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Abstract

In this paper, we study the problem of multiple change-point detection for a univariate

sequence under the epidemic setting, where the behavior of the sequence alternates between

a common normal state and different epidemic states. This is a non-trivial generalization of

the classical (single) epidemic change-point testing problem. To explicitly incorporate the al-

ternating structure of the problem, we propose a novel model selection based approach for

simultaneous inference on both change-points and alternating states. Using the same spirit as

profile likelihood, we develop a two-stage alternating pruned dynamic programming algorithm,

which conducts efficient and exact optimization of the model selection criteria and has O(n2)

as the worst case computational cost. As demonstrated by extensive numerical experiments,

compared to classical general-purpose multiple change-point detection procedures, the proposed

method improves accuracy for both change-point estimation and model parameter estimation.

We further show promising applications of the proposed algorithm to multiple testing with

locally clustered signals, and demonstrate its advantages over existing methods in large scale

multiple testing, in DNA copy number variation detection, and in oceanographic study.

Keywords: Change-point, DNA copy number variation, Epidemic alternative, Model selection,

Multiple testing

1 Introduction

Change-point detection is an active research area in statistics and has been studied extensively due

to its broad applications in many fields such as bioinformatics, climate science, finance, and genetics

among others. There is vast literature in change-point detection, see Yao (1987), Davis et al. (2006),
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Aue et al. (2009), Killick et al. (2012), Chan et al. (2014), Zou et al. (2014), Matteson and James

(2014), Yau and Zhao (2016), Fearnhead and Rigaill (2017), Jiang et al. (2020) and references

therein.

A less studied yet important type of change-point detection problem is the epidemic change-

point detection, which is first proposed and studied in Levin and Kline (1985). Let y1:n = (y1, . . . , yn)

be a sequence of independently distributed univariate observations. Roughly speaking, under the

(classical) epidemic change-point setting, there exist two change-points 0 < τ1 < τ2 < n such that

y1:τ1 and y(τ2+1):n follow the same distribution and y(τ1+1):τ2 follows a different distribution. The

two segments on the sides y1:τ1 and y(τ2+1):n are referred to as the normal state and the central

segment y(τ1+1):τ2 is referred to as the epidemic state. We call this setting the (classical) single

epidemic change-point setting.

In the literature, the epidemic change-point detection is typically formulated as a hypothesis

testing problem, where different test statistics have been proposed to test the null hypothesis

of no change-point against the above defined epidemic alternative with two change-points, see

Yao (1993), Guan (2004), Arias-Castro et al. (2005) and Aston and Kirch (2012). Moreover, the

existing literature focus on the single epidemic change-point setting where the data is assumed to

start at the normal state and only one single epidemic state is allowed. The more realistic setting

of detecting multiple epidemic change-points, however, is largely unexplored. One exception is a

recent work by Fisch et al. (2019), where the authors consider the context of multiple epidemic

changes but with a focus on anomaly and outliers detection.

In this paper, we propose a model selection based framework on multiple epidemic change-

points estimation. Specifically, we assume that under the epidemic alternative, there exist m

unknown change-points 0 < τ1 < τ2 < . . . < τm < n such that the distribution of yt alternates

between a (common) normal state and (different) epidemic states. For a concrete example, let

the number of change-points m be even and the data y1:n start at the normal state. Denote

τ0 = 0 and τm+1 = n. Under the multiple epidemic change-point setting, the m/2 + 1 odd-

numbered segments y(τ2k+1):τ2k+1
, k = 0, . . . ,m/2 are at the (common) normal state and the m/2

even-numbered segments y(τ2k−1+1):τ2k , k = 1, . . . ,m/2 are at (different) epidemic states. In other

words, the data y1:n alternates between the normal state and epidemic states.

The multiple epidemic change-point setting incorporates the aforementioned single epidemic

setting as a special case and is more realistic in that it allows the observations y1:n to move back

and forth between the common normal state and epidemic states. One motivating example for
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multiple epidemic change-point setting is the DNA copy number variation (see Olshen et al., 2004;

Niu and Zhang, 2012; Xiao et al., 2015; Shin et al., 2020), where the observations y1:n are the log-

ratios of the copy number of genes between the test and reference sequence. For most genes, there

is no variation (common normal state) and the mean log-ratio is a common constant (e.g. 0). When

there is variation (epidemic state), depending on the duplication or deletion of certain genes, the

mean log-ratio can be either larger or smaller than that of the normal state. Another important

example is large scale multiple testing with locally clustered signal as considered in Cao and Wu

(2015), where a sequence of p-values p1:n are observed with pi being the p-value for the ith test,

and we need to perform n hypothesis tests based on p1:n. The signal is locally clustered in the

sense that the sequence of p-values can be partitioned into alternating blocks of signal (epidemic

state, where p-values do not follow U(0, 1)) and noise (common normal state, where p-values follow

U(0, 1)). The two examples are later discussed in detail in Section 5.

Compared to the conventional multiple change-point detection problem, the unique aspect of the

multiple epidemic change-point setting is that there is an underlying alternating structure on the

behavior of the observation y1:n. Same as standard change-point problems, our primary interest is

to recover the unknown number and locations of change-points. Distinctive from standard change-

point problems, a further interest is to recover the underlying alternating states of y1:n. Specifically,

the task is to assign a normal or epidemic label to each estimated segment.

The unique alternating structure of states and the shared common behavior among all normal

state segments impose both challenges and opportunities for change-point detection. Specifically,

existing general-purpose multiple change-point detection algorithms such as CBS in Olshen et al.

(2004), PELT in Killick et al. (2012) and WBS in Fryzlewicz (2014) cannot directly recover the

underlying alternating states and thus require additional post-analysis on the estimation result.

On the other hand, intuitively, if an algorithm can explicitly incorporate and exploit the alter-

nating structure and the knowledge that segments at the normal state share the same behavior,

improved estimation accuracy should be expected due to the additional information on the con-

strained structure of the problem. As an illustrative example, Proposition S.1 of the supplementary

material shows that incorporating the structure of epidemic change can help uniformly improve the

power of a change-point test.

Motivated by the above observations, in this paper, we propose a novel alternating dynamic

programming algorithm, named aPELT, to efficiently solve the multiple epidemic change-point

problem. The proposed approach is based on the seminal work of PELT in Killick et al. (2012),
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but involves an explicit treatment for the alternating structure and common normal state behavior.

The advantages of aPELT are three-fold. First, by incorporating the shape-constraint explic-

itly, aPELT achieves simultaneous inference on both change-points and alternating states of the

sequence, thus does not require any post processing of the estimation result. Second, as demon-

strated by extensive numerical experiments and real data applications, the explicit treatment for

alternating states further helps to improve accuracy for both change-point estimation and parame-

ter estimation. The proposed aPELT has meaningful applications in multiple testing problems with

locally clustered signals and in DNA copy number variation detection, where favorable performance

over existing general-purpose methods is observed (see Section 5 for more details). Third, similar

to PELT, it can be applied to detect various types of changes (such as mean, variance) under a

range of statistical criteria such as likelihood, quasi-likelihood and cumulative sum of squares, and

further enjoys computational efficiency, thus aPELT can be used to segment large datasets.

A related yet rather different stream of literature is the constrained dynamic optimization in

Hocking et al. (2015) and Hocking et al. (2018). Motivated by mean changes in ChIP-seq data,

the authors propose efficient algorithms (PeakSeg and GFPOP) to solve a model selection problem

under the constraint that a decrease in mean must be followed by an increase, and vice versa.

In contrast, our multiple epidemic change-point setting does not impose any directional relation

on the normal state and epidemic state behavior, and thus cannot be covered by the setting in

Hocking et al. (2015) and Hocking et al. (2018).1 Moreover, our use of common normal state

parameter poses further difficulty on the optimization, since the constraint is not only on two

neighboring segments but instead on all normal state segments.

