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Abstract
We propose a novel and unified framework for
change-point estimation in multivariate time series.
The proposed method is fully non-parametric, robust to
temporal dependence and avoids the demanding con-
sistent estimation of long-run variance. One salient and
distinct feature of the proposed method is its versatil-
ity, where it allows change-point detection for a broad
class of parameters (such as mean, variance, correlation
and quantile) in a unified fashion. At the core of our
method, we couple the self-normalisation- (SN) based
tests with a novel nested local-window segmentation
algorithm, which seems new in the growing literature
of change-point analysis. Due to the presence of an
inconsistent long-run variance estimator in the SN test,
non-standard theoretical arguments are further devel-
oped to derive the consistency and convergence rate of
the proposed SN-based change-point detection method.
Extensive numerical experiments and relevant real
data analysis are conducted to illustrate the effective-
ness and broad applicability of our proposed method
in comparison with state-of-the-art approaches in the
literature.
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1 INTRODUCTION

Change-point detection has been identified as one of the major challenges for modern data appli-
cations (National Research Council, 2013). There is a vast literature on change-point estimation
and testing in statistics, in part due to its broad applications in bioinformatics, climate science,
economics, finance, genetics, medical science and signal processing among many other areas.
See Csörgő and Horváth (1997), Brodsky and Darkhovsky (2013) and Tartakovsky et al. (2014)
for book-length treatments of the subject. We also refer to Aue and Horváth (2013), Casini and
Perron (2019) and Truong et al. (2020) for excellent reviews.

In this paper, we study the problem of time series segmentation, also known as
(offline) change-point estimation, where the task is to partition a sequence of potentially
non-homogeneous ordered observations into piecewise homogeneous segments. Many
change-point problems arise within a time series context (e.g. climate, epidemiology, economics
and financial data), where there is a natural temporal ordering in the observations. Although
temporal dependence is the norm rather than the exception for time series, most literature in
change-point analysis assume and require independence of observations {Yt}nt=1 over time for
methodological and theoretical validity; see for example Olshen et al. (2004), Killick et al. (2012),
Matteson and James (2014), Fryzlewicz (2014) and Baranowski et al. (2019) among others. One
stream of literature addresses temporal dependence via the assumption of parametric models,
see Davis et al. (2006) and Yau and Zhao (2016) for change-point detection in AR process and
Fryzlewicz and Subba-Rao (2014) in ARCH process. However, parametric approaches generally
require stronger conditions and potential violation of parametric assumptions can inevitably cast
doubts on the estimation result.

Existing non-parametric approaches for change-point estimation in temporally dependent
observations primarily focus on first or second-order moments, see Bai and Perron (1998),
Eichinger and Kirch (2018) for change-point estimation in mean, Aue et al. (2009), Preuss
et al. (2015) in (auto)-covariance, and Cho and Fryzlewicz (2012), Casini and Perron (2021a) in
spectral density function (thus second-order properties). However, for many applications, the
key interest can go beyond mean or covariance. For example, detecting potential changes in
extreme quantiles is critical for monitoring systemic risk (i.e. Value-at-Risk) in finance and for
studying evolving behaviour of severe weather systems such as hurricanes in climate science.
Moreover, existing non-parametric methods are mostly designed for detecting only one specific
type of change (e.g. mean or variance) and cannot be universally used for examining changes in
different aspects of the data, which may limit its applications and cause inconvenience of imple-
mentation for practitioners. Additionally, existing nonparametric procedures typically involve
certain tuning or smoothing parameters, such as the bandwidth parameter involved in the con-
sistent estimation of the long-run variance (LRV), and how to choose these tuning parameters is
important yet highly challenging in practice.

To fill in the gap in the literature, we propose a new multiple change-point estimation
framework that is fully non-parametric, robust to temporal dependence, enjoys effortless
tuning, and works universally for various parameters of interest for a multivariate time
series {Yt}nt=1 where Yt ∈ Rp with a fixed dimension p ≥ 1. Specifically, denote Ft as the
cumulative distribution function (CDF) of Yt, the proposed procedure allows change-point
detection for any 𝜃 such that 𝜃 = 𝜃(Ft), where 𝜃(⋅) is a functional that takes value in Rd

with d ≥ 1. This is a broad framework that covers important quantities such as mean, vari-
ance, quantile, (auto)-correlation and (auto)-covariance among others, see Künsch (1989) and
Shao (2010).
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As in the standard change-point literature, we assume the change happens in a piecewise
constant fashion. Specifically, we assume {Yt}nt=1 is a piecewise stationary time series and there
existmo ≥ 0 unknownnumber of change-points 0 < k1 < · · · < kmo < n that partition {Yt}nt=1 into
mo + 1 stationary segments. Define k0 = 0 and kmo+1 = n, the ith segment contains stationary
observations {Yt}

ki
t=ki−1+1

that share common behaviour characterised by 𝜃i (e.g. mean, variance,
correlation, quantile), where we require 𝜃i ≠ 𝜃i+1 for i = 1, … ,mo due to the structural break.
Our primary interest is to recover the unknown number and locations of the change-points.

To achieve broad applicability and robustness against temporal dependence, our proposed
multiple change-point estimation method is built upon self-normalisation (SN, hereafter), a
nascent inference technique for time series (Shao, 2010, 2015). We note that since its first pro-
posal in Shao (2010), SN has been extended to retrospective change-point testing by Shao and
Zhang (2010), Hoga (2018), Betken and Wendler (2018), Zhang and Lavitas (2018) and Dette
et al. (2020), and to sequential change-point monitoring by Dette and Gösmann (2020) and Chan
et al. (2021). However, the primary focus of these papers is to construct SN-based change-point
testing procedures (either retrospective or sequential) but not change-point estimation. Com-
pared to change-point testing, change-point estimation is a much more challenging task both
methodologically and theoretically: it further requires the estimation of the unknown number
and locations of change-points, which involves substantially different techniques and analysis.

Indeed, the use of SN for time series segmentation (i.e. multiple change-point estima-
tion) seems largely unexplored, with the exception of (Jiang et al., 2020, 2022) for piecewise
linear and quantile trend models designed for COVID-19 time series. One notable reason
for the scarcity of SN-based time series segmentation algorithms is that, unlike the classical
CUSUM-based change-point test, the SN-based change-point testing cannot be easily extended
to multiple change-point estimation by combining with the standard binary segmentation
algorithm (Vostrikova, 1981). Such a combination simply fails due to the potential inflation
of the self-normaliser under the presence of multiple change-points. We discuss this point in
more details later in Section 3 and provide further illustration via both theory and numerical
experiments in Section S.1 of Appendix S1.

To bypass this difficulty, we propose a novel nested local-window segmentation algorithm,
which is then combined with an SN test to achieve multiple change-point estimation. We name
the procedure SNCP. Through a series of carefully designed nested local-windows, the proposed
procedure can isolate each true change-point adaptively and thus achieves respectable detec-
tion power and estimation accuracy. The statistical and computational efficiency of the nested
local-window segmentation algorithm is further illustrated via extensive numerical compari-
son with popular segmentation algorithms such as SaRa in Niu and Zhang (2012), WBS in
Fryzlewicz (2014) and SBS in Kovacs et al. (2020).

In addition to methodological advances, new theoretical arguments based on the partial
influence functions (Pires & Branco, 2002) are further developed to establish the consistency
and convergence rate of the proposed change-point estimation procedure, which seems to be
the first in the SN literature. The proof is non-standard and built on a subtle analysis of the
behaviour of SN-based test statistic around change-points. It differs from existing techniques
in the change-point literature due to the presence of the self-normaliser (an inconsistent LRV
estimator) and is of independent interest.

To our best knowledge, the proposed method (SNCP) is the first to address multiple change
point estimation for a general parameter in the time series setting. One salient and distinct feature
of SNCP is its versatility: it allows the user to examine potential change in virtually any parameter
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of interest in an effortless fashion. This is valuable as in practice, the ground truth is unknown and
it is important to examine the behaviour change of the data via different angles. In addition, due to
its versatility and robustness to temporal dependence, SNCP can serve as a numerically credible
and theoretically valid benchmark for almost all algorithms designed for multiple change-point
estimation in a fixed-dimensional time series, which is of interest to both practical applications
and academic research.

The rest of the paper is organised as follows. We first provide background of SN and introduce
the SN-based detection method for single change-point estimation in Section 2. Building upon a
novel nested local-window segmentation algorithm, Section 3 proposes a unified SN-based frame-
work (SNCP) for multiple change-point estimation and further studies its theoretical properties.
Extensive numerical experiments are conducted in Section 4 to demonstrate the promising per-
formance of SNCP when compared with state-of-the-art methods for change-point estimation in
mean, variance, quantile of univariate time series and correlation and covariancematrix of multi-
variate time series. Section 5 concludes. Technical proofs and additional simulation and real data
application results can be found in Appendix S1.

Some notations used throughout the paper are defined as follows. LetD[0, 1] denote the space
of functions on [0, 1] which are right continuous with left limits, endowed with the Skorokhod
topology (Billingsley, 1968). We use⇒ to denote weak convergence in D[0, 1] or more generally
in Rm-valued function space Dm[0, 1], where m ∈ N. We use



−−→ to denote convergence in dis-
tribution. We use || ⋅ ||2 to denote the l2 norm of a vector and use || ⋅ || to denote the spectral norm
of a matrix.

2 SINGLE CHANGE-POINT ESTIMATION

In this section, we provide some background on the SN test and propose an SN test-basedmethod
for single change-point estimation, which serves as a building block for the proposed multiple
change-point estimation procedure in Section 3. Model assumptions and consistency results are
discussed in details to provide intuition and foundation formore involved results in Section 3. For
ease of presentation, in the following we assume d = 1, in other words, the parameter of interest
𝜃 is univariate, and postpone the results for the multivariate case of d > 1 to Section 3.3.

