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Abstract— This paper studies the learning-based optimal con-
trol for a class of infinite-dimensional linear time-delay systems.
The aim is to fill the gap of adaptive dynamic programming
(ADP) where adaptive optimal control of infinite-dimensional
systems is not addressed. A key strategy is to combine the
classical model-based linear quadratic (LQ) optimal control of
time-delay systems with the state-of-art reinforcement learning
(RL) technique. Both the model-based and data-driven policy it-
eration (PI) approaches are proposed to solve the corresponding
algebraic Riccati equation (ARE) with guaranteed convergence.
The proposed PI algorithm can be considered as a generaliza-
tion of ADP to infinite-dimensional time-delay systems. The
efficiency of the proposed algorithm is demonstrated by the
practical application arising from autonomous driving in mixed
traffic environments, where human drivers’ reaction delay is
considered.

I. INTRODUCTION

By continuously interacting with environment and receiv-
ing rewards, RL is able to iteratively maximize the cumu-
lative rewards (or minimize the costs) and learn an optimal
control policy from scratch. Conventionally, RL algorithms
are developed in the setting of Markov decision processes[1],
where the dynamics of the environment is discrete-time,
and the action and state spaces are finite or countable.
Furthermore, the stability issue is often neglected by conven-
tional RL. In reality, most physical systems are continuous-
time and depicted by ordinary differential equations (ODEs),
stochastic differential equations (SDEs), or delay differential
equations (DDEs), of which the state and action spaces
are continuous and infinite. Moreover, the stability of the
system with the learned control policy is critical to ensure the
safety, for example, autonomous vehicles and robots. These
issues that are overlooked by the conventional RL algorithms
invoked the development of ADP technique.

By integrating stability in classical control theory with
the state-of-art RL technique, ADP is capable of learning a
sequence of stabilizing control policies for both discrete and
continuous-time systems, and these control polices converge
to the optimal solution as the learning iteration tends to
infinity [2], [3], [4]. So far, ADP techniques are devel-
oped for stabilization and output regulation of various lin-
ear/nonlinear/periodic systems [3], [5], [6], and are success-
fully applied to wheel-legged robots [7] and vehicle control
[8]. For systems involving human-machine interaction and
network control, the time delay induced by human reaction
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lags [9] and network communication [10] may degrade
the system performance or even destabilize the system.
Therefore, time-delay effects should be considered for the
controller design. For time-delay systems, most existing ADP
techniques are devoted to discrete-time systems [11], [12],
[13], [14]. Due to the finite dimensionality of discrete-
time time-delay systems, one can transfer the time-delay
system to a delay-free system with an augmented state.
However, these methods are not applicable to continuous-
time time-delay systems with infinite dimensionality. For the
continuous-time time-delay systems, one has to discretize
the DDEs into ODEs with an augmented state, resulting in
an approximate model [15]. The authors of [16] adopted
ADP technique to design the learning-based controller for
time-delay systems, but the resulting control policy is not
optimal since the corresponding AREs are not solved by the
proposed approach. Hence, the adaptive optimal control for
continuous-time time-delay systems is still an open problem,
that is worth further investigation.

For a delay-free linear system, the solution of the LQ
optimal control is related to a matrix-valued ARE. In com-
parison, since the linear time-delay systems are infinite-
dimensional, the corresponding ARE is a set of nonlinear
partial differential equations (PDEs). Furthermore, the value
function and control law for time-delay systems are function-
als of a segment of the state trajectory. These facts hinder
the development of adaptive optimal control for linear time-
delay systems. In this paper, we generalize the celebrated
Kleinman’s PI algorithm [17] to time-delay systems. Given
an initial admissible controller, the proposed model-based
PI algorithm can approximate the optimal solution of the
original nonlinear PDEs by iteratively solving a series of
linear PDEs. Furthermore, it is theoretically demonstrated
that the value functionals obtained at each iteration are
monotonically decreasing, and both the value functional and
control law converge to the optimal values as iteration tend
to infinity. By combining the model-based PI algorithm with
the state-of-art RL technique, a data-driven PI algorithm is
proposed, which approximates the value functional and con-
trol law at each iteration using only input-state trajectories
of the system. The proposed data-driven PI algorithm is
applied to the connected and autonomous vehicles (CAVs)
in mixed traffic environments to attenuate the stop-and-go
waves, where human drivers’ reaction delay influences the
traffic flow.

