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Abstract

Construction safety regulations and standards contain a massive number of fall protection requirements with respect
to different equipment, facilities, and operations. Automated field compliance checking aims to detect field violations
to construction safety regulations for improved compliance and safety. Recent research efforts focused on automated
tracking of labor and equipment towards improved violation detection and safety compliance. However, extracting
and modeling safety requirements for supporting automated violation detection or safety alert systems remains highly
manual. Towards addressing this gap, information extraction provides an opportunity to automatically extract
requirements from construction safety regulations for comparisons with field information to detect violations (or
predict and prevent violations before they occur). However, existing information extraction methods are limited in
terms of their scalability and/or accuracy. To address this need, this paper proposes a deep learning-based information
extraction method for automatically extracting named entities describing fall protection requirements (e.g., scaffold,
horizontal direction, 6 feet) from construction safety regulations and resolving referential ambiguities. The proposed
information extraction method consists of three main submethods: (1) a deep learning-based method to recognize
entities from the regulations, (2) a deep learning-based method to recognize referential ambiguities in the extracted
entities, and (3) a named entity normalization method to resolve these ambiguities. The proposed method was

implemented and tested on 20 selected Occupational Safety and Health Administration (OSHA) sections related to
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fall protection. An overall information extraction precision, recall, and F-1 measure of 93.2%, 89.6%, and 91.1% were
obtained, which indicates good information extraction performance.

1 Introduction

Fall accidents are a major concern for construction safety. A total of 1,102 fatalities in the construction industry were
reported in 2019, which represented 20.7% of the total workplace fatalities in the United States (5,333) (OSHA, 2020a;
Tang et al. 2020); and 174,100 injuries, with more than 130,000 workers missing days of work, were reported in 2020
(Labor 2021a; Labor 2022). Among all accident types, falling is the leading cause of construction fatalities. It is
responsible for more than 30% of all construction deaths (Labor 2021b; Mutual 2020) and is the second leading cause

of serious injuries, with higher compensation costs than other types of injuries (OSHA, 2020b).

A large number of fall accidents happen due to field noncompliance with safety regulations, particularly the
Occupational Safety and Health Administration (OSHA) regulations. For example, an analysis of fall fatalities in the
Construction FACE Database (CFD) revealed that compliance of personal fall arrest systems (PFAS) plays an
important role (Dong et al. 2017). Among those fall fatalities, 54% occurred when PFAS were not available, and 23%
when the decedents had access to PFAS but were not using them. Some other fall decedents were using PFAS, but the
PFAS were either damaged, misused, or did not provide adequate protection. One major reason for such lack of field
compliance is that existing onsite safety inspections are not effective. For example, a study showed that 61.5% of the
surveyed workers complained that there was no safety supervision during their work (Tadesse et al. 2016). Although
OSHA requires “a competent person” to make compliance decisions onsite (OSHA 2020c), those manual observers
typically only produce biweekly or monthly safety reports (Tang et al. 2020). At this frequency, potential
noncompliance issues can be neglected or stay unresolved, which can possibly lead to serious accidents. It is also
difficult to carry out field compliance checking promptly using pure human labor, because (1) skilled supervisory
manpower for different activities is not always present onsite (Seo et al. 2015), and (2) manual observation and

supervision is labor intensive, time consuming, and error prone (Chen et al. 2019).

Therefore, there is a need for automated field compliance checking to help detect and correct field noncompliance in
a timely manner to prevent fall accidents. Automated field compliance checking seeks to automate the process of
extracting safety requirements from relevant regulations, capturing relevant site conditions, comparing conditions to
requirements to detect violations, and producing prompt feedback to relevant workers. Existing research efforts on

field compliance checking have achieved good progress on automated tracking of labor and equipment onsite towards
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improved safety compliance (e.g., the work by Fang et al. 2018 to detect the existence of PPE). However, extracting
construction safety requirements from applicable regulations and representing these requirements in a computable
format for subsequent compliance checking is still conducted in a largely manual way. For example, research efforts
have proposed manual ontology-based approaches to extract hazard or safety knowledge from fatality reports or
industry safety best practice reports (e.g., Zhong et al. 2020b). Such manual process is expensive and unscalable,
considering the large number of requirements to be extracted from various safety regulatory documents. A fully

automated information extraction method is thus needed.

