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Abstract— This paper studies the learning-based optimal con-
trol for a class of infinite-dimensional linear time-delay systems.
The aim is to fill the gap of adaptive dynamic programming
(ADP) where adaptive optimal control of infinite-dimensional
systems is not addressed. A key strategy is to combine the
classical model-based linear quadratic (L.Q) optimal control of
time-delay systems with the state-of-art reinforcement learning
(RL) technique. Both the model-based and data-driven policy it-
eration (PI) approaches are proposed to solve the corresponding
algebraic Riccati equation (ARE) with guaranteed convergence.
The proposed PI algorithm can be considered as a generaliza-
tion of ADP to infinite-dimensional time-delay systems. The
efficiency of the proposed algorithm is demonstrated by the
practical application arising from autonomous driving in mixed
traffic environments, where human drivers’ reaction delay is
considered.

I. INTRODUCTION

By continuously interacting with environment and receiv-
ing rewards, RL is able to iteratively maximize the cumu-
lative rewards (or minimize the costs) and learn an optimal
control policy from scratch. Conventionally, RL algorithms
are developed in the setting of Markov decision processes[1],
where the dynamics of the environment is discrete-time,
and the action and state spaces are finite or countable.
Furthermore, the stability issue is often neglected by conven-
tional RL. In reality, most physical systems are continuous-
time and depicted by ordinary differential equations (ODEs),
stochastic differential equations (SDEs), or delay differential
equations (DDEs), of which the state and action spaces
are continuous and infinite. Moreover, the stability of the
system with the learned control policy is critical to ensure the
safety, for example, autonomous vehicles and robots. These
issues that are overlooked by the conventional RL algorithms
invoked the development of ADP technique.

By integrating stability in classical control theory with
the state-of-art RL technique, ADP is capable of learning a
sequence of stabilizing control policies for both discrete and
continuous-time systems, and these control polices converge
to the optimal solution as the learning iteration tends to
infinity [2], [3], [4]. So far, ADP techniques are devel-
oped for stabilization and output regulation of various lin-
ear/nonlinear/periodic systems [3], [S], [6], and are success-
fully applied to wheel-legged robots [7] and vehicle control
[8]. For systems involving human-machine interaction and
network control, the time delay induced by human reaction
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lags [9] and network communication [10] may degrade
the system performance or even destabilize the system.
Therefore, time-delay effects should be considered for the
controller design. For time-delay systems, most existing ADP
techniques are devoted to discrete-time systems [11], [12],
[13], [14]. Due to the finite dimensionality of discrete-
time time-delay systems, one can transfer the time-delay
system to a delay-free system with an augmented state.
However, these methods are not applicable to continuous-
time time-delay systems with infinite dimensionality. For the
continuous-time time-delay systems, one has to discretize
the DDEs into ODEs with an augmented state, resulting in
an approximate model [15]. The authors of [16] adopted
ADP technique to design the learning-based controller for
time-delay systems, but the resulting control policy is not
optimal since the corresponding AREs are not solved by the
proposed approach. Hence, the adaptive optimal control for
continuous-time time-delay systems is still an open problem,
that is worth further investigation.

For a delay-free linear system, the solution of the LQ
optimal control is related to a matrix-valued ARE. In com-
parison, since the linear time-delay systems are infinite-
dimensional, the corresponding ARE is a set of nonlinear
partial differential equations (PDEs). Furthermore, the value
function and control law for time-delay systems are function-
als of a segment of the state trajectory. These facts hinder
the development of adaptive optimal control for linear time-
delay systems. In this paper, we generalize the celebrated
Kleinman’s PI algorithm [17] to time-delay systems. Given
an initial admissible controller, the proposed model-based
PI algorithm can approximate the optimal solution of the
original nonlinear PDEs by iteratively solving a series of
linear PDEs. Furthermore, it is theoretically demonstrated
that the value functionals obtained at each iteration are
monotonically decreasing, and both the value functional and
control law converge to the optimal values as iteration tend
to infinity. By combining the model-based PI algorithm with
the state-of-art RL technique, a data-driven PI algorithm is
proposed, which approximates the value functional and con-
trol law at each iteration using only input-state trajectories
of the system. The proposed data-driven PI algorithm is
applied to the connected and autonomous vehicles (CAVs)
in mixed traffic environments to attenuate the stop-and-go
waves, where human drivers’ reaction delay influences the
traffic flow.

