for U(1). This
property is useful for the application of the DCT since Lemmas 2.1 and 2.2 apply.

The bond algebra Ac,µ has several singlets. The vacuum |Ω⟩ := |0 · · · 0⟩ and the anti-vacuum

|Ω̄⟩ := |↕ · · · ↕⟩ (where 0 and ↕ denote empty and doubly-occupied sites) are annihilated by all

the hopping terms {T (c)
j,k }nn and are eigenstates (with eigenvalues 0 and 2 respectively) of the on-

site chemical potential terms {Kj} – hence they are non-degenerate singlets. Another set of singlets

are the spin polarized ‘‘ferromagnetic states’’ |F⟩ := |↑ · · · ↑⟩ and |F̄⟩ := |↓ · · · ↓⟩, which are also

annihilated by {T (c)
j,k }nn and are eigenstates of the {Kj} (with eigenvalue 1). In fact, since S±

tot are a

part of the commutant Cc,µ, all the states of the ferromagnetic multiplet, i.e., |Fn⟩ := (S−
tot)

n|F⟩, are
singlets of Ac,µ that are degenerate with |F⟩ and |F̄⟩ (of course, |FN⟩ ∼ |F̄⟩). It is easy to show that

all the singlet projectors |Ω⟩⟨Ω|, |Ω̄⟩⟨Ω̄|, |F⟩⟨F |, |F̄⟩⟨F̄ | can be expressed in terms of Sztot and Ntot

[e.g., |F⟩⟨F | = ∏
m<N/2(S

z
tot −m)/(N/2−m), where m runs over all allowed integer and half-integer

eigenvalues of Sztot other than the maximal value N/2] and are part of Cc,µ as defined previously,
and so are |Fn⟩⟨Fm| = (S−

tot)
n|F⟩⟨F |(S+

tot)
m (since S±

tot ∈ Cc,µ).

D.1.2. Center and Casimir relations

Since the commutant Cc,µ consists of the spin SU(2) symmetry and the particle number U(1)

symmetry that are ‘‘independent’’ of each other, its center Zc,µ is generated by S⃗2tot (the Casimir
element of the spin SU(2) symmetry) and Ntot (the generator of the particle number U(1) symmetry).
Hence, we obtain

Zc,µ = ⟨⟨S⃗2tot,Ntot⟩⟩. (D.9)

From the perspective of the bond algebra Ac,µ, since its generators are those of U(N), its center

should contain all Casimir operators of U(N), including its quadratic Casimir C
U(N)
2 . [The case of the

linear Casimir C
U(N)
1 is trivial since it is simply proportional to Ntot.] Since the centers of Cc,µ and

Ac,µ coincide to Zc,µ of Eq. (D.9), we obtain C
U(N)
2 ∈ ⟨⟨S⃗2tot,Ntot⟩⟩; hence C

U(N)
2 , C

SU(2)
2 := S⃗2tot, and Ntot

must be related. Indeed, we can find the relation

C
U(N)
2 :=

∑

j<k

⎡
⎣
(
T
(r)
j,k

2

)2

+
(
T
(i)
j,k

2

)2
⎤
⎦+

∑

j

(
Kj√
2

)2

= 1

4
Ntot(2N + 4 − Ntot) − S⃗2tot. (D.10)

Defining a U(1) charge Q := Ntot − N , we can rewrite Eq. (D.10) as

C
U(N)
2 + C

SU(2)
2 = (N + Q )(N − Q + 4)

4
, (D.11)

which resembles Casimir relations discussed in [28,29].
In this case, since the center Zc,µ of Eq. (D.9) is equal to the Casimir algebra of SU(2) × U(1),

given by ZSU(2)×U(1) = ⟨⟨S⃗2tot,Ntot⟩⟩, the decomposition of the Hilbert space in terms of the bond
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and commutant algebra is equivalent to the decomposition into irreducible representations of
U(N)× (SU(2)× U(1)). Equivalently, the Hilbert space within a given Ntot sector can be partitioned
according to irreducible representations of U(N) × SU(2), as pointed out in [25].

Note that the same construction also applies to the cases #1b and #1c in Table 3, which are
isomorphic to this case, as we will discuss in Appendix D.6 and Appendix D.7.

D.2. Complex hoppings

D.2.1. Bond and commutant algebra

We now consider complex hopping terms without the chemical potential terms {Kj} and study
the algebra

Ac = ⟨⟨{T (c)
j,k }nn⟩⟩ := ⟨⟨{T (r)

j,k }nn, {T (i)
j,k}nn⟩⟩. (D.12)

Similar to the case discussed in Appendix D.1, hopping terms of all ranges as well as terms such as
Kj − Kk are generated from the nearest-neighbor terms as a consequence of Eq. (D.1) and the last
of Eq. (D.2). The Lie algebra generated by the terms in Eq. (D.12) is then su(N), the algebra of all
traceless matrices A in Eq. (30) with A↑ = A↓. The N2−1 terms in the Lie algebra are then generators
of the group SU(N), and the bond algebra Ac is the enveloping algebra U(su(N)).

Since the bond algebraAc is a subalgebra ofAc,µ, the commutant Cc is at least Cc,µ, i.e., it contains
the algebra generated by the spin-SU(2) generators {Sαtot} and the particle number operator Ntot.
However, the full commutant is larger, which is evident by studying the singlets of Ac . Although the
singlets of Ac are the same as those of Ac,µ in Appendix D.1, i.e., they are given by the ferromagnetic

multiplet {(S−
tot)

n|F⟩}, the vacuum |Ω⟩, and the antivacuum |Ω̄⟩, they are degenerate here, since

all of the generators of Ac ({T (c)
j,k }nn) vanish on these states. This implies that operators such as

|Ω̄⟩⟨Ω| = ∏
j c

†

j,↑c
†

j,↓, |F⟩⟨Ω| = ∏
j c

†

j,↑(1− nj,↓), and their Hermitian conjugates are also part of the
commutant Cc . These are not part of the algebra Cc,µ since they do not commute with the operators

Ntot, S⃗
2
tot, which are in the center of the algebra Cc,µ. The full commutant is thus given by

Cc = ⟨⟨{Sαtot},Ntot, |Ω̄⟩⟨Ω|, |F⟩⟨Ω|⟩⟩. (D.13)

It is easy to see that the addition of |Ω̄⟩⟨Ω| and |F⟩⟨Ω| (and their Hermitian conjugates implicit
in our ⟨⟨. . .⟩⟩) to the list of generators is sufficient to ensure that all other ‘‘ket-bra’’ operators of
singlets are part of the algebra. Unlike the case with chemical potential terms, we do not find any
useful ‘‘group’’ interpretation of the commutant Cc , although SU(2) × U(1) is an obvious subgroup
generated by {Sαtot} and Ntot.

D.2.2. Center and Casimir relations

Note the commutant Cc contains additional generators |Ω̄⟩⟨Ω| and |F⟩⟨Ω| compared to the
previous case Cc,µ. Hence we expect that the center Zc will be smaller than Zc,µ in the previous

case, and we expect it to be generated by some polynomials of S⃗2tot and Ntot (in order to ensure

that operators in Zc commute with {Sαtot} and Ntot). Consider such a polynomial P(S⃗2tot,Ntot) ∈ Zc ,
P(x, y) = ∑

m,n;m+n>0 am,nx
myn, where we have excluded the identity x0y0 which is trivially in the

center. Since |Ω⟩, |Ω̄⟩, |F⟩ are all eigenstates of both S⃗2tot and Ntot with eigenvalues (S⃗2tot,Ntot) =
(0, 0), (0, 2N), (N

2
(N
2

+ 1),N), commutation with |Ω̄⟩⟨Ω| and |F⟩⟨Ω| is equivalent to requiring

P(0, 2N) = P

(
N

2

(
N

2
+ 1

)
,N

)
= P(0, 0) = 0 . (D.14)

Hence the set of operators in the center can be determined from the set of polynomials with the
above three conditions. Three lowest-degree polynomials satisfying these conditions are

P1 := S⃗2tot + N + 2

4N
Ntot(Ntot − 2N) , P2 := S⃗2tot

[
S⃗2tot − N

2

(
N

2
+ 1

)]
, P3 := Ntot(Ntot − N)(Ntot − 2N) .

(D.15)
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We conjecture that the center Zc is spanned by (a linearly independent subset of) operators of the
form f (S⃗2tot,Ntot)P1,2,3(S⃗

2
tot,Ntot) where f can be an arbitrary polynomial.

