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9 Abstract 
 

10 One of the main challenges of automated compliance checking systems is aligning the semantics of the 
 

11 building information models (BIM), in Industry Foundation Classes (IFC) format, and the semantics of the 
 

12 regulations, in natural language, to allow for checking the compliance of the BIM with the regulations. 
 

13 Existing information alignment methods typically require intensive manual effort and their ability to deal 
 

14 with the complex regulatory concepts in the regulations is limited. To address this gap, this paper proposes 
 

15 a deep learning method for IFC-regulation semantic information alignment. The proposed method uses a 
 

16 relation classification model to relate and align the IFC and regulatory concepts. The method uses a 
 

17 transformer-based model and leverages the definitions of the concepts and an IFC knowledge graph to 
 

18 provide additional contextual information and knowledge for improved classification and alignment. The 
 

19 proposed method was evaluated on IFC concepts from IFC 4 and regulatory concepts from different 
 

20 building codes and standards. The experimental results showed good information alignment performance. 
 

21 Keywords: Information alignment; Automated code checking; Building codes; Building information 
 

22 modeling; Industry Foundation Classes; Deep learning; Transformers. 

 

23 1 Introduction 
 

24 Building designs are governed by a wide range of regulations and requirements in the architecture, 
 

25 engineering, and construction (AEC) domain, such as building codes, standards, and specifications. To 
 

26 improve regulatory and contract compliance, as well as project efficiency, various automated compliance 
 

27 checking (ACC) systems have been developed with the aim of automating – fully or partially – the process 
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28 of checking the compliance of building designs, captured in building information models (BIM), with 
 

29 applicable regulations and requirements. However, a bottleneck in the ACC process is bridging the semantic 
 

30 gap between the BIM [commonly represented using the Industry Foundation Classes (IFC) schema] and 
 

31 the regulations (expressed in natural language such as English) [1-3]. Before conducting the compliance 
 

32 checking, it is essential to align the semantic representations and terminology of the IFC to that of the 
 

33 natural-language regulations. 

 

34 In most of the existing ACC systems, such information alignment is conducted in a highly manual way, 
 

35 through hardcoding (e.g., using modeling or query languages), ontology- or dictionary-based matching, or 
 

36 searching methods. For example, the buildingSMART Data Dictionary (bSDD) [4], an online service that 
 

37 provides access to classifications (e.g., Uniclass) related to the AEC domain, can be used to facilitate the 
 

38 matching of regulatory concepts to their corresponding IFC concepts (e.g., IFC entities, properties, or 
 

39 enumerated property values). These methods require intensive manual effort and are by nature rigid and 
 

40 difficult to generalize [3, 5-6]. Also, they are less capable to deal with semantically or syntactically complex 
 

41 regulatory concepts. For example, many single-word regulatory concepts can be directly matched to IFC 
 

42 concepts (e.g., match “beam” to “IfcBeam” or “IfcBeamTypeEnum – Beam”); however, it is difficult to 
 

43 match multi-word, phrasal, or clausal regulatory concepts directly to any of the IFC concepts [e.g., 
 

44 “membrane-covered frame structure” and “intended to be occupied as a residence” in the International 
 

45 Building Code (IBC) [7]]. There is, thus, a need for an automated, and meanwhile flexible and generalizable, 
 

46 method for IFC-regulation semantic information alignment for supporting fully automated ACC. 

 

47 Towards addressing this need, the most recent efforts that focused on IFC-regulation semantic information 
 

48 alignment have explored the use of machine learning to facilitate such automation. Instead of relying on 
 

49 hardcoding or handcrafted rules, these efforts use machine learning models to automatically learn the 
 

50 underlying semantic and syntactic patterns of the regulatory text and IFC data to help in the alignment. 
 

51 Many of these efforts focused on augmenting the BIM models with additional attributes and relationships 
 

52 to support the alignment for ACC (e.g., [9-11]), while other efforts focused on directly aligning the 
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53 regulatory and IFC concepts (e.g., [8]). For example, Wang et al. [11] modeled IFC-based building designs 
 

54 as graphs and used graph neural networks (GNN) to classify the rooms in the IFC models into nine 
 

55 predefined types based on manually constructed node and edge features and augment the models with the 
 

56 classified types. Zhou and El-Gohary [8] leveraged word and concept semantic representations learned 
 

57 using the word2vec algorithm and the graph structures of the IFC-based building designs to align concepts 
 

58 from the International Energy Conservation Code (IECC) and energy specifications to their corresponding 
 

59 IFC concepts. However, despite their importance, both groups of efforts still lack in flexibility and 
 

60 adaptability and might not allow successful implementation across different BIMs and different types of 
 

61 regulatory documents (e.g., building code versus energy code) due to two reasons. First, they rely on 
 

62 contextless features (e.g., the word2vec representations), which have limited ability to capture the semantic 
 

63 and syntactic dependencies of IFC and text data. Second, they have not exploited the contextual information 
 

64 and knowledge in both the IFC schema and the regulatory documents, which can potentially provide 
 

65 additional semantic information for aligning IFC and regulatory concepts. 

 

66 To address this need, this paper proposes a transformer-based method to align regulatory concepts in the 
 

67 requirements with the IFC concepts in the IFC schema for supporting downstream ACC information 
 

68 matching and compliance reasoning processes. The proposed method uses a relation classification model 
 

69 to classify each pair of IFC-regulatory concepts as semantically related or not. The method utilizes the 
 

70 natural-language definitions of the concepts and an IFC knowledge graph to provide additional contextual 
 

71 information and knowledge for the classification. It also leverages semantic and syntactic patterns learned 
 

72 in pretrained transformer-based language models, as well as domain-specific semantic and syntactic 
 

73 patterns learned using transfer learning strategies. The proposed method was tested on IFC concepts and 
 

74 definitions from IFC Version 4, and regulatory concepts and definitions from three different types of 
 

75 regulatory documents including IBC, IECC, and Americans with Disabilities Act Standards for Accessible 
 

76 Design (ADA Standards), and an average precision of 84.3%, recall of 83.3%, and F1 measure of 83.8% in 
 

77 alignment was achieved. 
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78 2 Background 
 

79 2.1 Deep learning in text and knowledge analytics 
 

80 Deep learning methods use deep neural networks to capture multiple levels of information representations 
 

81 from large-scale data [12]. Deep learning methods have been used in solving various text analytics tasks, 
 

82 such as information extraction [e.g., bidirectional long short-term memory (LSTM) and conditional random 
 

83 fields for extracting named entities [13]], semantic and syntactic analysis (e.g., bidirectional LSTM for 
 

84 dependency parsing and part-of-speech tagging [14]), and machine translation [e.g., sequence-to-sequence 
 

85 recurrent neural network (RNN) model for machine translation [15]]. Deep learning methods have also 
 

86 been used in solving various knowledge analytics tasks (especially the ones related to knowledge graphs), 
 

87 such as relation analysis (e.g., relation adversarial network [16], relation attention network [17]), knowledge 
 

88 graph embedding learning (e.g., GNN and negative sampling [18], GNN with contrastive learning [19]), 
 

89 and knowledge graph-based question answering and recommendation (e.g., LSTM- and attention-based 
 

90 method [20] and GNN- and attention-based method [21]). 