Notations: In this paper, R} denotes the set of nonnegative
real numbers, and N denotes the set of positive integers. |- |
denotes the Euclidean norm of a vector or Frobenius norm
of a matrix. ||-||., denotes the supremum norm of a function.
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%(-) denotes the derivative of the function f. €°(X,Y)
denotes the class of continuous functions from the linear
space X to the linear space Y. &/% (|—7,0],R") denotes
the class of absolutely continuous functions. ¢ denotes the
direct sum. L;([—7,0],R") denotes the space of measurable
functions for which the ith power of the Euclidean norm is
Lebesgue integrable, .#, = R" @ Ly([—7,0],R"), and & =
T edtr: fe 42%(5,%(-) €Ly, and f(0)=r
Z(X) and Z(X,Y) denote the class of continuous
bounded linear operators from X to X and from X
to Y respectively. @ denotes the Kronecker product.
vec(A) = [alT,azT,...,aﬂT, where A € R™” and a; is
the ith column of A. For a symmetric matrix P € R"*"

vecs(P) [P11,2P12,-,2P 10y P22,2P23 -, 2P (n— 1) Prn] |
vecu(P) = [2p12,...,2p1n,2p23,...,Zp(,,_l),,]T, and
diag(P) = [p11,p22,-,Pm] . For two  arbitrary
vectors V,u € R, vecd(v,u) = [Vily, -, Valla] ',
vecv(V) = [VE,VIVa, oy VIV, Va ooy Vi1 Vi, V2] T
vecp(V, 1) = [VIl2, ..., Villy, Va3, -oos Va1 1y] 7. AT denotes

the Moore-Penrose inverse of matrix A. [a]; is the ith entry
of the vector a.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Problem Formulation

Consider a linear time-delay system
X(r) = Ax(t) +Agx(t — T) + Bu(t), (1)

where T € R denotes the delay of the system, x(r) € R”,
and u(t) € R™. A, A; € R and B € R"*™ are unknown
constant matrices. Let x,(0) =x(r+0), V0 € [—7,0] denote
a segment of the state trajectory in the interval [t — T,7].
Due to the infinite dimensionality of system (1), the state
of the system is z(t) = [x'(¢),x, (-)]" € 5. Define the
linear operators A € £ (.#5),B E L(R™, M) as Az(t) =

[Ax( )—g;‘{xt( 2 and Bu(t) = Buo( ) . Then, according
to [18, gf(ileorem 2.4.6], (1) can be rewritten as
2(t) = Az(r) + Bu(r), )

with the domain of A given by 2. Let zo =[x (0),x} ()] €
2 denote the initial state of the system (2). The performance
index of (1) is

J(xo,u) = /0 wx(t)TQx(t) +u(t) " Ru(r)dt (3)

where RT =R>0, 0" =0>0.

Definition 1. For system (1), a control policy uc(x;): 2 —
R™ is called admissible with respect to (3), if the linear time-
delay system (1) with u = u.(x;) is globally asymptotically
stable (GAS) at the origin [19, Definition 1.1], and the
performance index (3) is finite for all zo € 9.

Assumption 1. The system (1) with the output y(t) = Q%x(t)
is exponentially stablizable and detectable, which are defined
in [18, Definition 5.2.1] and can be checked by [18, Theorem
5.2.12].

Remark 1. Assumption 1 is a standard prerequisite for LQ
optimal control of system (1) to ensure the existence of a
stabilizing solution [18], [20].

Given the aforementioned assumption, the problem to be
studied in this paper can be formulated as follows.

Problem 1 (PI-based ADP). Given an initial admissi-
ble controller uy(x;) = —Ko 1x(t) — fBTKU(G)x,(G)dG, and
without knowing the dynamics of the system (1), design a PI-
based ADP algorithm to find approximations of the optimal
controller which can minimize (3) using only the input-state
data measured along the trajectories of the system.