However, automated information extraction from construction safety regulations is still challenging, despite the
current information extraction efforts in the construction domain (Zhong et al. 2022; Zhang and El-Gohary 2021a;
Ren and Zhang 2021; Zhou and El-Gohary 2017; Zhang and El-Gohary 2013; Nepal et al. 2013). On one hand,
sentences from construction safety regulations are more complex compared to other types of text (e.g., international
building codes and energy conservation codes). Such complexity includes (1) the text has referential ambiguities (e.g.,
multiple expressions are used to refer to the same entity). In other types of text, relative or attributive clauses (which
typically contain more coreferents) are less frequently used, and hence the text contains fewer referential ambiguities;
(2) different OSHA sections have different text patterns and different ways of organizing requirements for one topic
and its subtopics, and (3) a single clause could have nested conditions and exceptions to describe a particular scenario
that involves multiple interactions and spatial relations between workers and their environment. Thus, the density of
information in a single sentence from safety regulations is relatively high compared to other types of text. It is rather
difficult to achieve good performance given such complex text. On the other hand, existing information extraction
methods in the construction domain are limited. First, most of the aforementioned efforts used rule-based methods
whose performance relies heavily on a set of hand-crafted rules, which require significant amount of human effort to
discover the text patterns and develop the corresponding information extraction rules, and are difficult to scale up
across other documents with different text patterns. A small number of information extraction methods used traditional
machine learning-based methods, which also suffer from level of effort and scalability limitations due to their
dependence on traditional feature engineering. In comparison, deep learning-based methods can automatically extract
syntactic and semantic features from unstructured text, instead of using hand-crafted rules or highly engineered
features, which minimizes the amount of human effort involved in the extraction process and improves the scalability

of the approach. Second, none of the aforementioned efforts addressed the problem of referential ambiguity.
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To address these limitations, this paper proposes a deep learning-based information extraction method to automatically
extract entities that describe fall protection requirements from construction safety regulations, particularly OSHA. The
proposed method consists of three main submethods. First, a deep learning-based method is proposed to recognize
entities from the regulations. The method uses three types of features to improve performance: GloVe embedding,
word-level features, and character-level features. Second, a deep learning-based method is proposed to recognize
referential ambiguities in the extracted entities. The method uses transfer learning to deal with the lack of annotated
training data, leveraging both out-of-domain, large-scale annotated data together with domain-specific data
(construction safety regulations). Third, a named entity normalization method is proposed to resolve these ambiguities.
The method measures the similarity between the recognized ambiguous expressions and a list of candidate identifier
names to identify their correspondence. The proposed method was tested using fall-related sections from the OSHA
29 CFR 1926 (OSHA 2020c), and the CoNLL-2012 dataset (Pradhan et al. 2012) from the computational linguistic
domain.

2 Background
2.1  Named Entity Recognition

Named entity recognition identifies and classifies entities from unstructured text into pre-defined categories (Chiu and
Nichols 2016). In the context of construction safety, those entities are semantic information elements describing fall
protection requirements such as “scaffold”, “horizontal direction”, “6 feet”. These requirements could be classified as
quantitative or existential. Quantitative requirements describe the properties of fall protection measures, e.g., “Each
end of a platform, unless cleated or otherwise restrained by hooks or equivalent means, shall extend over the centerline
of its support at least 6 inches (15 cm)”. Existential requirements describe the existence of fall protection measures,

e.g., “Unstable objects shall not be used to support scaffolds or platform units”.