 

91 A number of research efforts have focused on deep learning-based methods to solve text or knowledge 
 

92 analytics problems in the AEC domain. For example, Pan and Zhang [22] developed RNN-based models 
 

93 to mine information from BIM log data to support BIM-based building design decisions. Zhang and El- 
 

94 Gohary [23] proposed a bidirectional LSTM-based method with transfer learning strategies to extract 
 

95 semantic and syntactic information elements from building-code requirements. Zhong et al. [24] used a 
 

96 bidirectional LSTM-based model with conditional random fields to extract procedural constraints from 
 

97 construction regulations. Amer et al. [25] used a transformer-based method to predict the relationship 
 

98 between look-ahead planning tasks to master-schedule activities. Li et al. [26] used hierarchical attention 
 

99 networks to map bridge inspection descriptions to bridge condition ratings. 

 

100 2.2 Transformers and pretrained transformer-based models 
 

101 A transformer is a deep learning model structure that consists of an encoder and a decoder and uses multi- 
 

102 head attention mechanisms [27] within the encoder or decoder (i.e., self-attention) or between them (i.e., 
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103 encoder-decoder attention) to capture the dependencies between different data points. Transformer-based 
 

104 models consist of multiple layers of transformers to allow for learning the contextual representations of 
 

105 input data. Example transformer-based models include generative pretrained transformer (GPT) models 
 

106 (e.g., GPT-2 [28]) by OpenAI, bidirectional encoder representations from transformers (BERT) models [29] 
 

107 by Google and variants of BERT [e.g., a lite BERT for self-supervised learning of language representations 
 

108 (ALBERT) [30] and a robustly optimized BERT pretraining approach (RoBERTa) [31]], and the vision 
 

109 transformer (ViT) [32]. Compared to other deep learning models (e.g., RNN-based models) that were 
 

110 predominately used for natural language processing (NLP) tasks, transformer-based models have improved 
 

111 both the language modeling performance, especially in dealing with long-term dependencies in the text, 
 

112 and the computational efficiency in model training. These improvements result from (1) the use of multi- 
 

113 head attention mechanisms in the transformer layers in place of sequential model structures such as RNN 
 

114 [27]; and (2) the incorporation of a deep model structure (e.g., the BERT base model that consists of 12 
 

115 layers of transformers and 110 million parameters [29]). Transformer-based models can be pretrained on 
 

116 large general-domain corpora [e.g., BooksCorpus (800M words) and English Wikipedia (2,500M words)] 
 

117 through unsupervised or self-supervised learning tasks, such as masked language modeling and next 
 

118 sentence prediction [29]. The pretrained transformer-based language models can be then finetuned on 
 

119 smaller, domain- or task-specific text data for downstream NLP tasks, such as sequence labeling, machine 
 

120 translation, and question answering (e.g., [27-29]). 

 

121 Recent efforts in the construction domain have applied transformer-based models in solving problems 
 

122 including defect detection (e.g., [33-35]) and information extraction (e.g., [25, 36-37]). For example, Zhou 
 

123 et al. [35] used transformer-based models to extract features for point cloud classification to support sewer 
 

124 defect detection. Kim et al. [36] used transformer-based models to learn representations for extracting 
 

125 infrastructure damage information from textual data. However, to the best of the authors’ knowledge, no 
 

126 

 

127 

efforts focused on using transformer-based models for supporting ACC. 
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128 3 State of the art and knowledge gaps in IFC-regulation semantic information alignment 
 

129 The IFC schema is used to represent and share information in the AEC domain, and is the most commonly 
 

130 adopted format for BIM [38]. It defines an object-based information model consisting of entities, including 
 

131 objects (“IfcObject”), relations (“IfcRelationship”), and properties (“IfcPropertyDefinition”). To support 
 

132 BIM interoperability across different applications and levels of development, a model view definition 
 

133 (MVD), which is a selection of IFC for a specific use or workflow (e.g., [39-41]), is further established 
 

134 based on the overall IFC schema. However, the IFC concepts in the IFC schema or MVDs do not naturally 
 

135 correspond to regulatory concepts and require additional efforts for aligning or mapping the concepts, which 
 

136 creates a major barrier for ACC [1]. 

 

137 IFC-regulation semantic information alignment aims to align or link the regulatory concepts in natural 
 

138 language to their corresponding or related IFC concepts (e.g., IFC entities, properties, enumerated property 
 

139 values) by mapping or transforming one or both types of concepts. Existing research efforts for IFC- 
 

140 regulation semantic information alignment predominately focus on predefined rule-based or hardcoding- 
 

141 based methods. They can be classified into three main groups based on how the two types of information 
 

142 are changed during the alignment: regulation-to-IFC translation, regulation-to-IFC mapping, and IFC-to- 
 

143 regulation adaptation. In regulation-to-IFC translation, the building-code requirements are hardcoded into 
 

144 computer-processable representations that allow information representation or retrieval with the IFC 
 

145 schema using modeling languages such as SPARQL protocol and Resource Description Framework (RDF) 
 

146 query language [42], building environment rule and analysis language [43], regulatory knowledge query 
 

147 language [6], visual code checking language [44], and language-integrated query [45]. In regulation-to-IFC 
 

148 mapping, the regulatory concepts are mapped to those in the IFC schema either fully manually or using 
 

149 dictionaries (e.g., bSDD [4]), rules (e.g., [2, 46]), ontologies (e.g., [42, 47-48]), procedural algorithms and 
 

150 functions (e.g., [49]), meta-databases and applications (e.g., [50]), or black-box mechanisms (e.g., [51-53]). 
 

151 In IFC-to-regulation adaptation, the IFC schema or BIM file is adapted or modified to support direct 
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152 alignment to building-code requirements by adding concepts from the requirements to the IFC schema [54] 
 

153 or by modifying existing properties in specific BIM files [55]. 

 

154 Despite the state-of-the-art performance achieved by the predefined rule-based and hardcoding-based IFC- 
 

155 regulation semantic information alignment methods, they typically require significant manual effort. Also, 
 

156 many of these methods lack flexibility and adaptability (e.g., due to the use of predefined mapping rules or 
 

157 hardcoded computer-processable requirements) and might not allow successful implementation across 
 

158 different MVDs, BIMs, and different types of regulatory documents (e.g., building code versus energy 
 

159 code). They also require updates when the IFC schema or the regulatory documents are updated [5-6]. To 
 

160 overcome these limitations, recent research efforts have explored the use of machine learning to facilitate 
 

161 IFC-regulation semantic information alignment. Many of these efforts focused on augmenting the BIM 
 

162 models with additional attributes and relationships for facilitating compliance checking, using classification 
 

163 or other approaches, to support the alignment (e.g., [9-11]). For example, Wu et al. [10] extracted invariant 
 

164 signatures, which uniquely define each AEC object and capture their intrinsic properties, to classify IFC 
 

165 objects and augment the models with the predicted/classified types. Another smaller number of efforts 
 

166 focused on directly aligning the regulatory concepts to the IFC concepts using machine learning approaches. 
 