B. Optimality and Stability

For a linear system without time delay, i.e. Ay = 0 in
(1), one can calculate the optimal controller by solving the
ARE as discovered by Kalman [21]. Correspondingly, for
the linear time-delay system (1), the sufficient condition for
a model-based solution to the optimal control problem is
stated as follows.

Lemma 1 ([22], [23]). For system (1) under Assumption I,

0
u*(x,):—R’lBTng(t)—/ RBTPH(0)x(0)d0  (4)
——— T N —
K Ki(6)
is the optimal controller minimizing the cost (3), and the
corresponding minimal performance index is
0
V*(x0) =x" (0)P;x(0) +2x"(0) / P (0)x0(0)d6
0 0 o 4)
[ | (P& 0pm(0)azde,

where P; =P;' >0, P;(0), and P;"(0,E) = P;(&,0) for
0,& € [—1,0] are the unique solution to the following PDEs

ATR; +P;A—P;BR'BT Py +P{(0)+P;T(0)+Q =0,

PO (AT ByBR1BT)P(6) 4 P5(0,6),
0:P5(£.0)+ 00P5 (£.0) = P (E)BR™'BT P (6),
Pl-0)=RiAs  P(-7.0)=A]F;(0) ©

According to [18, Theorem 6.2.7], system (1) in closed-
loop with u* in (4) is exponentially stable at the origin.

III. MODEL-BASED POLICY ITERATION

According to Lemma 1, if (6) can be solved, the optimal
controller is obtained. However, due to the non-linearity
with respect to Py, P{ and Pj, it is difficult to solve (6)
directly. Therefore, the model-based PI algorithm is proposed
to simplify the process of solving (6).

Given an admissible controller u;(x;) = —Ko1x(t) —
fforKl_,l(G)xt(G)dG, the model-based PI algorithm for the

system (1) is proposed as follows.
1) Policy Evaluation: For i € N., and &,0 6 [—7,0],
calculate Py; = Py; >0, P;(6), and P);(6,&) = P»i(§,6)
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by solving the following PDEs

Al Poi+PoiAi+ Qi+ P i(0)+P(0) =0,

‘”171'9(9) = A/ P ;(0) — Py;BKy (0) + Ky ;RK; ;(8) + P»,;(0,6),
0eP2i(§,60)+doPri(E,0) =K\ ;(§)RK1:(6) —2K[;(§)B  P1i(6),

Pi(—1)=PyAg,  Poi(—7.0)=A] P (), @)

where A; = (A—BKy,;) and Q; = O+ K| ;RKy,;.
2) Policy Improvement: Update the policy u;+; by

-0
uis1(x)) = —R'B Ry x(1) — _TR’]BTPl_i(G)x,(G)dG. @®)
Ko,it1 K1i+1(0)

The policy evaluation step calculates the value functional
Vi(x0) = J(x0,u;), which is expressed as

Vi) =" (OPre) 267 () [ Pri(0)x(6)d0
. N
+/70T/707x;(§)P2,i(§,9)x,(9)d§d6‘

By policy improvement, the value functional is monotoni-
cally decreasing (Vi1 (x0) < V;(x0)), and converges to the op-
timal value functional V*(xp). Correspondingly, Py ;, P1 ()
and P»;(&,0) converge to the optimal solutions P, P;(6)
and Py (&,0), respectively. The convergence of the model-
based PI algorithm is demonstrated in Theorem 1.

Theorem 1. Given the admissible control ui(x;), for Py,
P i(0), Pi(&,0), and uiy1(x;) obtained by solving (7) and
(8), and for all i > 1, the following properties hold.

1) V*(x0) < Vig1(xo) < Vi(xo);

2) uip1(x;) is admissible;

3) Vi(xo) and ui(x;) converge to V*(xo) and u*(x;) respec-

tively.