The rest of the paper is organized as follows. In Section 2, we formulate the multiple epi-

demic change-point detection problem and review the model selection approach for general change-

point problems. For a tailored and efficient solution, an alternating dynamic programming algo-

rithm (aPELT) is proposed in Section 3. The efficiency and accuracy of the proposed method are

demonstrated via extensive numerical experiments in Section 4. Applications of aPELT to DNA

copy number variation and multiple testing with locally clustered signals are presented in Section 5.

The paper concludes with a discussion. Additional simulation, real data application and technical

materials can be found in the supplementary material.

1For example, consider a sequence that has the following alternating state changes: a high (epidemic) state → the
normal state → a low (epidemic) state → the normal state → another high (epidemic) state.
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2 Background and Existing Solutions

2.1 Basic setting

Roughly speaking, change-point detection can be considered as the identification of points within

a dataset where the statistical properties change. In this paper, we assume that y1:n = (y1, . . . , yn)

is a sequence of independently distributed univariate observations. There are m change-points

0 < τ1 . . . < τm < n that split the data into m+ 1 segments. Define τ0 = 0 and τm+1 = n, we have

that the ith segment contains data y(τi−1+1):τi .

We assume that the distribution of yt belongs to a parametric family f(y|θ, γ), where θ ∈
R
p1 (p1 ≥ 1) denotes the parameter of interest and γ ∈ R

p2 (p2 ≥ 0) denotes the nuisance parameter.

For example, in mean change detection for independent Gaussian observations, θ is the mean and γ

is the variance of yt, and in change-point detection for independent Poisson counts, θ is the intensity

of yt and there is no γ. Denote the parameters for the ith segment y(τi−1+1):τi as (θi, γi), we have

θi 6= θi+1 for i = 1, . . . ,m. Note that we do not put any restriction on the nuisance parameters γi

except assuming that they are unknown.

Under the multiple epidemic change-point setting, we further assume that {θi}m+1
i=1 alternates

between a common normal state θo and different epidemic states. More formally, for any i =

1, . . . ,m, if the ith segment y(τi−1+1):τi follows f(y|θo) (or f(y|θ) for some θ 6= θo), then the

(i + 1)th segment y(τi+1):τi+1
follows f(y|θ) for some θ 6= θo (or f(y|θo)). The only requirement

for an epidemic state is that θ 6= θo without any directional constraint. For the multiple epidemic

change-point setting, our inference interests are two-fold: 1. to recover the unknown number and

locations of change-points, 2. to recover the alternating states of the observation y1:n.

As mentioned in Section 1, existing literature focus on single epidemic change-point detection

with m = 2 and assume data starts at the normal state. Under such setting, typically a test statistic

of the form max1≤i<j<n Z(i, j) is constructed for change-point estimation via hypothesis testing.

With m and initial state of the data being unknown, a direct generalization of this testing procedure

to the multiple epidemic change-point setting is not obvious, due to the constraint of alternating

states and common normal state behavior. Thus, we instead tackle the multiple epidemic change-

point detection via a model selection approach.

2.2 Optimal Partitioning and PELT

The multiple epidemic change-point detection is a special type of multiple change-point detection

problem. In this section, we review two existing model selection based detection algorithms, which
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serves as the basis for our proposed alternating change-point detection procedure. For the moment,

assume that we are doing classical multiple change-point detection, thus the only requirement is

θi 6= θi+1 for i = 1, . . . ,m.

Given the observation y1:n, denote T (n) = {τττ : 0 = τ0 < τ1, . . . < τm < τm+1 = n} as the

candidate set of all possible vectors of change-points. The model selection approach estimates the

true change-points τττ o by minimizing a penalized loss function

F (n) = min
τττ∈T (n)

{

m+1
∑

i=1

[min
θi,γi

C(y(τi−1+1):τi |θi, γi) + P]

}

= min
τττ∈T (n)

{

m+1
∑

i=1

[C(y(τi−1+1):τi) + P]

}

, (1)

where C(y(τi−1+1):τi |θi, γi) =
∑τi

t=τi−1+1 g(yt|θi, γi) denotes the measure of model fit such as twice

the negative log-likelihood, C(y(τi−1+1):τi) = minθi,γi C(y(τi−1+1):τi |θi, γi), and P denotes the penalty

for model complexity such as BIC or MDL, see Aue and Lee (2011) and Aue et al. (2014).

The optimization of (1) is in general difficult due to the L0 penalty. Using dynamic program-

ming, Jackson et al. (2005) propose the Optimal Partitioning (OP) algorithm which obtains the

exact solution of (1) with O(n2) computational complexity. The essential idea of OP is the recursive

relationship where for any s ≤ n,

F (s) = min
τττ∈T (s)

{

m+1
∑

i=1

[C(y(τi−1+1):τi) + P]

}

=min
t<s

{

min
τττ∈T (t)

m
∑

i=1

[C(y(τi−1+1):τi) + P] + C(y(t+1):s) + P

}

(2)

=min
t<s

{

F (t) + C(y(t+1):s) + P
}

.

This provides a recursion which gives the minimum cost F (s) of y1:s in terms of the minimum

cost F (t) of y1:t for t < s, and thus F (n) can be solved in turn for s = 1, 2, . . . , n. Note that

the essential condition for the recursion (2) to hold is that the optimization of C(y(t+1):s) =

minθ,γ
∑s

i=t+1 g(yi|θ, γ) is independent across different segments (Bellman’s principle of optimality),

which is true under the classical multiple change-point setting.

Assuming the existence of a constant K such that for all t < s < n, C(y(t+1):s)+C(y(s+1):n)+K ≤
C(y(t+1):n), Killick et al. (2012) propose the PELT algorithm, which further reduces the computa-

tional complexity of OP and can solve F (n) in linear time under certain conditions. The key idea

of PELT is that for the calculation of F (s), we do not need to consider all {t|t < s} but only a

pruned subset
{

t|t < s
} ∖ {

t|there exists t < t′ < s such that F (t) + C(y(t+1):t′) +K ≥ F (t′)
}

, and

thus achieve a lower computational cost.
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3 Multiple Epidemic Change-point Detection via Alternating PELT

Compared to the classical setting, the multiple epidemic change-point setting imposes an implicit

shape-constraint on the model parameter {θi}m+1
i=1 such that {θi}m+1

i=1 alternates between the normal

state and epidemic states, and all normal state θis are the same.

As mentioned in the introduction, besides segmenting the sequence via change-point detection,

another primary interest is to simultaneously recover the label of each segment. In other words,

we would like the estimated parameter {θ̂i}m+1
i=1 to possess the alternating structure. However,

neither OP nor PELT can directly recover the alternating structure since the shape-constraint is

not explicitly considered in the penalized loss function F (n) in (1), where τττ only determines the

number and locations of the change-points but does not restrict the state of each segment.

To impose the alternating structure of {θi}m+1
i=1 , we propose to modify the penalized loss function

in (1) by explicitly assigning states to segments. Note that due to the alternating structure, for

any given τττ , once the state of the last segment is determined, the states of all other segments are

fixed accordingly. Thus, given m and τττ , we define four index sets

Soo
m = {i|ith segment normal, (m+ 1)th segment normal},

So1
m = {i|ith segment epidemic, (m+ 1)th segment normal},

S1o
m = {i|ith segment normal, (m+ 1)th segment epidemic},

S11
m = {i|ith segment epidemic, (m+ 1)th segment epidemic}.

Depending on the state of the last segment, the four index sets assign states and group the segments

of τττ by normal or epidemic states. For example, for m = 5, Soo
5 = {2, 4, 6}, So1

5 = {1, 3, 5},
S1o
5 = {1, 3, 5} and S11

5 = {2, 4, 6}.
Based on the four index sets, we further define two penalized loss functions

F ∗
o (n) = min

τττ∈T (n)







min
θo

∑

i∈Soo
m

[min
γi

C(y(τi−1+1):τi |θo, γi) + Po] +
∑

i∈So1
m

[min
θi,γi

C(y(τi−1+1):τi |θi, γi) + P1]







, (3)

F ∗
1 (n) = min

τττ∈T (n)







min
θo

∑

i∈S1o
m

[min
γi

C(y(τi−1+1):τi |θo, γi) + Po] +
∑

i∈S11
m

[min
θi,γi

C(y(τi−1+1):τi |θi, γi) + P1]







, (4)

where Po denotes the penalty for the segment at normal state and P1 denotes the penalty for the

segment at epidemic state. Note that Po and P1 typically take different values, as the penalty for

θo should be lower due to the fact that it is common across all normal state segments.