Notations: In this paper, R+ denotes the set of nonnegative
real numbers, and N+ denotes the set of positive integers. | · |
denotes the Euclidean norm of a vector or Frobenius norm
of a matrix. ∥·∥

∞
denotes the supremum norm of a function.
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d f
dθ (·) denotes the derivative of the function f . C 0 (X ,Y )
denotes the class of continuous functions from the linear

space X to the linear space Y . A C ([−τ,0],Rn) denotes

the class of absolutely continuous functions. ⊕ denotes the

direct sum. Li([−τ,0],Rn) denotes the space of measurable

functions for which the ith power of the Euclidean norm is

Lebesgue integrable, M2 = R
n ⊕ L2([−τ,0],Rn), and D ={

[r�, f�(·)]� ∈ M2 : f ∈ A C , d f
dθ (·) ∈ L2, and f (0) = r

}
.

L (X) and L (X ,Y ) denote the class of continuous

bounded linear operators from X to X and from X
to Y respectively. ⊗ denotes the Kronecker product.

vec(A) =
[
a�1 ,a

�
2 , ...,a

�
n
]�

, where A ∈ R
n×n and ai is

the ith column of A. For a symmetric matrix P ∈ R
n×n,

vecs(P) = [p11,2p12, ...,2p1n, p22,2p23, ...,2p(n−1)n, pnn]
�,

vecu(P) = [2p12, ...,2p1n,2p23, ...,2p(n−1)n]
�, and

diag(P) = [p11, p22, ..., pnn]
�. For two arbitrary

vectors ν ,μ ∈ R
n, vecd(ν ,μ) = [ν1μ1, · · · ,νnμn]

�,

vecv(ν) = [ν2
1 ,ν1ν2, ...,ν1νn,ν2

2 , ...,νn−1νn,ν2
n ]

�,

vecp(ν ,μ) = [ν1μ2, ...,ν1μn,ν2μ3, ...,νn−1μn]
�. A† denotes

the Moore-Penrose inverse of matrix A. [a]i is the ith entry

of the vector a.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider a linear time-delay system

ẋ(t) = Ax(t)+Adx(t − τ)+Bu(t), (1)

where τ ∈ R+ denotes the delay of the system, x(t) ∈ R
n,

and u(t) ∈ R
m. A, Ad ∈ R

n×n and B ∈ R
n×m are unknown

constant matrices. Let xt(θ) = x(t +θ), ∀θ ∈ [−τ,0] denote

a segment of the state trajectory in the interval [t − τ, t].
Due to the infinite dimensionality of system (1), the state

of the system is z(t) = [x�(t),x�t (·)]� ∈ M2. Define the

linear operators A ∈ L (M2),B ∈ L (Rm,M2) as Az(t) =[
Ax(t)+Adxt(−τ)

dxt
dθ (·)

]
and Bu(t) =

[
Bu(t)

0

]
. Then, according

to [18, Theorem 2.4.6], (1) can be rewritten as

ż(t) = Az(t)+Bu(t), (2)

with the domain of A given by D . Let z0 = [x�(0),x�0 (·)]� ∈
D denote the initial state of the system (2). The performance

index of (1) is

J(x0,u) =
∫ ∞

0
x(t)�Qx(t)+u(t)�Ru(t)dt (3)

where R� = R > 0, Q� = Q ≥ 0.

Definition 1. For system (1), a control policy uc(xt) : D →
R

m is called admissible with respect to (3), if the linear time-
delay system (1) with u = uc(xt) is globally asymptotically
stable (GAS) at the origin [19, Definition 1.1], and the
performance index (3) is finite for all z0 ∈ D .

Assumption 1. The system (1) with the output y(t) =Q
1
2 x(t)

is exponentially stablizable and detectable, which are defined
in [18, Definition 5.2.1] and can be checked by [18, Theorem
5.2.12].

Remark 1. Assumption 1 is a standard prerequisite for LQ
optimal control of system (1) to ensure the existence of a
stabilizing solution [18], [20].

Given the aforementioned assumption, the problem to be

studied in this paper can be formulated as follows.