2.1 An SN-based estimation procedure

We start with single change-point estimation in a general parameter 𝜃 = 𝜃(Ft) for a univariate
time series {Yt}nt=1, where Ft denotes the CDF of Yt and 𝜃(⋅) is a general functional. Under the no
change-point scenario, {Yt}nt=1 is a stationary time series. Under the single change-point alterna-
tive, we follow the framework of Dette and Gösmann (2020) and assume {Yt}nt=1 is generated by

Yt =

{
Y (1)
t , 1 ≤ t ≤ k1

Y (2)
t , k1 + 1 ≤ t ≤ n,

(1)

where {Y (i)
t }t∈Z is a stationary time series with Y (i)

t ∼ F(i) for i = 1, 2. Thus we have
Ft = F(1)1(t ≤ k1) + F(2)1(t > k1). Denote 𝜃1 = 𝜃(F(1)) and 𝜃2 = 𝜃(F(2)), we have 𝛿 = 𝜃2 − 𝜃1 ≠ 0
and the change-point k1 = ⌊n𝜏1⌋ with 𝜏1 ∈ (0, 1). Note that the dependence between {Y (1)

t } and
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{Y (2)
t } is deliberately left unspecified, as the validity of the proposed method does not rely on the

specification of the dependence (see Assumption 1(i) for more details).
To detect the existence and further estimate the location of the (potential) single change-point

k1 = ⌊n𝜏1⌋, we propose an SN-based testing approach. Specifically, we define

SNn = max
k=1,… ,n−1

Tn(k), Tn(k) = Dn(k)2∕Vn(k), (2)

where

Dn(k) =
k(n − k)
n3∕2

(
𝜃1,k − 𝜃k+1,n

)
,

Vn(k) =
k∑

i=1

i2(k − i)2

n2k2
(𝜃1,i − 𝜃i+1,k)2 +

n∑

i=k+1

(n − i + 1)2(i − k − 1)2

n2(n − k)2
(
𝜃i,n − 𝜃k+1,i−1

)2
, (3)

and for any 1 ≤ a < b ≤ n, 𝜃a,b = 𝜃(F̂a,b) where F̂a,b is the empirical distribution of {Yt}bt=a. In
other words, 𝜃a,b denotes the non-parametric estimator of 𝜃 based on the sub-sample {Yt}bt=a.

When 𝜃(⋅) is the mean functional, that is, 𝜃(Ft) = ∫ xFt(dx), the newly defined contrast-based
test SNn in (2) reduces to the CUSUM-based SN test statistic in Shao and Zhang (2010)
(cf. equation 4 therein). However, for a non-linear functional 𝜃(⋅), such as variance, correlation
and quantile, SNn is not equivalent to the CUSUM-based counterpart and is preferred due to its
contrast nature. We refer to Zhang and Lavitas (2018) for more discussion.

Built upon the test statistic defined in (2), the SN-based change-point detection procedure
proceeds as follows. For a pre-specified threshold Kn, we declare no change-point if SNn ≤ Kn.
Given that SNn exceeds the threshold, we estimate the single change-point location via

k̂ = arg max
k=1,… ,n−1

Tn(k).

This SN-based procedure provides a general and unified change-point estimation framework,
as it can be implemented for any functional 𝜃(⋅) with a non-parametric estimator based on the
empirical distribution.

2.2 Assumptions and theoretical results

To establish the consistency of the SN-based estimation procedure under the general functional
setting (1), the key is to track the asymptotic behaviour of 𝜃a,b for 1 ≤ a < b ≤ n. To achieve this,we
operate under the framework of approximately linear functional, which covers important quan-
tities such as mean, variance, covariance, correlation and quantile (Künsch, 1989; Shao, 2010).

Specifically, we assume the sub-sample estimator 𝜃a,b admits the following expansion on the
stationary time series {Y (i)

t }, i = 1, 2, where

𝜃a,b = 𝜃1 +
1

b − a + 1

b∑

t=a
𝜉1

(

Y (1)
t

)

+ r(1)a,b, for b ≤ k1,

𝜃a,b = 𝜃2 +
1

b − a + 1

b∑

t=a
𝜉2

(

Y (2)
t

)

+ r(2)a,b, for a > k1. (4)
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In other words, 𝜃a,b is approximately linear when the sub-sample {Yt}bt=a is stationary. Note
that 𝜉1

(
Y (1)
t

)
and 𝜉2

(
Y (2)
t

)
are indeed the influence functions of the functional 𝜃(⋅) (Hampel

et al., 1986), which is the leading term for asymptotic behaviour of 𝜃a,b, and r(1)a,b, r
(2)
a,b are the

remainder terms.
To further regulate the behaviour of 𝜃a,b when the sub-sample {Yt}bt=a is a mixture of two sta-

tionary segments, we utilise the concept of partial influence functions originated from the robust
statistics literature (Pires & Branco, 2002). Specifically, for a ≤ k1 < b, we assume

𝜃a,b = 𝜃(𝜔a,b) +
1

b − a + 1

[ k1∑

t=a
𝜉1

(

Y (1)
t , 𝜔a,b

)

+
b∑

t=k1+1
𝜉2

(

Y (2)
t , 𝜔a,b

)
]

+ ra,b(𝜔a,b), (5)

where𝜔a,b =
(

𝜔
(1)
a,b, 𝜔

(2)
a,b

)⊤

=
(
k1−a+1
b−a+1

,
b−k1
b−a+1

)⊤

denotes the proportion of each stationary segment

in {Yt}bt=a, 𝜃(𝜔a,b) denotes 𝜃(⋅) evaluated at the mixture distribution F𝜔a,b = 𝜔
(1)
a,bF

(1) + 𝜔
(2)
a,bF

(2) and

ra,b(𝜔a,b) is the remainder term. The terms 𝜉1
(

Y (1)
t , 𝜔a,b

)

and 𝜉2

(

Y (2)
t , 𝜔a,b

)

are related to the
partial influence functions of the functional 𝜃(⋅) evaluated at the mixture distribution F𝜔a,b . See
detailed discussion later.

Note that the expansion (5) generalises (4) under the single change-point scenario. Specifi-
cally, define 𝜔a,b = (1, 0)⊤ and (0, 1)⊤ for b ≤ k1 and a > k1, respectively, (4) can be viewed as a
special case of (5) where the mixture distribution is pure such that 𝜉1

(
Y (1)
t

)
= 𝜉1

(

Y (1)
t , (1, 0)⊤

)

,

r(1)a,b = ra,b
(
(1, 0)⊤

)
and 𝜉2

(

Y (2)
t

)

= 𝜉2

(

Y (2)
t , (0, 1)⊤

)

, r(2)a,b = ra,b
(
(0, 1)⊤

)
, respectively.

We now work out the explicit formulation of the expansion (5) under the framework of par-
tial influence function (Pires & Branco, 2002). Denote the mixture weight 𝜔 =

(
𝜔
(1)
, 𝜔

(2))⊤ such
that𝜔(i) ∈ [0, 1], i = 1, 2 and𝜔(1) + 𝜔

(2) = 1. Denote 𝜃(𝜔,F(1)
,F(2)) ∶= 𝜃

(
𝜔
(1)F(1) + 𝜔

(2)F(2)) as the
functional 𝜃(⋅) evaluated at the mixture F𝜔 ∶= 𝜔

(1)F(1) + 𝜔
(2)F(2). Definition 1 defines the partial

influence function as in Pires and Branco (2002).

Definition 1. The partial influence functions of the functional 𝜃(F𝜔) = 𝜃
(
𝜔,F(1)

,F(2)) with
relation to F(1) and F(2), respectively, are given by

IF1
(
y, 𝜃(𝜔,F(1)

,F(2))
)
= lim

𝜖→0
𝜖
−1 [

𝜃
(
𝜔, (1 − 𝜖)F(1) + 𝜖𝛿y,F(2)) − 𝜃

(
𝜔,F(1)

,F(2))]
,

IF2
(
y, 𝜃(𝜔,F(1)

,F(2))
)
= lim

𝜖→0
𝜖
−1 [

𝜃
(
𝜔,F(1)

, (1 − 𝜖)F(2) + 𝜖𝛿y
)
− 𝜃

(
𝜔,F(1)

,F(2))]
,

provided the limits exist, where 𝛿y is the Dirac mass at y.

To understand the partial influence functions, define 𝜁 = 𝜔
(1)
𝜖, by Definition 1, we have

IF1
(
y, 𝜃

(
𝜔,F(1)

,F(2))) = 𝜔
(1) lim

𝜁→0
𝜁
−1 [

𝜃
((
𝛿y − F(1))

𝜁 + F𝜔
)
− 𝜃 (F𝜔)

]
= 𝜔

(1)
𝜉1(y, 𝜔),

where 𝜉1(y, 𝜔) is the Gâteaux derivative of 𝜃 (F𝜔) in the direction 𝛿y − F(1). Similarly,
IF2

(
y, 𝜃(𝜔,F(1)

,F(2))
)
= 𝜔

(2)
𝜉2(y, 𝜔), where 𝜉2(y, 𝜔) is the Gâteaux derivative of 𝜃 (F𝜔) in the

direction 𝛿y − F(2).
To establish the expansion (5), note that 𝜃a,b = 𝜃(F̂a,b), where F̂a,b denotes the empirical CDF

based on the sub-sample {Yt}bt=a. The key observation is that F̂a,b = 𝜔
(1)
a,bF̂a,k1 + 𝜔

(2)
a,bF̂k1+1,b with

𝜔a,b =
(
k1−a+1
b−a+1

,
b−k1
b−a+1

)⊤

. In other words, F̂a,b can be viewed as a mixture of two empirical CDFs
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F̂a,k1 and F̂k1+1,b based on stationary segments with CDF F
(1) and F(2) respectively. Thus, by the

results in Pires and Branco (2002), we have

𝜃
(
F̂a,b

)
= 𝜃 (F𝜔a,b) + 1

k1 − a + 1

k1∑

t=a
IF1

(

Y (1)
t , 𝜃

(
𝜔a,b,F(1)

,F(2))
)

+ 1
b − k1

b∑

t=k1+1
IF2

(

Y (2)
t , 𝜃

(
𝜔a,b,F(1)

,F(2))
)

+ R
(

F̂a,b − F𝜔a,b

)

,

where R
(
F̂a,b − F𝜔a,b

)
denotes the remainder term. The expansion (5) follows immediately by

substituting the partial influence functions with the Gâteaux derivatives 𝜉1(y, 𝜔a,b) and 𝜉2(y, 𝜔a,b).
We proceed by imposing the following Assumptions 1–3 on the approximately linear func-

tional 𝜃(⋅), which are further verified in Section S.4 of Appendix S1 for the smooth function
model (including mean, variance, (auto)-covariance, (auto)-correlation) and in Section S.5 of
Appendix S1 for quantile. We refer to Remark 1 in Section 3.2 for more detailed discussion on the
verification of assumptions.