By design, F ∗
o (n) forces the last segment of τττ to be at the normal state and F ∗

1 (n) forces the
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last segment to be at the epidemic state. Moreover, F ∗
o (n) and F ∗

1 (n) explicitly incorporate the

alternating structure of {θi}m+1
i=1 since Sm enforces alternating normal and epidemic states among

segments and all segments in Soo
m or S1o

m share a common θo. Thus, for the simultaneous inference

of change-points and alternating states, we can then solve the modified penalized loss function

F ∗(n) = min(F ∗
o (n), F

∗
1 (n)), (5)

which explicitly incorporates the alternating shape-constraint of {θi}m+1
i=1 and requires no prior

knowledge of the initial state of y1:n.

To solve (5) efficiently, a recursive relationship similar to (2) is needed for a dynamic pro-

gramming based algorithm. However, due to the presence of the common parameter θo across

all normal state segments, the recursive relationship in (2) no longer holds since the optimization

of
∑

i∈Soo
m
[minγi C(y(τi−1+1):τi |θo, γi) + Po] in F ∗

o (n) and
∑

i∈S1o
m
[minγi C(y(τi−1+1):τi |θo, γi) + Po] in

F ∗
1 (n) are no longer independent across segments. Thus, the previous algorithms break down and

a new algorithm is needed for the computationally feasible estimation.

3.1 A two stage optimization procedure

The key observation is that the optimization of the common θo causes the breakdown of the re-

cursion (2). To bypass this obstacle, we propose a two-stage optimization procedure for F ∗(n),

which separates the optimization of θo and other model parameters (γ,τττ ). This procedure shares

the same spirit as profile likelihood. For any fixed θo, we define

F ∗
o (n; θ

o) = min
τττ∈T (n)







∑

i∈Soo
m

[min
γi

C(y(τi−1+1):τi |θo, γi) + Po] +
∑

i∈So1
m

[min
θi,γi

C(y(τi−1+1):τi |θi, γi) + P1]







,

F ∗
1 (n; θ

o) = min
τττ∈T (n)







∑

i∈S1o
m

[min
γi

C(y(τi−1+1):τi |θo, γi) + Po] +
∑

i∈S11
m

[min
θi,γi

C(y(τi−1+1):τi |θi, γi) + P1]







.

Rearrange the order of optimization between θo and τττ in (3) and (4), we have

F ∗
o (n) = min

θo
min

τττ∈T (n)







∑

i∈Soo
m

[min
γi

C(y(τi−1+1):τi |θo, γi) + Po] +
∑

i∈So1
m

[min
θi,γi

C(y(τi−1+1):τi |θi, γi) + P1]







= min
θo

F ∗
o (n; θ

o),

F ∗
1 (n) = min

θo
min

τττ∈T (n)







∑

i∈S1o
m

[min
γi

C(y(τi−1+1):τi |θo, γi) + Po] +
∑

i∈S11
m

[min
θi,γi

C(y(τi−1+1):τi |θi, γi) + P1]







= min
θo

F ∗
1 (n; θ

o).
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Denote F ∗(n; θo) = min(F ∗
o (n; θ

o), F ∗
1 (n; θ

o)), we have

F ∗(n) = min(F ∗
o (n), F

∗
1 (n)) = min

θo
F ∗(n; θo).

Thus if we can solve F ∗(n; θo) efficiently for any given θo and F ∗(n; θo) is further a smooth function

of θo, we can efficiently solve F ∗(n) in a profile-likelihood fashion. In the following two subsections,

we describe the two-stage optimization procedure in detail.

3.2 Alternating PELT under known normal state parameter θ
o

In this subsection, for a given θo, we propose an efficient alternating dynamic programming algo-

rithm for solving F ∗(n; θo) = min(F ∗
o (n; θ

o), F ∗
1 (n; θ

o)).

Denote Co(y(t+1):s) = minγ C(y(t+1):s|θo, γ) and C1(y(t+1):s) = minθ,γ C(y(t+1):s|θ, γ). Under the

epidemic change-point setting, a normal state is always followed by an epidemic state and vice

versa. Thus, there is an implicit alternating recursion between F ∗
o (s; θ

o) and F ∗
1 (s; θ

o) where

F ∗
o (s; θ

o) = min
t<s

{F ∗
1 (t; θ

o) + Co(y(t+1):s) + P o}, F ∗
1 (s; θ

o) = min
t<s

{F ∗
o (t; θ

o) + C1(y(t+1):s) + P 1}. (6)

Equations (6) provides a recursive relationship between the minimum cost F ∗
o (s; θ

o) for y1:s and

the minimum cost F ∗
1 (t; θ

o) for y1:t with t < s, and similarly between F ∗
1 (s; θ

o) and F ∗
o (t; θ

o). Thus,

to obtain F ∗(n; θo) = min(F ∗
o (n; θ

o), F ∗
1 (n; θ

o)), we can solve F ∗
o (s; θ

o) and F ∗
1 (s; θ

o) alternatingly

by recursion for s = 1, 2, . . . , n. We call this an alternating dynamic programming algorithm and

its computational cost can be easily shown to be O(n2).

To further reduce the computational cost, we propose an alternating PELT (aPELT) algorithm

by extending the pruning idea of PELT in Killick et al. (2012). The key idea is that when calculating

F ∗
o (s; θ

o) and F ∗
1 (s; θ

o) via recursion (6), we do not need to consider all t < s. Instead, we only

need to consider a subset of t < s by adding a pruning step. Theorem 1 gives the pruning step for

aPELT and provides its theoretical guarantee.

Theorem 1. Given θo, assume that there exists a constant Ko such that for all t < s < n,

Co(y(t+1):s) + Co(y(s+1):n) +Ko ≤ Co(y(t+1):n).

Then if

F ∗
1 (t; θ

o) + Co(y(t+1):s) +Ko > F ∗
1 (s; θ

o)

holds, at a future time n > s, t can never be the optimal last change-point for F ∗
o (n; θ

o) prior to n.

Similarly, assume that there exists a constant K1 such that for all t < s < n,

C1(y(t+1):s) + C1(y(s+1):n) +K1 ≤ C1(y(t+1):n).

9



Then if

F ∗
o (t; θ

o) + C1(y(t+1):s) +K1 > F ∗
o (s; θ

o),

holds, at a future time n > s, t can never be the optimal last change-point for F ∗
1 (n; θ

o) prior to n.

Compared with PELT, the pruning scheme for aPELT is more complicated as aPELT needs

to solve two optimization of F ∗
0 (n; θ

o) and F ∗
1 (n; θ

o) simultaneously, and thus requires two sets

of pruning for F ∗
0 (n; θ

o) and F ∗
1 (n; θ

o) respectively. An interesting phenomenon in Theorem 1 is

that the pruning for F ∗
0 (n; θ

o) requires the values of F ∗
1 (s; θ

o) and vice versa, which again calls

for alternating optimization of F ∗
0 (n; θ

o) and F ∗
1 (n; θ

o). Based on Theorem 1, the pseudo-code of

aPELT with known normal state parameter θo is given in Algorithm 1 and we name it aPELT(θo).

Remark 1 (pruning condition): If C(y(t+1):s; θ, γ) is the log-likelihood function of y(t+1):s, it

can be easily seen that the constant Ko and K1 in Theorem 1 exist and can be set as 0 for any θo.