Problem 1 (PI-based ADP). Given an initial admissi-
ble controller u1(xt) =−K0,1x(t)− ∫ 0

−τ K1,1(θ)xt(θ)dθ , and
without knowing the dynamics of the system (1), design a PI-
based ADP algorithm to find approximations of the optimal
controller which can minimize (3) using only the input-state
data measured along the trajectories of the system.

B. Optimality and Stability

For a linear system without time delay, i.e. Ad = 0 in

(1), one can calculate the optimal controller by solving the

ARE as discovered by Kalman [21]. Correspondingly, for

the linear time-delay system (1), the sufficient condition for

a model-based solution to the optimal control problem is

stated as follows.

Lemma 1 ([22], [23]). For system (1) under Assumption 1,

u∗(xt) =−R−1B�P∗
0︸ ︷︷ ︸

K∗
0

x(t)−
∫ 0

−τ
R−1B�P∗

1 (θ)︸ ︷︷ ︸
K∗

1 (θ)

xt(θ)dθ (4)

is the optimal controller minimizing the cost (3), and the
corresponding minimal performance index is

V ∗(x0) = x�(0)P∗
0 x(0)+2x�(0)

∫ 0

−τ
P∗

1 (θ)x0(θ)dθ

+
∫ 0

−τ

∫ 0

−τ
x�0 (ξ )P

∗
2 (ξ ,θ)x0(θ)dξ dθ ,

(5)

where P∗
0 = P∗�

0 ≥ 0, P∗
1 (θ), and P∗�

2 (θ ,ξ ) = P∗
2 (ξ ,θ) for

θ ,ξ ∈ [−τ,0] are the unique solution to the following PDEs

A�P∗
0 +P∗

0 A−P∗
0 BR−1B�P∗

0 +P∗
1 (0)+P∗�

1 (0)+Q = 0,

dP∗
1 (θ)
dθ

= (A�−P∗
0 BR−1B�)P∗

1 (θ)+P∗
2 (0,θ),

∂ξ P∗
2 (ξ ,θ)+∂θ P∗

2 (ξ ,θ) =−P∗�
1 (ξ )BR−1B�P∗

1 (θ),

P∗
1 (−τ) = P∗

0 Ad , P∗
2 (−τ,θ) = A�

d P∗
1 (θ). (6)

According to [18, Theorem 6.2.7], system (1) in closed-

loop with u∗ in (4) is exponentially stable at the origin.

III. MODEL-BASED POLICY ITERATION

According to Lemma 1, if (6) can be solved, the optimal

controller is obtained. However, due to the non-linearity

with respect to P∗
0 , P∗

1 and P∗
2 , it is difficult to solve (6)

directly. Therefore, the model-based PI algorithm is proposed

to simplify the process of solving (6).

Given an admissible controller u1(xt) = −K0,1x(t) −∫ 0
−τ K1,1(θ)xt(θ)dθ , the model-based PI algorithm for the

system (1) is proposed as follows.
1) Policy Evaluation: For i ∈ N+, and ξ ,θ ∈ [−τ,0],

calculate P0,i = P�
0,i ≥ 0, P1,i(θ), and P�

2,i(θ ,ξ ) = P2,i(ξ ,θ)
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by solving the following PDEs

A�
i P0,i +P0,iAi +Qi +P1,i(0)+P�

1,i(0) = 0,

dP1,i(θ)
dθ

= A�
i P1,i(θ)−P0,iBK1,i(θ)+K�

0,iRK1,i(θ)+P2,i(0,θ),

∂ξ P2,i(ξ ,θ)+∂θ P2,i(ξ ,θ) = K�
1,i(ξ )RK1,i(θ)−2K�

1,i(ξ )B
�P1,i(θ),

P1,i(−τ) = P0,iAd , P2,i(−τ,θ) = A�
d P1,i(θ), (7)

where Ai = (A−BK0,i) and Qi = Q+K�
0,iRK0,i.

2) Policy Improvement: Update the policy ui+1 by

ui+1(xt) =−R−1B�P0,i︸ ︷︷ ︸
K0,i+1

x(t)−
∫ 0

−τ
R−1B�P1,i(θ)︸ ︷︷ ︸

K1,i+1(θ)

xt(θ)dθ . (8)

The policy evaluation step calculates the value functional

Vi(x0) = J(x0,ui), which is expressed as

Vi(xt) = x�(t)P0,ix(t)+2x�(t)
∫ 0

−τ
P1,i(θ)xt(θ)dθ

+
∫ 0

−τ

∫ 0

−τ
x�t (ξ )P2,i(ξ ,θ)xt(θ)dξ dθ .