From the perspective of the bond algebra Ac , since its generators are those of SU(N), its center

should contain all Casimir operators of SU(N), including its quadratic Casimir C
SU(N)
2 . However, since

the centers of Ac and Cc coincide to Zc of Eq. (C.7), C
SU(N)
2 should be related to some specific

combination of C
SU(2)
2 := S⃗2tot and Ntot that belongs to Zc .

Indeed we find the relation,14

C
SU(N)
2 :=

∑

j<k

⎡
⎣
(
T
(r)
j,k

2

)2

+
(
T
(i)
j,k

2

)2
⎤
⎦+

∑

j

(
Kj√
2

)2

−
(

Ntot√
2N

)2

= N + 2

4N
Ntot(2N −Ntot)− S⃗2tot = −P1,

(D.16)

where P1 is defined in Eq. (D.15). Defining a U(1) charge Q := Ntot − N , and the SU(2) Casimir

operator C
SU(2)
2 := S⃗2tot, we can rewrite Eq. (D.16) as

C
SU(N)
2 + C

SU(2)
2 = N + 2

4N
(N2 − Q 2), (D.17)

which is the Casimir relation derived in [28,29].
In this case, the center Zc is clearly smaller than the Casimir algebra of SU(2) × U(1), given

by ZSU(2)×U(1) = ⟨⟨S⃗2tot,Ntot⟩⟩. Hence, as discussed in Section 4.3, the Hilbert space partitioning in
terms of the irreducible representations of the group SU(N) × (SU(2) × U(1)) is different from
the decomposition in terms of bond and commutant algebras. This group partitioning misses some
properties of Hamiltonians from the bond algebra, e.g., it is oblivious to the fact that the vacuum
|Ω⟩ and the antivacuum |Ω̄⟩ are degenerate with each other and the ferromagnet |F⟩.

D.2.3. Double Commutant Theorem

We now discuss the application of the DCT of Theorem 2.1 to this case, which closely follows the
discussion in Appendix C.2.3. Following similar arguments, it is easy to show that local operators
within Ac are those in Ac,µ that w.l.o.g. annihilate the states |Ω⟩, |Ω̄⟩, and |F⟩. Since these are

product states, strictly local operators ÔR with support in a region R that annihilate these states
also annihilate the states |Ω⟩R, |Ω̄⟩R, and |F⟩R, which are the restrictions of the three states to the
region R. Applying the DCT to operators in region R, ÔR should belong to the centralizer of the
algebra ⟨⟨{SαR,tot},NR,tot, (|Ω̄⟩⟨Ω|)R, (|F⟩⟨Ω|)R⟩⟩, where SαR,tot := ∑

j∈R S
α
j and NR,tot := ∑

j∈R nj. For
contiguous regions R, this is the algebra generated by nearest-neighbor complex hopping terms in
Ac restricted to the region R. Turning to sums of local (or extensive local) operators that are in Ac,µ

and are of the form Ôext-loc = ∑
R ÂR for contiguous regions R, we can express ÂR as polynomials

in the generators of Ac,µ, i.e., ÂR = fR({Kj}R, {T (∗)
j,k }R). While here too we are not able to make any

general statements on arbitrary Ôext-loc, we can use the fact that states |Ω⟩, |Ω̄⟩, and |F⟩ are singlets
of Ac,µ and follow arguments similar to those in Appendix D.2.3 to show that when the polynomial

f is R-independent (e.g., when Ôext-loc is translation-invariant), Ôext-loc vanishes on these states only
if each ÂR annihilates these. Hence all translation invariant extensive local operators in Ac are linear
combinations of strictly local operators in Ac considered above.

14 In Eq. (D.16) we have obtained C
SU(N)
2 using the fact that Ntot corresponds to the identity 1N×N in the defining

representation. Since SU(N) and U(N) only differ by 1N×N in the defining representation, their Casimirs are related by

C
U(N)
2 = C

SU(N)
2 + 1

2N
1
2
N×N in that representation, where the specific factor is to ensure normalization of Eq. (D.6).
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D.3. Pure imaginary hoppings

D.3.1. Bond and commutant algebra

We further remove the real hoppings from the list of generators of Ac in Eq. (D.12), and study
the algebra

Ai := ⟨⟨{T (i)
j,k}nn⟩⟩. (D.18)

According to Eq. (D.1), purely imaginary hoppings of all ranges are generated starting from nearest-
neighbor terms. The corresponding Lie algebra is then so(N), the algebra of all purely imaginary
antisymmetric matrices A in Eq. (30) with A↑ = A↓. The

(
N

2

)
terms in the Lie algebra are then

generators of the group SO(N), and the bond algebra Ai is the enveloping algebra U(so(N)).
Since Ai is contained in Ac of Eq. (D.12), its commutant Ci contains the algebra Cc . In addition

to the spin-SU(2) and particle number symmetries generated by {Sαtot} and Ntot (which are a part of
Cc), Ci also contains a ‘‘pseudospin’’ SU(2) symmetry [33,77] generated by operators ηx0, η

y

0, and η
z
0,

defined in Eq. (34).

Further, similar to the spinless case, Ci contains two obvious Z2 symmetries Q
↑
X and Q

↓
X defined in

Eq. (35). However, these symmetries are not independent in the presence of S⃗tot conservation, since

they can be related by a spin rotation around the ŷ-axis, i.e., e−iπS
y
totQ

↑
X e

iπS
y
tot = Q

↓
X .

15 In a similar
way we can obtain a particle-hole tranformation acting only on fermions in a definite polarization
along any other spin quantization direction.

The full commutant is given by

Ci = ⟨⟨{ηα0 }, {Sαtot}, {Q σ
X }⟩⟩. (D.19)

Since {ηα0 } and {Sαtot} generate SU(2) groups and commute with each other, Ci has an SU(2)× SU(2)

subgroup. Further, Ci has other Z2 subgroups generated by Q
↑
X and Q

↓
X (or variants for other

quantization directions). Moreover, the full commutant can also be viewed as being generated
by the full family of on-site unitaries corresponding to these groups, i.e., exp(i

∑
α θαS

α
tot) and

exp(i
∑

α θαη
α
0 ) for the two SU(2) symmetries and Q σ

X of Eq. (35) for the two Z2 symmetries. This
property is useful for the application of the DCT, as discussed in Section 4.2. However, {Q σ

X } do not
commute with either of the SU(2) generators (nor among themselves for odd N), hence the full
group structure of Ci is more involved, and here we do not attempt to define it precisely (though
one can certainly write out the groups generated by the identified on-site unitary symmetries
explicitly16 ). Note also that the listed generators of Ci are not a minimal set: Besides dropping
one of the Q σ

X in the presence of {Sαtot}, we could in fact also drop {ηα0 } since they can be generated
as

Q
↓
X S

x,y
tot (Q

↓
X )

† = −ηx,y0 , Q
↓
X S

z
tot(Q

↓
X )

† = ηz0 or Q
↑
X S

x,z
tot (Q

↑
X )

† = −ηx,z0 , Q
↑
X S

y
tot(Q

↑
X )

† = η
y

0.

(D.20)

Ci as defined also contains ‘‘ket-bra’’ operators formed from the singlets of Ai, which are the
states of the ferromagnetic tower {(S−

tot)
n|F⟩} and those of the ‘‘vacuum tower’’ {(η†

0)
n|Ω⟩} built upon

the vacuum state (we will also refer to the latter as ‘‘η-pairing’’ states, as they are zero-momentum
versions of C. N. Yang’s η-pairing states [43]). It is easy to verify that all the singlets are annihilated

by {T (i)
j,k}nn, hence they are degenerate. However, operators such as |F⟩⟨Ω| and |Ω̄⟩⟨Ω| that needed

to be explicitly included in the list of generators of Cc are implicitly part of Ci as defined. To see this,

15 This can be verified using the on-site spin rotation identity eiφn⃗·S⃗j
(
cj,↑
cj,↓

)
e−iφn⃗·S⃗j = exp

(
−iφn⃗·σ⃗

2

)(
cj,↑
cj,↓

)
where n⃗ is any

unit vector, σ⃗ is the vector of Pauli matrices, and S⃗j are the spin-1/2 operators on site j. Substituting φ = −π and n⃗ = ŷ

results in the transformations cj,↑ → cj,↓ and cj,↓ → −cj,↑ .
16 On a single site, N = 1, {Sα} generates SU(2) acting within the states |↑⟩ and |↓⟩; {ηα} generates SU(2) acting within

|Ω̄⟩ and |Ω⟩; while the unitary Q ↓ swaps the two blocks up to overall signs, |↑⟩ ↔ |Ω̄⟩, |↓⟩ ↔ |Ω⟩. The generated group

is then isomorphic to that of 4 × 4 matrices of the form

(
U1 0

0 U2

)
and

(
0 U3

U4 0

)
with U1,2,3,4 ∈ SU(2).
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note that |Ω⟩⟨Ω| ∈ ⟨⟨Ntot⟩⟩ ⊆ Ci. Hence |F⟩⟨Ω| = Q
↑
X |Ω⟩⟨Ω| ∈ Ci and |Ω̄⟩⟨Ω| = (η

†

0)
N |Ω⟩⟨Ω| ∈ Ci,

since Q
↑
X and η

†

0 are in Ci.
Note that if one adds on-site chemical potential terms {Kj} to the list of generators of Ai, all real

hopping terms are generated according to Eq. (D.2), hence the resulting bond algebra is identical to
Ac,µ of Eq. (D.7).