Remark 2 (computational cost of aPELT): For a fixed θo, aPELT(θo) essentially runs two

pruned dynamic programming simultaneously in an alternating fashion. Thus, for any given θo,

the computational upper bound for solving F ∗(n; θo) via aPELT(θo) is O(n2). Due to the pruning

scheme, the computational performance of aPELT(θo) is expected to resemble PELT, which is

more efficient with a growing number of change-points. As is demonstrated by extensive numerical

experiments in Section 4.2, the computational cost of aPELT(θo) is comparable to PELT across a

wide range of observation length n regardless of the number of change-points m.

Algorithm 1 aPELT(θo): aPELT algorithm with known normal state parameter θo

1: Initialize: Set F ∗
o (0; θ

o) = F ∗
1 (0; θ

o) = 0, cp1(0) = cpo(0) = NULL, Ro
1 = R1

1 = {0}.
2: Iterate: for s = 1, . . . , n
3: [Alternating dynamic programming: (i)-(iii)]
4: (i). Calculate F ∗

o (s; θ
o) = mint∈Ro

s
{F ∗

1 (t; θ
o) + Co(y(t+1):s) + P o},

5: F ∗
1 (s; θ

o) = mint∈R1
s
{F ∗

o (t; θ
o) + C1(y(t+1):s) + P 1}.

6: (ii). Let t∗o = argmint∈Ro
s
{F ∗

1 (t; θ
o) + Co(y(t+1):s) + P o},

7: t∗1 = argmint∈R1
s
{F ∗

o (t; θ
o) + C1(y(t+1):s) + P 1}.

8: (iii). Set cpo(s) = {cp1(t∗o), t∗o} and cp1(s) = {cpo(t∗1), t∗1}.
9: [Pruning: (iv)]

10: (iv). Set Ro
s+1 = {t ∈ Ro

s ∪ {s} : F ∗
1 (t; θ

o) + C0(y(t+1):s) +Ko ≤ F ∗
1 (s; θ

o)},
11: R1

s+1 = {t ∈ R1
s ∪ {s} : F ∗

o (t; θ
o) + C1(y(t+1):s) +K1 ≤ F ∗

o (s; θ
o)}.

12: Output: If F ∗
o (n; θ

o) ≤ F ∗
1 (n; θ

o), return cpo(n) and alternating states with last state normal.
13: Otherwise, return cp1(n) and alternating states with last state epidemic.
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3.3 Alternating PELT under unknown normal state parameter θ
o

For many applications, the normal state parameter θo is naturally known and thus aPELT(θo)

proposed in Section 3.2 is sufficient. For example, in DNA copy number variation, the mean log-

ratio between the test and reference sequence is typically 0 when there is no variation; in multiple

testing with locally clustered signals, the normal state is uniform distribution U(0, 1). Nevertheless,

for the sake of generality, it is of interest to cover the case of unknown θo. In this section, we discuss

two extensions of aPELT, namely aPELT profile and aPELT plugin, to handle such situation.

3.3.1 Profile aPELT

The proposed aPELT(θo) in Algorithm 1 can find the exact minimum of F ∗(n; θo) for a given normal

state parameter θo, thus if F ∗(n; θo) is a smooth function of θo, we can solve F ∗(n) = minθo F
∗(n; θo)

by a standard optimization algorithm such as gradient descent. In addition, as a byproduct, θo

can be estimated by θ̃o = argminθo F
∗(n; θo). This two-stage procedure shares the same spirit as

profile likelihood, thus we name it aPELT profile.

To justify aPELT profile, we investigate the behavior of F ∗(n; θo) and show in Theorem 2 that

in general F ∗(n; θo) is a piecewise smooth function of θo, and thus can be solved by a gradient-based

algorithm. By writing out F ∗
o (n; θ

o) and F ∗
1 (n; θ

o) explicitly, we have

F ∗
o (n; θ

o) = min
τττ∈T (n)





∑

i∈Soo
m

[min
γi

C(y(τi−1+1):τi |θo, γi) + Po] +
∑

i∈So1
m

[min
θi,γi

C(y(τi−1+1):τi |θi, γi) + P1]



 ,

F ∗
1 (n; θ

o) = min
τττ∈T (n)





∑

i∈S1o
m

[min
γi

C(y(τi−1+1):τi |θo, γi) + Po] +
∑

i∈S11
m

[min
θi,γi

C(y(τi−1+1):τi |θi, γi) + P1]



 .

For a given change-point configuration τττ , we denote C1(τττ) =
∑

i∈So1
m

[minθi,γi C(y(τi−1+1):τi |θi, γi)+
P1] and C2(τττ) =

∑

i∈S11
m
[minθi,γi C(y(τi−1+1):τi |θi, γi) + P1], as the two quantities are constants

not depending on τττ . We further denote g1(θ
o;τττ) =

∑

i∈Soo
m
[minγi C(y(τi−1+1):τi |θo, γi) + Po] and

g2(θ
o;τττ) =

∑

i∈S1o
m

[minγi C(y(τi−1+1):τi |θo, γi)+Po], as the two quantities are functions of θo. There-

fore, we have

F ∗(n; θo) = min(F ∗
o (n; θ

o), F ∗
1 (n; θ

o)) = min

{

min
τττ∈T (n)

[g1(θ
o;τττ) + C1(τττ )] , min

τττ∈T (n)
[g2(θ

o;τττ) +C2(τττ)]

}

.

In other words, F ∗(n; θo) is the minimum of 2|T (n)| functions of θo, where |·| denotes the cardinality
of a set. Intuitively, if for each τττ , g1(θ

o;τττ) and g2(θ
o;τττ ) are smooth functions of θo, F ∗(n; θo) should

also be a (piecewise) smooth function of θo. This notion is later formalized in Theorem 2.

Denote Θ ∈ R
p1 as the parameter space of the normal state parameter θo and denote Θ̊ as the

interior of Θ. Before stating Theorem 2, we first state two assumptions on the behavior of the
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2|T (n)| functions in
{

g1(θ
o;τττ), g2(θ

o;τττ)|τττ ∈ T (n)
}

.

Assumption 1 (Smoothness). Every function in
{

g1(θ
o;τττ ), g2(θ

o;τττ )|τττ ∈ T (n)
}

is a differentiable

function of θo and has a unique global minimizer in Θ̊. WLOG, further assume that the global

minimizers and the minimum values of different functions are different.

Assumption 2 (Finite Partition). There exists a finite partition {Θ1, . . . ,ΘN(n)} of Θ where each

Θi is a connected set in R
p and there is no intersection among functions in

{

g1(θ
o;τττ ), g2(θ

o;τττ )|τττ ∈
T (n)

}

in each interior set Θ̊i, for i = 1, . . . , N(n).

Both Assumptions 1 and 2 are mild and are expected to hold for common loss functions

C(y(t+1):s; θ, γ) such as log-likelihood. In Section 3.5, we verify Assumptions 1-2 for some classical

change-point settings. Assumption 2 is used to evoke intermediate value theorem in the proof and

show that F ∗(n; θo) is piecewise differentiable on Θ. As an intuitive example, for Θ = (θL, θU ) ⊆ R,

a sufficient condition for Assumption 2 is that the functions in
{

g1(θ
o;τττ), g2(θ

o;τττ )|τττ ∈ T (n)
}

have

finite intersection points at, say θ1 < θ2 < . . . < θN(n)−1. Thus, the finite partition in Assumption

2 can be set as
⋃N(n)

i=1 Θi =
⋃N(n)

i=1 [θi−1, θi], where we define θ0 = θL and θN(n) = θU .

Theorem 2. Under Assumption 1, F ∗(n; θo) is a continuous function of θo and has a unique

global minimizer θo∗ in Θ̊, and there exists an open neighborhood N (θo∗) of θo∗ such that F ∗(n; θo)

is differentiable on N (θo∗). If in addition Assumption 2 holds, then we further have that F ∗(n; θo)

is differentiable in every Θ̊i and θo∗ ∈ Θ̊i for some i = 1, . . . , N(n).