Assumption 1. (i) For some 𝜎1 > 0 and 𝜎2 > 0, we have

1
√
n

[nr]∑

t=1

(

𝜉1
(
Y (1)
t

)
, 𝜉2

(
Y (2)
t

))

⇒
(
𝜎1B(1)(r), 𝜎2B(2)(r)

)
,

where B(1)(⋅) and B(2)(⋅) are standard Brownian motions.

(ii) supk<k1
|
|
|
|

∑k1
t=k+1𝜉1

(

Y (1)
t , 𝜔k+1,n

)

+
∑n

t=k1+1
𝜉2

(

Y (2)
t , 𝜔k+1,n

)|
|
|
|
= Op(n1∕2),

supk>k1
|
|
|

∑k1
t=1𝜉1

(
Y (1)
t , 𝜔1,k

)
+

∑k
t=k1+1

𝜉2
(
Y (2)
t , 𝜔1,k

)|
|
|
= Op(n1∕2).

Assumption 2. sup1≤k≤n k|r1,k(𝜔1,k)| + sup1≤k≤n(n − k + 1)|rk,n(𝜔k,n)| = op(n1∕2).

Assumption 1 regulates the behaviour of the (partial) influence function 𝜉1(⋅) and 𝜉2(⋅). Specif-
ically, Assumption 1(i) requires the invariance principle to hold for each stationary segment. Note
that the dependence of the two Brownian motions B(1)(⋅) and B(2)(⋅) are left unspecified as we do
not require a specific dependence structure on

{
Y (1)
t

}
and

{
Y (2)
t

}
. Assumption 1(ii) are tailored

to regulate 𝜃a,b estimated on a mixture of two stationary segments. Assumption 2 requires that
the remainder term is asymptotically negligible and is a commonly used assumption in the SN
literature (Shao, 2010, 2015).

Assumption 3. Denote 𝜃(𝜔) = 𝜃
(
𝜔
(1)F(1) + 𝜔

(2)F(2)), where 𝜔 =
(
𝜔
(1)
, 𝜔

(2))⊤ is the mix-
ture weight with 𝜔

(i) ∈ [0, 1], i = 1, 2 and 𝜔
(1) + 𝜔

(2) = 1. There exist some constants
0 < C1 < C2 < ∞ such that for any mixture weight 𝜔, we have

C1𝜔(2)|𝜃1−𝜃2| ≤ |𝜃1−𝜃(𝜔)| ≤ C2𝜔(2)|𝜃1−𝜃2| and C1𝜔(1)|𝜃1−𝜃2| ≤ |𝜃2−𝜃(𝜔)| ≤ C2𝜔(1)|𝜃1−𝜃2|.

Assumption 3 regulates the smoothness of 𝜃(𝜔). Intuitively, it means that the functional 𝜃(⋅)
can distinguish themixture distribution𝜔(1)F(1) + 𝜔

(2)F(2) fromF(1) andF(2). Formean functional,
we have 𝜃(𝜔) = 𝜔

(1)
𝜃1 + 𝜔

(2)
𝜃2, thus we can set C1 = C2 = 1 as 𝜃(𝜔) is linear in 𝜔.

Assumption 4. n𝛿2 → ∞ as n → ∞, and Kn satisfies Kn = (n𝛿2)𝜅 for some 𝜅 ∈
( 1
2
, 1

)
.
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Assumption 4 quantifies the asymptotic order of the change size 𝛿 and the threshold Kn.
Under Assumptions 1–4, Theorem 1 gives the consistency results of the SN-based change-point
estimation method for approximately linear functionals.

Theorem 1. (i)Under the no change-point scenario, suppose Assumptions 1(i) and 2 hold, we have
SNn



−−→G = supr∈[0,1] {B(r) − rB(1)}2∕V (r),where B(⋅) denotes a standard Brownianmotion
and V(r) = ∫

r
0
[
B(s) − (s∕r)B(r)

]2ds + ∫
1
r
[
B(1) − B(s) − (1 − s)∕(1 − r){B(1) − B(r)}

]2ds.

(ii) Under the one change-point scenario, suppose Assumptions 1–4 hold, we have

lim
n→∞

P
(

Tn(k̂) > Kn and |k̂ − k1| ≤ 𝜄n

)

= 1,

for any sequence 𝜄n such that 𝜄n∕n → 0 and 𝜄
−2
n 𝛿

−2n → 0 as n → ∞.

Theorem 1(i) indicates that the asymptotic distribution of SNn for a general functional 𝜃(⋅)
coincides with the asymptotic distribution of the CUSUM-based SN test for mean (see theorem
3.1 in Shao & Zhang, 2010). This implies that the same threshold Kn can be used to control false
positives (i.e. Type-I error) for change-point detection in various parameters and thus greatly sim-
plifies the implementation of the proposed method. In practice, we recommend to set Kn as the
90% or 95% quantile of G, which can be obtained via simulation as G is pivotal. See Shao and
Zhang (2010) for tabulated critical values of G.

Theorem 1(ii) gives the convergence rate of the estimated change-point k̂, providing a uni-
fied theoretical justification of the SN-based method for a broad class of functionals. Due to the
presence of the self-normaliser Vn(k), which is complex and further varies by k, non-standard
technical arguments different from existing techniques in the change-point literature are devel-
oped to establish the consistency result. It involves a simultaneous analysis of the contrast statistic
Dn(k) and the self-normaliser Vn(k). In general, the localization error rate of SNCP is not optimal
(at least for change in mean). However, a simple local refinement procedure can be performed to
help achieve the optimal rate. We refer to the discussion following Theorem 2 in Section 3.2 for
more details on this matter.

The traditional CUSUM-based estimation procedure in the change-point literature typ-
ically admits the form maxk=1,… ,n−1 |Dn(k)|∕𝜎n, where theoretical results are derived under
the assumption that 𝜎n is a consistent estimator of the LRV, leading to less involved techni-
cal analysis than the proposed SN-based estimation. However, in practice, the construction
of a consistent 𝜎n involves a bandwidth tuning parameter that is difficult to select, especially
under the presence of change-points. For example, in the mean case, using a data-driven
bandwidth with the estimation-optimal bandwidth formula in Andrews (1991) could lead to
non-monotonic power under the change-point alternative and large size distortion under the
null, see Crainiceanu and Vogelsang (2007) and Shao and Zhang (2010). Casini et al. (2021)
and Casini and Perron (2021b) further provide a comprehensive theoretical analysis of
such phenomenon based on Edgeworth expansion. Additionally, different construction of
𝜎n is required for different functional 𝜃(⋅), which can be highly involved and non-trivial
for parameters such as correlation and quantile, making the practical implementation
challenging.

In contrast, thanks to the self-normaliser Vn(k), the proposed SN-based procedure avoids the
challenging estimation of LRVandprovides a robust framework thatworks universally for a broad
class of functionals under temporal dependence.
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3 MULTIPLE CHANGE-POINT ESTIMATION

In this section, we further extend the proposed SN-based test to multiple change-point estima-
tion. As in standard change-point literature, we assume {Yt}nt=1 is a piecewise stationary time
series and there exist mo ≥ 0 unknown number of change-points 0 < k1 < · · · < kmo < n that
partition {Yt}nt=1 into mo + 1 stationary segments. Define k0 = 0 and kmo+1 = n, the ith segment
contains stationary observations {Yt}

ki
t=ki−1+1

that share common behaviour characterised by 𝜃i,
for i = 1, … ,mo + 1.

More specifically, we operate under the following data generating process for {Yt}nt=1 such that

Yt = Y (i)
t , ki−1 + 1 ≤ t ≤ ki, for i = 1, … ,mo + 1, (6)

where {Y (i)
t }t∈Z is a stationary time series with CDF F(i) and we require 𝜃i = 𝜃(F(i)) ≠ 𝜃i+1 =

𝜃(F(i+1)) for i = 1, … ,mo due to the structural break. Our primary interest is to recover the
unknown number and locations of the change-points.

To proceed, we first introduce some notations. For 1 ≤ t1 < k < t2 ≤ n, we define

Tn(t1, k, t2) = Dn(t1, k, t2)2∕Vn(t1, k, t2), (7)

where Dn(t1, k, t2) =
(k−t1+1)(t2−k)
(t2−t1+1)3∕2

(

𝜃t1,k − 𝜃k+1,t2

)

, Vn(t1, k, t2) = Ln(t1, k, t2) + Rn(t1, k, t2), and

Ln(t1, k, t2) =
k∑

i=t1

(i − t1 + 1)2(k − i)2

(t2 − t1 + 1)2(k − t1 + 1)2
(
𝜃t1,i − 𝜃i+1,k

)2
,

Rn(t1, k, t2) =
t2∑

i=k+1

(t2 − i + 1)2(i − 1 − k)2

(t2 − t1 + 1)2(t2 − k)2
(
𝜃i,t2 − 𝜃k+1,i−1

)2
.

Note that Tn(t1, k, t2) is essentially the proposed SN test defined on sub-sample {Yt}
t2
t=t1

. Set t1 = 1
and t2 = n, Tn(t1, k, t2) = Tn(1, k,n) reduces to the global SN test defined in (2) of Section 2.1.

The key observation is that, due to the presence of the self-normaliser Vn, the global test
statistic Tn(1, k,n)may experience severe power loss under multiple change-point scenarios. The
intuition is as follows. Suppose k is a true change-point and {Yt}nt=1 has other change-points
besides k. Intuitively, Vn(1, k,n) may observe significant inflation as Ln(1, k,n) and Rn(1, k,n)
are based on contrast statistics and their values could significantly inflate due to the existence
of other change-points besides k. This can in turn cause Tn(1, k,n) to suffer severe deflation
and thus a loss of power. Consequently, a naive combination of the standard binary segmenta-
tion (Vostrikova, 1981) and the SN test cannot serve as a viable option for multiple change-point
estimation (see both theoretical evidence and numerical illustration of this phenomenon in
Section S.1 of Appendix S1).