Various traditional (i.e., not deep learning) machine learning algorithms have been used for named entity recognition,
such as support vector machines (SVM) (Isozaki and Kazawa 2002), conditional random fields (CRF) (Lafferty et al.,
2001), and hidden Markov model (HMM) (Bikel et at. 1998). Before the advent of deep learning, CRF was the
dominant model for named entity recognition. It has, for example, achieved an F-1 measure of 81.15% on the CoNLL-
2003 dataset (Yadav and Bethard 2019). Machine learning-based methods have also been utilized within the

construction domain. For example, Liu and El-Gohary (2017) used an ontology-based, semi-supervised CRF approach
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to extract bridge-related entities from bridge inspection reports. Kim and Chi (2019) used a CRF approach to extract
safety knowledge from construction accident reports.

2.2 Coreference Resolution

Coreference resolution aims to identify all mentions that refer to the same real-world entity (Lee et al. 2017). In
construction safety regulations (e.g., in contrast to building codes), coreferents such as “it” or “them” are frequently
used to refer back to an entity mentioned earlier. Depending on the context, sometimes it is even difficult for human
to interpret which entity the coreferent is referring to. Such referential ambiguity can cause confusion for information
extraction. Similarly, different expressions are used in the same document to refer to the same entity. For example, in
OSHA, “two-point adjustable suspension scaffold” and “two-point scaffold” are used at different instances to refer to
the same entity. Such use of different expressions can introduce errors in the extracted requirements. Coreference
resolution is, thus, vital to prevent referential errors from causing errors in information extraction and propagating

into compliance checking errors.

Traditional machine learning-based methods for coreference resolution can be divided into three categories: mention-
pair, entity-mention, and mention-ranking models. Mention-pair models, which are the most commonly used for
coreference resolution, regard coreference as a pairwise classification task. Entity-mention models classify whether a
mention belongs to a preceding coreference cluster. However, these two methods fall short in determining which
candidate antecedent is the best for prediction. Mention-ranking models can solve this problem by explicitly ranking
all candidate antecedents for each mention. These models have, for example, achieved 54.1%, 54.3%, and 56.6% B?
F-1 on the ACE2004 dataset, respectively (Rahman and Ng 2009).

2.3  Named Entity Normalization

Named entity normalization seeks to map different mentions of an entity, such as ambiguous surface forms or
synonyms, into one canonical form (an identifier name) (Jijkoun et al. 2008). It has been extensively studied in the
past few decades and has been adopted for various semantically oriented applications such as question answering,
entity retrieval, trend detection, and event tracking (Jijkoun et al. 2008). Especially in recent years, there is a growing
body of literature in the biomedical domain proposing different methods for normalizing ambiguous names of
chemicals, genes, and diseases (Zhou et al. 2020; Cho et al. 2017; Leaman et al. 2015). In the construction domain, a
research effort has proposed to normalize different expressions of the entity names extracted from bridge inspection

reports (Liu and ElI-Gohary 2018).
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Methods for named entity normalization can be divided into two categories: dictionary-based and machine learning-
based methods. Dictionary-based methods normalize entity names with the help of pre-established knowledge in the
identifier names involved, usually stored in the form of gazetteer lists (Yenkar and Sawarkar 2021; Nadeau et al. 2006),
lexicons (Névéol et al. 2015), and knowledge bases (Zhou et al. 2007). Machine learning-based methods (Zhou et al.
2020; Cho et al. 2017; Leaman et al. 2015), on the other hand, are more suitable for situations where such pre-
established knowledge is unavailable. Instead, it learns to normalize entity names by utilizing a set of features such as
frequency, part-of-speech tags, and lemma of each entity name.