By Theorem 2, under Assumption 1, with a properly chosen starting point, combined with a

standard optimization algorithm such as gradient descent, aPELT profile can successfully locate

the global minimizer of F ∗(n; θo), and thus simultaneously estimate the unknown normal state

parameter θo and the unknown change-points τττ o. With the additional Assumption 2, we know that

F ∗(n; θo) is piecewise differentiable on Θ and is differentiable in every Θ̊i, which further justifies the

use of gradient-based optimization such as gradient descent. Based on Theorem 2, the pseudo-code

of aPELT profile with unknown normal state parameter is given in Algorithm 2.

Algorithm 2 aPELT profile: aPELT algorithm with unknown normal state parameter

1: Given an initial point θo0
2: Run gradient descent on F ∗(n; θo) starting from θo0, where the function value of F ∗(n; θo) is

evaluated via aPELT(θo).
3: Output: Return θ̃o = argminθo F

∗(n; θo) given by gradient descent and output of aPELT(θ̃o).
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In practice, for the choice of the initial point θo, we can either select a set of different starting

points across Θ and run aPELT profile in parallel or we can initiate aPELT profile from a reasonable

estimator θ̂o of θo as is discussed in the following Section 3.3.2.

The computational performance of aPELT profile further depends on the smoothness of F ∗(n; θo)

and the second-stage optimization. It is trivial to see that the computational cost of aPELT profile

is d times that of aPELT(θo), where d is the number of function evaluations performed dur-

ing the second-stage optimization. We empirically investigate the computational performance of

aPELT profile in Section 4.2 through extensive numerical experiments.

3.3.2 Plug-in aPELT

When the normal state parameter θo is unknown, another natural way to proceed is to first obtain

an estimated θ̂o and then run aPELT(θ̂o) as if it is the true parameter. We call this method

aPELT plugin. As expected, the performance of aPELT plugin is closely related to the accuracy

of θ̂o. With an accurate estimator for θo, aPELT plugin should have decent performance.

The estimator θ̂o needs be chosen based on specific cases. For example, if y1:n is a sequence

of univariate Gaussian random variables with epidemic mean change and a normal state mean

µo, then one possible estimator µ̂o is the median of estimated mean from a sequence of short

screening-windows. This should work well if the epidemic state lasts shorter than the normal state.

3.4 Examples of aPELT for epidemic mean change and epidemic variance

change

In this section, we provide detailed examples of aPELT for epidemic change-point detection in

mean or variance of a sequence of independent Gaussian random variables. Consider a sequence of

observations y1:n such that

yt = µt + εt, (7)

where {εt} is a sequence of independent Gaussian noise following N(0, σ2
t ). We consider two cases:

(a). There are epidemic changes in mean µ1:n with unknown variance, and (b). There are epidemic

changes in variance σ2
1:n with unknown mean. For epidemic mean change, µ is the parameter of

interest and σ2 is the nuisance parameter, while for epidemic variance change, σ2 is the parameter

of interest and µ is the nuisance parameter.

Note that due to its model selection nature, aPELT allows the nuisance parameter to be homo-

geneous or to simultaneously change with the parameter of interest at the same change-points, and

thus has a broader applicability than testing-based change-point detection methods. We discuss
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more about this point in Section 3.4.1.

For both cases, we set C(y(t+1):s|µ, σ) to be twice the negative log-likelihood of Gaussian random

variables, where

C(y(t+1):s|µ, σ) = (s − t) log(2πσ2) +

s
∑

i=t+1

(yi − µ)2/σ2. (8)

We employ BIC for model penalty and set P o = 2 log n and P 1 = 3 log n since for an extra

epidemic state, we need to record the location of the change-point and two parameters (µ, σ), while

for an extra normal state, we do not need to record the common normal state parameter.

Proposition 1 characterizes the behavior of F ∗(n;µo) and F ∗(n;σo) as functions of µo and σo.

Proposition 1. For epidemic change-point detection in mean µ via (8), Assumptions 1 and 2

hold for F ∗(n;µo). Thus, F ∗(n;µo) is a continuous and piecewise differentiable function of µo and

F ∗(n;µo) has a global minimizer µo∗. More specifically, there exists a finite number N = N(n)

and a sequence −∞ = µ0 < µ1 < · · · < µN+1 = ∞ such that F ∗(n;µo) is differentiable on each

(µi, µi+1) and µo∗ is an interior point of one of the intervals. Moreover, the same result holds for

F ∗(n;σo) of epidemic change-point detection in variance.

In Figure S.2 of the supplement, we plot several typical realizations of F ∗(n;µo) and discuss

its optimization result, where the plots further confirm the continuous and piecewise differentiable

claim in Proposition 1. Moreover, following the same argument, it is easy to prove that similar

results as the one in Proposition 1 hold for other distributions from the exponential family, such as

Poisson, Binomial and Exponential distributions, further broadening the application of aPELT.

3.4.1 Modified aPELT for epidemic mean change with homoscedasticity

A common assumption in the literature for mean change under (7) is homoscedasticity, where it

is assumed that {εt} is a sequence of i.i.d. Gaussian noise following N(0, σ2). In other words, the

change only happens in mean {µt}nt=1 and the error term {εt} is homoscedastic.

The homoscedasticity assumption is typically required by testing-based mean change detection

algorithms (see Olshen et al., 2004; Niu and Zhang, 2012; Fryzlewicz, 2014; Shin et al., 2020) and

is found to be reasonable for applications in DNA copy number variation. In practice, the variance

σ2 is unknown and needs to be replaced by an estimate σ̂2
n, where σ̂2

n can be the median absolute

deviation estimator (Fryzlewicz, 2014) or the local regression estimator (Niu and Zhang, 2012).

Note that homoscedasticity is not intrinsically built into aPELT as (8) allows different segments

to have different variance. To incorporate the homoscedasticity into aPELT, a simple strategy is
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to substitute σ2 in (8) with an estimate σ̂2
n such that

C(y(t+1):s|µ, σ̂n) = (s− t) log(2πσ̂2
n) +

s
∑

i=t+1

(yi − µ)2/σ̂2
n.

The BIC penalty can thus be adjusted to P o = log n and P 1 = 2 log n as variance is fixed at σ̂2
n

across all segments. Intuitively, this modification can help increase the power of aPELT (when

the homoscedasticity assumption is true) as the BIC penalty is lowered due to homoscedasticity.

We refer to this variant as aPELTH and examine its performance for detecting DNA copy num-

ber variation via simulation in Section 4.2 and real data analysis in Section 5.2, where favorable

performance over existing methods is observed.

4 Simulation Study

In this section, we conduct extensive numerical experiments to compare the performance of aPELT

with state-of-the-art change-point detection algorithms in the literature under various simulation

settings for a univariate sequence y1:n generated via the framework (7).

Section 4.1 focuses on comparison between aPELT and PELT, as both methods are model

selection-based change-point detection algorithms that can handle both mean change and variance

change. Section 4.2 focuses on epidemic mean change with homoscedasticity and short epidemic

states, which resembles the characteristics of real data from DNA copy number variation, and we

compare aPELT with testing-based change-point detection algorithms designed for mean change,

which are CBS in Olshen et al. (2004), WBS in Fryzlewicz (2014), modSaRa in Xiao et al. (2015)

and BWD in Shin et al. (2020).

4.1 Epidemic mean and variance change (aPELT v.s. PELT)

In this section, we compare the performance of the three aPELT variants (aPELT(θo), aPELT plugin

and aPELT profile) with PELT in Killick et al. (2012) for epidemic mean change and epidemic vari-

ance change, and demonstrate the advantage of incorporating the epidemic structure. We present

the detailed numerical result for epidemic mean change. The result for epidemic variance change

is similar and can be found in Section §4 of the supplementary material.