3.1 The nested local-window segmentation algorithm

To bypass this issue, we combine the SN test with a novel nested local-window segmentation
algorithm, where for each k, instead of one global SN test Tn(1, k,n), we compute a maximal SN
test based on a collection of nested windows covering k. Specifically, fix a small 𝜖 ∈ (0, 1∕2) such

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/84/5/1699/7072956 by U

niversity of N
otre D

am
e user on 23 August 2023



1708 ZHAO et al.

as 𝜖 = 0.05, 0.1, define the window size h = ⌊n𝜖⌋. For each k = h, … ,n − h, we define its nested
window set H1∶n(k) where

H1∶n(k) =
{

(t1, t2)
|
|
|
t1 = k − j1h + 1, j1 = 1, … , ⌊k∕h⌋; t2 = k + j2h, j2 = 1, … , ⌊(n − k)∕h⌋

}

.

Note that for k < h and k > n − h, by definition, we have H1∶n(k) = ∅.
For each k = 1, … ,n, based on its nested window set H1∶n(k), we define a maximal SN test

statistic T1,n(k) such that

T1,n(k) = max
(t1,t2)∈H1∶n(k)

Tn(t1, k, t2),

where we set max(t1,t2)∈∅ Tn(t1, k, t2) ∶= 0. Note that unlike the standard binary segmentation,
the test statistic T1,n(k) is calculated based on a set of nested local-window observations {Yt}

t2
t=t1

surrounding the time point k instead of directly based on the global observations {Yt}nt=1.
This mechanism is precisely designed to alleviate the inflation of the self-normaliser Vn for

the SN test under multiple change-point scenarios. With a sufficiently small window size 𝜖,
for any change-point k, there exists some local-window

(
t̃1, t̃2

)
which contains k as the only

change-point, thus the maximal statistic T1,n(k) remains effective thanks to Tn
(
t̃1, k, t̃2

)
. In the

literature, there exists pure local-window-based segmentation algorithms, for example, SaRa in
Niu and Zhang (2012) for change in mean, LRSM in Yau and Zhao (2016) for change in ARmod-
els. The pure local-window approach only considers the smallest local-window (k − h + 1, k + h)
when constructing change-point tests for k given a window size h. Such an approach is also
employed in the literature of ‘piecewise smooth’ change, see Wu and Zhao (2007), Bibinger
et al. (2017) and Casini and Perron (2021a).

Compared to the pure local-window approach, the constructed nested window set H1∶n(k)
makes our algorithm more adaptive as it helps T1,n(k) retain more power when k is far
away from other change-points by utilising larger windows that cover k. We refer to Section
S.1.2 of Appendix S1 for more detailed discussion of this point and numerical evidence of
the substantial advantage in detection power and estimation accuracy of the proposed nested
local-window approach over the pure local-window approach. In addition, since the nested
local-window algorithm examines a set of expanding windows instead of a single window, its
performance is more robust to the choice of the bandwidth h. This is confirmed by numer-
ical experiments in Section S.2.1 of Appendix S1, where we conduct sensitivity analysis of h
and it is seen that performance of the nested local-window is robust and stable w.r.t. the
choice of h.

Note that the nested window-based SN statistic T1,n(k) can be viewed as a discretised version
of the SN test statistic T̃1,n(k) = max1≤t1<k<t2≤n Tn(t1, k, t2), which is related to the scan statis-
tics (Chan & Walther, 2013) and multi-scale statistics (Frick et al., 2014). However, T̃1,n(k) is
computationally impractical, thus we instead approximate T̃1,n(k) by T1,n(k) computed on the
nested window set H1∶n(k).

Based on the maximal test statistic T1,n(k) and a pre-specified threshold Kn, the
SN-based multiple change-point estimation (SNCP) proceeds as follows. Starting with the
full sample {Yt}nt=1, we calculate T1,n(k), k = 1, … ,n. Given that maxk=1,… ,n Tn(k) ≤ Kn, SNCP
declares no change-point. Otherwise, SNCP sets k̂ = argmaxk=1,… ,n T1,n(k) and we recur-
sively perform SNCP on the sub-sample {Yt}k̂t=1 and {Yt}n

t=k̂+1
until no change-point is

declared.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/84/5/1699/7072956 by U

niversity of N
otre D

am
e user on 23 August 2023



ZHAO et al. 1709

DenoteWs,e =
{
(t1, t2)||s ≤ t1 < t2 ≤ e

}
andHs∶e(k) = H1∶n(k)

⋂
Ws,e, which is the nested win-

dow set of k on the sub-sample {Yt}et=s. Define the sub-sample maximal SN test statistic as
Ts,e(k) = max(t1,t2)∈Hs∶e(k) Tn(t1, k, t2). Algorithm 1 gives the formal description of SNCP.

Algorithm 1. SNCP for multiple change-point estimation

Input: Time series {Yt}nt=1, threshold Kn, window size h = ⌊n𝜖⌋.
Output: Estimated change-points set k̂ =

(
k̂1, · · · , k̂m̂

)

Initialization: SNCP(1,n,Kn, h), k̂ = ∅
Procedure: SNCP(s, e,Kn, h)

1 if e − s + 1 < 2h then
2 Stop
3 else
4 k̂∗ = argmaxk=s,···,eTs,e(k);
5 if Ts,e(k̂∗) ≤ Kn then
6 Stop
7 else
8 k̂ = k̂ ∪ k̂∗;
9 SNCP(s, k̂∗,Kn, h);
10 SNCP(k̂∗ + 1, e,Kn, h);
11 end
12 end

3.1.1 Comparison with popular segmentation algorithms in the literature

We remark that it is possible to combine the proposed SN test statistic with other segmenta-
tion algorithms designed for multiple change-point estimation, such as wild binary segmentation
(WBS) (Fryzlewicz, 2014) or its variants including narrowest-over-threshold (NOT) (Baranowski
et al., 2019) and seeded binary segmentation (SBS) (Kovacs et al., 2020). WBS and NOT use
randomly generated intervals for searching multiple change-points, whereas SBS employs deter-
ministic intervals. However, theoretical guarantees for such procedures can be challenging to
establish as the above-mentioned segmentation algorithms aremainly used for change-point esti-
mation in a sequence of independent data. Nevertheless, in Section S.2.2 of Appendix S1, we
provide an extensive numerical comparison between the proposed nested local-window segmen-
tation algorithm (SNCP) and the combinations of the SN test with WBS, NOT and SBS, where
the performance of SNCP is seen to be very competitive in terms of both statistical accuracy and
computational efficiency.

3.2 Assumptions and theoretical results

In this section, we study the theoretical properties of the proposed SNCP for multiple
change-point estimation. We operate under the classical infill framework where we assume
ki∕n → 𝜏i ∈ (0, 1) for i = 1, … ,mo as n → ∞. Define 𝜏0 = 0 and 𝜏mo+1 = 1, we further assume
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that min1≤i≤mo+1(𝜏i − 𝜏i−1) = 𝜖o > 𝜖, where 𝜖 is the window size parameter used in SNCP, which
imposes an implicit upper bound for mo such that mo ≤ 1∕𝜖. This is a common assumption
in the literature for change-point testing and estimation under temporal dependence, see
Andrews (1993), Bai and Perron (2003), Davis et al. (2006) and Yau and Zhao (2016). In practice,
we set 𝜖 to be a small constant such as 𝜖 = 0.05, 0.10, 0.15,which can be based onprior information
about the minimum spacing between consecutive change-points.

In Section S.2.1 of Appendix S1, we conduct an extensive sensitivity analysis of SNCPw.r.t. the
window size 𝜖 and the thresholdKn, and the result indicates SNCP is rather robust to the choices of
(𝜖,Kn) as long as 𝜖o > 𝜖, the violation of which could lead to unsatisfactory segmentation results.
This suggests that the assumption 𝜖o > 𝜖 is necessary both theoretically and empirically, and
hence the proposed SNCP may not be suitable for time series with frequent change-points where
𝜖o is vanishingwith 𝜖o = o(1); see Fryzlewicz (2020) for a recent contribution to detecting frequent
change-points.

Denote the true parameter for the ith segment by 𝜃i and denote the change size by 𝛿i = 𝜃i+1 − 𝜃i
for i = 1, … ,mo. For ease of presentation, we assume that 𝛿i = ci𝛿 for i = 1, … ,mo, where ci ≠ 0
is a fixed constant. Thus, the overall change size is controlled by 𝛿.

We assume the following expansions for the empirical functional 𝜃a,b = 𝜃(F̂a,b), which is a nat-
ural extension of the expansions (4) and (5) from the single change-point setting in Section 2.2 to
the multiple change-point setting. Specifically, for 𝜃a,b computed exclusively on the ith stationary
segments with i = 1, … ,mo + 1, we assume

𝜃a,b = 𝜃i +
1

b − a + 1

b∑

t=a
𝜉i
(
Y (i)
t
)
+ r(i)a,b, for ki−1 + 1 ≤ a < b ≤ ki, (8)

where 𝜉i
(
Y (i)
t
)
is the influence function of the functional 𝜃(⋅) for the ith segment and r(i)a,b denotes

the remainder term. For 𝜃a,b computed based on a mixture of stationary segments, we further
assume

𝜃a,b = 𝜃(𝜔a,b) +
1

b − a + 1

⎡
⎢
⎢
⎣

ki∑

t=a
𝜉i
(
Y (i)
t , 𝜔a,b

)
+

j−i∑

l=1

kl+i∑

t=kl+i−1+1
𝜉i+l

(
Y (l+i)
t , 𝜔a,b

)
+

b∑

t=kj+1
𝜉j+1

(
Y (j+1)
t , 𝜔a,b

)⎤
⎥
⎥
⎦

+ ra,b(𝜔a,b) ∶= 𝜃a,b + 𝜉a,b(𝜔a,b) + ra,b(𝜔a,b), (9)

where (ki, ki+1, … , kj) with i ≤ j denotes the j − i + 1 true change-points between a and b such
that ki−1 + 1 ≤ a ≤ ki and kj + 1 ≤ b ≤ kj+1, and

𝜔a,b =
(

𝜔
(1)
a,b, … , 𝜔

(mo+1)
a,b

)⊤

=
⎛
⎜
⎜
⎜
⎝

of i−1
⏞⏞⏞

0, … , 0, ki − a + 1
b − a + 1

,
ki+1 − ki
b − a + 1

, … ,
kj − kj−1
b − a + 1

,
b − kj

b − a + 1
,

of mo−j
⏞⏞⏞

0, … , 0
⎞
⎟
⎟
⎟
⎠

⊤

,

denotes the proportion of each stationary segment in {Yt}bt=a, 𝜃(𝜔a,b) denotes 𝜃(⋅) evaluated at the
mixture distribution F𝜔a,b =

∑mo+1
i=1 𝜔

(i)
a,bF

(i) and ra,b(𝜔a,b) denotes the remainder term.
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Similar to the single change-point scenario, the expansion (8) of 𝜃a,b with ki−1 + 1 ≤ a < b ≤ ki
can be viewed as a special case of (9) where the mixture distribution is pure and 𝜔a,b is defined as
𝜔
(i)
a,b = 1 and 𝜔(i′)

a,b = 0, i′ ≠ i. We proceed by making the following assumptions.