(9)

By policy improvement, the value functional is monotoni-

cally decreasing (Vi+1(x0)≤Vi(x0)), and converges to the op-

timal value functional V ∗(x0). Correspondingly, P0,i, P1,i(θ)
and P2,i(ξ ,θ) converge to the optimal solutions P∗

0 , P∗
1 (θ)

and P∗
2 (ξ ,θ), respectively. The convergence of the model-

based PI algorithm is demonstrated in Theorem 1.

Theorem 1. Given the admissible control u1(xt), for P0,i,
P1,i(θ), P2,i(ξ ,θ), and ui+1(xt) obtained by solving (7) and
(8), and for all i ≥ 1, the following properties hold.

1) V ∗(x0)≤Vi+1(x0)≤Vi(x0);
2) ui+1(xt) is admissible;
3) Vi(x0) and ui(xt) converge to V ∗(x0) and u∗(xt) respec-

tively.

Proof. Along the trajectories of (1) driven by u, V̇i(xt) is

V̇i(xt) =−x�Qx−u�i Rui +2u�i+1Rui −2u�Rui+1. (10)

Suppose ui is admissible, By (10), along the state trajectories

of (1) driven by ui+1,

V̇i(xt) =− x�Qx−u�i+1Rui+1

− (ui+1 −ui)
�R(ui+1 −ui).

(11)

Integrating both sides of (11) from 0 to ∞ yields

J(x0,ui+1) =Vi(x0)−Vi(x∞) (12)

−
∫ ∞

0
(ui+1 −ui)

�R(ui+1 −ui)dt ≤Vi(x0)< ∞.

The statement that ui+1 is admissible is obtained by the finite

cost of ui+1. Furthermore, since J(x0,ui+1) =Vi+1(x0), from

(12), we have Vi+1(x0)≤Vi(x0). Therefore, 1) and 2) can be

proved by induction given that u1 is admissible.

Since Vi is monotonically decreasing and lower bounded

by V ∗, its limit exists and satisfies the ARE (6). Hence, the

proof of 3) is completed. Please see [24, Theorem 1] for the

details.

Notice that although (7) is linear with respect to P0,i, P1,i,

and P2,i, since (7) is PDEs, solving the analytical solution

to (7) is still non-trivial. Besides, the accurate knowledge

of system matrices A, Ad , and B is required to implement

the model-based PI, and in practice due to the complex

structure of the system, it is often hard to derive such an

accurate model. Therefore, in the next section, a data-driven

PI algorithm is proposed to approximate the optimal solution.

Remark 2. When Ad = 0, (1) is degraded to the normal
linear time-invariant systems. According to (7) and (8), we
can see that P1,i(θ) = 0, P2,i(ξ ,θ) = 0, and K1,i(θ) = 0. As
a consequence, (7) and (8) are same as the model-based
PI method in [17]. Therefore, the proposed model-based PI
algorithm is a generalization of the celebrated Kleinman
algorithm to linear time-delay systems.

IV. DATA-DRIVEN POLICY ITERATION

The purpose of this section is to propose a corresponding

data-driven PI algorithm that does not require the accurate

knowledge of system (1) to solve Problem 1. The input-

state trajectories data of system (1) is required for the data-

driven PI, that is the continuous-time trajectories of x(t) and

u(t) sampled from system (1) within the interval [t1, tL+1] is

applied to train the control policy.

By (10), along the trajectories of system (1) driven by the

behavior/exploratory policy u,

V̇i(xt) =−x�Qx−u�i Rui −2u�i+1Rvi, (13)

where vi = u−ui. Let [tk, tk+1] denote the kth segment of the

interval [t1, tL+1]. Integrating both sides of (13) from tk to

tk+1 yields

Vi(xtk+1
)−Vi(xtk) =∫ tk+1

tk
−x�Qx−u�i Rui −2u�i+1Rvidt.