Implementation details: For PELT, we set C(y(s+1):t;µ, σ) as the Gaussian log-likelihood

function (8) with unknown (µ, σ). For aPELT(θo), we assume the normal state parameter µo is

known. For aPELT plugin, we estimate the normal state parameter µo by the median of sample

mean from a sequence of screening-windows of size 10, i.e. µ̂o = median{mean(yt+1:t+10), t =

0, . . . , n − 10}. Under the typical scenario where the sequence y1:n is mostly at the normal state,
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one would expect µ̂o to be an accurate estimator for µo. For aPELT profile, we set the starting

point of optimization for µo at the estimated µ̂o as in aPELT plugin. For the aPELT methods, we

employ BIC penalty with P o = 2 log(n) for the normal state and P 1 = 3 log(n) for the epidemic

state. For PELT, the BIC penalty is P = 3 log(n).

Data generating process: Denote m as the number of true change-points. WLOG, we set

m to be an odd number. For the location of the true change-points τττ o and the alternating states,

we first partition the sequence y1:n into (m + 1)/2 equal-length segments, then for each of the

(m + 1)/2 segments, we further divide it into a normal state and an epidemic state, where the

ratio between the length of the epidemic state and the normal state is randomly sampled from a

uniform distribution U(0.2, 0.5), i.e. the normal state lasts longer than the epidemic state. Under

this simulation setting, y1:n starts with the normal state and ends with an epidemic state. Based

on (7), we have yt = µt + εt. For the mean structure {µt}, we set µi of the ith segment as

µi =











µo = 0 if ith segment is at the normal state,

(1− 2Bi(0.5)) · Ui(1, 1.25) if ith segment is at the epidemic state,

where Bi(0.5) follows i.i.d. Bernoulli distribution and Ui(1, 1.25) follows i.i.d. uniform distribution.

For the error structure {εt}, we consider two scenarios: (A) {εt} are i.i.d. errors with σt ≡ 1,

(B) {εt} are independent errors with σt = 1.5 for the normal state and σt = 1 for the epidemic

state. The nuisance parameter (variance) is homogeneous in Scenario (A) and heterogeneous in

Scenario (B). In Section §3.2 of the supplementary material, we further examine the robustness of

the algorithms against model misspecification under three more scenarios (temporal dependence

in error structure, long and short sinusoidal trends in mean structure), where aPELT consistently

offers the best performance.

Error measures: To evaluate the performance of change-point estimation, following Killick et al.

(2012), we report the true positive rate (TPR) and false positive rate (FPR) of each algorithm.

For each simulated sequence y1:n, we define

TPR =
number of correctly detected true change-point (CP)

m
,

FPR =
total number of detected CP− number of correctly detected true CP

total number of detected CP
,

where for a true change-point τ oi ∈ τττ o, we consider it to be correctly detected if there is an estimated

change-point τ̂i′ within a distance of 10 points from τ oi . To evaluate the performance of parameter

estimation, we report the MSE of the estimated parameter as MSE(θ) =
(

∑n
t=1(θ̂t − θt)

2
/

n
)1/2

,
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where θ1:n denotes the true parameter of interest and θ = µ for epidemic mean change.

Estimation performance: We set n = 1000, 2000, 5000, 10000 and consider m =
√

n/10−1 =

9, 13, 21, 31 or m = n/100− 1 = 9, 19, 49, 99, i.e. the number of change-points m grows sublinearly

or linearly with n. For each simulation setting, we repeat the experiments 1000 times and report

the average result. Note that the locations of true change-points τττ o and alternating mean structures

{µi}m+1
i=1 are simulated separately for each experiment.

Figure 1(a)-(b) reports the estimation accuracy (TPR, FPR and MSE) for linearly growing m.

In general, the three aPELT algorithms offer the best performance, where aPELT(θo) performs

the best, and aPELT plugin and aPELT profile give similar and slightly worse result. For both

Scenarios (A) and (B), all variants of aPELT offer notably better performance than PELT in terms

of TPR and MSE while maintaining smaller FPR. This further confirms the intuition that aPELT

gains statistical efficiency by explicitly utilizing the alternating structure of the epidemic change.

Figure 1(c)-(d) compares the performance for sublinearly growingm. Note that the performance

of all algorithms improves with n. Again, aPELT based algorithms offer notably better performance

than PELT. One difference is that under the sublinear m, when sample size is large (n > 5000),

PELT catches up and gives comparable (though slightly inferior) performance as aPELT.

Optimization performance: To conserve space, the optimization performance of aPELT profile

w.r.t. function F ∗(n;µo) is reported in Section §3.1 of the supplementary material. In general,

aPELT profile with a starting point at µ̂o can find the global minimizer with a reasonable success

rate. For more intuition, Figure S.2 in the supplement further gives example plots of F ∗(n;µo),

where it is observed that F ∗(n;µo) is indeed piecewise smooth and whether aPELT profile stops at

the global minimizer largely depends on the starting point µ̂o. Thus, one can start the optimization

at a set of initial values of µo to ensure the recovery of global minimizer.
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θ

(a) Linearly growing m + Scenario A (IID error)

θ

(b) Linearly growing m + Scenario B (Independent error with additional variance change)

θ

(c) Sublinearly growing m + Scenario A (IID error)

θ

(d) Sublinearly growing m + Scenario B (Independent error with additional variance change)

Figure 1: Performance of PELT and aPELT for epidemic mean change.
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Computation performance: To investigate the computational cost of aPELT, we run addi-

tional simulations for PELT and the three aPELT algorithms with number of change-points m =

n/100, m =
√

n/10 and m = 10, where n = 1000, 2000, 5000, 10000, 20000, 30000, 40000, 50000.

Figure 2 plots the average computational time across 1000 experiments v.s. the observation

length n in log-log scale. As can be seen, aPELT has relatively higher (but comparable) compu-

tational cost than PELT. In line with the theory in Killick et al. (2012), the pruning procedure

of aPELT and PELT is most effective when the number of change-points m grows linearly with

n. Empirically, the computational time of the four algorithms roughly increases at the same order

with n under all three schemes of change-point number m. As expected, aPELT profile incurs the

highest computational cost (around 10 ∼ 20 times that of aPELT(θo)).

θ

Figure 2: Log average computational time (in seconds) v.s. Log observation length n for aPELT(θo),
aPELT plugin, aPELT profile and PELT. The reference line (dashed line) is y = −9 + x.

4.2 Epidemic mean change with homoscedasticity

In this section, we focus on epidemic mean change with homoscedasticity and short epidemic states,

which resembles the characteristics of real data from DNA copy number variation (CNV). We

compare aPELTH proposed in Section 3.4.1 with CBS in Olshen et al. (2004), WBS in Fryzlewicz

(2014), modSaRa in Xiao et al. (2015) and BWD in Shin et al. (2020).

The four competing methods are testing-based detection algorithms for mean change and require

homoscedasticity. CBS and modSaRa are widely used methods for CNV detection in the literature.

WBS is a modified binary segmentation with improved power for short segments. BWD is a novel

CNV detection algorithm based on a backward principle tailored for detecting short signals.

Implementation details: For CBS, WBS, modSaRa and BWD, we use the default setting in

R packages DNAcopy, wbs, modSaRa and bwd respectively. For BWD, we implement the modified
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BWD in Shin et al. (2020), which utilizes the information of normal state mean µo and achieves

better performance. For aPELTH , the unknown variance σ̂2
n is estimated via local regression as

in modSaRa and BWD, where σ̂2
n = n−1

∑n
i=1(yi − ȳ

(h)
i )2 with ȳ

(h)
i =

∑i+h
j=i−h yj/(2h + 1) for a

window size h = 10, and we assume the normal state mean µo is known. As argued in Shin et al.

(2020), this is a reasonable assumption as for CNV detection, µo is typically known as 0.

Data generating process: The simulation setting is largely borrowed from Shin et al. (2020).