24  Deep Learning-Based Methods

Deep learning-based methods use stacked neural networks that automatically extract features and patterns from large-
scale unstructured text. They can achieve better results than traditional machine learning models by allowing different
information paths through the connected neurons. Deep learning has recently been utilized for extracting information
from regulatory documents and proved to be promising. For example, Zhang and El-Gohary (2021b) have developed
a long short term memory (LSTM) model to extract requirement hierarchies from building codes and standards.
Outside the construction domain, many deep learning methods have been proposed to improve the performance of
named entity recognition and coreference resolution. Those methods include: (1) proposing new deep learning
architectures based on existing ones, (2) creating hybrid models by combining existing ones, such as LSTM combined
with convolutional neural network (CNN), and (3) developing state-of-the-art word embeddings as additional features
such as embeddings from language models (ELMo) (Peters et al. 2018) or the global vector (GloVe) (Pennington et
al. 2014). For example, for named entity recognition, bi-directional LSTM and CNN (BiLSTM-CNN) (Chiu and
Nichols 2016) has achieved 91.6% F-1 on the CoNLL-2003 dataset. For coreference resolution, a Neural Coreference
Resolution model proposed by Lee et al. (2017) has achieved 67.2% B? F-1 on the CoNLL-2012 dataset. Existing
research efforts on deep learning-based named entity normalization have mainly focused on experimenting with
different word embeddings or similarity metrics for improving the normalization performance (Yuan et al. 2022; Fang
et al. 2021; Fakhraei et al. 2019; Roy et al. 2018).

3 State of the Art and Knowledge Gaps

In the area of named entity recognition, a number of research efforts in the construction domain have been undertaken
to propose different methods for improving the extraction performance. A large portion of them have focused on

developing rule-based extraction methods. For example, Ren and Zhang (2021), Zhou and El-Gohary (2017), and
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Zhang and El-Gohary (2013) developed rule-based information extraction methods to extract from construction
regulatory documents such as construction procedural documents, building codes, and energy conservation codes,
through the use of syntactic and semantic features. Later research efforts have explored utilizing and comparing
different traditional machine learning-based methods. For example, Zhang et al. (2019) compared a set of machine
learning-based methods such as SVM, linear regression, K-nearest neighbor, decision tree, Naive Bayes, and an
ensemble model for text mining from construction accident reports. Liu and El-Gohary (2017) and Kim and Chi (2019)
proposed CRF-based methods to extract information from various domain-specific documents such as bridge
inspection reports and construction accident reports. Recently, deep learning-based methods have been attracting more
research attention. A few LSTM-based methods have been proposed, such as the efforts by Zhang and El-Gohary
(2021a) and Zhang and El-Gohary (2021b) to extract semantic and syntactic information elements and requirement

hierarchies from building codes.

Despite the importance of these efforts, three main knowledge gaps still exist. First, most of the existing information
extraction methods are limited in terms of level of manual effort and scalability. Rule-based methods usually require
significant amount of human effort in discovering the text patterns and developing the corresponding information
extraction rules. The rules also require adaptation (additions or changes) across different documents, especially if the
characteristics of the text change, which further limits scalability. Traditional machine learning-based methods do
require less human involvement and offer better scalability, but their performance depends heavily on the quality of
the engineered features which are obtained through trial and error. Deep learning-based approaches, on the other hand,
are more promising in terms of reducing human effort and improving scalability due to their ability to automatically
capture various syntactic and semantic features and patterns from the text, thereby eliminating the manual effort
needed to develop the hand-crafted extraction rules or conduct traditional feature engineering. In general, traditional
feature engineering can become labor-intensive and time-consuming (Janiesch et al. 2021; Dargan et al. 2020). Second,
methods with better performance to deal with the complexity in the text are desired. As discussed in the “Introduction”
section, sentences from construction safety regulations are more complex in three aspects. However, most of the
existing traditional machine learning-based methods perform shallow extraction by using pattern-based grammars
with domain-specific interpretations. Such pattern-based grammars cannot capture complex linguistic features such
as long distance dependencies and passive/active voices which are frequently used in construction safety regulations.

Those traditional machine learning-based extraction methods, thus, lack the ability to extract the entire semantics
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which are essential for detecting field noncompliances to prevent fall accidents. Therefore, methods for deeper
information extraction need to be developed, to fully understand the semantics in construction safety regulations. Deep
learning-based methods are such methods that can perform deeper information extraction. They have outperformed
traditional machine learning-based methods in many applications, including information extraction from building
codes (Zhang and El-Gohary 2021a), and are flexible in dealing with various patterns in the text. It is then necessary
to further explore their use in extracting information from construction safety regulations that contain high complexity,
to achieve good extraction performance for supporting automated field compliance checking. Third, previous efforts
have only considered information extraction from quantitative requirements (Zhang and El-Gohary 2013). However,
as discussed in the “Background” section, there are two types of requirements in construction safety regulations, which

are equally considered in this study.