D.3.2. Center and Casimir relations

Note that the commutant Ci contains both the spin and pseudospin SU(2) symmetries, hence
we might expect its center to consist of the corresponding Casimir operators S⃗2tot and η⃗

2
0 . However,

these operators do not commute with the operators {Q σ
X }, as evident from Eq. (D.20). Nevertheless,

it is easy to verify that a linear combination of these Casimir operators (S⃗2tot + η⃗20) does commute

with both Q
↑
X and Q

↓
X . Hence we conjecture that

Zi = ⟨⟨(S⃗2tot + η⃗20)⟩⟩. (D.21)

From the perspective of the bond algebra Ai, since it consists of the generators of SO(N), its

center should contain all Casimir operators of SO(N), including its quadratic Casimir C
SO(N)
2 . Similar

to the previous cases, since the centers of Ai and Ci coincide to Zi, we expect that C
SO(N)
2 should be

expressible in terms of a polynomial of (S⃗2tot + η⃗20) that generates Zi. Indeed, we find the relation

C
SO(N)
2 :=

∑

j<k

(
T
(i)
jk

2

)2

= N

4

(
N

2
+ 1

)
− 1

2

(
S⃗2tot + η⃗20

)
, (D.22)

Defining the quadratic Casimir operator for the group SU(2) × SU(2) (which is identical to that for

the group SO(4)) as C
SO(4)
2 := 1

2
(S⃗2tot + η⃗20),

17 we can rewrite Eq. (D.22) as

C
SO(N)
2 + C

SO(4)
2 = N

4

(
N

2
+ 1

)
, (D.23)

which is identical to the Casimir relations derived in [28,29].
In this case, the center Zi is clearly smaller than the Casimir algebra of SU(2) × SU(2), which

is same as the Casimir algebra of SO(4), given by ZSO(4) = ⟨⟨S⃗2tot, η⃗20⟩⟩. Hence, as discussed in
Appendix E, the Hilbert space partitioning in terms of the irreducible representations of the group
SO(N) × (SU(2) × SU(2)) [equivalent to SO(N) × SO(4) when N is even] is different from the
decomposition in terms of the bond and commutant algebras. This group partitioning misses some
properties of Hamiltonians from the bond algebra, e.g., it is oblivious to the fact that the η-pairing
tower of states {(η†)n|Ω⟩} and the ferromagnetic tower {(S−

tot)
n|F⟩} are degenerate with each other.

D.4. Hoppings with chemical potentials and magnetic fields

We now consider the bond algebra with on-site magnetic field terms {Mj} added to the list of
generators of Ac,µ in Eq. (D.7), i.e.,

Ac,µ,h := ⟨⟨{T (Υ )
j,k }nn, {Kj}, {Mj}⟩⟩, Υ ∈ {r, i, c}. (D.24)

Using Eqs. (D.1)–(D.3), it is easy to see that all possible spin and particle number conserving
quadratic terms are generated, and the Lie algebra generated is u(N) ⊕ u(N), that of the terms of
Eq. (30) with independent A↑ and A↓. These terms can hence be viewed as generators of U(N)×U(N),
and the bond algebra is the corresponding enveloping algebra U(u(N) ⊕ u(N)). Moreover, since the

addition of {Mj} generates terms such as {̃T (c)
j,k } (as a consequence of Eq. (D.3)), we can alternatively

use generators with decoupled hopping terms of the two spins ↑ and ↓, which can be expressed as

17 This definition can be verified in its defining representation, where the generators are of the form {R σ α ⊗
12×2 R

†, R 12×2 ⊗ σ α R†}, where σ α are the Pauli matrices and R is a fixed 4 × 4 unitary matrix [78].
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linear combinations of {T (c)
j,k } and {̃T (c)

j,k }. Hence the resulting bond algebra can also be viewed as (a
product of) two copies of the bond algebra for spinless fermions discussed in Appendix C.1.

The presence of on-site magnetic fields {Mj} breaks the spin-SU(2) symmetry in Cc,µ discussed
in Appendix D.1 to a U(1) subgroup. Hence the full commutant here is given by

Cc,µ,h = ⟨⟨Sztot,Ntot⟩⟩. (D.25)

Since Sztot and Ntot generate U(1) groups and commute with each other, this commutant is associated
with the group U(1) × U(1). Moreover, the full commutant can also be viewed as being generated
by the full family of on-site unitaries corresponding to the two U(1) groups, i.e., exp(iαSztot) and
exp(iβNtot). This property is useful for the application of the DCT, since Lemmas 2.1 and 2.2 apply.

Note that the commutant can also be written as Cc,µ,h = ⟨⟨N↑
tot,N

↓
tot⟩⟩, where Nσtot is the total number

operator for particles of spin σ , satisfying N
↑
tot = (Ntot + 2Sztot)/2 and N

↓
tot = (Ntot − 2Sztot)/2. This

shows that the commutant can also be viewed as (a product of) two copies of the commutant for
spinless fermions discussed in Appendix C.1. Ac,µ,h admits four singlets, which are the states |F⟩,
|F̄⟩, |Ω⟩, |Ω̄⟩, and it is easy to see that projectors onto these singlets are a part of Cc,µ,h as defined.
They are all non-degenerate since they differ in the eigenvalues of the {Mj} or {Kj} operators.

Since the commutant Cc,µ,h is evidently Abelian, the center in this case is equal to the commutant
itself, i.e., Zc,µ,h = ⟨⟨Sztot,Ntot⟩⟩.

D.5. Complex hoppings with magnetic fields and without chemical potentials

D.5.1. Bond and commutant algebras

We now consider complex hopping terms in the presence of on-site magnetic fields {Mj}, exclude
the chemical potential terms {Kj}, and study the algebra

Ac,h := ⟨⟨{T (c)
j,k }nn, {Mj}⟩⟩ = ⟨⟨{T (r)

j,k }nn, {T (i)
j,k}nn, {Mj}⟩⟩. (D.26)

Using Eqs. (D.1) and (D.3), it is easy to see that all complex hoppings of the form {T (c)
j,k } and {̃T (c)

j,k }
are generated starting from the elementary terms {T (c)

j,k }nn and {Mj}, and also independent Kj − Kk

terms. The Lie algebra generated then consists of 2N2 − 1 terms and is that of traceless matrices
of the form of Eq. (30) (i.e., with the constraint Tr(A↑) + Tr(A↓) = 0), given by (u(N) ⊕ u(N))/u(1).
These terms can also be viewed as generators of (U(N) × U(N))/U(1), and the bond algebra is the
corresponding enveloping algebra U((u(N) ⊕ u(N))/u(1)).

Since Ac,h is contained in Ac,µ,h, its commutant Cc,h contains Cc,µ,h = ⟨⟨Sztot,Ntot⟩⟩ but is larger,
and this is evident from the properties of the singlets of Ac,h. The bond algebra Ac,h has the same
four singlets as Ac,µ,h, i.e., |F⟩, |F̄⟩, |Ω⟩, |Ω̄⟩. However, in this case, |Ω⟩ and |Ω̄⟩ are degenerate,
since they do not differ under the eigenvalues of {Mj}. This degeneracy implies that operators

|Ω̄⟩⟨Ω| = ∏
j c

†

j,↑c
†

j,↓ and its Hermitian conjugate are part of Cc,h. Hence the full commutant is
given by

Cc,h = ⟨⟨Sztot,Ntot, |Ω̄⟩⟨Ω|⟩⟩, (D.27)

where the closure under Hermitian conjugation is implicit in the notation ⟨⟨· · ·⟩⟩. Similar to many
other commutants discussed in this Appendix, we do not find any useful group interpretation of
this commutant Cc,h.

