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Abstract

One of the main challenges of automated compliance checking systems is aligning the semantics of the
building information models (BIM), in Industry Foundation Classes (IFC) format, and the semantics of the
regulations, in natural language, to allow for checking the compliance of the BIM with the regulations.
Existing information alignment methods typically require intensive manual effort and their ability to deal
with the complex regulatory concepts in the regulations is limited. To address this gap, this paper proposes
a deep learning method for IFC-regulation semantic information alignment. The proposed method uses a
relation classification model to relate and align the IFC and regulatory concepts. The method uses a
transformer-based model and leverages the definitions of the concepts and an IFC knowledge graph to
provide additional contextual information and knowledge for improved classification and alignment. The
proposed method was evaluated on IFC concepts from IFC 4 and regulatory concepts from different

building codes and standards. The experimental results showed good information alignment performance.

Keywords: Information alignment; Automated code checking; Building codes; Building information

modeling; Industry Foundation Classes; Deep learning; Transformers.

1 Introduction

Building designs are governed by a wide range of regulations and requirements in the architecture,
engineering, and construction (AEC) domain, such as building codes, standards, and specifications. To
improve regulatory and contract compliance, as well as project efficiency, various automated compliance

checking (ACC) systems have been developed with the aim of automating — fully or partially — the process
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of checking the compliance of building designs, captured in building information models (BIM), with
applicable regulations and requirements. However, a bottleneck in the ACC process is bridging the semantic
gap between the BIM [commonly represented using the Industry Foundation Classes (IFC) schema] and
the regulations (expressed in natural language such as English) [1-3]. Before conducting the compliance
checking, it is essential to align the semantic representations and terminology of the IFC to that of the

natural-language regulations.

In most of the existing ACC systems, such information alignment is conducted in a highly manual way,
through hardcoding (e.g., using modeling or query languages), ontology- or dictionary-based matching, or
searching methods. For example, the buildingSMART Data Dictionary (bSDD) [4], an online service that
provides access to classifications (e.g., Uniclass) related to the AEC domain, can be used to facilitate the
matching of regulatory concepts to their corresponding IFC concepts (e.g., IFC entities, properties, or
enumerated property values). These methods require intensive manual effort and are by nature rigid and
difficult to generalize [3, 5-6]. Also, they are less capable to deal with semantically or syntactically complex
regulatory concepts. For example, many single-word regulatory concepts can be directly matched to IFC
concepts (e.g., match “beam” to “IfcBeam” or “IfcBeamTypeEnum — Beam”); however, it is difficult to
match multi-word, phrasal, or clausal regulatory concepts directly to any of the IFC concepts [e.g.,
“membrane-covered frame structure” and “intended to be occupied as a residence” in the International
Building Code (IBC) [7]]. There is, thus, a need for an automated, and meanwhile flexible and generalizable,

method for IFC-regulation semantic information alignment for supporting fully automated ACC.

Towards addressing this need, the most recent efforts that focused on IFC-regulation semantic information
alignment have explored the use of machine learning to facilitate such automation. Instead of relying on
hardcoding or handcrafted rules, these efforts use machine learning models to automatically learn the
underlying semantic and syntactic patterns of the regulatory text and IFC data to help in the alignment.
Many of these efforts focused on augmenting the BIM models with additional attributes and relationships

to support the alignment for ACC (e.g., [9-11]), while other efforts focused on directly aligning the
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regulatory and IFC concepts (e.g., [8]). For example, Wang et al. [11] modeled IFC-based building designs
as graphs and used graph neural networks (GNN) to classify the rooms in the IFC models into nine
predefined types based on manually constructed node and edge features and augment the models with the
classified types. Zhou and El-Gohary [8] leveraged word and concept semantic representations learned
using the word2vec algorithm and the graph structures of the IFC-based building designs to align concepts
from the International Energy Conservation Code (IECC) and energy specifications to their corresponding
IFC concepts. However, despite their importance, both groups of efforts still lack in flexibility and
adaptability and might not allow successful implementation across different BIMs and different types of
regulatory documents (e.g., building code versus energy code) due to two reasons. First, they rely on
contextless features (e.g., the word2vec representations), which have limited ability to capture the semantic
and syntactic dependencies of I[FC and text data. Second, they have not exploited the contextual information
and knowledge in both the IFC schema and the regulatory documents, which can potentially provide

additional semantic information for aligning IFC and regulatory concepts.

To address this need, this paper proposes a transformer-based method to align regulatory concepts in the
requirements with the IFC concepts in the IFC schema for supporting downstream ACC information
matching and compliance reasoning processes. The proposed method uses a relation classification model
to classify each pair of IFC-regulatory concepts as semantically related or not. The method utilizes the
natural-language definitions of the concepts and an IFC knowledge graph to provide additional contextual
information and knowledge for the classification. It also leverages semantic and syntactic patterns learned
in pretrained transformer-based language models, as well as domain-specific semantic and syntactic
patterns learned using transfer learning strategies. The proposed method was tested on IFC concepts and
definitions from IFC Version 4, and regulatory concepts and definitions from three different types of
regulatory documents including IBC, IECC, and Americans with Disabilities Act Standards for Accessible
Design (ADA Standards), and an average precision of 84.3%, recall of 83.3%, and F1 measure of 83.8% in

alignment was achieved.
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2 Background

2.1 Deep learning in text and knowledge analytics

Deep learning methods use deep neural networks to capture multiple levels of information representations
from large-scale data [12]. Deep learning methods have been used in solving various text analytics tasks,
such as information extraction [e.g., bidirectional long short-term memory (LSTM) and conditional random
fields for extracting named entities [13]], semantic and syntactic analysis (e.g., bidirectional LSTM for
dependency parsing and part-of-speech tagging [14]), and machine translation [e.g., sequence-to-sequence
recurrent neural network (RNN) model for machine translation [15]]. Deep learning methods have also
been used in solving various knowledge analytics tasks (especially the ones related to knowledge graphs),
such as relation analysis (e.g., relation adversarial network [16], relation attention network [17]), knowledge
graph embedding learning (e.g., GNN and negative sampling [18], GNN with contrastive learning [19]),
and knowledge graph-based question answering and recommendation (e.g., LSTM- and attention-based

method [20] and GNN- and attention-based method [21]).