Denote 1{·} as the indicator function, y1:n is simulated via a special case of (7) such that

yt =
K
∑

k=1

δ1{t∈Ik} + εt,

where {εt} is i.i.d. N(0, σ2), and {Ik}Kk=1 are K intervals indicating the epidemic states with mean

δ and the normal states are {1:n} \ {Ik}Kk=1 with mean µo = 0. We set the number of epidemic

segments (i.e. true CNV signals) K = n/1000 + 1 and Ik = {(⌊kn/K⌋ − L+ 1) : ⌊kn/K⌋} for k =

1, · · · ,K. Thus each epidemic segment is of length L. As a concrete example, for n = 1000, L = 5,

we have K = 2, I1 = {496:500} and I2 = {996:1000}.
Error measures: The estimated change-points (τ̂1, · · · , τ̂m̂) partition y1:n into m̂+1 segments

Îk = {(τ̂k + 1) : τ̂k+1}, k = 0, 1, · · · , m̂ where by convention τ̂0 = 0 and τ̂m̂+1 = n. Following

Shin et al. (2020), we count Îk as a detected CNV signal if |Îk| < 2L and we consider an epidemic

segment Ik (true signal) as correctly detected if there exists a detected signal Îk′ such that Îk′∩Ik 6=
∅. We use the two measures defined in Shin et al. (2020) to assess the performance of methods:

Sensitivity = (number of correctly detected signals) / (number of true signals,K) ,

Precision = (number of correctly detected signals) / (number of detected signals) .

Sensitivity measures the ability to detect true signals and precision measures reliability of the

detected signals. Note that both measures range between zero and one and a method is perfect if

both measures have a value of one.

Estimation performance: Same as in Shin et al. (2020), we set (n,L, δ) = {1000, 3000, 5000}×
{5, 10}×{1.5, 2, 2.5} with σ = 1 for the homoscedastic variance. Note that the length L of the epi-

demic segment is rather short, which resembles the case in CNV detection and makes its discovery

challenging. For each simulation setting, we repeat the experiments 1000 times.

Table 1 reports the average sensitivity and precision for each method. In general, aPELTH and

BWD provide the best performance. For n = 1000, aPELTH indeed gives the best sensitivity and

(almost the best) precision. For n = 3000, 5000, the epidemic signal gets further diluted and BWD

20



offers the best sensitivity due to its novel backward principle, while aPELTH gives the second

highest sensitivity with a more reliable precision. Remarkably, compared to CBS, which is the

most widely used CNV detection algorithm in the literature, aPELTH gives better performance

in both sensitivity and precision under all simulation settings. In summary, the numerical result

clearly demonstrates the efficiency and promising potential of aPELTH for CNV detection, which

is further confirmed by the real data analysis in Section 5.2.

L 5 10
δ 1.5 2.0 2.5 1.5 2.0 2.5

n Methods Sen. Pre. Sen. Pre. Sen. Pre. Time Sen. Pre. Sen. Pre. Sen. Pre. Time
CBS 0.087 0.956 0.392 0.990 0.787 0.993 0.10 0.543 0.974 0.932 0.987 1.000 0.991 0.05
WBS 0.114 0.975 0.438 0.995 0.801 0.997 0.06 0.559 0.996 0.932 0.996 1.000 0.998 0.06

1000 modSaRa 0.130 0.805 0.311 0.947 0.449 0.983 1.21 0.493 0.962 0.771 0.980 0.888 0.981 1.23
BWD 0.241 0.910 0.603 0.965 0.867 0.981 0.03 0.711 0.962 0.967 0.977 0.998 0.984 0.03

aPELTH 0.283 0.970 0.660 0.989 0.913 0.992 0.63 0.750 0.983 0.978 0.989 1.000 0.990 0.49
CBS 0.056 0.966 0.316 0.986 0.747 0.991 0.35 0.479 0.983 0.935 0.987 0.998 0.988 0.16
WBS 0.050 0.968 0.271 0.996 0.669 1.000 0.11 0.396 0.998 0.872 1.000 0.996 1.000 0.11

3000 modSaRa 0.133 0.865 0.309 0.968 0.507 0.984 3.58 0.430 0.969 0.818 0.978 0.944 0.977 3.54
BWD 0.165 0.900 0.544 0.967 0.861 0.984 0.11 0.656 0.968 0.958 0.979 0.997 0.989 0.11

aPELTH 0.138 0.977 0.460 0.994 0.827 0.997 6.24 0.596 0.993 0.951 0.996 0.998 0.997 3.23
CBS 0.050 0.979 0.301 0.994 0.729 0.994 0.64 0.454 0.990 0.923 0.991 0.997 0.992 0.27
WBS 0.032 0.994 0.206 0.999 0.553 1.000 0.16 0.310 0.998 0.813 1.000 0.983 1.000 0.17

5000 modSaRa 0.126 0.892 0.261 0.971 0.477 0.990 5.94 0.352 0.968 0.841 0.981 0.964 0.978 5.89
BWD 0.154 0.921 0.504 0.974 0.844 0.986 0.20 0.622 0.972 0.947 0.983 0.997 0.989 0.19

aPELTH 0.096 0.987 0.385 0.998 0.764 0.999 17.31 0.518 0.997 0.927 0.998 0.998 0.999 6.63

Table 1: Performance for detecting short epidemic segments. To conserve space, computational
time (in seconds) is reported under two settings (L = 5, δ = 2.5) and (L = 10, δ = 2.5).

Computational performance: The efficiency of aPELTH does come at a cost. Table 1 further

reports the average computational time of each method. To conserve space, we report the time

under two settings (L = 5, δ = 2.5) and (L = 10, δ = 2.5), where it is seen that aPELTH in general

incurs a higher computational cost compared to the testing-based methods. This is expected due

to the model selection nature of aPELTH . However, the increased computational cost seems rather

acceptable thanks to the pruning mechanism of aPELTH .

5 Applications

In this section, we demonstrate the promising performance of aPELT in two important applications,

one in large-scale multiple testing and one in change-point detection of DNA copy number variation.

An additional real data application in segmenting high-low volatility of oceanographic data for

Canadian wave heights is given in §5.2 of the supplementary material.
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5.1 Multiple testing with locally clustered signals

We apply aPELT to solve multiple testing with locally clustered signals, which is an important

special case of multiple testing and is studied by Zhang et al. (2011) and Cao and Wu (2015).

Under the basic setting, a sequence of independent p-values p1, . . . , pn are observed and we

need to choose between the null hypothesis p1, . . . , pn ∼ U(0, 1) and an alternative hypothesis with

locally clustered signals. Specifically, the alternative hypothesis is formulated as follows: there exist

change-points 0 < τ1 < . . . < τm < n such that

p1, . . . , pτ1 ∼ U(0, 1), pτ1+1, . . . , pτ2 6∼ U(0, 1), pτ2+1, . . . , pτ3 ∼ U(0, 1), pτ3+1, . . . , pτ4 6∼ U(0, 1), . . .

or vice versa. Note that the alternative hypothesis shares a similar alternating structure as the

multiple epidemic change-point problem, where the behavior of p-values alternates between a known

common normal state (i.e. U(0, 1)) and epidemic states, and thus can be solved by aPELT(θo).

To operationalize aPELT(θo) for multiple testing with locally clustered signals, we model the

p-values pt via the Beta distribution Beta(α, β). Specifically, the p-values on the epidemic state are

modeled by a Beta distribution with parameters θ = (α, β) 6= (1, 1) and the normal state p-values

follow Beta(1, 1) = U(0, 1). In other words, aPELT(θo) is employed with θo = (1, 1) and the loss

function C(p(τi−1+1):τi |θi) is set to be twice the negative log-likelihood of p(τi−1+1):τi based on the

Beta distribution. After applying aPELT(θo) to p1:n, we then reject the hypotheses for all the

cases that are classified as epidemic states by aPELT. Note that no post-processing is needed since

aPELT simultaneously estimates both the change-points and the alternating states of the sequence

of p-values. We remark this is a general approach and can be directly applied to solve multiple

testing with locally clustered signals regardless of the underlying true distribution of pt.

We borrow the simulation setting from Cao and Wu (2015) where p1:n is a sequence of p-values

generated by two-sided tests for mean. Specifically, we have pt = 2(1 − Φ(|yt|)), where y1:n is a

sequence of independent Gaussian random variables with variance σ = 1 and mean µt exhibited in

Table 2, and Φ(·) is the cdf of standard normal distribution. In other words, each pt is the p-value

of the two-sided test for E(yt) = 0.