D.5.2. Center

Note that the commutant Cc,h contains the additional generator |Ω̄⟩⟨Ω| compared to the
previous case Cc,µ,h. Hence we expect that the center Zc,h will be smaller than Zc,µ,h in the previous

case. Since Sztot commutes with |Ω̄⟩⟨Ω| and Ntot, it is one of the generators of Zc,h, and the other
elements of the center can be determined by demanding that they commute with |Ω̄⟩⟨Ω|. Following
the discussion for the center Zc in Appendix C.2, we can show that

Zc,h = ⟨⟨Sztot, {Nαtot(2N − Ntot) : α ≥ 1}⟩⟩, (D.28)

and we are not able to determine a more compact expression for the minimal set of generators.
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D.5.3. Double Commutant Theorem

We now discuss the application of the DCT of Theorem 2.1 to this case. Following similar
arguments as in Appendices C.2.3 and D.2.3, it is easy to show that local operators within Ac,h

are those in Ac,µ,h that w.l.o.g. annihilate the states |Ω⟩ and |Ω̄⟩. Since these are product states,

strictly local operators ÔR with support in a region R that annihilate these states also annihilate
the states |Ω⟩R, |Ω̄⟩R, which are the restrictions of these states to the region R. Applying the DCT to
operators in a contiguous region R, we can show that any strictly local operator ÔR should be within
the algebra generated by nearest-neighbor generators in Ac,h restricted to the region R. Turning to
sums of local (or extensive local) operators Ôext-loc ∈ Ac,h and noting that the states |Ω⟩ and |Ω̄⟩
are singlets of Ac,µ,h, we can follow arguments similar to those in Appendices C.2.3 and D.2.3 to

show that any translation-invariant Ôext-loc is a linear combination of strictly local terms that vanish
on these singlet states considered above.

D.6. Pure imaginary hoppings with magnetic fields

We further remove the real hopping terms {T (r)
j,k }nn from the bond algebra of Eq. (D.26), and we

study the algebra

Ai,h := ⟨⟨{T (i)
j,k}nn, {Mj}⟩⟩. (D.29)

Using Eqs. (D.1), (D.3), and (D.4), all hoppings of the form {T (i)
j,k} and {̃T (r)

j,k } are generated starting from

the elementary terms {T (i)
j,k}nn and {Mj}, and it is easy to verify that they form a closed Lie algebra.

The Lie algebra generated consists of N2 terms and is that of matrices of the form of Eq. (30) with the
additional constraint that A↓ = −(A↑)∗. Since the A↓ is uniquely determined by A↑, the Lie algebra of
such matrices is u(N), the Lie algebra of N ×N Hermitian matrices. These terms can also be viewed
as generators of U(N), and the bond algebra is the corresponding enveloping algebra U(u(N)). Note
that this is isomorphic to the case discussed in Appendix D.1, and this can be precisely established

with the transformation cj,↓ ↔ c
†

j,↓. This transformation leaves T
(i)
j,k invariant, maps T̃

(r)
j,k ↔ T

(r)
j,k and

Mj ↔ (Kj − 1). Hence the bond algebra of Eq. (D.29) maps to ⟨⟨{T (i)
j,k}nn, {Kj}⟩⟩, which is the same as

Ac,µ of Eq. (D.7).
Continuing in the representation of this subsection, since Ai,h is contained in Ac,h, its commutant

Ci,h contains Cc,h, but is larger. The absence of real hopping terms in the generators of Ai,h restores
the pseudospin SU(2) symmetry generated by the operators {ηα0 } defined in Eq. (34). Hence the
complete commutant is given by

Ci,h = ⟨⟨Sztot, {ηα0 }⟩⟩, (D.30)

and this also contains the ‘‘ket-bra’’ operators formed using degenerate singlets.Ai,h has two singlets

|F⟩ and |F̄⟩, as well as the eta-pairing tower of degenerate states {(η†

0)
n|Ω⟩}, and the former two

and the tower are all non-degenerate with each other. As discussed in Appendix D.3, the ‘‘ket-
bra’’ operators within the eta-pairing states are a part of ⟨⟨{ηα0 }⟩⟩, and the projectors onto the other
singlets are a part of ⟨⟨Sztot⟩⟩. Since Sztot and {ηα0 } in Ci,h are the generators of U(1) and SU(2) groups, the
commutant Ci,h is associated with the group U(1)×SU(2). This is also evident from the isomorphism
between the bond algebras Ac,µ and Ai,h, which implies that the commutants Cc,µ and Ci,h are also

isomorphic. Indeed, the transformation cj,↓ ↔ c
†

j,↓ interchanges the spin and pseudospin operators,

i.e., {Sαtot} ↔ {ηα0 } (up to unimportant signs when this transformation is implemented via Q
↓
X , see

Eq. (D.20)), hence mapping the commutants Cc,µ = ⟨⟨{Sαtot}, ηz0⟩⟩ ↔ ⟨⟨Sztot, {ηα0 }⟩⟩ = Ci,h. Hence, similar
to Cc,µ, the full commutant Ci,h can also be viewed as being generated by the full family of on-site
unitaries corresponding to the U(1) and SU(2) groups, a property useful for the application of the
DCT, as discussed in Section 4.2.

Similar to the case of Cc,µ, since the commutant Ci,h consists of ‘‘independent’’ pseudospin SU(2)
and spin U(1) symmetries, the center Zi,h is generated by η⃗20 (the Casimir element of the psueodspin
SU(2) symmetry) and Sztot (the generator of the spin U(1) symmetry). Hence, we obtain

Zi,h = ⟨⟨Sztot, η⃗20⟩⟩. (D.31)
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Further, we note that the due to the isomorphism of the bond and commutant algebras in case with
the ones in Appendix D.1, the Casimir relations discussed there (particularly Eq. (D.10)) is also valid
here after the appropriate transformations.

D.7. Real hoppings

Finally we comment on bond algebras similar to Ai and Ai,h of Eqs. (D.18) and (D.29), with the

imaginary hopping terms {T (i)
j,k}nn substituted by real hoppings {T (r)

j,k }nn, given by

Ar := ⟨⟨{T (r)
j,k }nn⟩⟩, Ar,h := ⟨⟨{T (r)

j,k }nn, {Mj}⟩⟩. (D.32)

Similar to the case of spinless fermions with real hoppings discussed in Appendix C.4, on a non-

bipartite lattice, it is easy to see that all complex hoppings {T (c)
j,k } are eventually generated, and the

algebras Ar and Ar,h are equal to Ac and Ac,h of Eqs. (D.12) and (D.26) respectively.
However, on a bipartite lattice, distinct closed algebras are generated, which can be derived

using Eqs. (D.1)–(D.4). The Lie algebra generated by {T (r)
j,k }nn consists of real hoppings {T (r)

j,k } between

different sublattices and imaginary hoppings {T (i)
j,k} within the same sublattices. Further, the addition

of on-site magnetic field terms {Mj} also results in the generation of hopping terms such as {̃T (i)
j,k}

between different sublattices and {̃T (r)
j,k } within the same sublattice. These algebras are isomorphic to

the algebras generated using imaginary hoppings, and this can be understood via a transformation

cj,σ → icj,σ for σ ∈ {↑,↓} on one of the sublattices. Under this transformation, {T (r)
j,k }nn → {T (i)

j,k}nn
and Mj remains invariant, hence the bond algebras of Eq. (D.32) transform as Ar → Ai and
Ar,h → Ai,h, defined in Eqs. (D.18) and (D.29) respectively. Note that Ai,h is in turn isomorphic
to Ac,µ of Eq. (C.3), as discussed in Appendix D.6.

The isomorphism of the bond algebras also implies an isomorphism of the respective commu-
tants Cr and Cr,h of Ar and Ar,h to Ci and Ci,h of Ai and Ai,h. While the transformation preserves the

spin-SU(2) generators {Sαtot}, the η†

0 and η0 operators get mapped onto the more familiar η†
π and ηπ

studied in the context of the Hubbard model [23,43,57], defined in Eq. (34). The pseudospin SU(2)
is then generated by {ηαπ }, and the singlets of Ar and Ar,h can be obtained using those of Ai and
Ai,h with the aforementioned substitution.