Proof. Along the trajectories of (1) driven by u, Vi(x;) is

Vi(x) = 7xTQx7uiTRui+2uiT+1Rui 72uTRu,-+1. (10)

Suppose u; is admissible, By (10), along the state trajectories
of (1) driven by w1,

Vi(x) =—x" Ox—u, Ruiy

1D
— (i1 — ) " Ruiyr — ;).
Integrating both sides of (11) from 0 to e yields
J(x0, uit1) = Vi(xo) — Vilxer) (12)

[ s = ) TR ) < Vi) < o
0

The statement that u;; is admissible is obtained by the finite
cost of u; . Furthermore, since J(xo,ui+1) = Vir1(xp), from
(12), we have Vi (xp) < Vi(xo). Therefore, 1) and 2) can be
proved by induction given that u; is admissible.

Since V; is monotonically decreasing and lower bounded
by V*, its limit exists and satisfies the ARE (6). Hence, the
proof of 3) is completed. Please see [24, Theorem 1] for the
details. O

Notice that although (7) is linear with respect to Py ;, Py ;,
and P, ;, since (7) is PDEs, solving the analytical solution

to (7) is still non-trivial. Besides, the accurate knowledge
of system matrices A, Ay, and B is required to implement
the model-based PI, and in practice due to the complex
structure of the system, it is often hard to derive such an
accurate model. Therefore, in the next section, a data-driven
PI algorithm is proposed to approximate the optimal solution.

Remark 2. When A; =0, (1) is degraded to the normal
linear time-invariant systems. According to (7) and (8), we
can see that P j(0) =0, P,;(§,0) =0, and K, ;(0) =0. As
a consequence, (7) and (8) are same as the model-based
PI method in [17]. Therefore, the proposed model-based Pl
algorithm is a generalization of the celebrated Kleinman
algorithm to linear time-delay systems.

IV. DATA-DRIVEN POLICY ITERATION

The purpose of this section is to propose a corresponding
data-driven PI algorithm that does not require the accurate
knowledge of system (1) to solve Problem 1. The input-
state trajectories data of system (1) is required for the data-
driven PI, that is the continuous-time trajectories of x(r) and
u(r) sampled from system (1) within the interval [r],t;+1] is
applied to train the control policy.

By (10), along the trajectories of system (1) driven by the
behavior/exploratory policy u,

Vi(x,) = 7XTQX7M1TRM,'72MIHRVI‘, (13)
where v; = u—u;. Let [fy,#;41] denote the kth segment of the
interval [t1,7,41]. Integrating both sides of (13) from #; to
ty41 yields

Vixy ) = Vil ) =
lk+1
/ T Ox —u, Ru; — 2uiT+1Rv,-dt.

Tk

(14)

Plugging the expressions of ;4 in (8) and V; in (9) into
(14), one can obtain,

{XT (1) Poix(r) +2x " (1) /_ ! Py i(8)x(6)d6

/38

# [0 [ A @te. o)z

1=ty

tes 0
2 [ (RS [ 8 O (6)360) Rutoa

3

Tit1
—_ /t X(6)TOx(t) + ui () T Rua(e)dr. (15)
k

As seen in (7) and (8), K ;(6) and Py ;(0) (P»,i(&,0)) are
continuous functions defined over the set [—7,0] ([—7,0]?).
Next, we use the linear combinations of basis functions to
approximate these continuous functions, such that only the
weighting matrices of the basis functions should be deter-
mined for the function approximation. Let ®(0), A(,0),
and W(&,0) denote the N-dimensional vectors of linearly
independent basis functions. To simplify the notation, we
choose the same number of basis functions for @, A and V.
According to the approximation theory [25], the following
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equations hold

vecs(Py,i) = Wi, vec(P1 ;(0)) = W1N7l~¢>(9) +eg7i(0),
diag(P2,i(£,0)) = WP (E,6) +ey (&, 6),
veeu(Py,i(£,0)) = WiiA(E.0) +ep (8. 6), (16)
vec(Ko,i) = Uy, vec(K, ;(0)) = UinCID(G) +e%,i(9),
where Wo; € R™, nj = ”“ﬁj”, W{Vj e RN, W e R™N,
W3z e RN py = n(nfl) € R"™. and UN RmxN