Most importantly, existing information extraction efforts in the construction domain have mainly focused on named
entity recognition, without resolving the referential ambiguities in the extracted requirements. The closest effort, for
example, is the named entity normalization method proposed by Liu and El-Gohary (2018) to map the referring
expressions from bridge reports to their identifier concepts. There are three main knowledge gaps that this research
aims to address in this regard. In terms of scope, there are more types of referential ambiguities than referring
expressions in construction safety regulations, including coreferents. Both types of referential ambiguities can directly
affect the performance and effectiveness of subsequent compliance reasoning. Thus, there is a need to resolve these
referential ambiguities in the extracted requirements. In terms of data, since referential ambiguities do not appear in
every sentence, there is no sufficient training data from the construction safety domain alone, which is especially a
challenge for deep learning based-methods because they typically require more training data than rule-based or
traditional machine learning-based methods. There is, thus, a need for leveraging the large amount of annotated data
from other domains to resolve referential ambiguities in the construction safety domain. In terms of method, most of
the existing rule-based methods for resolving referential ambiguities cannot be applied in the construction safety
domain directly. For example, gender agreement and person agreement that could apply for general-domain text or
other applications, are not applicable to construction regulations and safety topics. Moreover, these rules and their
orderings are often subject to changes from one topic to another. Given the large number of topics involved in
constructions safety regulations, there is a need to develop methods that can automatically capture the distinctive

patterns in the domain-specific text.
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4  Proposed Method for Information Extraction from Construction Safety Regulations

This study proposes a deep learning-based information extraction method to automatically extract entities that describe
fall protection requirements from construction safety regulations and to resolve referential ambiguities in the extracted
results. The proposed information extraction method consists of three main submethods for named entity recognition,
coreference resolution, and named entity normalization. Named entity recognition aims to recognize entities (e.g.,
“scaffolds™) and classify them into pre-defined entity classes (e.g., equipment). The entity classes were pre-defined
based on a review of 20 OSHA sections related to fall protection, and a review of ontology-based modeling of
construction safety knowledge (Zhang et al. 2014; Lu et al. 2015; Zhang et al. 2015; Zhong et al. 2020a; Fang et al.
2020). The pre-defined entity classes include person, equipment, reference, hazard, facility, location, operation,
material, property, date, other attribute, quantity value, quantity unit, and other entity. Table 1 shows examples of the
most frequent entity names within each class. A BILSTM-CNN-based model was trained to automatically recognize
and classify the entities based on their syntactic and semantic features. Coreference resolution aims to identify all
mentions that refer to the same entity, including coreferents and referring expressions. Transfer learning was used to
deal with the lack of training data. For the first two submethods, three types of features were used to improve the
performance of the models: GloVe embedding, word-level features, and character-level features. Named entity
normalization aims to map the recognized coreferents and referring expressions of an entity to one identifier name to
remove the referential ambiguities in the extracted requirements. Similarity assessment was conducted to map the
recognized different mentions to their closest identifier names. Fig. 1 summarizes the research methodology, which
includes six primary tasks: data preprocessing, feature preparation, named entity recognition, coreference resolution,
named entity normalization, and evaluation. Fig. 2 further illustrates the application of the proposed method, with an
example.