Further, the operator Q σ
X maps to the operator Q̃ σ

X , where both are defined in Eq. (35). Hence
the full commutants are given by

Cr = ⟨⟨{Sαtot}, {ηαπ }, {Q̃ σ
X }⟩⟩, Cr,h = ⟨⟨Sztot, {ηαπ }⟩⟩. (D.33)

We can obtain the centers Zr and Zr,h by applying the sublattice mapping to the centers of Zi

and Zi,h respectively. Hence we obtain Zr = ⟨⟨S⃗2tot + η⃗2π ⟩⟩ and Zr,h = ⟨⟨Sztot, η⃗2π ⟩⟩, where η⃗2π is the
Casimir operator the SU(2) symmetry generated by {ηαπ }.

Appendix E. Group and algebra partitionings of fermionic Hilbert spaces

In this Appendix, we provide details on the connection between group partitionings and algebra
partitionings of the Hilbert space, discussed in Section 4.3. Given a bond algebra A that corresponds
to a Lie group G1 and a commutant algebra C that corresponds to a Lie group G2, the relations
between the group and algebra decompositions depend on the relations between the Casimir
algebras ZG1 and ZG2 with the center Z := A ∩ C. Here we discuss various situations that arise
in the cases we study.

If the common center Z of the algebras A and C is the same as the Casimir algebras of both
groups, i.e., if Z = ZG1 = ZG2 , the algebra partitioning of Eq. (4) is equivalent to the group
partitioning in terms of irreps of G1 × G2. The Hilbert space can be partitioned into sectors

labeled by ({CG1
α }, {CG2

α }), and hence according to irreps of G1 × G2. Such a scenario occurs in
cases #1a–c in Table 3, where the Hilbert space can be decomposed in terms of representations
of U(N)× (SU(2)×U(1)) [or equivalently, in terms of U(N)× SU(2) within each sector labeled by a
fixed U(1) quantum number], which was also pointed out in [25] (also see Appendix D.1). In such a

42



S. Moudgalya and O.I. Motrunich Annals of Physics 455 (2023) 169384

case, since ZG1 = ZG2 , the Casimir elements of the groups of G1 can be expressed in terms of G2 and
vice versa. In Eq. (D.10), we show an example of such a relation between the quadratic Casimirs of
U(N) and SU(2)×U(1). We expect similar relations between quadratic and higher order Casimirs in
each of such cases in Tables 2 and 3, which can be directly computed for further analytical checks.

On the other hand, a partitioning in terms of irreducible representations of G1 × G2 is also
possible if the common center Z of A and C is a strict subalgebra of the Casimir algebra of G2,
i.e., if Z = ZG1 ⊂ ZG2 . The situations we have in mind are where G2 is a prominent ‘‘subgroup’’ of
the commutant (like those listed in Table 3) but does not generate the full commutant. However,
in this case, the group partitioning differs from the algebra partitioning of Eq. (4), since there are
operators in the Casimir algebra of G2 that are not part of the center Z . Nevertheless, since the
Casimir algebra ZG2 is Abelian subalgebra of C by definition, it should be (a subalgebra of) a maximal
Abelian subalgebra of C. Hence the group partitions are closed under the action of elements of
A (although the actions are reducible if ZG2 is not a maximal Abelian subalgebra of C), but are
not closed under the action of certain elements of C (see discussion in Section 2.3). The group
partitioning thus misses some information on the degeneracy of the eigenvalues of operators in
A, e.g., some of the singlets that are degenerate in A (captured by belonging to the same block in
the algebra partition) may belong to different blocks of the group partition. This scenario occurs in
the cases #2 and #3a–b in Table 3 discussed in Appendices D.2 and D.3 respectively. In case #2, the
center Z can be shown to be strictly smaller than the Casimir algebra of SU(2)×U(1). Hence, even
though the Hilbert space can be partitioned according to irreps of SU(N)× (SU(2)×U(1)), the states
|Ω⟩ and |Ω̄⟩ transform under different irreps of the group, but transform under the same irrep of
the algebra ⟨⟨A ∪ C⟩⟩ [i.e., they are part of the same block in Eq. (4)]. Similarly, in case #3a–b we
can choose G2 = SU(2) × SU(2), and partition the Hilbert space into blocks that transform under
its irreps. Note that if N is even, all the irreps of SU(2)× SU(2) that appear are also irreps of SO(4),
hence we can equivalently refer to G2 as SO(4) in that case [57,77].18 In either case, the Casimir
operators of SU(2) × SU(2) or SO(4) are the same, and only one of the two independent Casimir
operators is a part of the center Z . Hence the states |Ω⟩ and |F⟩ transform under different irreps
of G2 (i.e., SU(2) × SU(2) or SO(4)) while transforming under the same irrep of ⟨⟨A ∪ C⟩⟩.

Further, since ZG1 ⊂ ZG2 , the Casimir elements {CG1
α } of G1 can be expressed in terms of Casimir

elements {CG2
α } of G2, but not all Casimir elements of G2 can be expressed in terms of those of G1. In

Eq. (D.16) [resp. Eq. (D.22)], we show such relations between the quadratic Casimirs of SU(N) and
SU(2) × U(1) [resp. SO(N) and SU(2) × SU(2) or SO(4)], which were also derived in [28,29].

Apart from the cases we have discussed, we note that similar group decompositions can be
identified in several cases in Table 3. Based on the centers derived in Appendix D, we find that
the case #4 belongs to the case where Z = ZG1 = ZG2 , whereas case #5 Z = ZG1 ⊂ ZG2 , hence
group decompositions (with the caveats discussed above) can be identified there too. Similar ideas
can also be applied to the spinless cases shown in Table 2. With straightforward algebra it is easy
to see that while case #1 satisfies Z = ZG1 = ZG2 (i.e., a U(N)×U(1) decomposition), cases #2 and
#3 satisfy Z = ZG1 ⊂ ZG2 (i.e, for SU(N) × U(1) and SO(N) × U(1) decompositions respectively),
hence group decompositions also hold there.

Appendix F. Some proofs of commutant exhaustion

In this appendix, we discuss some illustratory examples of bond algebras where we are able to
prove the expression for the commutant algebras we quote in Tables 1 and 2. We expect similar
methods to also work for many other algebras we study in the main text.

F.1. Spinless fermions with pure imaginary hoppings

For the spinless free-fermion bond algebra Ai discussed in Appendix C.3, we can prove the
claimed commutant Ci = ⟨⟨Ntot,QX ⟩⟩ as follows. From the discussion in Appendix C.3 it is clear

18 This is analogous to the correspondence between representations of SU(2) and SO(3) — all odd dimensional irreps

of SU(2) are also irreps of SO(3).
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that ⟨⟨Ntot,QX ⟩⟩ ⊆ Ci, hence it is sufficient to show Ci ⊆ ⟨⟨Ntot,QX ⟩⟩. We begin with the identity

e
ixT

(i)
j,k = 1+ i sin(x)T

(i)
j,k − (1−cos(x))

(
T
(i)
j,k

)2
, T

(i)
j,k = i(c

†

j ck −c
†

k cj),
(
T
(i)
j,k

)2
= nj +nk −2njnk, (T

(i)
j,k)

3 = T
(i)
j,k.

(F.1)

Then consider a unitary operator Ujk with the following properties:

Ujk := e
i π
2
T
(i)
j,k = 1+(−c

†

j ck+c
†

k cj)−(nj+nk−2njnk) , U
†

jkUjk = 1 , U2
jk = (−1)nj+nk , U4

jk = 1.

(F.2)

Since {T (i)
j,k} are the generators of SO(N), it is clear that the unitaries {Ujk} generate a discrete

subgroup of SO(N). Further, the generators {T (i)
j,k} can be expressed in terms of Ujk using Eq. (F.2)

(i.e., T
(i)
j,k = i(U3

jk − Ujk)/2). Hence the group algebra (with complex coefficients) of the discrete
subgroup generated by the unitaries {Ujk} is equal to the bond algebra Ai. Hence we can derive the
full commutant Ci by requiring that operators Γ ∈ Ci commute with Ujk for all j and k.