A number of research efforts have focused on deep learning-based methods to solve text or knowledge
analytics problems in the AEC domain. For example, Pan and Zhang [22] developed RNN-based models
to mine information from BIM log data to support BIM-based building design decisions. Zhang and El-
Gohary [23] proposed a bidirectional LSTM-based method with transfer learning strategies to extract
semantic and syntactic information elements from building-code requirements. Zhong et al. [24] used a
bidirectional LSTM-based model with conditional random fields to extract procedural constraints from
construction regulations. Amer et al. [25] used a transformer-based method to predict the relationship
between look-ahead planning tasks to master-schedule activities. Li et al. [26] used hierarchical attention

networks to map bridge inspection descriptions to bridge condition ratings.

2.2 Transformers and pretrained transformer-based models
A transformer is a deep learning model structure that consists of an encoder and a decoder and uses multi-

head attention mechanisms [27] within the encoder or decoder (i.e., self-attention) or between them (i.e.,

4
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encoder-decoder attention) to capture the dependencies between different data points. Transformer-based
models consist of multiple layers of transformers to allow for learning the contextual representations of
input data. Example transformer-based models include generative pretrained transformer (GPT) models
(e.g., GPT-2 [28]) by OpenAl, bidirectional encoder representations from transformers (BERT) models [29]
by Google and variants of BERT [e.g., a lite BERT for self-supervised learning of language representations
(ALBERT) [30] and a robustly optimized BERT pretraining approach (RoBERTa) [31]], and the vision
transformer (ViT) [32]. Compared to other deep learning models (e.g., RNN-based models) that were
predominately used for natural language processing (NLP) tasks, transformer-based models have improved
both the language modeling performance, especially in dealing with long-term dependencies in the text,
and the computational efficiency in model training. These improvements result from (1) the use of multi-
head attention mechanisms in the transformer layers in place of sequential model structures such as RNN
[27]; and (2) the incorporation of a deep model structure (e.g., the BERT base model that consists of 12
layers of transformers and 110 million parameters [29]). Transformer-based models can be pretrained on
large general-domain corpora [e.g., BooksCorpus (800M words) and English Wikipedia (2,500M words)]
through unsupervised or self-supervised learning tasks, such as masked language modeling and next
sentence prediction [29]. The pretrained transformer-based language models can be then finetuned on
smaller, domain- or task-specific text data for downstream NLP tasks, such as sequence labeling, machine

translation, and question answering (e.g., [27-29]).

Recent efforts in the construction domain have applied transformer-based models in solving problems
including defect detection (e.g., [33-35]) and information extraction (e.g., [25, 36-37]). For example, Zhou
et al. [35] used transformer-based models to extract features for point cloud classification to support sewer
defect detection. Kim et al. [36] used transformer-based models to learn representations for extracting
infrastructure damage information from textual data. However, to the best of the authors’ knowledge, no

efforts focused on using transformer-based models for supporting ACC.
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3  State of the art and knowledge gaps in IFC-regulation semantic information alignment
The IFC schema is used to represent and share information in the AEC domain, and is the most commonly
adopted format for BIM [38]. It defines an object-based information model consisting of entities, including
objects (“IfcObject”), relations (“IfcRelationship”), and properties (“IfcPropertyDefinition). To support
BIM interoperability across different applications and levels of development, a model view definition
(MVD), which is a selection of IFC for a specific use or workflow (e.g., [39-41]), is further established
based on the overall IFC schema. However, the IFC concepts in the IFC schema or MVDs do not naturally
correspond to regulatory concepts and require additional efforts for aligning or mapping the concepts, which

creates a major barrier for ACC [1].

IFC-regulation semantic information alignment aims to align or link the regulatory concepts in natural
language to their corresponding or related IFC concepts (e.g., IFC entities, properties, enumerated property
values) by mapping or transforming one or both types of concepts. Existing research efforts for IFC-
regulation semantic information alignment predominately focus on predefined rule-based or hardcoding-
based methods. They can be classified into three main groups based on how the two types of information
are changed during the alignment: regulation-to-IFC translation, regulation-to-IFC mapping, and IFC-to-
regulation adaptation. In regulation-to-IFC translation, the building-code requirements are hardcoded into
computer-processable representations that allow information representation or retrieval with the IFC
schema using modeling languages such as SPARQL protocol and Resource Description Framework (RDF)
query language [42], building environment rule and analysis language [43], regulatory knowledge query
language [6], visual code checking language [44], and language-integrated query [45]. In regulation-to-IFC
mapping, the regulatory concepts are mapped to those in the IFC schema either fully manually or using
dictionaries (e.g., bSDD [4]), rules (e.g., [2, 46]), ontologies (e.g., [42, 47-48]), procedural algorithms and
functions (e.g., [49]), meta-databases and applications (e.g., [50]), or black-box mechanisms (e.g., [51-53]).

In IFC-to-regulation adaptation, the IFC schema or BIM file is adapted or modified to support direct
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alignment to building-code requirements by adding concepts from the requirements to the IFC schema [54]

or by modifying existing properties in specific BIM files [55].

Despite the state-of-the-art performance achieved by the predefined rule-based and hardcoding-based IFC-
regulation semantic information alignment methods, they typically require significant manual effort. Also,
many of these methods lack flexibility and adaptability (e.g., due to the use of predefined mapping rules or
hardcoded computer-processable requirements) and might not allow successful implementation across
different MVDs, BIMs, and different types of regulatory documents (e.g., building code versus energy
code). They also require updates when the IFC schema or the regulatory documents are updated [5-6]. To
overcome these limitations, recent research efforts have explored the use of machine learning to facilitate
IFC-regulation semantic information alignment. Many of these efforts focused on augmenting the BIM
models with additional attributes and relationships for facilitating compliance checking, using classification
or other approaches, to support the alignment (e.g., [9-11]). For example, Wu et al. [10] extracted invariant
signatures, which uniquely define each AEC object and capture their intrinsic properties, to classify IFC
objects and augment the models with the predicted/classified types. Another smaller number of efforts
focused on directly aligning the regulatory concepts to the IFC concepts using machine learning approaches.
For example, Zhang and El-Gohary [54] developed a semiautomated machine learning-based method to
extend the IFC schema with regulatory concepts, which consists of three main steps: rule-based regulatory
concept extraction, similarity-based term matching, and supervised learning-based relation classification.
Zhou and El-Gohary [8] proposed a deep learning-based method for learning semantic representations of
building-code and IFC concepts for information alignment of BIMs to building-code requirements, which
uses semantic similarity analysis, searching, and network construction. However, the aforementioned
machine learning-based approaches share three common limitations. First, despite achieving higher levels
of automation and generalizability (than rule-based and hardcoding-based methods), they still require
significant manual effort. For example, the semiautomated approach in [54] requires interim checking, and