4.1  Data Preprocessing

Data preprocessing aims to process the raw text to be ready for the subsequent steps of information extraction. Two
preprocessing methods were used: tokenization and sentence splitting. Tokenization divides a character sequence in
the text into units (words). Sentence splitting detects the boundary of each sentence by recognizing the sentence-

ending characters such as periods and questions marks.
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4.2  Feature Preparation

Three types of features were utilized to improve the performance of both the named entity recognition model and the
coreference resolution model: GloVe embedding, word-level features, and character-level features. GloVe embedding
is the state-of-the-art word embedding, which is pre-trained on Wikipedia and Web text of 6 billion words. It represents
the semantics of words in the form of rich and dense feature vectors. Additional word-level features and character-
level features, which are not included in the GloVe embedding, were added to the embedding because they help
differentiate the different entities (e.g., equipment vs. quantity value). The word-level features include four types of
information: (1) if the word is all lower-cased, (2) if the word is all upper-cased, (3) if the word contains numbers, and
(4) if the word contains capital letters. The character-level features include: (1) if the character is punctuation, (2) if
the character is a digit, (3) if the character is uppercase, and (4) if the character is lowercase.

43 Named Entity Recognition

The deep neural network, BILSTM-CNN, by Chiu and Nichols (2016) was adopted for named entity recognition. This
hybrid model was chosen for its potential to achieve better extraction performance, because it can combine the benefits
of both BiLSTM model and CNN model which are designed with different strengths. BILSTM is better at capturing
context and long dependency, while CNN is better at capturing character-level information, both of which can
contribute to more accurate predictions. The proposed BILSTM-CNN-based model contains three main types of layers:
embedding layers, BILSTM layer, and multi-layer perceptron (MLP) layers. The embedding layers consist of a GloVe
embedding layer, a word-level feature embedding layer, and a CNN-extracted character embedding layer. The GloVe
embedding layer uses the pre-trained embedding as a starting point, then adjusts itself to the semantics of construction
safety text during training. The word-level embedding layer represents the word-level features described in Section
4.2. The CNN-extracted character embedding layer is used to represent the character-level features prepared in Section
4.2, as well as other character-level features extracted using CNN, such as prefix and suffix. The outputs from the
three embedding layers are concatenated before being fed into the BiLSTM layer. The BiLSTM layer is used to
compute the feature values using the output from the embedding layers of the current word and its context words. The
MLP layers consist of a linear layer and a softmax layer, which transform the feature values from the BiILSTM layer
into log probabilities for the tag categories, where tags with the highest probabilities are returned as predictions. Cross

entropy was used as the loss function. The BILSTM-CNN architecture is illustrated in Fig. 3.
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4.4 Coreference Resolution

Coreference resolution aims to identify referential ambiguities in the document, i.e., all mentions that refer to the same
entity, including coreferents and referring expressions. Different types of coreferents and referring expressions were
first identified based on an analysis of the selected OSHA sections. Examples of different types of coreferents and

referring expressions are shown in Tables 2 and 3, respectively.

A deep learning model was adapted and trained using transfer learning strategy for coreference resolution. Transfer
learning is used to leverage rich syntactic and semantic information from existing large-scale annotated source-domain
data for solving problems in a target-domain (construction safety domain in the problem at hand). The CoNLL-2012
dataset was used as source-domain data. It was developed in the computational linguistic domain to predict
coreferences in English, Chinese, and Arabic. The English portion contains around one million words from various
sources such as newswire, magazines, broadcasts, weblogs, and speeches. The deep neural network by Lee et al. (2017)
was adopted. The task is formulated as finding antecedent y; for every possible span i in the document, where each
span is represented by considering two main factors: the headword and the context. For a given span, possible
antecedents could be all the spans before itself. If no antecedent is found for a span, it is because either the span is not
an entity mention, or the span is an entity mention but is not a coreferent with any previous span. A pairwise score is
used to measure the similarity between two spans by considering three factors: (1) if span 7 is a mention, (2) if span j

is a mention, and (3) ifj is an antecedent of i. To reduce computational complexity, low scoring spans are pruned.

The deep learning model contains three main types of layers: embedding layers, BILSTM layer, and the MLP layers.
The embedding layers and BiLSTM layer are similar to the model used for named entity recognition. However, an
attention mechanism (Vaswani et al. 2017) was added to the BiLSTM layer to model the headwords of each span in
the form of a weighted vector. The output of the BiLSTM layer and the headwords vectors are then concatenated to
produce the span representation. In the MLP layers, pairwise scores are calculated using the span representation.
Headwords of the spans with the highest pairwise score are considered as coreferents. The marginal log-likelihood of
correct coreferents implied by the gold standard was used as the loss function. The architecture of the coreference
resolution model is illustrated in Fig. 4.