(14)

Plugging the expressions of ui+1 in (8) and Vi in (9) into
(14), one can obtain,

[
x�(t)P0,ix(t)+2x�(t)

∫ 0

−τ
P1,i(θ)xt(θ)dθ

+
∫ 0

−τ

∫ 0

−τ
x�t (ξ )P2,i(ξ ,θ)xt(θ)dξ dθ

]tk+1

t=tk

−2

∫ tk+1

tk

(
x�(t)K�

0,i+1 +
∫ 0

−τ
x�t (θ)K�

1,i+1(θ)dθ
)

Rvi(t)dt

=−
∫ tk+1

tk
x(t)�Qx(t)+ui(t)�Rui(t)dt. (15)

As seen in (7) and (8), K1,i(θ) and P1,i(θ) (P2,i(ξ ,θ)) are

continuous functions defined over the set [−τ,0] ([−τ,0]2).

Next, we use the linear combinations of basis functions to

approximate these continuous functions, such that only the

weighting matrices of the basis functions should be deter-

mined for the function approximation. Let Φ(θ), Λ(ξ ,θ),
and Ψ(ξ ,θ) denote the N-dimensional vectors of linearly

independent basis functions. To simplify the notation, we

choose the same number of basis functions for Φ, Λ and Ψ.

According to the approximation theory [25], the following
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equations hold

vecs(P0,i) =W0,i, vec(P1,i(θ)) =W N
1,iΦ(θ)+ eN

Φ,i(θ),
diag(P2,i(ξ ,θ)) =W N

2,iΨ(ξ ,θ)+ eN
Ψ,i(ξ ,θ),

vecu(P2,i(ξ ,θ)) =W N
3,iΛ(ξ ,θ)+ eN

Λ,i(ξ ,θ), (16)

vec(K0,i) =U0,i, vec(K1,i(θ)) =UN
1,iΦ(θ)+ eN

K,i(θ),

where W0,i ∈ R
n1 , n1 = n(n+1)

2 , W N
1,i ∈ R

n2×N , W N
2,i ∈ R

n×N ,

W N
3,i ∈ R

n2×N , n2 = n(n−1)
2 , U0,i ∈ R

nm, and UN
1,i ∈ R

nm×N

are weighting matrices of the basis functions. eN
Φ,i(θ) ∈

C 0([−τ,0],Rn2
), eN

Ψ,i(ξ ,θ) ∈ C 0([−τ,0]2,Rn), eN
Λ,i(ξ ,θ) ∈

C 0([−τ,0]2,Rn2), and eN
K,i(θ) ∈ C 0([−τ,0],Rmn) are ap-

proximation truncation errors. Therefore, by the uniform ap-

proximation theory, as N →∞, the truncation errors converge

uniformly to zero, i.e. for any η > 0, there exists N∗ ∈ N+,

such that if N > N∗,

‖eN
Φ,i(θ)‖∞≤ η , ‖eN

K,i(θ)‖∞≤ η ,

‖eN
Ψ,i(ξ ,θ)‖∞≤ η , ‖eN

Λ,i(ξ ,θ)‖∞≤ η . (17)

Therefore, the key idea of data-driven PI is that Wj,i( j =
0, · · · ,3) and Uj,i( j = 0,1) should be approximated by the

data collected from system (1). Define ϒN
i as the composite

vector of the weighting matrices, i.e.

ϒN
i =

[
W�

0,i,vec�(W N
1,i),vec�(W N

2,i),vec�(W N
3,i)

U�
0,i+1,vec�(UN

1,i+1)
]�

.
(18)

Let ϒ̂N
i be the approximation of ϒN

i . Then, if ϒ̂N
i is obtained,

the approximations P̂j,i( j = 0,1,2), K̂0,i+1 and K̂1,i+1(θ) can

be reconstructed according to (16) and (18). The details of

the reconstruction is shown in [24, Equations (35) and (36)].