167 For example, Zhang and El-Gohary [54] developed a semiautomated machine learning-based method to 
 

168 extend the IFC schema with regulatory concepts, which consists of three main steps: rule-based regulatory 
 

169 concept extraction, similarity-based term matching, and supervised learning-based relation classification. 
 

170 Zhou and El-Gohary [8] proposed a deep learning-based method for learning semantic representations of 
 

171 building-code and IFC concepts for information alignment of BIMs to building-code requirements, which 
 

172 uses semantic similarity analysis, searching, and network construction. However, the aforementioned 
 

173 machine learning-based approaches share three common limitations. First, despite achieving higher levels 
 

174 of automation and generalizability (than rule-based and hardcoding-based methods), they still require 
 

175 significant manual effort. For example, the semiautomated approach in [54] requires interim checking, and 
 

176 possibly fixing, of intermediate results by the users. Second, they mostly rely on traditional, contextless 
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177 semantic representations (e.g., word embeddings such as word2vec [56] and global vectors for word 
 

178 representations [57]) and manually engineered features such as the part-of-speech patterns of the concepts, 
 

179 number of words in the concepts, and first or last term in the concepts. These features are less effective in 
 

180 capturing the domain-specific semantics (for example, compared to the contextual representations learned 
 

181 by transformer-based models), which are essential for determining the relations between concepts in 
 

182 semantic information alignment. Third, they do not leverage the important contextual information and 
 

183 knowledge contained in the IFC schema and the regulatory documents, such as the natural-language 
 

184 definitions of the concepts and the IFC knowledge graph, which provide additional semantic information 
 

185 for interpreting and aligning semantically or syntactically complex regulatory concepts. 

 

186 4 Proposed transformer-based method for automated context-aware IFC-regulation 
 

187 semantic information alignment 
 

188 A transformer-based method for automated context-aware IFC-regulation semantic information alignment 
 

189 for supporting ACC is proposed. First, the proposed method uses a relation classification model to align 
 

190 regulatory concepts extracted from building codes and standards with the concepts in the IFC schema (i.e., 
 

191 the IFC objects and their predefined types). The model classifies each pair of IFC-regulatory concepts as 
 

192 semantically related or not. For the purpose of ACC, an IFC concept is aligned/related to a regulatory 
 

193 concept if they are equivalent (e.g., “IfcRamp” and “ramp”) or if the IFC concept is a supertype of the 
 

194 regulatory concept (e.g., “IfcDoor” and “revolving door”). Aligning to superclasses is adopted for IFC- 
 

195 regulation alignment in ACC applications because the regulatory documents typically have more specific 
 

196 concept descriptions than those in the IFC. Second, the proposed method is context-aware because it (1) 
 

197 learns contextual representations of words using pretrained transformer-based models; and (2) leverages 
 

198 the natural-language definitions of the regulatory and IFC concepts and an IFC knowledge graph to provide 
 

199 supplemental contextual information and knowledge for finetuning pretrained transformer-based models 
 

200 using transfer learning. 
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201 The method is composed of five main steps, as per Fig. 1: (1) IFC knowledge graph development based on 
 

202 the IFC schema and the IFC ontology, (2) concept pair development based on the IFC knowledge graph, 
 

203 (3) transformer-based concept relation classification, (4) model training/finetuning with transfer learning 
 

204 strategies, and (5) post-classification concept pair pruning. 

 

205  

206 Fig. 1. Proposed transformer-based method for automated context-aware IFC-regulation semantic 

207 information alignment. 
 

208 4.1 Concept data preparation 
 

209 4.1.1 IFC concept data preparation 
 

210 The IFC concept data were prepared to develop the concept pairs for training (for finetuning the pretrained 
 

211 models with domain-specific data using transfer learning) and testing the proposed method. The data were 
 

212 automatically  prepared  based  on  the  buildingSMART  International  standards  and  supporting 
 

213 documentation on IFC4 using four steps: (1) collecting the .htm files of the IFC entities and property sets, 
 

214 (2) parsing the files, (3) extracting the natural-language canonical forms and definitions from the files, and 
 

215 (4) uncasing and cleaning the natural-language canonical forms and definitions of the IFC concept instances. 
 

216 As a result, each IFC concept data instance consists of three parts: the IFC concept name, the natural- 
 

217 language canonical form, and the natural-language definition. The IFC concept name is the name of the 
 

218 entity in the IFC schema. The natural-language canonical form is the name of the entity in a natural language 
 

219 (e.g., English), which is uncased and singular. The definition is the natural-language definition of the entity 
 

220 in the IFC schema. For example, the canonical form of “IfcDoor” is “door”, and its natural-language 
 

221 definition is “The door is a building element that is predominately used to provide controlled access for 
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222 people and goods. It includes constructions with hinged, pivoted, sliding, and additionally revolving and 
 

223 folding operations. A door consists of a lining and one or several panels” [38]. Table 1 shows examples of 
 

224 two different types of IFC concepts (i.e., entity and enumerated value) in the IFC schema version 4 and the 
 

225 associated data used in this study. A total of about 2,000 IFC concept instances and their data were prepared. 
 

226 Table 1. Example IFC Concept Data Instances in Training and Testing Data 

IFC concept 
Type of IFC 

concept 
Natural-language 
canonical form 

Natural-language definition from IFC 
schema 

 
IfcAlarm 

 
Entity 

 
Alarm 

An alarm is a device that signals the 

existence of a condition or situation that is 

outside the boundaries of normal expectation 
or that activates such a device. 

 
 

IfcSpatialZone 

 
 
Entity 

 
 
Area, space, zone 

A spatial zone is a non-hierarchical and 

potentially overlapping decomposition of the 

project under some functional consideration. 

A spatial zone might be used to represent a 

thermal zone, a construction zone, a lighting 
zone, a usable area zone. 

IfcElectricApplianceTypeEnum - 

REFRIGERATOR 

Enumerated 

value 
Refrigerator 

An electrical appliance that has the primary 

function of storing food at low temperature 

but above the freezing point of water. 

IfcDistributionSystemEnum - 
FIREPROTECTION 

Enumerated 
value 

Fire protection Fire protection sprinkler system. 