We start by examining the conjugate action of Ujk on on-site operators. It is straightforward to
verify that the conjugation by this swaps fermionic operators at sites j and k with a relative minus
sign:

UjkcjU
−1
jk = ck , UjkckU

−1
jk = −cj , UjkcℓU

−1
jk = cℓ , ℓ ̸= j, k . (F.3)

It follows that UjknjU
−1
jk = nk, UjknkU

−1
jk = nj, and also

U2
jkcjU

−2
jk = −cj , U2

jkckU
−2
jk = −ck , U2

jknjU
−2
jk = nj , U2

jknkU
−2
jk = nk . (F.4)

Hence, for any operator Oj,k with support on sites j and k it is easy to see that U2
jkOj,kU

−2
jk = Oj,k if Oj,k

is ‘‘bosonic’’/‘‘even’’ (i.e., consists of even number of fermionic operators) and U2
jkOj,kU

−2
jk = −Oj,k if

Oj,k is ‘‘fermionic’’/‘‘odd’’ (i.e., consists of odd number of fermionic operators).
Consider an operator Γ from the commutant Ci, expanded in the complete operator basis

consisting of all operator strings

Γ =
∑

a1,a2,...,aN∈{id,n,+,−}
γa1,a2,...,aN ω

a1
1 ω

a2
2 . . . ω

aN
N , {ωid

ℓ , ω
n
ℓ , ω

+
ℓ , ω

−
ℓ } := {1ℓ, nℓ, c†

ℓ , cℓ} .

(F.5)

Note that the operator strings can contain on-site ‘‘bosonic’’/‘‘even’’ (i.e., 1ℓ or nℓ) or ‘‘fermionic’’/‘‘odd’’
(i.e., c

†

ℓ or cℓ) operators, and the operator ordering is important; in the above writing, we assume
a fixed ordering of sites 1, 2, . . . ,N , but the specific choice is immaterial. Since Γ ∈ Ci, it must
commute with both Ujk and U2

jk. Starting with U2
jkΓ U−2

jk = Γ and using Eq. (F.4), it follows that

γ...,aj,...,ak,... can be non-zero only if ω
aj

j ω
ak
k is even, which happens when ω

aj

j and ω
ak
k have the same

parity (i.e., aj, ak ∈ {id, n} or aj, ak ∈ {+,−}). Requiring this condition for all pairs j, k, it follows

that γa1,a2,...,aN can be non-zero only if all ω
aℓ
ℓ have the same parity (i.e., aℓ ∈ {id, n} or aℓ ∈ {+,−}).

We can collect the former ‘‘bosonic’’/‘‘even’’ parts into Γ (b) and the latter ‘‘fermionic’’/‘‘odd’’ parts
into Γ (f ), and split Γ as Γ = Γ (b) + Γ (f ).

We now consider the condition UjkΓ U−1
jk = Γ , which can be applied separately to the bosonic

and fermionic parts Γ (b) and Γ (f ). Using Eq. (F.3), it is easy to verify that Ujkω
a
j U

−1
jk · · ·Ujkω

b
kU

−1
jk =

ωb
j · · ·ωa

k for all cases when ωa and ωb have the same parity and for any operator string part between

the sites j and k marked with ‘‘· · ·’’. It then follows that for both Γ (b) and Γ (f ) we require symmetry
of γa1,a2,...,aN under exchange of its indices at positions j and k:

γ···,aj,...,ak,... = γ···,ak,...,aj,... . (F.6)

Since this is required for all pairs j, k, we conclude that the amplitudes are the same for all strings
labeled by permutations of a fixed set of {aℓ}. Hence, we can further subdivide both Γ (b) and Γ (f )
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into N + 1 independent operators each,

Γ (b) =
N∑

mid=0

Γ
(b)
mid,mn=N−mid

, Γ (f ) =
N∑

m+=0

Γ
(f )
m+,m−=N−m+ , (F.7)

where Γ
(b)
mid,mn

is an equal-amplitude superposition of all operator strings containing precisely mid

on-site operators 1ℓ and mn = N − mid operators nℓ, and similarly for Γ
(f )
m+,m− in terms of operator

strings containing precisely m+ operators c
†

ℓ and m− = N − m+ operators cℓ.

We know that such operators {Γ (b)
mid,mn

,mn = 0, 1, . . . ,N} form a complete basis in the span of

{Nm
tot,m = 0, 1, . . . ,N} (see, e.g., discussion in Sec. VII B of [8]), hence Γ

(b)
mid,mn

∈ ⟨⟨Ntot⟩⟩. On the

other hand, for the operators Γ
(f )
m+,m− , it is easy to verify that

Γ (f )
m+,m− ∼ QXPNtot=m− , (F.8)

where QX is from Eq. (28) and PNtot=m− is a projector into the sector with the total fermion number

Ntot = m−. Since PNtot=m− ∈ ⟨⟨Ntot⟩⟩, it follows that all Γ
(f )
m+,m− ∈ ⟨⟨Ntot,QX ⟩⟩. This shows that the

commutant Ci ⊆ ⟨⟨Ntot,QX ⟩⟩, completing the proof that Ci = ⟨⟨Ntot,QX ⟩⟩. Note that this proof also
shows that the linear dimension of the commutant Ci is 2(N+1), the number of linearly independent
operators Γ that satisfy the required conditions.

The bond unitaries Ujk can also be used to understand the singlets of the bond algebra. Even
though we already know all the singlets from arguments given earlier, we will start from scratch
looking for states that are simultaneous eigenstates of all bond unitaries, Ujk|Ψ ⟩ = λjk|Ψ ⟩, with
no assumptions about λjk but using Ujk|Ω⟩ = |Ω⟩ (which already provides one singlet). We can
directly verify the following relations among the bond unitaries:

UjkUkl = UklUlj = UljUjk , (UjkUkl)
3 = 1 , U4

jk = 1. (F.9)

These relations imply that all λjk are the same and satisfy λ2jk = 1. Hence U2
jk|Ψ ⟩ = |Ψ ⟩ on any

singlet |Ψ ⟩, which immediately implies that only configurations with nj = nk can contribute to |Ψ ⟩.
It is easy to show that |Ψ ⟩ must then be in the span of |Ω⟩ and |Ω̄⟩, which shows that |Ω⟩ and
|Ω̄⟩ are the only singlets of Ai.

F.2. Spinless fermions with complex hoppings

It is also interesting to see in this language how the commutant is ‘‘reduced’’ from Ci to Cc when
real hoppings are added to the bond algebra Ai to obtain the algebra Ac , see Appendix C.2. We
begin with the identity

e
ixT

(r)
j,k = 1+ i sin(x)T

(r)
j,k − (1−cos(x))

(
T
(r)
j,k

)2
, T

(r)
j,k = c

†

j ck +c
†

k cj,

(
T
(r)
j,k

)2
= nj +nk −2njnk, (T

(r)
j,k )

3 = T
(r)
j,k .

(F.10)

The corresponding bond unitary operators {Vjk} are

Vjk := e
i π
2
T
(r)
jk = 1+ i(c

†

j ck + c
†

k cj)− (nj + nk − 2njnk) , V
†

jkVjk = 1 , V 2
jk = (−1)nj+nk , (F.11)

which act on the local operators as

VjkcjV
−1
jk = −ick , VjkckV

−1
jk = −icj , VjkcℓV

−1
jk = cℓ , ℓ ̸= j, k . (F.12)

We can then follow similar steps as discussed in Appendix F.1 to constrain the operator strings that
appear in the expansion of any operator Γ ∈ Cc , requiring commutation with both the unitaries Vjk

and Ujk. The key difference from the action of Ujk appears from the study of parts in Γ (f ) in the steps

that lead to Eq. (F.6). Here, Vjkω
a
j V

−1
jk . . . Vjkω

b
kV

−1
jk = −ωb

j . . . ω
a
k for (a, b) = (+,−) or (−,+), which

has the opposite sign compared to the Ujk action. Hence combining the requirements [Γ ,Ujk] = 0
and [Γ , Vjk] = 0 imposes the constraint that γa1,a2,...,aN = 0 if (aj, ak) = (+,−) or (−,+) for any
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j ̸= k.19 Hence, only γ+,+,···,+ and γ−,−,···,− parts remain, corresponding to operators |Ω̄⟩⟨Ω| and
|Ω⟩⟨Ω̄|. This shows that the commutant Cc = ⟨⟨Ntot, |Ω̄⟩⟨Ω|⟩⟩.