As a consequence, ûi(xt), the approximation of ui(xt), can

be expressed as

ûi(xt) =−K̂0,ix(t)−
∫ 0

−τ
K̂1,i(θ)xt(θ)dθ . (19)

Based on the approximations in (16), (15) is transferred
to a linear equation with respect to ϒ̂N

i . Then, the unknown
vector ϒN

i is approximated by linear regression. In detail, let
v̂i = u− ûi be the approximation of vi with ûi. ũi = ûi − ui
denotes the deviation between the policies of model-based
PI and data-driven PI at the ith iteration. Define the data-
constructed matrices

ΓΦxx(t) =
∫ 0

−τ
Φ�(θ)⊗ x�t (θ)⊗ x�(t)dθ ,

ΓΨxx(t) =
∫ 0

−τ

∫ 0

−τ
Ψ�(ξ ,θ)⊗vecd�(xt(ξ ),xt(θ))dξ dθ ,

ΓΛxx(t) =
∫ 0

−τ

∫ 0

−τ
Λ�(ξ ,θ)⊗vecp�(xt(ξ ),xt(θ))dξ dθ , (20)

Gxv̂i,k =
∫ tk+1

tk
(x�(t)⊗ v̂�i (t))(In ⊗R)dt,

GΦxv̂i,k =
∫ tk+1

tk

∫ 0

−τ
Φ�(θ)⊗ ((x�t (θ)⊗ v̂�i (t))(In ⊗R))dθdt.

With the collected data, following variables are defined

Mi,k =
[
vecv�(x(t))|tk+1

tk ,2ΓΦxx|tk+1
tk ,ΓΨxx(t)|tk+1

tk ,

ΓΛxx(t)|tk+1
tk ,−2Gxv̂i,k,−2GΦxv̂i,k

]
,

Yi,k =−
∫ tk+1

tk
x�Qx+ û�i Rûidt,

Ei,k = [2ε1,i(t)+ ε2,i(t)+ ε3,i(t)]
tk+1
t=tk

−2ψi,k −2ρ0
i,k

−2ρ1
i,k −ρ2

i,k,

Mi =
[
M�

i,1, · · · ,M�
i,k, · · · ,M�

i,L

]�
,

Yi =
[
Yi,1, · · · ,Yi,k, · · · ,Yi,L

]�
,

Ei =
[
Ei,1, · · · ,Ei,k, · · · ,Ei,L

]�
,

(21)

where ε j,i ( j = 1,2,3), ψi,k, ρ0
i,k, ρ1

i,k, and ρ2
i,k are induced by

the truncation errors. Their detailed expressions are in [24,

Equations (38) and (39)].

By the definitions of Mi,k, Yi,k and Ei,k in (21), (15) is

finally transferred as a linear equation with respect to ϒN
i

(See details in [24, Equation (38)]),

Mi,kϒN
i +Ei,k = Yi,k. (22)

Combining equations of (22) from k = 1 to k = L, we have

MiϒN
i +Ei = Yi. (23)

Let Êi be defined such that

Êi = Yi −Miϒ̂N
i . (24)

Assumption 2. Given N ∈N+, there exist L∗ ∈N+ and α >
0, such that for all L > L∗ and i ∈ N+,

1

L
M�

i Mi ≥ αI. (25)

Remark 3. Assumption 2 is reminiscent of the persistent
excitation (PE) condition [26], [27]. As in the literature of
ADP-based data-driven control [3], [4], one can fulfill it by
means of added exploration noise, such as sinusoidal signals
and random noise.

Under Assumption 2, the method of least squares is

applied to minimize Ê�
i Êi, i.e. Ê�

i Êi is minimized by

ϒ̂N
i = M†

i Yi. (26)

With the result of ϒ̂N
i in (26), P̂j,i( j = 0 · · ·2) and K̂ j,i( j =

0,1) can be reconstructed by (16) and (18).

The proposed algorithm is shown in Algorithm 1. From

(21), Mi and Yi are constructed by the input-state trajectory

data of system (1). Hence, the system matrices are not

involved in the computation of ϒ̂N
i . Furthermore, since the

behavior policy u is different from the updated policy ui,

Algorithm 1 is called off-policy.

Remark 4. Due to the property that P�
2,i(ξ ,θ) = P2,i(θ ,ξ ),

the diagonal elements of P2,i satisfy diag(P2,i(ξ ,θ)) =
diag(P2,i(θ ,ξ )). Hence, the vector of basis functions Ψ
should satisfy Ψ(ξ ,θ) = Ψ(θ ,ξ ) to approximate such func-
tions.
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Algorithm 1 Data-driven Policy Iteration

1: Choose the vector of the basis functions Φ(θ), Ψ(ξ ,θ),
and Λ(ξ ,θ).