227 
228 4.1.2 Regulatory concept data preparation 

 

229 The regulatory concept data were prepared to develop the concept pairs for testing the transformer-based 
 

230 relation classification model. A regulatory concept data instance is defined as a sequence of words 
 

231 consisting of the canonical form and the definition of a regulatory concept, both of which are in the form 
 

232 of natural language and are directly extracted from the regulatory documents. For example, the data instance 
 

233 of the concept “fire-rated glazing” is the concatenation of “fire-rated glazing” and its definition “glazing 
 

234 with either a fire protection rating or a fire-resistance rating” [7]. The regulatory concept data were 
 

235 developed based on the concepts and definitions from the following chapters and sections in three different 
 

236 types of regulatory documents: (1) Section 202 Definitions of IBC, (2) Section C202 General Definitions 
 

237 and Section R202 General Definitions of IECC, and (3) 106.5 Defined Terms of ADA Standards. The 
 

238 natural-language canonical forms and definitions were uncased and cleaned. A total of 220 regulatory 
 

239 concept data instances were prepared. Table 2 shows examples of regulatory concept data from different 
 

240 sources [7, 58-59]. 
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241 Table 2. Example Regulatory Concept Data Instances in Testing Data 
Regulatory concept 

canonical form 
Source regulatory 

document 
Natural-language definition 

Membrane-covered 

cable structure 

International building 

Code (IBC) 

A nonpressurized structure in which a mast and cable system 

provides support and tension to the membrane weather barrier 

and the membrane imparts stability to the structure. 

Circulating hot water 

system 

International Energy 

Conservation Code 

(IECC) 

A specifically designed water distribution system where one or 

more pumps are operated in the service hot water piping to 

circulate heated water from the water-heating equipment to the 
fixture supply and back to the water-heating equipment. 

 

Qualified historic 

building or facility 

Americans with 

Disabilities Act Standards 

for Accessible Design 
(ADA Standards) 

A building or facility that is listed in or eligible for listing in the 

National Register of Historic Places, or designated as historic 

under an appropriate State or local law. 

 
242 4.2 IFC knowledge graph development 

 

243 For determining the relations between the IFC concepts and accordingly developing the concept pairs (see 
 

244 Section 4.3), a simple IFC knowledge graph was developed based on the IFC schema and the IFC ontology 
 

245 [60]. The knowledge graph is a directed graph that consists of IFC concepts as nodes and the relations 
 

246 between pairs of concepts (e.g., “is subclass of”) as edges between the nodes. Fig. 2 shows two example 
 

247 subgraphs induced from the IFC knowledge graph. The subgraphs consist of the neighbors that are centered 
 

248 at the nodes representing the IFC concepts “IfcBuildingElement” and “IfcWindow” within a radius of one. 

 

249 The knowledge graph was constructed following two steps. First, a knowledge graph was automatically 
 

250 constructed based on the ifcOWL (Web Ontology Language representation of the ifc schema) [60], which 
 

251 is an RDF graph of the IFC ontology, using a rule-based method. For example, the blank nodes in the 
 

252 ifcOWL were removed and the edges that link the blank nodes with the uniform resource identifier (URI) 
 

253 reference nodes were redirected accordingly. Second, the predefined types of the IFC concepts (e.g., 
 

254 “triple_panel_left” as a predefined type of “IfcWindow” in Fig. 2) were added to the knowledge graph as 
 

255 subclasses of these IFC concepts. 
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256 

257 Fig. 2. Example subgraphs centered at the IFC concepts “IfcBuildingElement” (left) and “IfcWindow” 

258 (right) induced from the IFC knowledge graph. 
 

259 4.3 Concept pair development for training and testing 
 

260 Two concept pair datasets were developed for training and testing. Fig. 3 and Table 3 show example concept 
 

261 pairs developed based on the IFC knowledge graph. For training, a dataset of concept pairs was developed 
 

262 for finetuning the pretrained model with domain-specific data using transfer learning strategies). The pairs 
 

263 were developed using the IFC concept data (Section 4.1.1), with the support of the developed IFC 
 

264 knowledge graph (Section 4.2). Each concept pair that serves as a positive training instance consists of two 
 

265 semantically related IFC concepts that are directly linked by one edge in the IFC knowledge graph. Each 
 

266 concept pair that serves as a negative training instance consists of two IFC concepts that are not directly 
 

267 linked by an edge. For example, the concept pair of the IFC concepts “IfcDoor” and “IfcBuildingElement” 
 

268 is related; and the concept pair of “IfcDoor” and “IfcWindow” is not related. A total of about 20,000 training 
 

269 concept pairs were developed. 
 

270 Table 3. Example Training Concept Pairs 
Concept pair (in canonical form) 

Binary relation between Concepts 1 and 2 
Concept 1 Concept 2 

Building element Curtain wall Related 

Distribution control element Flow instrument Related 

Curtain wall Flow instrument Not related 

Building element Distribution control element Not related 

Electric appliance Refrigerator Related 

Refrigerator Fire protection Not related 
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271 For testing, a dataset of concept pairs was developed for serving as the gold standard to evaluate the 
 

272 proposed method. Each concept pair consists of one IFC concept and one regulatory concept, and the pairs 
 

273 were developed using the prepared concept data (Section 4.1). For preparing the positive testing instances, 
 

274 for each regulatory concept, the semantically related IFC concept(s) was manually selected by a group of 
 

275 three experts, one from industry and two from academia. The authors adopted a purposive sampling strategy, 
 

276 which aims to select a specific type of experts according to predefined criteria [61]. Two criteria were 
 

277 defined: (1) familiarity with building codes and compliance checking processes, and (2) familiarity with 
 

278 the IFC schema. The authors used purposive sampling because (1) it is suitable for small, specialized 
 

279 populations; and (2) it helps obtain information from a concentrated, carefully selected sample [61-62]. 
 

280 Each expert independently selected and paired the concepts, with an initial inter-annotator agreement of 
 

281 80% in F1 measure, which indicates good consistency, reliability, and reproducibility of the process of 
 

282 manually aligning the regulatory and IFC concepts and thus high quality of the manual alignment for 
 

283 preparing the testing dataset [63-64]. The discrepancies among the annotated pairs were then resolved by 
 

284 the experts to reach full agreement on the final gold standard. For preparing the negative testing instances, 
 

285 for each regulatory concept, the IFC concepts in all ACC-relevant domains (e.g., IFC architecture domain, 
 

286 IFC building controls domain, and IFC structural elements domain) were enumerated and paired with the 
 

287 regulatory concept, except for the semantically related IFC concept(s). For example, the pair of “exit access 
 

288 ramp” (regulatory concept) and “IfcRamp” (IFC concept) was included as a positive instance, while the 
 

289 pair of “fire door” (regulatory concept) and “IfcRamp” (IFC concept) was included as a negative one. A 
 

290 total of 42,180 testing concept pairs, with their relations and concept definitions, were developed. 
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291 

292 

 
 

Fig. 3. Example related and not related concept pairs based on IFC knowledge graph. 

 

293 4.4 Transformer-based concept relation classification model development 
 

294 The semantic information alignment of regulatory concepts with the IFC schema is formulated as a binary 
 

295 relation classification problem, where given a concept pair of an IFC and a regulatory concept, a relation 
 

296 classification model predicts the relation between the two concepts (semantically related or not). The 
 

297 relation classification model consists of two main components: the pretrained transformer-based model, 
 

298 and a relation classification layer, which further consists of an activation function [e.g., rectified linear unit 
 

299 (ReLU)], a feedforward neural networks (FFNN) layer, and a softmax function, as shown in Fig. 4. 