F.3. Regular SU (2) symmetry

Finally we show that similar ideas can be applied to the bond algebra ASU(2) that appears in the
SU(2) spin-1/2 models discussed in Section 3.1. We start by noting that the two-site permutation
operators {Pjk} that generate ASU(2), defined as

Pjk := 2S⃗j · S⃗k + 1

2
, Pjk|σ , σ ′⟩jk = |σ ′, σ ⟩jk , (F.13)

can be viewed as unitary operators analogous to {Ujk} and {Vjk} in the previous sections. The
conjugate actions of this unitary on the local spin operators read

PjkS⃗jP
−1
jk = S⃗k, PjkS⃗kP

−1
jk = S⃗j . (F.14)

We can then expand operators Γ ∈ CSU(2) in the Pauli string basis and constrain the Pauli strings
that appear in the expansion based on invariance under the conjugation by all unitaries {Pjk}. In
particular, it is easy to show that any such Γ can be divided into a sum of operators Γ(m0,mx,my,mz )

with m0 + mx + my + mz = N , where Γ(m0,mx,my,mz ) is an equal weight superposition of all Pauli

strings with precisely mµ operators S
µ

ℓ (µ ∈ {0, x, y, z}), where we S0ℓ := 1ℓ. As we have discussed

in [8] (see Eq. (77) there), this is precisely the span of the algebra ⟨⟨Sxtot, Sytot, Sztot⟩⟩, and hence this
derives the expression for the commutant CSU(2).

Appendix G. Details on Hubbard algebras

In this appendix, we provide more details on the Hubbard algebras discussed in Section 5. As
we now show, the Hubbard algebras are different from any of the free-fermion algebras shown in
Table 3.

G.1. Imaginary hoppings

G.1.1. Regular SU(2) symmetries

We start with Hubbard algebras of Eq. (39) with imaginary hopping terms and Hubbard terms,
given by

Ai,Hub := ⟨⟨{T (i)
j,k}nn, {Vj}⟩⟩. (G.1)

By definition, this algebra clearly satisfies the relations Ai ⊆ Ai,Hub ⊆ Ac,µ ∩ Ai,h, where Ac,µ,
Ai,h, and Ai are the free-fermion bond algebras corresponding to cases #1a, #1b, and #3a in
Table 3 respectively (discussed in Appendices D.1, D.6, and D.3 respectively). This implies the
relations between the commutant of Ai,Hub, denoted by Ci,Hub, and the free-fermion commutants,

i.e., ⟨⟨Cc,µ ∪ Ci,h⟩⟩ ⊆ Ci,Hub ⊆ Ci.
20 Using the expressions for Cc,µ and Ci,h in Table 3, we obtain

⟨⟨Cc,µ ∪ Ci,h⟩⟩ = ⟨⟨{Sαtot}, {ηα0 }⟩⟩ ⊆ Ci,Hub. Further, it is easy to verify that the Hubbard terms {Vj}
anti-commute with the ‘‘Shiba transformation’’ operators Q σ

X ∈ Ci, defined in Eq. (35), hence we

obtain Q σ
X /∈ Ci,Hub and Ci,Hub ⊂ Ci. While Vj does commute with Q

↑
X Q

↓
X , it is easy to show that

Q
↑
X Q

↓
X ∈ ⟨⟨Sytot + η

y

0⟩⟩ ⊂ ⟨⟨{Sαtot}, {ηα0 }⟩⟩. This leads us to the conjecture that

Ci,Hub = ⟨⟨{Sαtot}, {ηα0 }⟩⟩ . (G.2)

19 Another way of deriving this is to note that UjkVjkcjV
−1
jk U−1

jk = icj , UjkVjkckV
−1
jk U−1

jk = −ick , so the conjugate action by

UjkVjk flips the signs of c
†

j ck and cjc
†

k , and hence such terms are prohibited from Γ ∈ Cc .
20 We would like to remind readers that we are using ∪ and ∩ in the sense of sets. Hence the intersection of two

algebras is an algebra whereas the union of two algebras is not necessarily an algebra.
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Indeed, this can also be verified numerically via methods we discuss in [73]. Since this commutant
satisfies Ci,Hub = ⟨⟨Cc,µ ∪ Ci,h⟩⟩, this conjecture also implies that the Hubbard algebra is the
intersection of the free-fermion algebras Ac,µ and Ai,h, i.e., Ai,Hub = Ac,µ ∩ Ai,h.

Note that {Sαtot} and {ηα0 } are the generators of the spin and pseudospin SU(2) groups and they
commute with each other, hence Ci,Hub has an SU(2)×SU(2) subgroup. Moreover, the full commutant
Ci,Hub can be viewed as being generated by the full family of on-site unitaries corresponding to these
SU(2) groups, i.e., by exp(i

∑
α θαS

α
tot) and exp(i

∑
α θαη

α
0 ), a property that enables the application

of the DCT via Lemmas 2.1 and 2.2. Hence the symmetry group for Hamiltonians within Ai,Hub is
referred to as SU(2)×SU(2). Further, as discussed in Section 4.3, when the number of sites N is even,
irreducible representations of SU(2) × SU(2) are also representations of SO(4), which is the usual
symmetry group of the Hubbard model [57,77]. Finally, the singlets of the Hubbard algebra Ai,Hub

consist of the towers of states annihilated by all the hopping terms, which are the ferromagnetic
tower given by {(S−

tot)
n|F⟩} and the ‘‘eta-pairing’’ tower {(η†

0)
n|Ω⟩}, where S−

tot and η
†

0 are defined in
Eqs. (33) and (34) respectively. However, the towers differ in their eigenvalues under the Hubbard
terms {Vj}, hence Ai,Hub has two sets of degenerate singlets that are not degenerate with each
other.

G.1.2. Dynamica SU(2) symmetries

We can expand the algebra of Eq. (G.1) to include extensive local terms that lead to dynamical
symmetries in the commutants. We consider the algebra

A
(dyn-η)

i,Hub := ⟨⟨{T (i)
j,k}, {Vj},Ntot⟩⟩ = ⟨⟨{T (i)

j,k}, {Vj}, ηz0⟩⟩, (G.3)

where we have used the fact that Ntot and ηz0 are related according to Eq. (34). As discussed in
Section 5.2, this algebra is relevant for the study of the Hubbard model in the presence of a chemical
potential. Since ηz0 is one of the generators of the pseudospin SU(2) symmetry in the commutant

Ci,Hub, the relation between Ai,Hub and A
(dyn-η)

i,Hub is analogous to that between ASU(2) and Adyn-SU(2)

discussed in Section 3. In particular, the addition of ηz0 to the bond algebra Ai,Hub ‘‘breaks’’ the

pseudospin SU(2) down to its maximal Abelian subalgebra, i.e., ⟨⟨{ηα0 }⟩⟩ → ⟨⟨η⃗20, ηz0⟩⟩. It is then easy

to check that the commutant of A
(dyn-η)

i,Hub reads

C
(dyn-η)

i,Hub = ⟨⟨{Sαtot}, η⃗20, ηz0⟩⟩. (G.4)

This commutant has a spin regular SU(2) symmetry along with a pseudospin dynamical SU(2)
symmetry, similar to the case discussed in Section 3.2. The ferromagnetic tower and the η-pairing

tower are still the singlets of the local algebra A
(dyn-η)

i,Hub , but the latter states are now split in energy
by the Ntot term and are hence non-degenerate singlets.

In addition to or instead of a pseudospin dynamical SU(2) symmetry, we could similarly add a
uniform magnetic field Sztot to the bond algebra Ai,Hub to ‘‘break’’ the regular spin SU(2) symmetry
down to a dynamical spin SU(2) symmetry. Hence, we can also obtain the following pairs of local
and commutant algebras:

A
(dyn-S)
i,Hub := ⟨⟨{T (i)

j,k}, {Vj}, Sztot⟩⟩, C
(dyn-S)
i,Hub = ⟨⟨S⃗2tot, Sztot, {ηα0 }⟩⟩;

A
(dyn-S,dyn-η)

i,Hub := ⟨⟨{T (i)
j,k}, {Vj}, Sztot,Ntot⟩⟩, C

(dyn-S,dyn-η)

i,Hub = ⟨⟨S⃗2tot, Sztot, η⃗20, ηz0⟩⟩. (G.5)

As discussed in Section 5.2, these algebras are relevant for the study of the Hubbard model in
the presence of a uniform magnetic field or a uniform chemical potential (or both). Note that

the algebras A
(dyn-S)
i,Hub and A

(dyn-η)

i,Hub , and hence their commutants, are isomorphic to each other. This

can be deduced by conjugating the generators of A
(dyn-S)
i,Hub by Q

↑
X or Q

↓
X defined in Eq. (35) (also

known as the Shiba transformation [57]). In particular this transforms the generators as Sztot → ηz0
(see Eq. (D.20)), T