2: Choose L ∈N+ and the sampling instance tk ∈ [t1, tL+1].
3: Choose input u = u1 + e, with e an exploration signal,

to explore the system (1) and collect the input-state data

u(t),x(t), t ∈ [0, tL+1]. Set the threshold δ > 0 and i = 1.

4: repeat
5: Given ûi and the data, construct Mi and Yi by (21).

6: Get ϒ̂N
i by solving (26).

7: Get K̂0,i+1 and K̂1,i+1 from ϒ̂N
i .

8: ûi+1(xt) =−K̂0,i+1x(t)− ∫ 0
−τ K̂1,i+1(θ)xt(θ)dθ

9: i ← i+1

10: until |ϒ̂N
i − ϒ̂N

i−1|< δ .

11: Use ûi(xt) as the control input.

Lemma 2. Under Assumption 2, and given an admissible
controller u1(xt) = −K0,1x(t)− ∫ 0

−τ K1,1(θ)xt(θ)dθ , for any
i ∈N+ and η > 0, there exists some positive integer N∗ > 0,
such that if N > N∗,

|P̂0,i −P0,i|≤ η , ‖P̂1,i −P1,i‖∞≤ η , ‖P̂2,i −P2,i‖∞≤ η
|K̂0,i+1 −K0,i+1|≤ η , ‖K̂1,i+1 −K1,i+1‖∞≤ η . (27)

Proof. This lemma is proved by induction. When i = 1,

û1 = u1 and ũ1 = 0. Then, under Assumption 2, we have

limN→∞ ϒ̃N�
1 ϒ̃N

1 = 0. Hence, (27) holds for i = 1. Suppose

(27) holds for some i−1 ≥ 1. Consequently, limN→∞ ûi = ui.

Under Assumption 2, we have limN→∞ ϒ̃N�
i ϒ̃N

i = 0. Hence,

(27) holds for i. See the detailed proof at [24, Lemma 3].

Theorem 2. Given an admissible controller u1, for any η >
0, there exist integers i∗ > 0 and N∗∗ > 0, such that if N >N∗∗

|P̂0,i∗ −P∗
0 |≤ η , ‖P̂1,i∗ −P∗

1 ‖∞≤ η , ‖P̂2,i∗ −P∗
2 ‖∞≤ η ,

|K̂0,i∗+1 −K∗
0 |≤ η , ‖K̂1,i∗+1 −K∗

1‖∞≤ η . (28)

Proof. This theorem is from Lemma 2 and the triangle

inequality of the norm. See the details in [24, Theorem

2].

By Theorem 2, we see that K̂ j,i+1( j = 0,1) obtained by

Algorithm 1 converges to K∗
j ( j = 0,1) as the iteration step

of the algorithm and the number of basis functions tend to

infinity. Hence, the proposed data-driven PI solves Problem

1.

V. APPLICATION TO AUTONOMOUS DRIVING

Algorithm 1 is applied to design a learning-based con-

troller for a platoon of connected and autonomous vehicles

(CAVs) in mixed traffic environments to mitigate the effect of

human drivers’ reaction delay and to attenuate the stop-and-

go waves of traffic flow. This problem is studied by [28],

where a model-based LQ control is applied to design the

controller for CAVs.

A platoon consisting of two human-driven vehicles

(HDVs) and one autonomous vehicle (AV) is shown in Fig. 1.

Fig. 1: A platoon consisting of two HDVs and an AV.

Fig. 2: Convergence of K̂0,i and K̂1,i(θ) to K∗
0 and K∗

1 (θ).

The AV is at the last position. When there are sudden changes

in the traffic (e.g. the preceding vehicle is decelerating

suddenly), the HDV will make delayed reactions. That is why

a platoon consisting of HDVs is a time-delay system. In Fig.