 

300 The relation classification step further consists of three substeps: definition tokenization, input sequence 
 

301 construction, and relation prediction. First, the natural-language definitions for the concept pairs are 
 

302 tokenized using the tokenizer corresponding to the pretrained transformer-based model. Second, the input 
 

303 to the model, which is a sequence of tokens (e.g., words and numbers), is constructed by concatenating the 
 

304 two tokenized definitions for each pair. The two definitions are separated by a [SEP] token, which indicates 
 

305 the boundary between the two definitions. The entire sequence is started with a [CLS] token, which captures 
 

306 the definition-level information of the relation between the two concepts through model training/finetuning 



15  

307 with transfer learning strategies. Third, the tokens in the input sequence are embedded and loaded into the 
 

308 pretrained transformer-based model, which generates the output embeddings. The relation classification 
 

309 layer then computes the distribution over both classes, given the output embedding of the [CLS] token. The 
 

310 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
311 
312 
313 

 

314 

final relation predicted by the classification model is the one with the highest probability. 
 
 

Fig. 4. Pretrained transformer-based concept relation classification model for IFC-regulation semantic 

information alignment. 

4.5 Model training with transfer learning strategies 
 

315 The concept relation classification model was trained (finetuning the pretrained model with domain-specific 
 

316 data using transfer learning strategies) to minimize the objective function – multiclass cross entropy, 𝐿, as 
 

317 per Eq. (1). Cross entropy describes the difference between the labels in the training data, denoted as 𝑦, and 
 

318 the labels predicted by the model 𝜃, denoted as c, based on the input natural-language definitions x, as 

 

319 shown in Eq. (1), where D is a batch of the training data, C is the set of labels, 𝑝𝜃(𝑐|𝑥𝑖) is the conditional 

320 probability of c given the input sentence x generated by the relation classification layer in the model with 

 

321 parameters 𝜃, and 1𝑦=𝑐 is the indicator function, which returns 1 when y and c are equal, and returns 0 
 

322 when y and c are not equal. 

 
 

323 
1 

𝐿(𝜃) = 
|𝐷| 

∑ ∑ 1𝑦=𝑐 log 𝑝𝜃(𝑐|𝑥𝑖) 

𝑥,𝑦∈𝐷 𝑐∈𝐶 

 

(1) 
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𝑐 𝑟 

324 Two transfer learning strategies to train the relation classification model were adopted for comparative 
 

325 evaluation: (1) the pretrained transformer-based model is not trainable, and only the relation classification 
 

326 layer is trainable; and (2) specific transformer layers (e.g., all the 12 layers in BERT or ALBERT base 
 

327 model) in the pretrained model are trainable, together with the relation classification layer. The first strategy 
 

328 preserves more of the semantic and syntactic information learned by the pretrained models from the general- 
 

329 domain text data, while the second strategy encourages learning domain- and task-specific semantic and 
 

330 syntactic information during the training of the model with concept pairs. 

 

331 Two training practices were adopted for more stable and efficient training: (1) early stopping: the training 
 

332 process was stopped when the loss change is smaller than 0.1; and (2) learning rate scheduling: the learning 
 

333 rate was initialized small and increased as the training progresses. 

 

334 4.6 Post-classification concept pair pruning 
 

335 The post-classification concept pair pruning aims to select the most lexically and semantically similar IFC- 
 

336 regulatory concept pairs among those classified as semantically related by the relation classification model 
 

337 (Section 4.5) – acting like a filtering layer. The pruning consists of three main steps. First, the concept pairs 
 

338 were ranked according to the relation classification probabilities, which are obtained from the relation 
 

339 classification model. Concept pairs that are not within the top k of the ranking are pruned (i.e., considered 
 

340 not related). Second, for each classified concept pair, the word-level semantic similarity was defined as the 
 

341 cosine similarity between the corresponding pair of semantic concept representations of their natural- 

 

342 language canonical forms, as per Eq. (2), where S𝑐 is the semantic representation of the canonical form of 

343 an IFC concept c and S𝑟 is the semantic representation of the regulatory concept r. Concept pairs with 

344 similarities lower than a predetermined threshold (e.g., 0.9) are pruned. Third, if a regulatory concept is 
 

345 related to both an IFC concept and its subconcept, only the IFC subconcept is selected (to avoid redundancy, 
 

346 

 
 

347 

since an IFC subconcept is already related to its superconcept based on the IFC schema). 

 
 S𝑐 ∙ S𝑟  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑐, 𝑟) = 
‖S ‖‖S ‖

 

 
 

 
(2) 
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348 4.7 Evaluation 
 

349 For evaluating the relation classification-based semantic alignment method, three metrics were calculated 
 

350 for each label (semantically related or not related): precision, recall, and F1 measure, as shown in Eqs. (3) 
 

351 to (5), where for each label R, TP is the number of true positives (i.e., number of concept pairs correctly 
 

352 labeled with R), FP is the number of false positives (i.e., number of concept pairs incorrectly labeled with 
 

353 R), and FN is the number of false negatives (i.e., number of concept pairs not labeled with R but should 
 

354 have been) [65]. The overall performance of the proposed method was obtained by further calculating the 
 

355 average precision, recall, and F1 measure both labels. 

 
 

356 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃 

 
 

𝑇𝑃 + 𝐹𝑃 

 

(3) 

 

 

357 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃 

 
 

𝑇𝑃 + 𝐹𝑁 

 

(4) 

 

 

358 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝐹1 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(5)
 

 

359 5 Experiments, results, and discussion 
 

360 5.1 Training and model hyperparameters 
 

361 The proposed transformer-based IFC-regulation semantic information alignment method was deployed and 
 

362 trained using PyTorch built in Python 3 and run using the Tesla K80 GPU provided in Google Colaboratory. 
 

363 A five-fold cross validation was conducted for optimizing the hyperparameters of the classification model. 
 

364 For the cross validation, the training data (i.e., the IFC concept pairs) were further split into two subsets – 
 

365 one for model training and the other for model validation. The values of other hyperparameters were 
 

366 determined based on the characteristics of the training and testing data used in the experiments (e.g., the 
 

367 maximum sentence length is 128), or the parameters of the pretrained transformer-based models (e.g., the 
 

368 dimension of the FFNN layer is 768 when the ALBERT base model is adopted, whose transformer layer 
 

369 

 

370 

has a dimension of 768). The values of the final training and model hyperparameters are shown in Table 4. 
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371  Table 4. Training and Model Hyperparameters for Proposed Classification Model  
Hyperparameter Value 

Training 

Batch size of training data 32 

Maximum length of tokenized definition pair 256 

Initial learning rate 1e-5 

Dropout rate 0.1 

Model 

Dimension of the output layer Same as transformer layer size (e.g., 768 for ALBERT base model) 

Number of attention heads 
Depending on pretrained transformer-based model (e.g., 12 for 

ALBERT base model) 

Number of hidden layers 
Depending on pretrained transformer-based model (e.g., 12 for 

ALBERT base model) 

Hidden layer size 
Depending on pretrained transformer-based model (e.g., 768 for 

 ALBERT base model)  

 

372 5.2 Application of proposed method 
 

373 Fig. 5 illustrates the application of the proposed relation classification-based semantic alignment method, 
 

374 with an example. Given a pair of regulatory and IFC concepts and their definitions, first, the trained 
 

375 transformer-based concept relation classification model predicts the relation between concepts, generating 
 

376 candidate related regulatory and IFC concept pairs with their relation probabilities. Second, all candidate 
 

377 related concept pairs are ranked based on the relation probabilities. Third, given the representations of the 
 

378 concepts, the concept similarities are assessed by computing the cosine similarities between the 
 

379 representations. Fourth, the final related concept pairs are determined based on rules (e.g., the top k 
 

380 candidate pairs are retained as final pairs). The final related concept pairs are further used in downstream 
 

381 ACC tasks, such as compliance reasoning. 
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382 
383 

 
Fig. 5. Proposed semantic information alignment method. 