Segment (% among n) 2.5 2.5 30 2.5 30 2.5 30
Signal strength (mean level µt) 1 -1.5 0 1.5 0 -1.5 and 1 alternating 0

State (normal/epidemic) E N E N E N

Table 2: Mean structure with locally clustered signals that alternate between epidemic (E) and
normal (N) states.
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The behavior of p-values p1:n alternates between the normal state U(0, 1) and different epidemic

states at τττ o = n(0.05, 0.35, 0.375, 0.675, 0.7) depending on whether µt = 0. Note that µt is not a

constant on some epidemic states, for example, the first epidemic state [1, 0.05n] and the third

epidemic state [0.675n + 1, 0.7n]. Thus, the distribution of pt is not identical on those epidemic

states. Furthermore, pt = 2(1 − Φ(|yt|)) on epidemic states does not exactly follow the Beta

distribution. Hence aPELT(θo) encounters model misspecification under the current simulation

setting. However, as is shown by the numerical experiments, with the flexible Beta distribution,

aPELT still gives robust and efficient performance under such misspecification.

We set n = 1000, 2000, 5000 and compare the performance of aPELT(θo) with PELT, CBS,

WBS, modSaRa, BWD and the proposed procedure in Cao and Wu (2015) (hereafter CW). For

each n, we repeat the simulation 1000 times. We emphasize that for all detection procedures, the

observed sequence is p-values p1:n instead of y1:n. CW detects change-points and conducts multiple

testing by thresholding a sequence of local scan statistics calculated via a screening window of size

k. As a local screening method, CW has a computational cost of O(n). The window size k is a

tuning parameter and we try both k =
√
n and k = (log n)2 as suggested by Cao and Wu (2015).

Same as aPELT, we set the loss function of PELT using the Beta distribution, thus the only

difference is that aPELT explicitly explores the alternating structure of the locally clustered signals

and incorporates the known normal state U(0, 1). PELT, CBS, WBS, modSaRa and BWD require

additional post-processing as none automatically estimates alternating states of the p-values. To

fix this, based on the estimated change-points, we divide the sequence of p-values into odd and even

numbered segments, and we reject all odd numbered segments if the total length of odd numbered

segments is less than n/2, and vice versa. This gives a slight advantage to PELT, CBS, WBS,

modSaRa and BWD as it uses the information that the epidemic state is shorter.

As a multiple testing problem, the ultimate interest is the realized error rate of the performed

tests instead of the accuracy of the estimated change-points. Thus, we evaluate the performance of

the two algorithms by the false discovery rate (FDR), the false non-discovery rate (FNR) and the

missed discovery rate (MDR) as suggested by Cao and Wu (2015). Specifically, the FDR follows

the standard definition, the FNR is defined as the ratio of falsely accepted hypotheses and total

accepted hypotheses and the MDR is defined as the ratio of falsely accepted hypotheses and total

alternative hypotheses. The FNR and MDR can be used to describe the power of a multiple testing

procedure, similar to the type II error rate in a single hypothesis testing setup.

The result is summarized in Table 3. In general, aPELT delivers the best performance, where it
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provides significantly smaller FNR and MDR than other methods while having similar FDR. Intu-

itively, this notable advantage of aPELT is achieved through explicitly incorporating the alternating

behavior and the known normal state of the p-values. This example demonstrates the important

application of aPELT in multiple testing and suggests that aPELT can serve as a promising and

efficient tool for solving multiple testing problems with locally clustered signals.

n aPELT PELT CBS BWD WBS modSaRa CW k = (log n)2

FDR 1000 6.73 3.82 9.58 15.69 24.08 8.52 2.35
2000 5.45 3.62 8.15 12.08 21.19 13.74 7.19
5000 2.02 1.90 3.33 5.63 4.35 15.29 3.90

FNR 1000 3.74 5.87 5.43 4.50 6.77 6.16 8.23
2000 1.44 2.52 2.22 1.84 3.06 4.47 4.65
5000 0.39 0.56 1.01 0.82 0.37 2.17 3.73

MDR 1000 35.23 56.58 52.12 42.20 60.83 59.78 80.95
2000 13.30 23.45 20.43 16.58 25.20 41.99 42.04
5000 3.50 5.13 9.25 7.28 3.27 19.88 31.31

Table 3: Performance for multiple testing with locally clustered signals. The performance of CW
k =

√
n is slightly worse than CW k = (log n)2 and thus is omitted.

5.2 DNA copy number variation

In this section, we apply aPELTH , PELT, CBS, WBS, modSaRa and BWD to analyze CNVs in

aCGH data for the NCI-60 cell lines reported in Varma et al. (2014). We give the detailed result

for two representative sequences, OVCAR-3 (here) and SN12C (in the supplementary material).

The result for other sequences is qualitatively similar and thus is omitted.

The estimated change-points for OVCAR-3 are visualized in Figure 3. To conserve space, we

only give the result for CBS, BWD and aPELTH , which are the top performers in Section 4.2.

Overall, the three algorithms provide similar segmentation results. Note that the estimated mean

vector µ̂1:n by all algorithms exhibit the alternating structure, which justifies the use of aPELTH .

To further confirm the advantage of aPELTH , we compute the BIC of the estimated seg-

mentation for OVCAR-3 given by each method. Denote m̂ as the number of estimated change-

points. For CBS and BWD, the number of model parameters (denoted by p) is 2m̂ + 2, account-

ing for m̂ change-points and m̂ + 1 normal distributions with homoscedasticity. For aPELTH ,

p = (m̂+ 2 + No. of epidemic states), as all normal states share the same mean parameter µ̃o due

to the imposed epidemic constraint of the mean vector. The BIC is 1065.6 by CBS, 1076.6 by

BWD and 972.7 by aPELTH . Thus, aPELTH offers the best change-point model (based on BIC)
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by explicitly incorporating the epidemic mean structure. The same result also holds for OVCAR-3.

For the optimization of aPELTH , Figure S.5 of the supplementary material plots the estimated

normal state parameter µ̃o by aPELTH along with the function F ∗(n;µo) for OVCAR-3 and SN12C.

The result confirms that F ∗(n;µo) is piecewise smooth and that aPELTH successfully achieves

the minimum value of F ∗(n;µo), with the normal state estimates µ̃o = 0.018 for OVCAR-3 and

µ̃o = −0.093 for SN12C, both close to 0.
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1.
0
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0 1000 2000 3000
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Figure 3: Estimated change-point locations and mean vectors by CBS, BWD and aPELTH .

6 Discussion

In this paper, we generalize the classical (single) epidemic change-point detection problem to a

more realistic multiple epidemic change-point setting. The interest is to estimate the unknown

number and locations of change-points and the alternating states of the observed sequence.

To explicitly incorporate the alternating structure of the new problem, we propose a novel model

selection based approach for simultaneous inference on both change-points and alternating states.

A two-stage alternating pruned dynamic programming algorithm (aPELT) is further developed,

which conducts efficient and accurate optimization of the model selection criterion. The favor-

able performance of aPELT is demonstrated via extensive numerical experiments and meaningful

applications to multiple testing, DNA copy number variation and oceanographic study.
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Due to its model selection nature, aPELT can be naturally extended to epidemic change-point

detection in multivariate time series. Specifically, we can modify the model selection criterion to

reflect the multivariate nature of the time series, which can be done by suitably adjusting the

measure of model fit C (e.g. to the log-likelihood of multivariate Gaussian distribution) and the

penalty terms P o, P 1. The optimization can be carried out in exactly the same way as that for the

univariate time series. See Section §2 of the supplementary material for a more detailed discussion.

Another conceptually feasible and promising solution to the proposed multiple epidemic change-

point problem is a hidden Markov model (HMM) with a structured transition matrix, which dictates

the alternating transition between the normal state and epidemic states. We refer to Wang et al.

(2014) and Steibel et al. (2015) for some recent works on HMM. A rigorous and detailed study of

this direction is beyond the scope of this paper and we leave it for future research.
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