possibly fixing, of intermediate results by the users. Second, they mostly rely on traditional, contextless
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semantic representations (e.g., word embeddings such as word2vec [56] and global vectors for word
representations [57]) and manually engineered features such as the part-of-speech patterns of the concepts,
number of words in the concepts, and first or last term in the concepts. These features are less effective in
capturing the domain-specific semantics (for example, compared to the contextual representations learned
by transformer-based models), which are essential for determining the relations between concepts in
semantic information alignment. Third, they do not leverage the important contextual information and
knowledge contained in the IFC schema and the regulatory documents, such as the natural-language
definitions of the concepts and the IFC knowledge graph, which provide additional semantic information

for interpreting and aligning semantically or syntactically complex regulatory concepts.

4 Proposed transformer-based method for automated context-aware IFC-regulation
semantic information alignment
A transformer-based method for automated context-aware IFC-regulation semantic information alignment
for supporting ACC is proposed. First, the proposed method uses a relation classification model to align
regulatory concepts extracted from building codes and standards with the concepts in the IFC schema (i.e.,
the IFC objects and their predefined types). The model classifies each pair of [FC-regulatory concepts as
semantically related or not. For the purpose of ACC, an IFC concept is aligned/related to a regulatory
concept if they are equivalent (e.g., “IfcRamp” and “ramp”) or if the IFC concept is a supertype of the
regulatory concept (e.g., “IfcDoor” and “revolving door”). Aligning to superclasses is adopted for IFC-
regulation alignment in ACC applications because the regulatory documents typically have more specific
concept descriptions than those in the IFC. Second, the proposed method is context-aware because it (1)
learns contextual representations of words using pretrained transformer-based models; and (2) leverages
the natural-language definitions of the regulatory and IFC concepts and an IFC knowledge graph to provide
supplemental contextual information and knowledge for finetuning pretrained transformer-based models

using transfer learning.
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The method is composed of five main steps, as per Fig. 1: (1) IFC knowledge graph development based on
the IFC schema and the IFC ontology, (2) concept pair development based on the IFC knowledge graph,
(3) transformer-based concept relation classification, (4) model training/finetuning with transfer learning

strategies, and (5) post-classification concept pair pruning.

Data preparation Relation classification-based alignment of I[FC-regulatory concepts
IFC concept data IFC knowledge Concept pair

preparation graph development

development
Regulatory concept
data preparation . . Model training Transformer-based
Post-classification . .
unin = withtransfer [+ concept relation
Evaluation [ p £ learning strategies classification

Fig. 1. Proposed transformer-based method for automated context-aware IFC-regulation semantic
information alignment.

4.1 Concept data preparation

4.1.1 IFC concept data preparation

The IFC concept data were prepared to develop the concept pairs for training (for finetuning the pretrained
models with domain-specific data using transfer learning) and testing the proposed method. The data were
automatically prepared based on the buildingSMART International standards and supporting
documentation on IFC4 using four steps: (1) collecting the .htm files of the IFC entities and property sets,
(2) parsing the files, (3) extracting the natural-language canonical forms and definitions from the files, and
(4) uncasing and cleaning the natural-language canonical forms and definitions of the IFC concept instances.
As a result, each IFC concept data instance consists of three parts: the IFC concept name, the natural-
language canonical form, and the natural-language definition. The IFC concept name is the name of the
entity in the IFC schema. The natural-language canonical form is the name of the entity in a natural language
(e.g., English), which is uncased and singular. The definition is the natural-language definition of the entity
in the IFC schema. For example, the canonical form of “IfcDoor” is “door”, and its natural-language

definition is “The door is a building element that is predominately used to provide controlled access for
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people and goods. It includes constructions with hinged, pivoted, sliding, and additionally revolving and
folding operations. A door consists of a lining and one or several panels” [38]. Table 1 shows examples of
two different types of IFC concepts (i.e., entity and enumerated value) in the IFC schema version 4 and the
associated data used in this study. A total of about 2,000 IFC concept instances and their data were prepared.

Table 1. Example IFC Concept Data Instances in Training and Testing Data
Type of IFC | Natural-language Natural-language definition from [FC
concept canonical form schema

An alarm is a device that signals the
existence of a condition or situation that is

IFC concept

IfcAlarm Entity Alarm outside the boundaries of normal expectation
or that activates such a device.
A spatial zone is a non-hierarchical and
potentially overlapping decomposition of the
IfcSpatialZone Entity Area, space, zone project under some functional consideration.

A spatial zone might be used to represent a
thermal zone, a construction zone, a lighting
zone, a usable area zone.

An electrical appliance that has the primary
Refrigerator function of storing food at low temperature

IfcElectricApplianceTypeEnum - | Enumerated

REFRIGERATOR value but above the freezing point of water.
IfcDistributionSystemEnum - Enumerated Fi tecti Fi recti ikl .
FIREPROTECTION value 1re protection 1re protection sprikier system.

4.1.2 Regulatory concept data preparation

The regulatory concept data were prepared to develop the concept pairs for testing the transformer-based
relation classification model. A regulatory concept data instance is defined as a sequence of words
consisting of the canonical form and the definition of a regulatory concept, both of which are in the form
of natural language and are directly extracted from the regulatory documents. For example, the data instance
of the concept “fire-rated glazing” is the concatenation of “fire-rated glazing” and its definition “glazing
with either a fire protection rating or a fire-resistance rating” [7]. The regulatory concept data were
developed based on the concepts and definitions from the following chapters and sections in three different
types of regulatory documents: (1) Section 202 Definitions of IBC, (2) Section C202 General Definitions
and Section R202 General Definitions of IECC, and (3) 106.5 Defined Terms of ADA Standards. The
natural-language canonical forms and definitions were uncased and cleaned. A total of 220 regulatory
concept data instances were prepared. Table 2 shows examples of regulatory concept data from different

sources [7, 58-59].