Assumption 5. (i) For some 𝜎i > 0, i = 1, … ,mo + 1,

1
√
n

⌊nr⌋∑

t=1

(

𝜉1
(
Y (1)
t

)
, … , 𝜉mo+1

(
Y (mo+1)
t

))

⇒
(
𝜎1B(1)(r), … , 𝜎mo+1B

(mo+1)(r)
)
,

where B(i)(⋅), i = 1, … ,mo + 1 are standard Brownian motions.
(ii) sup1≤a<b≤n |(b − a + 1)𝜉a,b(𝜔a,b)| = Op(n1∕2).

Assumption 6. sup1≤a<b≤n |(b − a + 1)ra,b(𝜔a,b)| = op(n1∕2).

Assumptions 5 and 6 are natural extensions of Assumptions 1 and 2 to the multiple
change-point setting and can also be verified for smooth functionmodels and quantile undermild
conditions. We refer to Sections S.4 and S.5 of Appendix S1 for more details.

Assumption 7. For 1 ≤ a < b ≤ n, 𝜃a,b = 𝜃(𝜔a,b) can be expressed almost linearly such that

sup1≤a<b≤n
|
|
|
𝜃a,b − (𝜃1, … , 𝜃mo+1)𝜔a,b

|
|
|
= sup1≤a<b≤n

|
|
|
𝜃a,b −

∑mo+1
i=1 𝜔

(i)
a,b𝜃i

|
|
|
= o(n−1∕2).

Assumption 7 imposes a relatively strong technical condition on the functional 𝜃(⋅) such
that 𝜃a,b ≈

∑mo+1
i=1 𝜔

(i)
a,b𝜃i. Assumption 7 holds trivially for mean change and is typically sat-

isfied when 𝜃(⋅) is the only quantity that changes, which is a common assumption in
testing-based change-point estimation literature. For example, Assumption 7 holds for variance,
(auto)-covariance change with constant mean (Aue et al., 2009; Cho & Fryzlewicz, 2012) and
(auto)-correlation change with constant mean and variance (Wied et al., 2012). Numerical exper-
iments conducted in Section 4.6 and Sections S.2.6–S.2.9 of Appendix S1 indicate that SNCP is
robust and continues to perform well when Assumption 7 can not be easily verified.

An alternative Assumption 3.3* is provided in Section S.4.2.3 of Appendix S1, which is a
natural extension of Assumption 3 to the multiple change-point setting and further includes
Assumption 7 as a special case. We defer Assumption 3.3* to the supplement as it is a more
involved technical assumption.

Remark 1. (Verification of assumptions): Assumptions 5–7 are high-level assumptions made on
a general functional 𝜃(⋅) to facilitate presentation. In Sections S.4 and S.5 of Appendix S1,
under mild conditions, we provide verification of Assumptions 5–7 for commonly used
functionals including the smooth function model and quantile. In general, the assump-
tions can be verified formean change, variance and (auto)-covariance changewith constant
mean orwith concurrent small-scalemean change, (auto)-correlation changewith constant
mean and variance or with concurrent small-scale mean and variance change, and quantile
change with density functions that are smooth and bounded. In particular, the verification
of Assumption 6 for quantile is highly nontrivial and of independent interest. It essentially
provides a uniform Bahadur representation for quantiles in sub-samples. Our result allows
for change-points and temporal dependence, and thus generalises the ones in Wu (2005)
and Dette and Gösmann (2020).

For u ∈ (𝜖, 1 − 𝜖), define the scaled limit of H1∶n(k) by H𝜖(u) =
{

(u1,u2)
|
|
|
u1 =

u − j1𝜖, j1 = 1, … , ⌊u∕𝜖⌋;u2 = u + j2𝜖, j2 = 1, … , ⌊(1 − u)∕𝜖⌋
}

and define Δ(u1,u,u2) =
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B(u) − B(u1) −
u−u1
u2−u1

{B(u2) − B(u1)}, where B(⋅) is a standard Brownian motion. Theorem 2 gives
the consistency result of SNCP for multiple change-point estimation.

Theorem 2. (i) Under the no change-point scenario, and Assumptions 5(i) and 6, we have

max
k=1,… ,n

T1,n(k)


−−→G𝜖 = sup
u∈(𝜖,1−𝜖)

max
(u1,u2)∈H𝜖

(u)
D(u1,u,u2)2∕V(u1,u,u2), (10)

where D(u1,u,u2) = 1
√
u2−u1

Δ(u1,u,u2) and V(u1,u,u2) = 1
(u2−u1)2

(

∫
u
u1
Δ(u1, s,u)2ds +

∫
u2
u Δ(u, s,u2)2ds

)
.

(ii) Under the multiple change-point scenario, suppose Assumption 4, Assumptions 5, 6
and 7 (or 3.3*) hold and suppose 𝜖 < 𝜖o, we have

lim
n→∞

P
(
m̂ = mo and max

1≤i≤mo
|k̂i − ki| ≤ 𝜄n

)
= 1,

for any sequence 𝜄n such that 𝜄n∕n → 0 and 𝜄
−2
n 𝛿

−2n → 0 as n → ∞.

Theorem 2(i) characterises the asymptotic behaviour of SNCP under no change-point and
thus provides a natural choice of threshold Kn. In practice, we set Kn as a high quantile, for
example, 90% or 95% quantile ofG𝜖 to control the Type-I error of SNCP. For a givenwindow size 𝜖,
G𝜖 is a pivotal distribution and its critical values can be obtained via simulation. Theorem 2(ii)
indicates that SNCP can correctly identify the number of change-points mo with an increasing
threshold Kn of a proper order. Note that the localization error rate of SNCP is the same as the
single change-point scenario in Theorem 1.

Theorem 2(ii) assumes all changes have the same order 𝛿 and requires 𝜄−2n 𝛿
−2n → 0 to achieve

consistency. In fact, this can be relaxed to allow multi-scale changes and we then require
𝜄
−2
n 𝛿

2
max𝛿

−4
minn → 0, where 𝛿max and 𝛿min denote the maximum and minimum change size. This

multi-scale condition matches the one required by Lavielle and Moulines (2000) for multiple
change-point estimation in mean under temporal dependence (cf. theorem 3 therein).

Remark 2. (Localization error rate and local refinement): Set the change size 𝛿 = D0n−c with
c ∈ [0, 1∕2) and D0 ≠ 0, Theorem 2(ii) implies that n1∕2+c = o(𝜄n). Under the fixed change
size (c = 0), it implies that the convergence rate 𝜄n∕n of SNCP is at best 1∕

√
n, which is

slower than the optimal rate 1∕n for change-point estimation in mean under temporal
dependence, see Bai (1994) and Lavielle and Moulines (2000).1 We note that the derived
rate is technically difficult to be further improved due to the complex nature of the
self-normaliser Vn(k). On the other hand, the derived rate applies to a general functional,
which seems not well studied in the literature. Nevertheless, in Section S.8 of Appendix S1,
we further propose a simple and intuitive local refinement procedure, which provably
improves the localization error rate of SNCP to 1∕n for the mean functional. The key obser-
vation is that by Theorem 2, SNCP can asymptotically isolate each single change-point
and thus a simple CUSUM statistic can be used within a well-designed local interval
around each estimated change-point k̂i by SNCP to achieve further refinement. We refer

1For multiple change-point estimation of univariate mean in a sequence of independent sub-Gaussian observations, this
is further shown as the minimax optimal localization rate, see Wang et al. (2020), Verzelen et al. (2020) and references
therein.
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to Sections S.8.1 and S.8.2 for Appendix S1 for more detailed theoretical and numerical
results of the procedure.

3.3 Extension to vector-valued functionals

In this section, we discuss the extension of SNCP to a vector-valued functional, where 𝜽(⋅) ∈ Rd

with d > 1. A natural example is change-point detection in mean or covariance matrix of multi-
variate time series, see for example Aue et al. (2009). Additionally, for a univariate time series, we
may be interested in detecting any structural break among multiple parameters of interest, such
as examining mean and variance together or examining multiple quantile levels simultaneously.

Note that the dimension of the underlying time series {Yt}nt=1 may or may not equal to that of
𝜽 (i.e. d). For change-point estimation in mean of multivariate time series, we have 𝜽 = E(Yt) and
the dimension ofYt is d. However, for change-point estimation in covariancematrix (𝜽 = Cov(Yt))
or multiple parameters (e.g. Yt ∈ R and 𝜽 = (E(Yt),Var(Yt))⊤), the dimension of Yt can be smaller
than d. We examine the performance of SNCP for all three cases via numerical experiments in
Section 4.

To accommodate the vector-valued functional, we modify the SN test statistic in (7) such that

T∗
n(t1, k, t2) = D∗

n(t1, k, t2)⊤V∗
n (t1, k, t2)−1D∗

n(t1, k, t2), (11)

where 𝜽̂a,b = 𝜽(F̂a,b) with F̂a,b being the empirical distribution of {Yt}bt=a and

D∗
n(t1, k, t2) =

(k − t1 + 1)(t2 − k)
(t2 − t1 + 1)3∕2

(
𝜽̂t1,k − 𝜽̂k+1,t2

)
, V∗

n (t1, k, t2) = L∗n(t1, k, t2) + R∗
n(t1, k, t2),

L∗n(t1, k, t2) =
k∑

i=t1

(i − t1 + 1)2(k − i)2

(t2 − t1 + 1)2(k − t1 + 1)2
(
𝜽̂t1,i − 𝜽̂i+1,k

)(
𝜽̂t1,i − 𝜽̂i+1,k

)⊤
,

R∗
n(t1, k, t2) =

t2∑

i=k+1

(t2 − i + 1)2(i − 1 − k)2

(t2 − t1 + 1)2(t2 − k)2
(
𝜽̂i,t2 − 𝜽̂k+1,i−1

)(
𝜽̂i,t2 − 𝜽̂k+1,i−1

)⊤
.