1, hi denotes the bumper-to-bumper distance between the ith
vehicle and (i−1)th vehicle, and vi denotes the velocity of

the ith vehicle. Define the relative headway as Δhi = hi −h∗
and the relative velocity as Δvi = vi−v∗, where (h∗,v∗) is the

equilibrium of the platoon. The acceleration of the AV is the

control input of the platoon. Assuming the velocity of the

leading vehicle is constant, the system can be described as a

linear time-delay system (1) with x = [Δh2,Δv2,Δh3,Δv3]
�,

A =

⎡
⎢⎢⎣

0 −1 0 0

0 0 0 0

0 1 0 −1

0 0 0 0

⎤
⎥⎥⎦, Ad =

⎡
⎢⎢⎣

0 0 0 0

α2c∗ −(α2 +β2) 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎦,

and B =
[
0 0 0 1

]�
, where α2 and β2 denote the

human driver parameters and c∗ is the derivative of the

range policy [14], [28]. In the simulation, the human pa-

rameters are set as α2 = 0.1, β2 = 0.2, and c∗ = 1.5708.

The human reaction delay is τ = 1.2s. The weighting

matrix in (3) is Q = diag([1,1,10,10]), and R = 1. The

initial state of the platoon is [x0(θ)]i = 30∑10
j=1 sinwi, jθ +

[χ]i for i = 1,2,3,4. wi, j and [χ]i are randomly sam-

pled from the uniform distributions over [−10,10] and

[−30,30], respectively. The initial admissible controller

is û1(xt) = −K0,1x(t) − ∫ 0
−τ K1,1(θ)xt(θ)dθ , with K0,1 =[−0.0897 −0.2772 −0.3 0.5196

]
and K1,1(θ) = 0. The

added exploratory noise in Algorithm 1 is e(t) =∑200
i=1 sinωit.

ωi is randomly sampled from an independent uniform dis-

tribution over [−100,100]. u = u1 + e is applied to col-

lect the input-state data from the system. The basis func-

tions in (16) are Φ(θ) = [1,θ ,θ 2,θ 3]�, Ψ(ξ ,θ) = [1,ξ +
θ ,ξ 2+θ 2,ξ θ ,ξ 3+θ 3,ξ 2θ +ξ θ 2,ξ 3θ +ξ θ 3,ξ 2θ 2,ξ 3θ 2+
ξ 2θ 3,ξ 3θ 3]�, and Λ(ξ ,θ) = [1,θ ,θ 2,θ 3]�⊗ [1,ξ ,ξ 2,ξ 3]�.

The approach in [28] is adopted to calculate the optimal

values of K∗
0 and K∗

1 , where the precise model is assumed

known.
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Fig. 3: Comparison between the initial controller and the

ADP controller.

Fig. 2 shows the relative error of the obtained gain K̂0,i
and K̂1,i(θ) at each iteration. It is seen that the relative errors

converge after the tenth iteration. This is consistent with

Theorem 2. In particular, at the tenth iteration, the relative

errors are
|K̂0,10−K∗

0 |
|K∗

0 | = 0.0008 and
||K̂1,10−K∗

1 ||∞
||K∗

1 ||∞ = 0.0137.

Hence, the optimal controller is well approximated by the

proposed data-driven PI algorithm. The comparison between

the learned controller at the tenth iteration and the initial

controller is conducted. Since the AV is at the last position of

the platoon, the movement of HDVs cannot be influenced by

the AV. Hence, with different controllers, the evolution of Δh2

and Δv2 is same. With the initial controller û1 and the learned

ADP controller û10, the AV’s relative headway Δh3 and

relative velocity Δv3 are shown in Fig. 3. It is seen that with

the ADP controller, the state converges to the equilibrium

more quickly. Hence, the stop-and-go waves of the AV is

attenuated by the proposed data-driven PI algorithm. The

values of the performance index are J(x0, û1) = 1.46 · 105

and J(x0, û10) = 4.73 · 104. The proposed data-driven PI

algorithm minimizes the performance index and improves

the performance of the AV in the platoon.

VI. CONCLUSIONS

In this paper, we have proposed innovative model-based

and data-driven PI algorithms for linear time-delay systems.

The proposed model-based PI can be considered as an exten-

sion of the celebrated Kleinman’s PI [17] to linear time-delay

systems. Based on the model-based PI, and only using input-

state trajectories of the system, a data-driven PI algorithm

has been proposed to approximate the value functional and

control law at each iteration. It is rigorously shown that the

value functional and control law generated at each iteration

converge to the optimal solution. Furthermore, the proposed

adaptive optimal control method is applied to CAVs in mixed

traffic environments to attenuate the stop-and-go waves and

mitigate the effect of human driver reaction delays.
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