10
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Table 2. Example Regulatory Concept Data Instances in Testing Data

Regulatory concept

Source regulatory

Natural-language definition

canonical form document
Membrane-covered | International building | [ ISR eoRe eI B O et barir
cable structure Code (IBC) P b

and the membrane imparts stability to the structure.
A specifically designed water distribution system where one or

International Energy

Circulating hot water . more pumps are operated in the service hot water piping to
Conservation Code . . .

system IECC circulate heated water from the water-heating equipment to the
( ) fixture supply and back to the water-heating equipment.
Americans with - - C . e

Qualified historic Disabilities Act Standards A bplldlng or_fac1l1ty that is listed in or ehgl'ble for llsthg 1n_the

11 o . . National Register of Historic Places, or designated as historic
building or facility for Accessible Design

under an appropriate State or local law.

(ADA Standards)

4.2 IFC knowledge graph development

For determining the relations between the IFC concepts and accordingly developing the concept pairs (see
Section 4.3), a simple IFC knowledge graph was developed based on the IFC schema and the IFC ontology
[60]. The knowledge graph is a directed graph that consists of IFC concepts as nodes and the relations
between pairs of concepts (e.g., “is subclass of”’) as edges between the nodes. Fig. 2 shows two example
subgraphs induced from the IFC knowledge graph. The subgraphs consist of the neighbors that are centered

at the nodes representing the IFC concepts “IfcBuildingElement” and “IfcWindow” within a radius of one.

The knowledge graph was constructed following two steps. First, a knowledge graph was automatically
constructed based on the ifcOWL (Web Ontology Language representation of the ifc schema) [60], which
is an RDF graph of the IFC ontology, using a rule-based method. For example, the blank nodes in the
ifcOWL were removed and the edges that link the blank nodes with the uniform resource identifier (URI)
reference nodes were redirected accordingly. Second, the predefined types of the IFC concepts (e.g.,
“triple_panel left” as a predefined type of “IfcWindow” in Fig. 2) were added to the knowledge graph as

subclasses of these IFC concepts.

11
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IfcElement triple_panel_vertical

triple_panel_right

single_panel
triple_panel bottom
N1 b
IfcRampFElight
TtcBeam N2
\' F.""“r‘/ N2 —skylight
IfcDoor N1 Slab
ﬁ rtaiﬂ(
Plate
IfeStairFlight Stair triple_paqel_horizontal tripié-panel_top

lightdome
IfcRailing
IfcPile

dowple_panel_horizontal

IfcRoof IfcCovering

IicColumn

IfcShadingDevice triple_panel_left

fcMember

Ifcwall double_panel_vertical

Note: N1=IfcBuildingElement; N2=IfcWindow

Fig. 2. Example subgraphs centered at the IFC concepts “IfcBuildingElement” (left) and “IfcWindow”
(right) induced from the IFC knowledge graph.

4.3  Concept pair development for training and testing

Two concept pair datasets were developed for training and testing. Fig. 3 and Table 3 show example concept
pairs developed based on the IFC knowledge graph. For training, a dataset of concept pairs was developed
for finetuning the pretrained model with domain-specific data using transfer learning strategies). The pairs
were developed using the IFC concept data (Section 4.1.1), with the support of the developed IFC
knowledge graph (Section 4.2). Each concept pair that serves as a positive training instance consists of two
semantically related IFC concepts that are directly linked by one edge in the IFC knowledge graph. Each
concept pair that serves as a negative training instance consists of two IFC concepts that are not directly
linked by an edge. For example, the concept pair of the IFC concepts “IfcDoor” and “IfcBuildingElement”
is related; and the concept pair of “IfcDoor” and “IfcWindow” is not related. A total of about 20,000 training
concept pairs were developed.

Table 3. Example Training Concept Pairs

Con((::e(;icle pt pair (in canonical fcogrrll():ep - Binary relation between Concepts 1 and 2
Building element Curtain wall Related
Distribution control element | Flow instrument Related
Curtain wall Flow instrument Not related
Building element Distribution control element | Not related
Electric appliance Refrigerator Related
Refrigerator Fire protection Not related

12
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For testing, a dataset of concept pairs was developed for serving as the gold standard to evaluate the
proposed method. Each concept pair consists of one IFC concept and one regulatory concept, and the pairs
were developed using the prepared concept data (Section 4.1). For preparing the positive testing instances,
for each regulatory concept, the semantically related IFC concept(s) was manually selected by a group of
three experts, one from industry and two from academia. The authors adopted a purposive sampling strategy,
which aims to select a specific type of experts according to predefined criteria [61]. Two criteria were
defined: (1) familiarity with building codes and compliance checking processes, and (2) familiarity with
the IFC schema. The authors used purposive sampling because (1) it is suitable for small, specialized
populations; and (2) it helps obtain information from a concentrated, carefully selected sample [61-62].
Each expert independently selected and paired the concepts, with an initial inter-annotator agreement of
80% in F1 measure, which indicates good consistency, reliability, and reproducibility of the process of
manually aligning the regulatory and IFC concepts and thus high quality of the manual alignment for
preparing the testing dataset [63-64]. The discrepancies among the annotated pairs were then resolved by
the experts to reach full agreement on the final gold standard. For preparing the negative testing instances,
for each regulatory concept, the IFC concepts in all ACC-relevant domains (e.g., IFC architecture domain,
IFC building controls domain, and IFC structural elements domain) were enumerated and paired with the
regulatory concept, except for the semantically related IFC concept(s). For example, the pair of “exit access
ramp” (regulatory concept) and “IfcRamp” (IFC concept) was included as a positive instance, while the
pair of “fire door” (regulatory concept) and “IfcRamp” (IFC concept) was included as a negative one. A

total of 42,180 testing concept pairs, with their relations and concept definitions, were developed.

13
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Fig. 3. Example related and not related concept pairs based on IFC knowledge graph.

4.4 Transformer-based concept relation classification model development

The semantic information alignment of regulatory concepts with the IFC schema is formulated as a binary
relation classification problem, where given a concept pair of an IFC and a regulatory concept, a relation
classification model predicts the relation between the two concepts (semantically related or not). The
relation classification model consists of two main components: the pretrained transformer-based model,
and a relation classification layer, which further consists of an activation function [e.g., rectified linear unit

(ReLU)], a feedforward neural networks (FFNN) layer, and a softmax function, as shown in Fig. 4.