With a pre-specified threshold Kn, SNCP proceeds as in Algorithm 1 where the only difference is
that we replace Ts,e(k) with T∗

s,e(k) = max(t1,t2)∈Hs∶e(k) T
∗
n(t1, k, t2) as defined in (11).

3.3.1 Limiting distribution under no change-point scenario

We first derive the limiting null distribution of maxk=1,… ,n T∗
1,n(k), which is pivotal and thus

provides natural choices of the threshold Kn. We assume the sub-sample estimator 𝜽̂a,b for the
parameter of interest 𝜽 ∈ Rd admits the following expansion

𝜽̂a,b = 𝜽0 +
1

b − a + 1

b∑

t=a
𝜉(Yt) + ra,b,

where 𝜽0 denotes the true value of 𝜽, 𝜉(Yt) ∈ Rd denotes the influence function of 𝜽 and ra,b ∈ Rd

is the remainder term. We further impose the following mild assumptions.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/84/5/1699/7072956 by U

niversity of N
otre D

am
e user on 23 August 2023



1714 ZHAO et al.

TABLE 1 Critical values of the limiting null distribution G∗
𝜖,d with 𝜖 = 0.05

1− 𝜶/d 1 2 3 4 5 6 7 8 9 10

90% 141.9 208.2 275.0 344.4 415.9 492.5 568.4 651.4 740.3 823.5

95% 165.5 237.5 309.1 387.5 464.5 541.7 624.1 713.3 808.6 898.9

Assumption 8. For some positive definite matrix Σ ∈ Rd×d, we have

1
√
n

⌊nr⌋∑

t=1
𝜉(Yt) ⇒ Σ1∕2d(r),

where d(⋅) is a d-dimensional Brownian motion with independent entries.

Assumption 8 is a standard functional central limit theorem (FCLT) result commonly
assumed in the SN literature under the no change-point scenario, and can be verified under mild
moment and weak dependence conditions, see for example, Shao (2010, assumption 2.1, 2010,
assumption 3.1) and Dette and Gösmann (2020, assumption 3.1).

Assumption 9. The remainder term ra,b is asymptotically negligible such that

sup
1≤a<b≤n

(b − a + 1)||ra,b||2 = op(n1∕2).

Proposition 1. Under the no change-point scenario, given Assumptions 8 and 9, we have

max
k=1,… ,n

T∗
1,n(k)



−−→G∗
𝜖,d = sup

u∈(𝜖,1−𝜖)
max

(u1,u2)∈H𝜖
(u)
D∗(u1,u,u2)⊤V∗(u1,u,u2)−1D∗(u1,u,u2),

whereD∗(u1,u,u2) = 1
√
u2−u1

𝚫(u1,u,u2)andV∗(u1,u,u2) = 1
(u2−u1)2

(
∫
u
u1
𝚫(u1, s,u)𝚫(u1, s,u)⊤

ds + ∫
u2
u 𝚫(u, s,u2)𝚫(u1, s,u)⊤ds

)
with 𝚫(u1,u,u2) = d(u) − d(u1) −

u−u1
u2−u1

[d(u2) −
d(u1)].

The proof of Proposition 1 is straightforward and follows the same argument as the proof of
theorem 2.1 in Shao (2010) and the continuous mapping theorem, hence omitted. For a given
dimension d and window size 𝜖, the limiting distribution G∗

𝜖,d is pivotal and its critical values
can be obtained via simulation. Table 1 tabulates the critical values of G∗

𝜖,d for 𝜖 = 0.05 and d =
1, … , 10. Note that for d = 1, G∗

𝜖,d coincides with the univariate limiting distribution G𝜖 derived
in Theorem 2(i).

3.3.2 Consistency of SNCP

To ease presentation and facilitate understanding, we first establish the consistency of SNCP for
change-point estimation inmean of multivariate time series. We then provide further discussions
on how to extend the consistency result to a general vector-valued functionals.

Specifically, we operate under the following data generating process for {Yt ∈ Rd}nt=1 such that

Yt = Xt + 𝜃i, ki−1 + 1 ≤ t ≤ ki, for i = 1, … ,mo + 1,
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ZHAO et al. 1715

where {Xt}nt=1 is a d-dimensional stationary time series with E(Xt) = 0, k0 ∶= 0 < k1 < · · · <
kmo < kmo+1 ∶= n denote the (potential) change-points, and 𝜃i ∈ Rd denotes the mean of the
ith segment. We assume that, for i = 1, … ,mo, 𝜃i+1 − 𝜃i = 𝜂i𝛿 where 𝜂i ∈ Rd∕{0} is a non-zero
vector. Thus, the overall change size is controlled by 𝛿.

Same as in Section 3.2, we use the infill framework where we assume ki∕n → 𝜏i ∈ (0, 1) for i =
1, … ,mo as n → ∞. Define 𝜏0 = 0 and 𝜏mo+1 = 1, we again require that min1≤i≤mo+1(𝜏i − 𝜏i−1) =
𝜖o > 𝜖, where 𝜖 is the window size parameter used in SNCP.

Theorem3. Suppose {Xt}nt=1 satisfies the invariance principle such that n
−1∕2∑⌊nr⌋

t=1 Xt ⇒ Σ1∕2X d(r),
where ΣX is a positive definite matrix.

(i) Under the no change-point scenario, we havemaxk=1,… ,n T∗
1,n(k)



−−→G∗
𝜖,d.

(ii) Under the multiple change-point scenario, suppose Assumption 4 hold and suppose
𝜖 < 𝜖o, we have

lim
n→∞

P
(

m̂ = mo and max
1≤i≤mo

|k̂i − ki| ≤ 𝜄n

)

= 1,

for any sequence 𝜄n such that 𝜄n∕n → 0 and 𝜄
−2
n 𝛿

−2n → 0 as n → ∞.

Compared to the univariate result in Theorem 2(ii), it can be seen that the same localization
rate is obtained in Theorem 3(ii) for the multivariate mean case. However, compared to the
univariate proof, the technical argument needed for Theorem 3 is substantially different, which
is indeed much more challenging as it requires the analysis of a random matrix and its inverse,
since the self-normaliser V∗

n (t1, k, t2) is a random matrix in Rd×d due to the vector nature of the
functional 𝜽(⋅).

It is easy to see that the result of Theorem 3 can be directly used to establish consistency of
SNCP for change-point estimation in covariancematrix of {Yt ∈ Rd}nt=1 (assuming constantmean
E(Yt)), as the problem can be transformed into multivariate mean change-point estimation for
the (d + d2)∕2-dimensional time series {(Yti ⋅ Ytj)i≤j}nt=1, see for example Aue et al. (2009).

Remark 3. (Extension to general vector-valued functionals): To further extend the consistency
result in Theorem 3 to a general vector-valued functional 𝜽(⋅), we need an additional
assumption on the (approximate) linearity of 𝜽, similar to Assumption 7 of the univariate
case. Combined with Assumption 8 (FCLT) and 9 (asymptotic negligibility of reminder
terms), the same argument used for the multivariate mean in Theorem 3 can then be
applied to establish consistency of SNCP for the general functional 𝜽. We omit the details
to conserve space.

4 SIMULATION STUDIES

In this section,we conduct extensive numerical experiments to demonstrate the promising perfor-
mance of SNCP for awide range of change-point detection problems under temporal dependence.
Under the unified framework of SNCP, we consider change-point estimation for four different
settings: mean, covariance matrix, multi-parameter and correlation. In Appendix S1, we further
consider change-point estimation for variance, autocorrelation and quantile.

For comparison, we further implement several state-of-the-art non-parametric change-point
detection methods in the literature that are explicitly designed to accommodate temporal depen-
dence. Specifically, (A) For mean change, we compare with the classical CUSUM with binary
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1716 ZHAO et al.

segmentation (Csörgő &Horváth, 1997) (hereafter CUSUM) and Bai and Perron (2003) (hereafter
BP), which are designed for detecting mean change in time series and uses a model selection
approach to simultaneously detect all change-points. (B) For covariance matrix change, we com-
pare with the CUSUMmethod in Aue et al. (2009) (hereafter AHHR). (C) For correlation change,
we compare with Galeano andWied (2017) (hereafter GW), which is essentially a combination of
binary segmentation and the correlation change test proposed in Wied et al. (2012). (D) For vari-
ance change and autocorrelation change, we compare with Cho and Fryzlewicz (2012) (hereafter
MSML) and Korkas and Fryzlewicz (2017) (hereafter KF). Both methods are designed for
detecting second-order structural change in time series based on wavelet representation.
(E) For multi-parameter change and quantile change, to our best knowledge, there is no existing
non-parametric method that works under temporal dependence. For illustration, we com-
pare with the energy statistics-based segmentation in Matteson and James (2014) (hereafter
ECP) for multi-parameter change and with the multi-scale quantile segmentation in Vanegas
et al. (2021) (hereafter MQS) for quantile change. Both ECP and MQS require temporal
independence. All methods are implemented using the recommended setting in the
correspondingR packages or papers.We refer to Section S.2.12 ofAppendix S1 for implementation
details of these methods.

4.1 Implementation details of SNCP

Throughout Section 4, we set the window size 𝜖 of SNCP to be 𝜖 = 0.05. We denote SNCP for
mean as SNM, for covariance matrix as SNCM, for multi-parameter as SNMP, for correlation
as SNC, for variance as SNV, for autocorrelation as SNA, and for quantile as SNQ. In addition,
SNM90 denotes SNM using 90% quantile (i.e. critical value at 𝛼 = 0.1) of the limiting null dis-
tribution G∗

𝜖,d as the threshold Kn, and similarly for other types of change and levels of critical
value. For the power analysis in Sections 4 and real data applications in Section S.3, the thresh-
old Kn for SNCP is set at 90% quantile of G∗

𝜖,d (i.e. 𝛼 = 0.1), which can be found in Table 1 for
d = 1, 2, … , 10.

We remark that the performance of SNCP is robust w.r.t. the window size 𝜖 and the quantile
level 𝛼 as the limiting distribution G∗

𝜖,d, and thus the threshold Kn, adapt to the effect of 𝜖 and 𝛼.
We refer to Section S.2.1 of Appendix S1 for a detailed sensitivity analysis.