 

384 Fig. 6 provides an example to further illustrate the use of the proposed method within an ACC system. The 
 

385 ACC system consists of four main modules: (1) information extraction (regulatory information [23] and 
 

386 design/BIM information [66]), (2) requirement transformation [67], (3) BIM-regulation alignment, and (4) 
 

387 compliance reasoning [66]. The proposed method can be used within the BIM-regulation alignment module 
 

388 to align the regulatory concepts in the extracted and transformed requirements (output of module 2) to the 
 

389 IFC concepts in the IFC instances (output of module 1). The aligned requirements and IFC instances (output 
 

390 of module 3) are the input to the final rule-based compliance reasoning module (module 4), where the 
 

391 information (e.g., compliance checking attributes such as area and width) in the requirements are compared 
 

392 to the information in the IFC instances to determine the compliance results. For the details of modules 1, 2, 
 

393 and 4, the readers are referred to [23, 66-67]. 
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394 
395 
396 

 

397 

 
Fig. 6. Example to illustrate use of proposed method for BIM-regulation alignment within an automated 

compliance checking (ACC) system. 

5.3 Evaluation of information alignment performance 
 

398 The testing data (see Section 4.3) were used to evaluate the performance of the proposed method. Four sets 
 

399 of ablation experiments (Sections 5.3.1 to 5.3.4) were conducted to better understand the impact of four 
 

400 important aspects on the performance of the proposed method: (1) the different types of pretrained 
 

401 transformer-based models, (2) the process of training/finetuning the relation classification model using 
 

402 transfer learning strategies, (3) the incorporation of natural-language definitions as contextual information 
 

403 for training the classification model, and (4) the post-classification concept pair pruning. A fifth set of 
 

404 experiments (Section 5.3.5) was conducted to assess the performance of the proposed method across 
 

405 different types of regulatory documents. The final selected model uses the ALBERT base pretrained model 
 

406 with 12 trainable transformer layers, natural-language definitions of IFC and regulatory concepts, and a 
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407 threshold of 5 for top-k in post-classification pruning. It achieved average precision, recall, and F1 measure 
 

408 of 84.3%, 83.3%, and 83.8%, respectively. 
 

409 5.3.1 Impact of different types of pretrained transformer-based models 
 

410 The proposed method was tested with different types of pretrained transformer-based models (i.e., BERT 
 

411 and ALBERT) and models of different sizes. Four different pretrained transformer-based models were 
 

412 tested: ALBERT base (12 transformer layers, 768-layer size, and 11 million parameters), ALBERT large 
 

413 (24 transformer layers, 1024-layer size, and 17 million parameters), ALBERT xlarge (24 transformer layers, 
 

414 2048-layer size, and 58 million parameters), and BERT base (12 transformer layers, 768-layer size, and 
 

415 110 million parameters) models. 

 

416 As shown in Table 5, the proposed method with the ALBERT base model performed the best in terms of 
 

417 average precision, recall, and F1 measure, outperforming the proposed method with other pretrained models, 
 

418 by an average of 14.4% in precision, 20.8% in recall, and 18.5% in F1 measure. The experimental results 
 

419 indicate that for the specific training data used and the specific relation prediction task, the ALBERT base 
 

420 model is of the most suitable size, while larger models might start to overfit or underfit. A large model (i.e., 
 

421 the ALBERT large model) achieved lower performance, especially lower recall, compared to the base 
 

422 model, and thus was not selected because few false negatives and a high recall are required for ACC tasks. 

 

423 

 

 

 

 

 

 

 
424 
425 

Table 5. Performance of Proposed Method with Different Pretrained Transformer-based Models 
Pretrained transformer-based models Precision Recall F1 measure 

ALBERT base model 84.3% 83.3% 83.8% 

ALBERT large model 81.5% 70.2% 74.6% 

ALBERT xlarge model 76.7% 65.7% 69.8% 

BERT base model 51.5% 51.5% 51.5% 

Note: Bolded font indicates highest performance; 12 trainable transformer layers, natural-language 

definitions of IFC and regulatory concepts, and a threshold of 5 for top-k in post-classification 

pruning were used. 

 

5.3.2 Impact of different transfer learning strategies for pretrained transformer-based relation 
 

426 classification 
 

427 The proposed method was tested with different transfer learning strategies for training/finetuning the 
 

428 pretrained transformer-based relation classification model for assessing the impact of balancing domain- 
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429 general and domain-specific semantic and syntactic information on performance. Two different transfer 
 

430 learning strategies were tested: fixing or training the pretrained transformer-based model in the relation 
 

431 classification model. For the second strategy, different numbers of trainable transformer layers were also 
 

432 tested for comparative evaluation. The ALBERT base model was used in this set of experiments. 

 

433 As shown in Table 6, the proposed method with the trainable pretrained transformer-based model, and with 
 

434 twelve trainable transformer layers, showed the best performance in terms of average precision, recall, and 
 

435 F1 measure, outperforming the proposed method when the other strategies were adopted, by an average of 
 

436 12.8% in precision, 18.2% in recall, and 16.5% in F1 measure. The experimental results indicate that the 
 

437 general-domain semantic and syntactic information transferred by the pretrained models is not sufficient 
 

438 for relation classification with complex regulatory concepts, and that part of the pretrained models (e.g., 
 

439 the last transformer layers) need to be trainable to adapt itself to domain- and task-specific data. The model 
 

440 with less trainable layers achieved lower performance, especially lower recall, compared to the one with 12 
 

441 trainable layers. The latter model was, thus, selected because of the higher priority need for recall. The 
 

442 experimental results also indicate that the representations learned through training/finetuning pretrained 
 

443 transformer-based models could serve as an important source of contextual information that could 
 

444 contribute to an increase of around 30.0% in relation classification performance (in terms of precision, 
 

445 recall, and F1 measure). 