The relation classification step further consists of three substeps: definition tokenization, input sequence
construction, and relation prediction. First, the natural-language definitions for the concept pairs are
tokenized using the tokenizer corresponding to the pretrained transformer-based model. Second, the input
to the model, which is a sequence of tokens (e.g., words and numbers), is constructed by concatenating the
two tokenized definitions for each pair. The two definitions are separated by a [SEP] token, which indicates
the boundary between the two definitions. The entire sequence is started with a [CLS] token, which captures

the definition-level information of the relation between the two concepts through model training/finetuning
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with transfer learning strategies. Third, the tokens in the input sequence are embedded and loaded into the
pretrained transformer-based model, which generates the output embeddings. The relation classification
layer then computes the distribution over both classes, given the output embedding of the [CLS] token. The

final relation predicted by the classification model is the one with the highest probability.

Output = [P(related), P(not related)], max(Output) = P(related)
f

ReLU + FFNN + Softmax

=P

Res | | Ry R, Ry; Ry Rys Rig | | Rsme | | R Ry, Ry Ry Rys Ry

i @ T f T T i 1t T iis T T T ki

Pretrained transformer-based model

ECLS Ell E12 El3 E14 E]S E16 ESEP Eli E22 E23 E24 EZS E26

: e == 3 r Sl Sm—
[CLS] portion of a means of egress [SEP] the door is a  building element
~ T
Definition of “Exit access” Definition of “IfcDoor”

Note: BERT=bidirectional encoder representations from transformers; CLS=token for concept pair classification; E=input token embeddings;
FFNN=feedforward neural network; R=output token embeddings; ReL.U=rectified linear unit; SEP=token for separating two concepts

Fig. 4. Pretrained transformer-based concept relation classification model for IFC-regulation semantic
information alignment.

4.5 Model training with transfer learning strategies

The concept relation classification model was trained (finetuning the pretrained model with domain-specific
data using transfer learning strategies) to minimize the objective function — multiclass cross entropy, L, as
per Eq. (1). Cross entropy describes the difference between the labels in the training data, denoted as y, and
the labels predicted by the model 8, denoted as ¢, based on the input natural-language definitions x, as
shown in Eq. (1), where D is a batch of the training data, C is the set of labels, pg(c|x;) is the conditional
probability of ¢ given the input sentence x generated by the relation classification layer in the model with
parameters 6, and 1, is the indicator function, which returns 1 when y and c are equal, and returns 0

when y and ¢ are not equal.
1

L(6) =D > X 1y—logpe(clxy) ey
x,yED ceC
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Two transfer learning strategies to train the relation classification model were adopted for comparative
evaluation: (1) the pretrained transformer-based model is not trainable, and only the relation classification
layer is trainable; and (2) specific transformer layers (e.g., all the 12 layers in BERT or ALBERT base
model) in the pretrained model are trainable, together with the relation classification layer. The first strategy
preserves more of the semantic and syntactic information learned by the pretrained models from the general-
domain text data, while the second strategy encourages learning domain- and task-specific semantic and

syntactic information during the training of the model with concept pairs.

Two training practices were adopted for more stable and efficient training: (1) early stopping: the training
process was stopped when the loss change is smaller than 0.1; and (2) learning rate scheduling: the learning

rate was initialized small and increased as the training progresses.

4.6  Post-classification concept pair pruning

The post-classification concept pair pruning aims to select the most lexically and semantically similar IFC-
regulatory concept pairs among those classified as semantically related by the relation classification model
(Section 4.5) — acting like a filtering layer. The pruning consists of three main steps. First, the concept pairs
were ranked according to the relation classification probabilities, which are obtained from the relation
classification model. Concept pairs that are not within the top & of the ranking are pruned (i.e., considered
not related). Second, for each classified concept pair, the word-level semantic similarity was defined as the
cosine similarity between the corresponding pair of semantic concept representations of their natural-
language canonical forms, as per Eq. (2), where S, is the semantic representation of the canonical form of
an IFC concept ¢ and S, is the semantic representation of the regulatory concept ». Concept pairs with
similarities lower than a predetermined threshold (e.g., 0.9) are pruned. Third, if a regulatory concept is
related to both an IFC concept and its subconcept, only the IFC subconcept is selected (to avoid redundancy,

since an IFC subconcept is already related to its superconcept based on the IFC schema).

Similarity (c,r) = o (2)
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4.7 Evaluation

For evaluating the relation classification-based semantic alignment method, three metrics were calculated
for each label (semantically related or not related): precision, recall, and F1 measure, as shown in Egs. (3)
to (5), where for each label R, TP is the number of true positives (i.e., number of concept pairs correctly
labeled with R), FP is the number of false positives (i.e., number of concept pairs incorrectly labeled with
R), and FN is the number of false negatives (i.e., number of concept pairs not labeled with R but should
have been) [65]. The overall performance of the proposed method was obtained by further calculating the

average precision, recall, and F1 measure both labels.

o TP
Precision = ——— 3
TP + FP
TP
Recall = —— 4
TP+ FN

Precision X Recall

Fy=2 (5)

X
Precision + Recall

5 Experiments, results, and discussion

5.1 Training and model hyperparameters

The proposed transformer-based IFC-regulation semantic information alignment method was deployed and
trained using PyTorch built in Python 3 and run using the Tesla K80 GPU provided in Google Colaboratory.
A five-fold cross validation was conducted for optimizing the hyperparameters of the classification model.
For the cross validation, the training data (i.e., the IFC concept pairs) were further split into two subsets —
one for model training and the other for model validation. The values of other hyperparameters were
determined based on the characteristics of the training and testing data used in the experiments (e.g., the
maximum sentence length is 128), or the parameters of the pretrained transformer-based models (e.g., the
dimension of the FFNN layer is 768 when the ALBERT base model is adopted, whose transformer layer

has a dimension of 768). The values of the final training and model hyperparameters are shown in Table 4.
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Table 4. Training and Model Hyperparameters for Proposed Classification Model