are weighting matrlces of the basis functions. e}, ;(6) €
550([ T, ],Rn )’ e‘I’,i(éae) € ch([ T, ] aRn)? eA,i(éae) €
¢°([-7,0*,R™), and ey ,(6) € €°([—7,0],R™) are ap-
proximation truncation errors. Therefore, by the uniform ap-
proximation theory, as N — oo, the truncation errors converge
uniformly to zero, i.e. for any 1 > 0, there exists N* € N,
such that if N > N*,

leg ()le<n, ek (8)ll=<m,
le§ (&, 0)llo<m.  [leX (&, 0)lle< .

Therefore, the key idea of data-driven PI is that W;;(j =
0,---,3) and U;;(j =0,1) should be approximated by the
data collected from system (1). Define ny as the composite
vector of the weighting matrices, i.e.

a7)

Yf-v = {WOT,-7vecT(W{VJ),vecT(Wﬁ),vecT(Wﬁ)
T T (/N T (18)
Uo,it1,vec (Ul,i+1)} .

Let TV be the approximation of YV. Then, if TV is obtained,
the approximations P;;(j=0,1,2), Ko;+1 and Kj ;+1(0) can
be reconstructed according to (16) and (18). The details of
the reconstruction is shown in [24, Equations (35) and (36)].
As a consequence, #;(x;), the approximation of u;(x;), can
be expressed as

0
ai(x) = _Ko,ix(t)_erl,i(e)xt(e)d6~ 19)

Based on the approximations in (16), (15) is transferred
to a linear equation with respect to TN Then, the unknown

vector YN is approximated by linear regress1on In detail, let
v = u—ul be the approximation of v; with &;. @; = i; — u;
denotes the deviation between the policies of model-based
PI and data-driven PI at the ith iteration. Define the data-
constructed matrices

/q;T ®x[ 0)®
Tl = [ [ 97(6,0)@ veca (x(8),(0)) 200,
M) = [ [ AT 0 @veen” (u(8) u(@)ag06, @O

Gua= [ 6005 W) R

Tht1
GCI)X\”/( = /

x, (8) @9/ (1))(I, ®R))d6d.

With the collected data, following variables are defined

Mg = [veevT (x(0) 1! 21! T 1)1,
Tace(Ol", —2Gs, 4, _2G®xﬁi,k} ;

Yig =— /tk+1 x" Qx+ i) Ridt,

T

Ejp = [2€1,(t) +2,(r) + &3, (1))}

29200 (21
1
—2Pi.k—Pik’

17
M; = |:Mll’ : Mzk’ : >Mi,L} )

T
Y= I:Yi,ly"'7Yi7k7"'7Yi,L} )

-
E;=|Ei\,,Eix,-,Eir]

where &;; (j =1,2,3), ik, P> Pix» and p7, are induced by
the truncation errors. Their detailed expressions are in [24,
Equations (38) and (39)].

By the definitions of M;g, Y;x and E;; in (21), (15) is
finally transferred as a linear equation with respect to Yf-v

(See details in [24, Equation (38)]),
Mip XY +Eix =Y. (22)

Combining equations of (22) from k=1 to k = L, we have

MYY +E; =Y, (23)
Let £; be defined such that
E =Y, — MYV, (24)

Assumption 2. Given N € Ny, there exist L* € Ny and o >
0, such that for all L > L* and i € Ny,

LT
oMM > al.

Remark 3. Assumption 2 is reminiscent of the persistent
excitation (PE) condition [26], [27]. As in the literature of
ADP-based data-driven control [3], [4], one can fulfill it by
means of added exploration noise, such as sinusoidal signals
and random noise.

(25)

Under Assumption 2, the method of least squares is
applied to minimize E;' £;, i.e. E;' E; is minimized by

(26)

With the result of TV in (26), P;;(j =0---2) and K;;(j =
0,1) can be reconstructed by (16) and (18).