 

446 

447 

 

 

 

 

 
 

448 
449 
450 

451 

452 

453 

454 

Table 6. Performance of Proposed Method with Different Finetuning Strategies with Pretrained 

 Transformer-based Models  
Transfer learning strategies for training the 
relation classification model 

Number of trainable 
transformer layers 

Precision Recall F1 measure 

Fixed pretrained transformer-based model 0 58.7% 52.0% 53.2% 

 4 77.7% 73.3% 75.3% 

Trainable pretrained transformer-based model 8 78.0% 70.0% 73.3% 

 12 84.3% 83.3% 83.8% 

Note: Bolded font indicates highest performance; the pretrained ALBERT base model, natural-language definitions of IFC and 

regulatory concepts, and a threshold of 5 for top-k in post-classification pruning were used. 
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455 5.3.3 Impact of contextual text data 
 

456 The proposed method was tested with different IFC and regulatory concept data to assess the impact of 
 

457 utilizing the natural-language definitions in the proposed method. Four different types of data were tested: 
 

458 (1) only canonical forms for both IFC and regulatory concepts, (2) canonical forms and definitions for both 
 

459 IFC and regulatory concepts (the proposed types of concept data), (3) canonical forms and definitions for 
 

460 regulatory concepts, and only canonical forms for IFC concepts, and (4) canonical forms and definitions 
 

461 for IFC concepts, and only canonical forms for regulatory concepts. 

 

462 As shown in Table 7, the proposed method with the proposed form of concept data (i.e., concept data with 
 

463 both natural-language canonical forms and definitions for both IFC and regulatory concepts) showed the 
 

464 best performance in terms of average precision, recall, and F1 measure, outperforming the proposed method 
 

465 when other types of concept data were used, by an average of 29.5% in precision, 29.6% in recall, and 29.9% 
 

466 in F1 measure. The experimental results indicate that the definitions could serve as an important source of 
 

467 contextual information that could be captured and leveraged by the transformer-based models through 
 

468 transfer learning and could contribute to an increase of over 30.0% in relation classification performance. 

 

469 

 

 

 

 

 

 

 

 

470 
471 
472 
473 

 Table 7. Performance of Proposed Method with Different Types of Concept Data  

 

 

 

regulatory concepts 

only natural-language canonical forms for regulatory concepts 

language canonical forms and definitions for regulatory concepts 

Note: Bolded font indicates highest performance; the pretrained ALBERT base model with 12 trainable transformer layers and a 

threshold of 5 for top-k in post-classification pruning were used. 

 

5.3.4 Impact of post-classification pruning 
 

474 The proposed method was tested with different post-classification pruning thresholds for assessing the 
 

475 impact of pruning on performance. Five different thresholds for top-k pruning using both the relation 

Contextual information included in concept data Precision Recall F1 measure 

Natural-language canonical forms for IFC and regulatory concepts 53.3% 50.8% 51.3% 

Natural-language canonical forms and definitions for IFC and 
84.3%

 
83.3% 83.8% 

Natural-language canonical forms and definitions for IFC concepts and 
60.2%

 
60.2% 60.2% 

Only natural-language canonical forms for IFC concepts and natural- 
50.9%

 
50.2% 50.2% 
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476 classification probability-based ranking and the word-level semantic similarity-based ranking were tested: 
 

477 one, three, five, seven, and nine. 

 

478 As shown in Table 8, the proposed method with a threshold of 5 for top-k pruning showed the best 
 

479 performance in terms of average precision, recall, and F1 measure, outperforming the proposed method 
 

480 with other thresholds, by an average of 5.4% in precision, 4.8% in recall, and 5.1% in F1 measure. The 
 

481 experimental results indicate that a threshold of 5 was optimal in this case, because it retained more true 
 

482 positives compared to smaller thresholds and excluded more false positives compared to larger thresholds. 

 

483 Table 8. Performance of Proposed Method with Different Post-classification Concept Pair Pruning 

484  Thresholds  
Threshold for top-k pruning Precision Recall F1 measure 

1 78.0% 77.6% 77.8% 

3 80.0% 79.6% 79.8% 

5 84.3% 83.3% 83.8% 

7 79.1% 78.7% 78.9% 

9 78.4% 78.0% 78.2% 

Note: Bolded font indicates highest performance; the pretrained ALBERT base model with 

12 trainable transformer layers and natural-language definitions of IFC and regulatory 

concepts were used. 

 

485 5.3.5 Performance of the proposed method across different types of documents 
 

486 The proposed method was tested on regulatory concepts extracted from three different types of documents 
 

487 for assessing its performance across different codes and standards: IBC, IECC, and ADA Standards. As 
 

488 shown in Table 9, the proposed method achieved good performance across the three documents, in terms 
 

489 of average precision, recall, and F1 measure. A relatively lower performance (about 8-9% in F1 measure) 
 

490 was shown for IBC and IECC, compared to ADA Standards, which is likely due to the relatively high 
 

491 complexity (e.g., complex noun phrases and verb phrases) of some of the regulatory concepts contained in 
 

492 the two documents. 

 
493 

 
494 

 
495 
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496 

 

 

 
 

497 
498 
499 

500 

 Table 9. Performance of Proposed Method on Different Types of Regulatory Documents  
Type of regulatory document Precision Recall F1 measure 

International Building code (IBC) 82.7% 81.3% 81.9% 

International Energy Conservation Code (IECC) 82.5% 82.5% 82.5% 

Americans with Disabilities Act Standards (ADA Standards) 91.4% 90.4% 90.9% 

Note: The pretrained ALBERT base model with 12 trainable transformer layers, natural-language definitions of IFC and 

regulatory concepts, and a threshold of 5 for top-k in post-classification pruning were used. 

 
5.4 Error Analysis 

 

501 Three main sources of errors were identified based on the experimental results. First, the proposed method 
 

502 had errors when dealing with regulatory concepts whose corresponding canonical forms are less frequent 
 

503 in the regulatory document, such as “sallyport”, which appears less than ten times in only one section of 
 

504 the IBC. The low performance is likely because the transformer-based models were pretrained on general- 
 

505 domain text data where such words rarely appear and thus the models are less capable to capture their 
 

506 semantic information. Second, the proposed method showed relatively lower performance for regulatory 
 

507 concepts that have definitions that are semantically or syntactically very complex (e.g., long, complex 
 

508 definition with multiple or recursive conditions) or very simple (e.g., simple definition consisting of only a 
 

509 few words). The lower performance is due to the high syntactic complexity (e.g., complex noun phrases, 
 

510 verb phrases, and preposition phrases, and clauses of different types) and high semantic complexity (e.g., 
 

511 having multiple references and restrictions) of the complex definitions, or the lack of sufficient semantic 
 

512 information provided in the simple definitions. Third, the proposed method showed relatively lower 
 

513 performance for concepts from IBC and IECC compared to those from the ADA Standards. The lower 
 

514 performance is due to (1) the relatively low lexical and semantic similarity between the IBC and IECC 
 

515 concept data and the training data developed based on the IFC knowledge graph; and (2) the relatively high 
 

516 complexity (e.g., complex noun phrases and verb phrases) of some of the IBC and IECC concepts. 