4.5 Named Entity Normalization

Named entity normalization aims to map different mentions of an entity to one canonical identifier name to resolve
the referential ambiguities for supporting subsequent compliance reasoning. Those different mentions include the
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coreferents and referring expressions recognized during coreference resolution. Therefore, the proposed named entity
normalization method seeks to map the recognized different mentions to their identifier names automatically with the
help of a domain-specific dictionary. The proposed named entity normalization method includes three main steps:

candidate identifier name extraction, similarity assessment, and identifier name mapping.

The OSHA sections that cover the scope, application, and definitions of the OSHA subparts were used as a domain-
specific dictionary. This is because these sections include definitions of the terms covered in each subpart, such as
specific tools and equipment. Each of these sections typically contains named entities related to various accident types,
not only fall protection-related topics, because each OSHA subpart consists of a few sections addressing different
safety topics. For example, section 1926.1400 describes the scope for 1926 Subpart CC, which includes a variety of
topics such as power line safety, signal person qualification, and fall protection, and thus contains more entities than
fall protection-related entities. Therefore, they are sufficient in covering most of the fall-related entity names. Entity
names were automatically extracted from this domain-specific dictionary (i.e., the scope, application, and definitions
sections) using the trained named entity recognition model (in Section 4.3). The extracted entities were then used as

candidate identifier names.

Similarity assessment aims to assess the similarities between the extracted identifier names, as well as the output from
the coreference resolution task, i.e., multiple clusters each containing different mentions of an entity in one clause.
The proposed similarity assessment is an embedding-based method, similar to the method proposed by Farouk (2020).
To measure the similarities, these two sets of entities (candidate identifier names and identified different mentions)
were converted to a vectorized representation, using the embedding layer from the trained named entity recognition
model. This is because the trained embeddings can encode the semantic information of domain-specific entities such
that entities that are similar in meanings are closer in the embedding space. A similarity matrix was calculated between
each cluster of different mentions and each candidate identifier name, using an average embedding for one entity name
(excluding the embeddings of the stopwords which are too frequently used to provide distinctive information). The
similarity scores in the similarity matrix were calculated using cosine similarity, which has shown better performance
in capturing the similarity between texts (Sitikhu et al. 2019), compared with the Euclidean similarity (which is
frequently used in other applications). This is because cosine similarity measures the directions of vectors to ensure

that entities containing different meanings (i.e., vectors pointing in different directions in the embedding space) receive
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lower similarity scores. Then, for different mentions in one cluster, the identifier name with the highest similarity

score among all other candidates is selected for normalization.

After similarity assessment, identifier name mapping is conducted to convert the different mentions in each cluster to
their corresponding selected identifier name. This mapping process is conducted automatically through a lookup table
storing the correspondence between these two sets of entities. In this way, different mentions of an entity, including
coreferents and referring expressions, can all be replaced with a well-established entity name in the construction safety
domain.

4.6 Evaluation

The performance of named entity recognition, named entity normalization, and overall information extraction (after
coreference resolution and named entity normalization) was evaluated by comparing the recognized/extracted entities
with the gold standard using three metrics: precision (P), recall (R), and F-1 measure, as per Egs. 1-3. Precision is
defined as the number of correctly recognized/extracted entities divided by the total number of recognized/extracted
entities. Recall is defined as the number of correctly recognized/extracted entities divided by the total number of
entities that should be recognized/extracted. F-1 measure is the weighted harmonic mean of precision and recall. Due
to data imbalance, macro average of precision, recall, and F-1 measure were used to evaluate performance — to avoid
majority classes (those with larger instances) skewing the results. Macro average provides an average over classes,

thereby weighing all classes equally, as opposed to micro average that provides an average over instances.