The proposed algorithm is shown in Algorithm 1. From
(21), M; and Y; are constructed by the input-state trajectory
data of system (1). Hence, the system matrices are not
involved in the computation of Y‘f\’ . Furthermore, since the
behavior policy u is different from the updated policy u;,
Algorithm 1 is called off-policy.

N +

Remark 4. Due to the property that P, (&,0) = P, ;(6,£),
the diagonal elements of Py; satisfy diag(P»;(£,0)) =
diag(P»(6,8)). Hence, the vector of basis functions ¥
should satisfy W(&,0) =¥(0,&) to approximate such func-
tions.
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Algorithm 1 Data-driven Policy Iteration

1: Choose the vector of the basis functions ®(0), P (&, 0),
and A(&,0).

2: Choose L € N, and the sampling instance #; € [ty,f71]-

3: Choose input u = uj +e, with e an exploration signal,
to explore the system (1) and collect the input-state data

u(t),x(t),t € [0,t741]. Set the threshold 6 >0 and i = 1.
4: repeat
5: Given #; and the data, construct M; and ¥; by (21).
6: Get TV by solving (26).
7 Get Ko i+1 and Ky ;41 from TV.
8 fis1 (%) = —Koe1x(t) — [°, K1 i+1(0)x(68)de
9 i+—i+1

10: until [TV -1V, |< 6.
11: Use d;(x;) as the control input.

Lemma 2. Under Assumption 2, and given an admissible
controller uy(x;) = —Ko 1x(t) — fBTKL] (0)x:(0)d6, for any
i€ Ny and 1 > 0, there exists some positive integer N* > 0,
such that if N > N*,

|Poi—Poi|< M, [|Pri— Prille< ), 1Py — Prif| < 1
|Ko.iv1 — Kois1|< M, [[Kiis1 — Ki i1 ]|=< M. 27)

Proof. This lemma is proved by induction. When i = 1,
iy = uy and @ = 0. Then, under Assumption 2, we have
limN%wTZIVTTZIV = 0. Hence, (27) holds for i = 1. Suppose
(27) holds for some i — 1 > 1. Consequently, limy_ fi; = u;.
Under Assumption 2, we have limy_.. TN TYY = 0. Hence,
(27) holds for i. See the detailed proof at [24 Lemma 3], O

Theorem 2. Given an admissible controller uy, for any n >
0, there exist integers i* >0 and N** > 0, such that if N > N**

Pose =BG 1< M, 1P = P, || Poje — PS| <,

Ko, 41 — Ko< 1, [[K1 i1 — K [|< . (28)

Proof. This theorem is from Lemma 2 and the triangle
inequality of the norm. See the details in [24, Theorem
2]. O

By Theorem 2, we see that K;;41(j = 0,1) obtained by
Algorithm | converges to K*( j=0,1) as the iteration step
of the algorithm and the number of basis functions tend to
infinity. Hence, the proposed data-driven PI solves Problem
L.

V. APPLICATION TO AUTONOMOUS DRIVING

Algorithm 1 is applied to design a learning-based con-
troller for a platoon of connected and autonomous vehicles
(CAVs) in mixed traffic environments to mitigate the effect of
human drivers’ reaction delay and to attenuate the stop-and-
go waves of traffic flow. This problem is studied by [28],
where a model-based LQ control is applied to design the
controller for CAVs.

A platoon consisting of two human-driven vehicles
(HDVs) and one autonomous vehicle (AV) is shown in Fig. 1.

/\
@ @ @
" gy e

CAV3 I HDV 2 h, HDV 1

Fig. 1: A platoon consisting of two HDVs and an AV.

10 14

0
1 2 3 4 5 6 7 8 9 10 1
Tteration

2 3 4 5 6 7 8 9 10
Tteration

Fig. 2: Convergence of Ky; and K; ;(8) to K; and K; ().