(i)
j,k → T

(i)
j,k (since Q

↓
X ∈ Ci, see Eq. (D.19)), and Vj → −Vj (which can be

verified by a direct application of Eq. (28)). Hence this transformation exactly maps the algebra

A
(dyn-S)
i,Hub = ⟨⟨{T (i)

j,k}, {Vj}, Sztot⟩⟩ to ⟨⟨{T (i)
j,k}, {−Vj}, ηz0⟩⟩ = A

(dyn-η)

i,Hub .
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G.2. Real hoppings

We now replace the imaginary hopping terms {T (i)
j,k}nn with real hoppings {T (r)

j,k }nn in the algebra
Ai,Hub of Eq. (G.1), and study the algebra

Ar,Hub := ⟨⟨{T (r)
j,k }nn, {Vj}⟩⟩. (G.6)

This algebra contains the well-studied Hubbard model with real hoppings [57]. Similar to the case of
spinful fermions with real hoppings discussed in Appendix D.7, on a non-bipartite lattice, it is easy to

see that all complex hoppings {T (c)
j,k } are eventually generated, and the algebra Ar,Hub is equal to the

Ac,Hub, the Hubbard algebra with complex hoppings, which we discuss in Appendix G.3. However,
on a bipartite lattice, a distinct closed algebra is generated, similar to the case of spinful fermions
with real hoppings discussed in Appendix D.7. As discussed there, the Lie algebra generated by

{T (r)
j,k }nn consists of real hoppings {T (r)

j,k } between different sublattices and imaginary hoppings {T (i)
j,k}

within the same sublattices. This algebra is isomorphic to the Lie algebra generated from imaginary
hoppings, and this can be understood via a transformation cj,σ → icj,σ for σ ∈ {↑,↓} on one of

the sublattices. Under this transformation, {T (r)
j,k }nn → {T (i)

j,k}nn while the Hubbard terms {Vj} remain
invariant, hence the bond algebras of Eq. (G.6) transforms as Ar,Hub → Ai,Hub defined in Eq. (G.1).
The singlets of Ar,Hub can also be obtained using those of Ai,Hub using this substitution.

The isomorphism of the bond algebras also implies an isomorphism of the respective commu-
tants Cr,Hub of Ar,Hub to Ci,Hub of Ai,Hub. As discussed in Appendix D.7, the sublattice transformation
preserves the spin-SU(2) generators {Sαtot}, while the operators {ηα0 } get mapped onto {ηαπ }, both
defined in Eq. (34). Hence the full commutant with real bipartite hoppings is given by

Cr,Hub = ⟨⟨{Sαtot}, {ηαπ }⟩⟩. (G.7)

Similar to Ci,Hub discussed in the previous section, this conjecture implies that Ar,Hub = Ac,µ ∩Ar,h.
Further, {Sαtot} and {ηαπ } generate the spin and pseudospin SU(2) groups respectively, and moreover,
the full commutant can be understood as being generated by the family on-site unitary operators
corresponding to these groups. Hence the symmetry group for Hamiltonians within Ar,Hub is
referred to as SU(2) × SU(2). As discussed in Section 4.2 and Appendix G.1, if the number of sites
N is even, irreps of this group can also be viewed as irreps of SO(4), which is usually referred to as
the symmetry group of the Hubbard model.

The sublattice transformation that results in the isomorphism between Ar,Hub and Ai,Hub can
also be applied in the presence of a uniform chemical potential or uniform magnetic field, where
the regular SU(2) symmetries in the commutant are broken down to dynamical SU(2) symmetries.
Hence, performing this transformation on the algebras discussed in Appendix G.1.2, we obtain the
following pairs of local and commutant algebras with real hoppings (on a bipartite lattice):

A
(dyn-η)

r,Hub := ⟨⟨{T (r)
j,k }, {Vj},Ntot⟩⟩, C

(dyn-η)

r,Hub = ⟨⟨{Sαtot}, η⃗2π , ηzπ ⟩⟩;
A

(dyn-S)
r,Hub := ⟨⟨{T (r)

j,k }, {Vj}, Sztot⟩⟩, C
(dyn-S)
r,Hub = ⟨⟨S⃗2tot, Sztot, {ηαπ }⟩⟩;

A
(dyn-S,dyn-η)

r,Hub := ⟨⟨{T (r)
j,k }, {Vj}, Sztot,Ntot⟩⟩, C

(dyn-S,dyn-η)

r,Hub = ⟨⟨S⃗2tot, Sztot, η⃗2π , ηzπ ⟩⟩. (G.8)

These algebras are relevant for the Hubbard model with real hoppings in the presence of a magnetic
field or a chemical potential, which includes the standard form of the Hubbard model [57]. Similar

to the algebras in Appendix G.1.2, the algebras of A
(dyn-S)
r,Hub and A

(dyn-η)

r,Hub are isomorphic to each other,

which can be understood using the Shiba transformation Q̃ σ
X of Eq. (35).

G.3. Complex hoppings

Finally, we study the Hubbard algebra generated in the presence of both real and imaginary
hopping terms along with the on-site Hubbard terms:

Ac,Hub := ⟨⟨{T (c)
j,k }nn, {Vj}⟩⟩ = ⟨⟨{T (r)

j,k }nn, {T (i)
j,k}nn, {Vj}⟩⟩. (G.9)
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By definition, this algebra clearly satisfies the relations Ac ⊂ Ac,Hub ⊆ Ac,µ ∩ Ac,h, where Ac ,
Ac,µ, and Ac,h are the free-fermion bond algebras corresponding to cases #2, #1a, and #5 in
Table 3 respectively (discussed in Appendices D.2, Appendix D.1, and Appendix D.5 respectively).
This implies the relations between the commutant of Ac,Hub, denoted by Cc,Hub, and the other
commutants, i.e., ⟨⟨Cc,µ ∪ Cc,h⟩⟩ ⊆ Cc,Hub ⊂ Cc . Using the expressions for the commutants from
Table 3, we conjecture

Cc,Hub = ⟨⟨{Sαtot},Ntot, |Ω̄⟩⟨Ω|⟩⟩, (G.10)

where |Ω⟩ and |Ω̄⟩ are the vacuum and the fully filled states respectively. Similar to the previous
cases, this conjecture implies that Cc,Hub = ⟨⟨Cc,µ ∪ Cc,h⟩⟩, and hence the Hubbard algebra can be
expressed as Ac,Hub = Ac,µ∩Ac,h. The singlets of Ac,Hub can also be understood using the properties
of singlets of Ac , listed in Table 3. The addition of the Hubbard terms to Ac splits the degeneracy
between the ferromagnetic tower {(S−

tot)
n|F⟩} and |Ω⟩ but not between states |Ω⟩ and |Ω̄⟩, hence

we obtain two sets of degenerate singlets, {(S−
tot)

n|F⟩} and {|Ω⟩, |Ω̄⟩}.
Similar to discussions in the previous sections, a uniform chemical potential or a uniform

magnetic field can be added to Ac,Hub. This gives us the following pairs of local and commutant
algebras with complex hoppings:

A
(dyn-η)

c,Hub := ⟨⟨{T (c)
j,k }, {Vj},Ntot⟩⟩ = Ac,µ, C

(Ntot)
c,Hub = ⟨⟨{Sαtot},Ntot⟩⟩ = Cc,µ;

A
(dyn-S)
c,Hub := ⟨⟨{T (c)

j,k }, {Vj}, Sztot⟩⟩, C
(dyn-S)
c,Hub = ⟨⟨S⃗2tot, Sztot,Ntot, |Ω̄⟩⟨Ω|⟩⟩;

A
(dyn-S,dyn-η)

c,Hub := ⟨⟨{T (c)
j,k }, {Vj}, Sztot,Ntot⟩⟩, C

(dyn-S,dyn-η)

r,Hub = ⟨⟨S⃗2tot, Sztot,Ntot⟩⟩. (G.11)

Note that unlike the previous Hubbard cases, Cc,Hub does not possess a pseudospin SU(2) symmetry,
and the addition of Ntot to the bond algebra only results in a breaking of the degeneracy between the
states |Ω⟩ and |Ω̄⟩. Hence, in the first case we simply recover the free-fermion bond algebra with ar-
bitrary hoppings and chemical potentials, while in the third case we obtain its dynamical-spin-SU(2)
deformation.
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