4.2 Error measures of change-point estimation

To assess the accuracy of change-point estimation, we use the Hausdorff distance and adjusted
Rand index (ARI). The Hausdorff distance is defined as follows. Denote the set of true (relative)
change-points as 𝝉o and the set of estimated (relative) change-points as 𝝉̂ , we define d1(𝝉o, 𝝉̂) =
max𝝉1∈𝝉̂ min𝝉2∈𝝉o |𝝉1 − 𝝉2| and d2(𝝉o, 𝝉̂) = max𝝉1∈𝝉o min𝝉2∈𝝉̂ |𝝉1 − 𝝉2|, where d1 measures the
over-segmentation error of 𝝉̂ and d2 measures the under-segmentation error of 𝝉̂ . The
Hausdorff distance is dH(𝝉o, 𝝉̂) = max(d1(𝝉o, 𝝉̂), d2(𝝉o, 𝝉̂)). The ARI is originally proposed in
Morey and Agresti (1984) as a measure of similarity between two different partitions of the same
observations for evaluating the accuracy of clustering. Under the change-point setting, we calcu-
late the ARI between partitions of the time series given by 𝝉̂ and 𝝉o. Ranging from 0 to 1, a higher
ARI indicates more coherence between the two partitions by 𝝉̂ and 𝝉o and thus more accurate
change-point estimation.
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TABLE 2 Performance under no change-point scenario withmo = 0

n = 1024 𝝆 = −0.8 𝝆 = −0.5 𝝆 = 0 𝝆 = 0.5 𝝆 = 0.8

m̂ 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

SNM90 0.99 0.01 0.00 0.96 0.04 0.00 0.93 0.06 0.00 0.87 0.12 0.01 0.60 0.30 0.10

BP 1.00 0.00 0.00 1.00 0.00 0.00 0.99 0.01 0.00 0.35 0.12 0.53 0.00 0.00 1.00

SNV90 0.80 0.18 0.02 0.90 0.09 0.01 0.90 0.09 0.01 0.86 0.12 0.01 0.73 0.22 0.05

KF 0.18 0.20 0.63 0.76 0.14 0.10 0.96 0.03 0.01 0.95 0.04 0.01 0.94 0.04 0.02

MSML 0.48 0.33 0.19 0.84 0.15 0.01 0.92 0.08 0.00 0.92 0.08 0.00 0.90 0.09 0.00

n = 4096 𝝆 = −0.8 𝝆 = −0.5 𝝆 = 0 𝝆 = 0.5 𝝆 = 0.8

m̂ 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

SNM90 0.94 0.06 0.00 0.89 0.10 0.00 0.89 0.10 0.01 0.88 0.11 0.01 0.84 0.14 0.02

BP 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.49 0.13 0.38 0.00 0.00 1.00

SNV90 0.88 0.12 0.00 0.90 0.10 0.01 0.91 0.08 0.00 0.90 0.09 0.01 0.85 0.13 0.02

KF 0.02 0.01 0.97 0.54 0.17 0.29 0.90 0.06 0.04 0.92 0.05 0.04 0.88 0.06 0.06

MSML 0.38 0.27 0.36 0.80 0.18 0.02 0.92 0.08 0.00 0.92 0.08 0.00 0.90 0.10 0.00

4.3 No change

We first investigate the performance of SNCP under the null, where the time series is station-
ary with no change-point. We report the performance of SNM and SNV observed in extensive
numerical experiments. The performance of SNCP for other functionals is similar and thus
omitted.

We simulate a stationary univariate time series {Yt}nt=1 from an AR(1) process Yt =
𝜌Yt−1 + 𝜖t, where {𝜖t} is i.i.d. standard normal N(0, 1). We set n = 1024, 40962 and vary 𝜌 ∈
{−0.8,−0.5, 0, 0.5, 0.8} to examine robustness of SNCP against false positives (i.e. Type-I error)
under different direction and strength of temporal dependence. Section S.2.3 of Appendix S1 fur-
ther provides the simulation results for n = 512. For each combination of (n, 𝜌), we repeat the
simulation 1000 times.

The numerical result is summarised in Table 2, where we report the proportion of
m̂ = 0, m̂ = 1 and m̂ ≥ 2 among 1000 experiments. In general, the observation is as fol-
lows. SNCP gives satisfactory performance under moderate temporal dependence with
|𝜌| ≤ 0.5 for all sample sizes and its performance further improves as the sample size n
increases.

BP performs well under 𝜌 = −0.8,−0.5, 0 but exhibits severe over-rejection under positive
temporal dependence for 𝜌 = 0.5, 0.8 and the performance does not improve as n increases.
KF and MSML perform well under 𝜌 = 0, 0.5, 0.8 but produce high proportion of false pos-
itives under negative temporal dependence for 𝜌 = −0.5,−0.8 and the performance does not
improve as n increases. Overall, SNCP provides reasonably accurate size under different direc-
tion and strength of temporal dependence and achieves the target size as the sample size n
increases.

2n is deliberately set as power of 2 as MSML in Cho and Fryzlewicz (2012) can only handle such sample size.
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4.4 Change in mean

Formean change, we first simulate a stationary d-dimensional time series {Xt = (Xt1, … ,Xtd)}nt=1
from a VAR(1) process with Xt = 𝜌IdXt−1 + 𝜖t, where {𝜖t} is i.i.d. standard d-variate normal
N(0, Id), and Id denotes the d-dimensional identity matrix. We then generate time series {Yt}nt=1
with piecewise constant mean based on {Xt}nt=1.

(M1) ∶ n = 600, 𝜌 = 0.2, Yt =
⎧
⎪
⎨
⎪
⎩

0 + Xt, t ∈ [1, 100], [201, 300], [401, 500],
2∕

√
d + Xt, t ∈ [101, 200], [301, 400], [501, 600].

(M2) ∶ n = 1000, 𝜌 = 0.5, Yt =
⎧
⎪
⎨
⎪
⎩

−3∕
√
d + Xt, t ∈ [1, 75], [526, 575],

0 + Xt, t ∈ [76, 375], [426, 525], [576, 1000],
3∕

√
d + Xt, t ∈ [376, 425].

(M3) ∶ n = 2000, 𝜌 = −0.7, Yt =

{
0.4∕

√
d + Xt, t ∈ [1, 1000], [1501, 2000],

0 + Xt, t ∈ [1001, 1500].

(M1) has evenly spaced change-points with moderate temporal dependence, (M2) features
abrupt changes where shortest segments have only 50 or 75 time points with change-points
mainly located at the first half of the time series, and (M3) has longer segments with
small-scale changes. Typical realisations of (M1)–(M3) for d = 1 can be found in Figure S2 of
Appendix S1.

Note that the change size in (M1)–(M3) is normalised by
√
d to keep the signal-to-noise

ratio the same across time series of different dimensions. This enables us to isolate and
examine the effect of dimension d on estimation. Intuitively, a larger d makes the estima-
tion more difficult as the quality of finite sample approximation by FCLT worsens for higher
dimension.

We set the dimensiond = 1, 5, 10.Note that BP onlyworks ford = 1 (i.e. univariate time series)
and thus is not included in the comparison for d = 5, 10. The estimation results for d = 1 and
d = 5 are summarised in Table 3, where we report the distribution of m̂ −mo, average ARI, over-
and under-segmentation errors d1, d2 and Hausdorff distance dH among 1000 experiments. The
estimation result for d = 10 can be found in Table S9 of Appendix S1.

4.4.1 Univariate time series

d = 1: For (M1), all methods perform well overall, though CUSUM tends to greatly over-estimate
the number of change-points mo, as reflected by the distribution of m̂ −mo. For (M2), SNM
tends to slightly under-estimate mo (missing a short segment) while BP and CUSUM severely
over-estimate mo and provide much less accurate estimation with noticeably larger Hausdorff
distance dH and smaller ARI. For (M3), which corresponds to strong negative dependence, BP
experiences severe power loss and have large under-segmentation error d2. In summary, BP and
CUSUM are prone to produce false positives under positive dependence, and BP may lose power
under strong negative dependence. SNM is robust but may experience power loss when detecting
short segment changes.
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TABLE 3 Performance of SNM, BP, CUSUM under change in mean for d = 1 and 5

m̂−mo

Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 ARI d1 × 102 d2 × 102 dH × 102 time

SNM (M1) 0 0 9 974 17 0 0 0.960 0.87 0.90 1.01 1.75

BP 0 0 0 847 142 11 0 0.974 1.48 0.50 1.48 9.10

CUSUM 0 0 0 438 414 119 29 0.944 4.43 0.53 4.43 0.05

SNM (M2) 0 11 196 749 43 1 0 0.970 1.33 1.77 2.67 3.55

BP 0 0 0 425 226 203 146 0.863 11.68 0.19 11.68 34.04

CUSUM 2 0 15 365 341 190 87 0.821 10.63 2.86 10.76 0.06

SNM (M3) 0 0 1 986 13 0 0 0.969 1.11 0.80 1.14 10.59

BP 0 371 6 623 0 0 0 0.616 0.33 19.03 19.03 179.75

CUSUM 0 0 0 947 53 0 0 0.965 1.32 0.88 1.32 0.09

m̂−mo

Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 ARI d1 × 102 d2 × 102 dH × 102 time

SNM (M1) 0 0 13 946 41 0 0 0.953 1.16 1.12 1.37 12.48

CUSUM d = 5 167 0 0 230 336 189 78 0.783 5.18 11.41 15.71 0.04

SNM (M2) 0 11 175 628 166 18 2 0.937 4.59 1.93 5.68 22.88

CUSUM d = 5 63 5 5 98 161 213 455 0.626 18.02 5.77 20.88 0.07

SNM (M3) 0 0 4 993 3 0 0 0.968 0.93 0.96 1.03 60.00

CUSUM d = 5 0 70 0 928 2 0 0 0.896 1.02 4.50 4.52 0.07

4.4.2 Multivariate time series

d = 5, 10: For (M1) and (M3), the estimation accuracy of SNM is remarkably robust to the
increasing dimension, where the ARI and dH achieved by SNM only worsen slightly from
d = 1 to d = 5. This also holds true for d = 10 (see Table S9 of Appendix S1). For (M2),
with abrupt changes and strong positive temporal dependence, SNM is less robust to the
increasing dimension and gives more false positives for d = 5, 10, however, its performance
is still decent as measured by ARI and dH . On the contrary, for all three models (M1)–(M3),
the performance of CUSUM worsens significantly from d = 1 to d = 5 (and even more so
for d = 10).