 

517 5.5 Limitations 
 

518 Three limitations of the work are acknowledged. First, the proposed method successfully leveraged 
 

519 contextual information, including concept definitions and existing relations between IFC concepts, for 
 

520 improved information alignment; however, it did not consider cases where concepts might have different 



26  

521 definitions/meanings across different regulations or subdomains of knowledge. Additional evaluation 
 

522 efforts are needed to test the proposed method on other types of regulatory documents (e.g., International 
 

523 Fire Code) and domains (e.g., fire safety). The experimental results are expected to show similar 
 

524 performance; however, the performance level may vary due to possible differences in the syntactic and 
 

525 semantic characteristics of the concepts in those documents or domains. Second, the proposed method was 
 

526 tested on IFC and regulatory concepts with natural-language definitions but not on those without explicit 
 

527 definitions. Future efforts are needed to deal with concepts that lack such explicit definitions. This could 
 

528 be possibly through integrating additional external knowledge as contextual information, such as 
 

529 ontological and relational knowledge from other types of classification systems (e.g., Uniclass and 
 

530 Omniclass), natural-language descriptions or definitions of concepts from data dictionaries, encyclopedias, 
 

531 and specifications (e.g., bsDD). Third, the scope of the work was limited to IFC objects (e.g., 
 

532 IfcBuildingElement, IfcDistributionElement, IfcSpace). In future work, the proposed method could be 
 

533 extended to include the attributes and properties of the IFC objects (e.g., OverallHeight and OverallWidth 
 

534 for IfcDoor) and the IFC relations (e.g., IfcRelAggregates, IfcRelContained, IfcRelVoidsElement). For 
 

535 attributes and properties, a similar transformer-based context-aware approach could be used, although 
 

536 additional external knowledge may be needed (as contextual information) because many of the attributes 
 

537 and properties lack explicit natural-language definitions. For relation alignment, given the large difference 
 

538 in the representation/terminology of relations across the natural-language text and the IFC schema, more 
 

539 advanced machine learning and/or network modeling approaches could be explored. 

 

540 6 Contribution to the body of knowledge 
 

541 This paper offers a new method for IFC-regulation semantic information alignment. The proposed method 
 

542 uses a relation classification model to relate and align the IFC and regulatory concepts, which utilizes deep 
 

543 learning and transfer learning techniques. The proposed method showed good performance across 
 

544 regulatory concepts from different types of codes and standards, including IBC, IECC, and ADA Standards. 
 

545 The proposed method contributes to the body of knowledge in four main ways. First, it is the first effort to 
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546 use pretrained transformer-based models in text and knowledge analytics for supporting ACC. It leverages 
 

547 these models in both predicting relations between concepts and generating concept semantic similarities for 
 

548 pruning candidate concept pairs. These models are able to learn contextual representations that have 
 

549 superior ability in capturing semantic and syntactic dependencies from text data compared to traditional 
 

550 contextless and/or manually engineered features. Second, the research makes use of both general-domain 
 

551 and domain-specific semantic and syntactic information by training/finetuning the relation classification 
 

552 model with transfer learning strategies. Incorporating both types of information enhances the relation 
 

553 classification performance and increases the scalability and flexibility of the model. Third, it innovatively 
 

554 leverages the natural-language definitions of the concepts for information alignment of IFC and regulatory 
 

555 concepts. The definitions provide contextual lexical, syntactic, and semantic information for improved 
 

556 relation classification and thus improved information alignment. Fourth, it also leverages the IFC 
 

557 knowledge graph to develop training concept pairs, which incorporates the ontological contextual 
 

558 knowledge. The use of knowledge graph not only reduces the manual effort in preparing the training data 
 

559 and thus facilitates the automation of the information alignment process, but also enables leveraging the 
 

560 knowledge within the IFC schema to link the IFC-regulation concept pairs for improved relation 
 

561 classification and thus improved information alignment. 

 

562 7 Conclusions and future work 
 

563 In this paper, a transformer-based method for automated context-aware IFC-regulation semantic 
 

564 information alignment was proposed. The proposed method uses a relation classification model to relate 
 

565 and align the regulatory concepts extracted from building codes and standards with the concepts in the IFC 
 

566 schema, where the natural-language definitions of the two sets of concepts and an IFC knowledge graph 
 

567 are used to provide supplemental contextual information and knowledge for finetuning a pretrained 
 

568 transformer-based model using transfer learning. The relation classification model was trained on IFC 
 

569 concept pairs consisting of natural-language canonical forms and definitions that were constructed 
 

570 automatically based on an IFC knowledge graph. The proposed method was tested using a developed gold- 
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571 standard dataset that consists of 42,180 IFC-regulatory concept pairs. An average precision of 84.3%, recall 
 

572 of 83.3%, and F1 measure of 83.8% in alignment was achieved. 

 

573 The analysis of the experimental results indicates that (1) it is important to adapt existing pretrained 
 

574 transformer-based models using domain- and task-specific data to capture the semantic and syntactic 
 

575 information that is specific to the data at hand for improved performance; (2) the natural-language 
 

576 definitions and the IFC knowledge graph provided important sources of contextual information that could 
 

577 be leveraged by the transformer-based models for improved classification; and (3) the proposed relation 
 

578 classification method showed good performance across different types of regulatory documents (IBC, IECC, 
 

579 and ADA Standards). 

 

580 In the future, the authors plan to focus on improving the proposed method in four directions. First, the 
 

581 relation classification could be improved by (1) injecting more contextual information or knowledge by 
 

582 refining the IFC knowledge graph and incorporating more concept definitions; (2) creating more training 
 

583 concept pairs from both IFC schema and other resources such as bSDD; and (3) increase the scale and 
 

584 diversity of the testing IFC-regulatory concept pairs. Such improvements could greatly increase the model’s 
 

585 ability to deal with complex or rare concepts. Second, the post-classification pruning could be improved by 
 

586 (1) incorporating additional types of representations for computing word representations, such as the 
 

587 representations generated by transformer layers other than the final layer; (2) exploring different weighting 
 

588 strategies for computing concept representations based on word representations; and (3) exploring different 
 

589 ranking strategies for pruning. This could help better leverage the semantic information learned by the 
 

590 pretrained transformer-based models with general-domain text data. Third, the information alignment 
 

591 process could be improved by exploring other more fine-grained classification systems, such as Omniclass 
 

592 and Uniclass, to facilitate bridging the gap between the natural-language regulatory concepts and the 
 

593 computer-processable building designs. Fourth, and most importantly, the authors plan to integrate the 
 

594 proposed method with other ACC methods, such as methods for regulatory text analytics (e.g., regulatory 
 

595 text classification, information extraction, and transformation), BIM information analytics, and compliance 
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596 reasoning, in an integrated ACC platform. The planned ACC platform will consist of four modules to: (1) 
 

597 fully automatically process, interpret, and understand building-code requirements that are in the form of 
 

598 natural language, (2) transform the requirements into computer-processable forms, (3) align the 
 

599 representations of the requirements with the representations of the IFC-based building designs (using the 
 

600 proposed method), and (4) perform compliance reasoning to determine whether the building designs 
 

601 comply with the requirements. Our ultimate goal is to leverage deep learning, text and knowledge analytics, 
 

602 and other artificial intelligence approaches to reach a level where we can fully automatically process, 
 

603 represent, and understand the entire regulatory documents in the AEC domain and align and integrate them 
 

604 with the BIM-based designs for fully ACC. 
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