Hyperparameter Value
Training
Batch size of training data 32
Maximum length of tokenized definition pair 256
Initial learning rate le-5
Dropout rate 0.1
Model
Dimension of the output layer Same as transformer layer size (e.g., 768 for ALBERT base model)
. Depending on pretrained transformer-based model (e.g., 12 for
Number of attention heads ALBERT base model)
. Depending on pretrained transformer-based model (e.g., 12 for
Number of hidden layers ALBERT base model)
. . Depending on pretrained transformer-based model (e.g., 768 for
Hidden layer size ALBERT base model)

5.2 Application of proposed method

Fig. 5 illustrates the application of the proposed relation classification-based semantic alignment method,
with an example. Given a pair of regulatory and IFC concepts and their definitions, first, the trained
transformer-based concept relation classification model predicts the relation between concepts, generating
candidate related regulatory and IFC concept pairs with their relation probabilities. Second, all candidate
related concept pairs are ranked based on the relation probabilities. Third, given the representations of the
concepts, the concept similarities are assessed by computing the cosine similarities between the
representations. Fourth, the final related concept pairs are determined based on rules (e.g., the top &
candidate pairs are retained as final pairs). The final related concept pairs are further used in downstream

ACC tasks, such as compliance reasoning.
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383 Fig. 5. Proposed semantic information alignment method.

384  Fig. 6 provides an example to further illustrate the use of the proposed method within an ACC system. The
385  ACC system consists of four main modules: (1) information extraction (regulatory information [23] and
386  design/BIM information [66]), (2) requirement transformation [67], (3) BIM-regulation alignment, and (4)
387  compliance reasoning [66]. The proposed method can be used within the BIM-regulation alignment module
388  to align the regulatory concepts in the extracted and transformed requirements (output of module 2) to the
389  IFC concepts in the IFC instances (output of module 1). The aligned requirements and IFC instances (output
390  of module 3) are the input to the final rule-based compliance reasoning module (module 4), where the
391  information (e.g., compliance checking attributes such as area and width) in the requirements are compared
392  to the information in the IFC instances to determine the compliance results. For the details of modules 1, 2,

393  and 4, the readers are referred to [23, 66-67].
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Fig. 6. Example to illustrate use of proposed method for BIM-regulation alignment within an automated
compliance checking (ACC) system.

5.3 Evaluation of information alignment performance

The testing data (see Section 4.3) were used to evaluate the performance of the proposed method. Four sets
of ablation experiments (Sections 5.3.1 to 5.3.4) were conducted to better understand the impact of four
important aspects on the performance of the proposed method: (1) the different types of pretrained
transformer-based models, (2) the process of training/finetuning the relation classification model using
transfer learning strategies, (3) the incorporation of natural-language definitions as contextual information
for training the classification model, and (4) the post-classification concept pair pruning. A fifth set of
experiments (Section 5.3.5) was conducted to assess the performance of the proposed method across
different types of regulatory documents. The final selected model uses the ALBERT base pretrained model

with 12 trainable transformer layers, natural-language definitions of IFC and regulatory concepts, and a
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threshold of 5 for top-k in post-classification pruning. It achieved average precision, recall, and F1 measure
of 84.3%, 83.3%, and 83.8%, respectively.

5.3.1 Impact of different types of pretrained transformer-based models

The proposed method was tested with different types of pretrained transformer-based models (i.e., BERT
and ALBERT) and models of different sizes. Four different pretrained transformer-based models were
tested: ALBERT base (12 transformer layers, 768-layer size, and 11 million parameters), ALBERT large
(24 transformer layers, 1024-layer size, and 17 million parameters), ALBERT xlarge (24 transformer layers,
2048-layer size, and 58 million parameters), and BERT base (12 transformer layers, 768-layer size, and

110 million parameters) models.

As shown in Table 5, the proposed method with the ALBERT base model performed the best in terms of
average precision, recall, and F1 measure, outperforming the proposed method with other pretrained models,
by an average of 14.4% in precision, 20.8% in recall, and 18.5% in F1 measure. The experimental results
indicate that for the specific training data used and the specific relation prediction task, the ALBERT base
model is of the most suitable size, while larger models might start to overfit or underfit. A large model (i.e.,
the ALBERT large model) achieved lower performance, especially lower recall, compared to the base

model, and thus was not selected because few false negatives and a high recall are required for ACC tasks.

Table 5. Performance of Proposed Method with Different Pretrained Transformer-based Models

Pretrained transformer-based models Precision Recall F1 measure
ALBERT base model 84.3% 83.3% 83.8%
ALBERT large model 81.5% 70.2% 74.6%
ALBERT xlarge model 76.7% 65.7% 69.8%
BERT base model 51.5% 51.5% 51.5%

Note: Bolded font indicates highest performance; 12 trainable transformer layers, natural-language
definitions of IFC and regulatory concepts, and a threshold of 5 for top-k in post-classification
pruning were used.

5.3.2 Impact of different transfer learning strategies for pretrained transformer-based relation

classification

The proposed method was tested with different transfer learning strategies for training/finetuning the

pretrained transformer-based relation classification model for assessing the impact of balancing domain-
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general and domain-specific semantic and syntactic information on performance. Two different transfer
learning strategies were tested: fixing or training the pretrained transformer-based model in the relation
classification model. For the second strategy, different numbers of trainable transformer layers were also

tested for comparative evaluation. The ALBERT base model was used in this set of experiments.

As shown in Table 6, the proposed method with the trainable pretrained transformer-based model, and with
twelve trainable transformer layers, showed the best performance in terms of average precision, recall, and
F1 measure, outperforming the proposed method when the other strategies were adopted, by an average of
12.8% in precision, 18.2% in recall, and 16.5% in F1 measure. The experimental results indicate that the
general-domain semantic and syntactic information transferred by the pretrained models is not sufficient
for relation classification with complex regulatory concepts, and that part of the pretrained models (e.g.,
the last transformer layers) need to be trainable to adapt itself to domain- and task-specific data. The model
with less trainable layers achieved lower performance, especially lower recall, compared to the one with 12
trainable layers. The latter model was, thus, selected because of the higher priority need for recall. The
experimental results also indicate that the representations learned through training/finetuning pretrained
transformer-based models could serve as an important source of contextual information that could
contribute to an increase of around 30.0% in relation classification performance (in terms of precision,

recall, and F1 measure).