4.5 Change in covariance matrix

For covariance matrix change, we adopt the simulation settings in Aue et al. (2009) and
detect change in covariance matrices of a four-dimensional time series {Yt = (Yt1, … ,Yt4)}nt=1
with n = 1000. Thus, the number of parameters in the covariance matrix is d = (4 × 5)∕2 = 10.
Denote Σ𝜌 as an exchangeable covariance matrix with unit variance and equal covariance 𝜌, we
consider
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TABLE 4 Performance of SNCM and AHHR under change in covariance matrix

m̂−mo

Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 ARI d1 × 102 d2 × 102 dH × 102 time

SNCM (C1) 0 1 19 951 29 0 0 0.923 2.13 2.46 2.78 56.44

AHHR 0 221 0 687 82 10 0 0.721 2.45 12.37 13.50 0.44

SNCM (C2) 0 0 59 902 39 0 0 0.898 2.53 3.95 4.37 55.17

AHHR 0 0 1 792 168 32 7 0.896 4.97 2.34 5.00 0.56

Method Model m̂ = 0 m̂ = 1 m̂ ≥ 2

SNCM (C0) 916 80 4

AHHR 932 59 9

(C0) ∶ Yt = 0.3I4Yt−1 + et, et
i.i.d.∼ N(0,Σ0.5), t ∈ [1, 1000].

(C1) ∶ Yt =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

L0Ft + et, et
i.i.d.∼ N(0, I4), t ∈ [1, 333],

√
3L0Ft + et, et

i.i.d.∼ N(0, I4), t ∈ [334, 667],

L0Ft + et, et
i.i.d.∼ N(0, I4), t ∈ [668, 1000].

(C2) ∶ Yt =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

L0Ft + et, et
i.i.d.∼ N(0, I4), t ∈ [1, 333],

√
3L0Ft + et, et

i.i.d.∼ N(0, I4), t ∈ [334, 667],

3L0Ft + et, et
i.i.d.∼ N(0, I4), t ∈ [668, 1000].

Here, {Ft}nt=1 is a two-dimensional stationary VAR(1) process with the transition matrix 0.3I2
and L0 = [1, 1, 0, 0; 0, 0, 1, 1] denotes the factor loading matrix. (C1) and (C2) generate covariance
changes in the dynamic factormodel, which iswidely used in the time series literature.We refer to
Section S.2.10 of Appendix S1 for additional simulation settings with covariance changes in VAR
models. The estimation result is reported in Table 4. For monotonic changes (C2), both meth-
ods perform well though AHHR tends to over-estimate the number of change-points, while for
non-monotonic changes (C1), AHHR seems to over-estimate and experience power loss at the
same time and is outperformed by SNCM. For (C0), bothmethods give decent performance under
moderate temporal dependence with SNCM achieving the target size more accurately.

4.6 Change in multi-parameter

As discussed before, one notable advantage of SNCP is its universal applicability, where it treats
change-point detection for a broad class of parameters in a unified fashion. To conserve space, we
refer to Sections S.2.5, S.2.6, S.2.7 and S.2.8 of the Appendix S1 for extensive numerical evidence
of the favourable performance of SNCP for change-point detection in variance, auto-correlation,
correlation and quantile.

In this section, we further consider change-point estimation for multi-parameter of a uni-
variate time series, where we aim to detect any structural break among multiple parameters of
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interest. This can be useful for practical scenarioswhere one does not know the exact nature of the
change but wishes to detect any change among a group of parameters of interest. For example, if
one is interested in central tendency of the time series, SNMPcan be used to simultaneously detect
change inmean andmedian, while if the user suspects there is change in the dispersion/volatility
of the data, SNMP can be used to detect change jointly in variance and high quantiles.

In some sense, this is related to change-point detection in distribution (e.g. ECP, Matteson &
James, 2014), where the focus is to detect any change in the marginal distribution of a univari-
ate time series. In theory, algorithms that target distributional change can capture all potential
changes in the data. However, it only informs users the existence of a change but is unable to
narrow down the specific type of change (e.g. is the detected change in central tendency or in
volatility?). This can be less informative in real data analysis when the practitioner is particularly
concerned about one certain behaviour change of the data and may also lead to potential power
loss compared to methods that target a specific type of change. In addition, existing methods on
distributional change typically require the temporal independence assumption, such as ECP in
Matteson and James (2014).

We consider two simulation settings with n = 1000, and compare the performance of SNMP
and ECP.

(MP1) ∶ Yt =
⎧
⎪
⎨
⎪
⎩

Xt, t ∈ [1, 333],
F−1(Φ(Xt)), t ∈ [334, 667],
Xt, t ∈ [668, 1000].

(MP2) ∶ Yt =
⎧
⎪
⎨
⎪
⎩

𝜖t, t ∈ [1, 333],
1.6𝜖t, t ∈ [334, 667],
𝜖t, t ∈ [668, 1000].

For (MP1), {Xt}nt=1 follows an AR(1) process with Xt = 𝜌Xt−1 +
√
1 − 𝜌2𝜖t where 𝜌 = 0.2 and {𝜖t}

is i.i.d. N(0, 1),Φ(⋅) denotes the CDF of N(0, 1), and F(⋅) denotes a mixture of a truncated normal
and a generalised Pareto distribution such that F−1(q) = Φ−1(q) for q ≤ 0.5 and F−1(q) ≠ Φ−1(q)
for q > 0.5. Thus, for (MP1), the change originates from upper quantiles. We refer to Section S.2.8
of Appendix S1 for the detailed definition of F(⋅) and its motivation from financial applications.
For (MP2), {𝜖t}nt=1 is i.i.d. N(0, 1), thus we have temporal independence and the change is solely
driven by variance.

The estimation result is summarised in Table 5. We compare the performance of SNCP based
on individual parameters and their multi-parameter combination. For clarity, we specify the
multi-parameter set that SNMP targets. For example, SNQ90V denotes the SNMP that targets 90%
quantile and variance simultaneously. For (MP1), SNQ90 and SNQ95 perform well as the change
originates from upper quantiles, and further improvement can be achieved by combining them
into multi-parameter SNQ90,95. Similarly, including variance in the multi-parameter set further
improves the estimation accuracy. ECP provides decent performance but tends to over-estimate
due to the temporal dependence of the time series. For (MP2), since the change is solely driven by
variance, SNV gives the best performance, while quantile-based detection, such as SNQ90 expe-
riences power loss. However, the multi-parameter detection based on SNQ10,90 and SNQ10,20,80,90
provide much improved performance over SNQ90, though similar to ECP, they do experience cer-
tain power loss compared to SNV.Moreover, SNMP performs competently compared to SNV once
variance is included in the multi-parameter set.

This numerical study clearly demonstrates the versatility of SNCP, where it can be effort-
lessly tailored to target various types of parameter change and theirmulti-parameter combination.
Moreover, compared to detection based on an individual parameter, multi-parameter detection
tends to enhance power and improve estimation accuracy when the underlying change affects
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TABLE 5 Performance of SNMP and ECP under change in multi-parameter

m̂−mo

Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 ARI d1 × 102 d2 × 102 dH × 102 time

SNQ90 (MP1) 0 10 132 805 50 3 0 0.839 3.25 7.26 7.85 17.74

SNQ95 0 5 100 820 73 2 0 0.868 3.16 5.70 6.62 17.20

SNV 0 2 110 832 54 2 0 0.869 2.45 5.47 6.06 12.20

SNQ90,95 0 3 82 850 62 3 0 0.878 3.01 4.88 5.67 39.56

SNQ90V 0 0 56 869 70 5 0 0.891 3.04 3.95 4.77 30.96

SNQ95V 0 2 64 861 68 5 0 0.889 2.92 4.30 5.14 30.81

SNQ90,95V 0 2 48 882 66 2 0 0.894 2.95 3.79 4.58 49.72

ECP 0 0 0 730 144 92 34 0.850 6.33 3.68 6.41 10.58

SNV (MP2) 0 0 14 956 28 2 0 0.928 2.15 2.13 2.60 12.28

SNQ90 0 71 282 596 48 3 0 0.705 4.10 15.72 16.33 17.50

SNQ10,90 0 13 165 788 32 2 0 0.826 3.00 8.36 8.84 39.62

SNQ90V 0 0 32 929 39 0 0 0.913 2.42 2.95 3.45 30.92

SNQ10,90V 0 1 50 917 32 0 0 0.903 2.37 3.67 4.06 49.74

SNQ10,20,80,90 0 5 118 816 60 1 0 0.849 3.41 6.51 7.27 68.96

ECP 0 49 46 807 79 15 4 0.833 3.43 6.78 7.58 9.96

several parameters in the consideredmulti-parameter set. We further illustrate this point in more
details via real data analysis in Section S.3.2.

For each estimated change-point by SNMP, one may want to identify which features actu-
ally changed. One informal strategy is to further conduct a subsequent SN-test. Specifically, for
each estimated change-point, based on a well-designed local interval, we can further conduct a
single change-point SN test via (2) for each feature and determine if it is changed at this very
change-point. Though this procedure is obviously subject to multiple testing issues, it can shed
some light on which feature actually changed. We refer to Section S.8.1 for more details of this
informal procedure.

5 CONCLUSION

In this paper, we present a novel and unified framework for time series segmentation in multi-
variate time series with rigorous theoretical guarantees. Our proposedmethod ismotivated by the
recent success of the SN method (Shao, 2015) and advances the methodological and theoretical
frontier of statistics literature on change-point estimation by adapting the general framework of
approximately linear functional inKünsch (1989).Ourmethod is broadly applicable to the estima-
tion of piecewise stationary models defined in a general functional. In terms of statistical theory,
the consistency and convergence rate of change-point estimation are established under the mul-
tiple change-points setting for the first time in the literature of SN-based change-point analysis.
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For future research, it may be desirable to relax the piecewise constant assumption and allow
the parameter to vary smoothly within each segment; see Wu and Zhou (2019) for such a formu-
lation in non-parametric trend models and Casini and Perron (2021a) in locally stationary time
series.
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