The AV is at the last position. When there are sudden changes
in the traffic (e.g. the preceding vehicle is decelerating
suddenly), the HDV will make delayed reactions. That is why
a platoon consisting of HDVs is a time-delay system. In Fig.
1, h; denotes the bumper-to-bumper distance between the ith
vehicle and (i — 1)th vehicle, and v; denotes the velocity of
the ith vehicle. Define the relative headway as Ah; = h; — h*
and the relative velocity as Av; =v; —v*, where (h*,v*) is the
equilibrium of the platoon. The acceleration of the AV is the
control input of the platoon. Assuming the velocity of the
leading vehicle is constant, the system can be described as a
linear time-delay system (1) with x = [Ahy,Avy, Ahz, Avs] T,

0O -1 0 O 0 0 0
A 0O 0 0 O A o c* (p+pB) 0 0

0 1 0 —1°7¢ 0 0 0 of

0O 0 0 O 0 0 0 0
and B = [O 0 0 1]T, where o, and [, denote the

human driver parameters and c¢* is the derivative of the
range policy [14], [28]. In the simulation, the human pa-
rameters are set as ap = 0.1, B, = 0.2, and ¢* = 1.5708.
The human reaction delay is 7 = 1.2s. The weighting
matrix in (3) is Q = diag([1,1,10,10]), and R = 1. The
initial state of the platoon is [xo(0)]; = 302}21 sinw; ;0 +
(x]i for i =1,2,3,4. w;; and [x]; are randomly sam-
pled from the uniform distributions over [—10,10] and
[—30,30], respectively. The initial admissible controller
is 0 (x) = —Kox(t) — [°.Ki1(0)x:(6)d6, with Ko, =
[—0.0897 —0.2772 —0.3 0.5196] and K ;(6) =0. The
added exploratory noise in Algorithm 1 is e(r) = ¥2% sin eyt
; is randomly sampled from an independent uniform dis-
tribution over [—100,100]. u = u; + e is applied to col-
lect the input-state data from the system. The basis func-
tions in (16) are ®(0) =[1,0,0%,0%T, W(£,0) = [1,& +
0,62+60%,E0,E3+6°,E20+E£0%,E30 +£0%,E20%,E°0% +
£26%,£30%]", and A(£,0) = [1,0,6%,6%) ®[1,£,E%,8Y".
The approach in [28] is adopted to calculate the optimal
values of Kj and K, where the precise model is assumed
known.
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Fig. 3: Comparison between the initial controller and the
ADP controller.

Fig. 2 shows the relative error of the obtained gain K'OJ
and K ;(6) at each iteration. It is seen that the relative errors
converge after the tenth iteration. This is consistent with
Theorem 2. In particular, at the tenth iteration, the relative
errors are % = 0.0008 and % = 0.0137.
Hence, the optir(%lal controller is well apprloximated by the
proposed data-driven PI algorithm. The comparison between
the learned controller at the tenth iteration and the initial
controller is conducted. Since the AV is at the last position of
the platoon, the movement of HDVs cannot be influenced by
the AV. Hence, with different controllers, the evolution of A/,
and Av; is same. With the initial controller i; and the learned
ADP controller 9, the AV’s relative headway Ahz and
relative velocity Avs are shown in Fig. 3. It is seen that with
the ADP controller, the state converges to the equilibrium
more quickly. Hence, the stop-and-go waves of the AV is
attenuated by the proposed data-driven PI algorithm. The
values of the performance index are J(xo,;) = 1.46-10°
and J(xo,i10) = 4.73 - 10*. The proposed data-driven PI
algorithm minimizes the performance index and improves
the performance of the AV in the platoon.

VI. CONCLUSIONS

In this paper, we have proposed innovative model-based
and data-driven PI algorithms for linear time-delay systems.
The proposed model-based PI can be considered as an exten-
sion of the celebrated Kleinman’s PI [17] to linear time-delay
systems. Based on the model-based PI, and only using input-
state trajectories of the system, a data-driven PI algorithm
has been proposed to approximate the value functional and
control law at each iteration. It is rigorously shown that the
value functional and control law generated at each iteration
converge to the optimal solution. Furthermore, the proposed
adaptive optimal control method is applied to CAVs in mixed
traffic environments to attenuate the stop-and-go waves and
mitigate the effect of human driver reaction delays.
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