Table 6. Performance of Proposed Method with Different Finetuning Strategies with Pretrained
Transformer-based Models

Transfer learning strategies for training the Number of trainable ..
. . . Precision  Recall ~F1 measure
relation classification model transformer layers
Fixed pretrained transformer-based model 0 58.7% 52.0% 53.2%
4 77.7% 73.3% 75.3%
Trainable pretrained transformer-based model 8 78.0% 70.0% 73.3%
12 84.3%  83.3% 83.8%

Note: Bolded font indicates highest performance; the pretrained ALBERT base model, natural-language definitions of IFC and
regulatory concepts, and a threshold of 5 for top-k in post-classification pruning were used.
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5.3.3 Impact of contextual text data

The proposed method was tested with different IFC and regulatory concept data to assess the impact of
utilizing the natural-language definitions in the proposed method. Four different types of data were tested:
(1) only canonical forms for both IFC and regulatory concepts, (2) canonical forms and definitions for both
IFC and regulatory concepts (the proposed types of concept data), (3) canonical forms and definitions for
regulatory concepts, and only canonical forms for IFC concepts, and (4) canonical forms and definitions

for IFC concepts, and only canonical forms for regulatory concepts.

As shown in Table 7, the proposed method with the proposed form of concept data (i.e., concept data with
both natural-language canonical forms and definitions for both IFC and regulatory concepts) showed the
best performance in terms of average precision, recall, and F1 measure, outperforming the proposed method
when other types of concept data were used, by an average of 29.5% in precision, 29.6% in recall, and 29.9%
in F1 measure. The experimental results indicate that the definitions could serve as an important source of
contextual information that could be captured and leveraged by the transformer-based models through

transfer learning and could contribute to an increase of over 30.0% in relation classification performance.

Table 7. Performance of Proposed Method with Different Types of Concept Data
Contextual information included in concept data Precision  Recall F1 measure

Natural-language canonical forms for IFC and regulatory concepts 53.3% 50.8% 51.3%

Natural-language canonical forms and definitions for IFC and

84.3% 83.3% 83.8%
regulatory concepts

Natural-language canonical forms and definitions for IFC concepts and

0, 0 0,
only natural-language canonical forms for regulatory concepts 60.2% 60.2% 60.2%

Only natural-language canonical forms for IFC concepts and natural- 5099

0 0,
language canonical forms and definitions for regulatory concepts 30.2% 302%

Note: Bolded font indicates highest performance; the pretrained ALBERT base model with 12 trainable transformer layers and a
threshold of 5 for top-k in post-classification pruning were used.

5.3.4 Impact of post-classification pruning

The proposed method was tested with different post-classification pruning thresholds for assessing the

impact of pruning on performance. Five different thresholds for top-k pruning using both the relation

23



476

477

478

479

480

481

482

483
484

485

486

487

488

489

490

491

492

493

494

495

classification probability-based ranking and the word-level semantic similarity-based ranking were tested:

one, three, five, seven, and nine.

As shown in Table 8, the proposed method with a threshold of 5 for top-k pruning showed the best
performance in terms of average precision, recall, and F1 measure, outperforming the proposed method
with other thresholds, by an average of 5.4% in precision, 4.8% in recall, and 5.1% in F1 measure. The
experimental results indicate that a threshold of 5 was optimal in this case, because it retained more true

positives compared to smaller thresholds and excluded more false positives compared to larger thresholds.

Table 8. Performance of Proposed Method with Different Post-classification Concept Pair Pruning

Thresholds
Threshold for top-k pruning Precision Recall F1 measure
1 78.0% 77.6% 77.8%
3 80.0% 79.6% 79.8%
5 84.3% 83.3% 83.8%
7 79.1% 78.7% 78.9%
9 78.4% 78.0% 78.2%

Note: Bolded font indicates highest performance; the pretrained ALBERT base model with
12 trainable transformer layers and natural-language definitions of IFC and regulatory
concepts were used.

5.3.5 Performance of the proposed method across different types of documents

The proposed method was tested on regulatory concepts extracted from three different types of documents
for assessing its performance across different codes and standards: IBC, IECC, and ADA Standards. As
shown in Table 9, the proposed method achieved good performance across the three documents, in terms
of average precision, recall, and F1 measure. A relatively lower performance (about 8-9% in F1 measure)
was shown for IBC and IECC, compared to ADA Standards, which is likely due to the relatively high
complexity (e.g., complex noun phrases and verb phrases) of some of the regulatory concepts contained in

the two documents.
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Table 9. Performance of Proposed Method on Different Types of Regulatory Documents

Type of regulatory document Precision Recall F1 measure
International Building code (IBC) 82.7% 81.3% 81.9%
International Energy Conservation Code (IECC) 82.5% 82.5% 82.5%
Americans with Disabilities Act Standards (ADA Standards) 91.4% 90.4% 90.9%

Note: The pretrained ALBERT base model with 12 trainable transformer layers, natural-language definitions of IFC and
regulatory concepts, and a threshold of 5 for top-k in post-classification pruning were used.

5.4 Error Analysis

Three main sources of errors were identified based on the experimental results. First, the proposed method
had errors when dealing with regulatory concepts whose corresponding canonical forms are less frequent
in the regulatory document, such as “sallyport”, which appears less than ten times in only one section of
the IBC. The low performance is likely because the transformer-based models were pretrained on general-
domain text data where such words rarely appear and thus the models are less capable to capture their
semantic information. Second, the proposed method showed relatively lower performance for regulatory
concepts that have definitions that are semantically or syntactically very complex (e.g., long, complex
definition with multiple or recursive conditions) or very simple (e.g., simple definition consisting of only a
few words). The lower performance is due to the high syntactic complexity (e.g., complex noun phrases,
verb phrases, and preposition phrases, and clauses of different types) and high semantic complexity (e.g.,
having multiple references and restrictions) of the complex definitions, or the lack of sufficient semantic
information provided in the simple definitions. Third, the proposed method showed relatively lower
performance for concepts from IBC and IECC compared to those from the ADA Standards. The lower
performance is due to (1) the relatively low lexical and semantic similarity between the IBC and IECC
concept data and the training data developed based on the IFC knowledge graph; and (2) the relatively high

complexity (e.g., complex noun phrases and verb phrases) of some of the IBC and IECC concepts.

5.5 Limitations
Three limitations of the work are acknowledged. First, the proposed method successfully leveraged
contextual information, including concept definitions and existing relations between IFC concepts, for

improved information alignment; however, it did not consider cases where concepts might have different

25



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

definitions/meanings across different regulations or subdomains of knowledge. Additional evaluation
efforts are needed to test the proposed method on other types of regulatory documents (e.g., International
Fire Code) and domains (e.g., fire safety). The experimental results are expected to show similar
performance; however, the performance level may vary due to possible differences in the syntactic and
semantic characteristics of the concepts in those documents or domains. Second, the proposed method was
tested on IFC and regulatory concepts with natural-language definitions but not on those without explicit
definitions. Future efforts are needed to deal with concepts that lack such explicit definitions. This could
be possibly through integrating additional external knowledge as contextual information, such as
ontological and relational knowledge from other types of classification systems (e.g., Uniclass and
Omniclass), natural-language descriptions or definitions of concepts from data dictionaries, encyclopedias,
and specifications (e.g., bsDD). Third, the scope of the work was limited to IFC objects (e.g.,
IfcBuildingElement, IfcDistributionElement, IfcSpace). In future work, the proposed method could be
extended to include the attributes and properties of the IFC objects (e.g., OverallHeight and OverallWidth
for IfcDoor) and the IFC relations (e.g., IfcRelAggregates, IfcRelContained, IfcRelVoidsElement). For
attributes and properties, a similar transformer-based context-aware approach could be used, although
additional external knowledge may be needed (as contextual information) because many of the attributes
and properties lack explicit natural-language definitions. For relation alignment, given the large difference
in the representation/terminology of relations across the natural-language text and the IFC schema, more

advanced machine learning and/or network modeling approaches could be explored.

6 Contribution to the body of knowledge

This paper offers a new method for IFC-regulation semantic information alignment. The proposed method
uses a relation classification model to relate and align the IFC and regulatory concepts, which utilizes deep
learning and transfer learning techniques. The proposed method showed good performance across
regulatory concepts from different types of codes and standards, including IBC, IECC, and ADA Standards.

The proposed method contributes to the body of knowledge in four main ways. First, it is the first effort to
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use pretrained transformer-based models in text and knowledge analytics for supporting ACC. It leverages
these models in both predicting relations between concepts and generating concept semantic similarities for
pruning candidate concept pairs. These models are able to learn contextual representations that have
superior ability in capturing semantic and syntactic dependencies from text data compared to traditional
contextless and/or manually engineered features. Second, the research makes use of both general-domain
and domain-specific semantic and syntactic information by training/finetuning the relation classification
model with transfer learning strategies. Incorporating both types of information enhances the relation
classification performance and increases the scalability and flexibility of the model. Third, it innovatively
leverages the natural-language definitions of the concepts for information alignment of IFC and regulatory
concepts. The definitions provide contextual lexical, syntactic, and semantic information for improved
relation classification and thus improved information alignment. Fourth, it also leverages the IFC
knowledge graph to develop training concept pairs, which incorporates the ontological contextual
knowledge. The use of knowledge graph not only reduces the manual effort in preparing the training data
and thus facilitates the automation of the information alignment process, but also enables leveraging the
knowledge within the IFC schema to link the IFC-regulation concept pairs for improved relation

classification and thus improved information alignment.

7  Conclusions and future work

In this paper, a transformer-based method for automated context-aware IFC-regulation semantic
information alignment was proposed. The proposed method uses a relation classification model to relate
and align the regulatory concepts extracted from building codes and standards with the concepts in the IFC
schema, where the natural-language definitions of the two sets of concepts and an IFC knowledge graph
are used to provide supplemental contextual information and knowledge for finetuning a pretrained
transformer-based model using transfer learning. The relation classification model was trained on IFC
concept pairs consisting of natural-language canonical forms and definitions that were constructed

automatically based on an IFC knowledge graph. The proposed method was tested using a developed gold-
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standard dataset that consists of 42,180 IFC-regulatory concept pairs. An average precision of 84.3%, recall

of 83.3%, and F1 measure of 83.8% in alignment was achieved.

The analysis of the experimental results indicates that (1) it is important to adapt existing pretrained
transformer-based models using domain- and task-specific data to capture the semantic and syntactic
information that is specific to the data at hand for improved performance; (2) the natural-language
definitions and the IFC knowledge graph provided important sources of contextual information that could
be leveraged by the transformer-based models for improved classification; and (3) the proposed relation
classification method showed good performance across different types of regulatory documents (IBC, IECC,

and ADA Standards).

In the future, the authors plan to focus on improving the proposed method in four directions. First, the
relation classification could be improved by (1) injecting more contextual information or knowledge by
refining the IFC knowledge graph and incorporating more concept definitions; (2) creating more training
concept pairs from both IFC schema and other resources such as bSDD; and (3) increase the scale and
diversity of the testing IFC-regulatory concept pairs. Such improvements could greatly increase the model’s
ability to deal with complex or rare concepts. Second, the post-classification pruning could be improved by
(1) incorporating additional types of representations for computing word representations, such as the
representations generated by transformer layers other than the final layer; (2) exploring different weighting
strategies for computing concept representations based on word representations; and (3) exploring different
ranking strategies for pruning. This could help better leverage the semantic information learned by the
pretrained transformer-based models with general-domain text data. Third, the information alignment
process could be improved by exploring other more fine-grained classification systems, such as Omniclass
and Uniclass, to facilitate bridging the gap between the natural-language regulatory concepts and the
computer-processable building designs. Fourth, and most importantly, the authors plan to integrate the
proposed method with other ACC methods, such as methods for regulatory text analytics (e.g., regulatory

text classification, information extraction, and transformation), BIM information analytics, and compliance
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reasoning, in an integrated ACC platform. The planned ACC platform will consist of four modules to: (1)
fully automatically process, interpret, and understand building-code requirements that are in the form of
natural language, (2) transform the requirements into computer-processable forms, (3) align the
representations of the requirements with the representations of the IFC-based building designs (using the
proposed method), and (4) perform compliance reasoning to determine whether the building designs
comply with the requirements. Our ultimate goal is to leverage deep learning, text and knowledge analytics,
and other artificial intelligence approaches to reach a level where we can fully automatically process,
represent, and understand the entire regulatory documents in the AEC domain and align and integrate them

with the BIM-based designs for fully ACC.
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