number of correctly recognized/extracted entities

P= . — (M

total number of all recognized/extracted entities

number of correctly recognized/extracted entities

total number of entities that should be recognized/extracted (2)
2xPxR
F-1=
PiR 3)

For coreference resolution, the performance was evaluated using the B precision, recall, and F-1 measure (Bagga and

Baldwin 1998), as per Egs. 4-6, where is n is the number of entities that have coreferents.

number of correctly recognized coreferents for entity i
B*p = —Z y1ocog Y “

total number of all recognized coreferents for entity i

B3 1 number of correctly recognized coreferents for entity i (5)

 {otal number of coreferents that should be recognized for entity i

X3><3
B3F_1:2BPBR (6)

B} P+B® R
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5  Experimental Results and Discussion

The proposed information extraction method was tested using OSHA sections related to fall protection. A set of
experiments were conducted to evaluate: (1) the performance of the proposed deep learning-based named entity
recognition method by comparing it with a baseline method (Section 5.2); (2) the impact of different transfer learning
strategies on the proposed coreference resolution method (Section 5.3); (3) the impact of the three types of features
used in the proposed models on named entity recognition and coreference resolution (Sections 5.2 and 5.3); (4) the
performance of the named entity normalization method (Section 5.4); and (5) the overall information extraction
performance, including the three constituent submethods and their collective effectiveness in addressing referential
ambiguities (Section 5.5). The hyperparameters of the named entity recognition and coreference resolution models
were fine-tuned during the experiments for improved performance. The experiments were implemented using Keras

and tensorflow on NVIDIA GeForce RTX 2070 SUPER.

5.1  Data Preparation and Gold Standard Development

All 20 OSHA sections that are related to fall protection were selected for developing the dataset for training and testing,
which cover a number of topics such as personal fall arrest systems, fall protection systems, guardrail systems,
positioning device systems, scaffolds, ladders, and aerial lifts, as per Table 4. The resulting dataset included 2,091
sentences, which were split into a training and validation dataset and a testing dataset at a ratio of 8:2. The testing
dataset included 418 sentences, 7312 words (prior to resolving referential ambiguities), 169 cluster of different
mentions, and 7334 (after resolving referential ambiguities). The first dataset was further split into a training set and
a validation set at the same ratio. The dataset was annotated to create the gold standard for training and testing. The
gold standard was developed by three annotators who have background in both civil engineering and natural language
processing. An inter-annotator agreement of 94.5% in F-1 measure was achieved, which indicates the reliability of the
gold standard (Artstein 2017). For named entity normalization, the following sections (those acting as the dictionary,
which cover all necessary sections for describing the scope and applications) were used for extracting the identifier

names: 1926.20, 1926.107, 1926.450, 1926.500, 1926.750, 1926.751, 1926.1050, and 1926.1400.

For named entity recognition, the entities were annotated using the following labels: person (PER), equipment (EQU),
reference (REF), hazard (HAZ), facility (FAC), location (LOC), operation (OPE), material (MAT), property (PRO),
date (DAT), other attribute (ATT), quantity value (QUA), quantity unit (UNI), and other entity (ENT). To distinguish

adjacent entities with the same tag, a BIO tagging scheme was used, where “B” denotes the beginning of an entity, “T”
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stands for “inside”, and “O” means the absence of an entity. An example sentence annotated using the BIO tagging
scheme is shown in Table 5. Fig. 5 depicts the entity class distribution, which shows that the developed dataset is

unbalanced, with equipment (EQU) being the most frequent class and date (DAT) the least frequent class.

For coreference resolution, the sentences (i.e., our domain-specific data) were annotated following the same tagging
scheme as the CoNLL-2012 dataset (i.e., the general-domain data), where each unique entity name and its different
mentions in one clause were assigned the same index. An example clause annotated using this tagging scheme is
shown in Fig. 6(a). Two special situations were considered during the annotation. First, an equipment and its
components were not regarded as coreferents, because OSHA regulations can contain specific requirements about
components as well. This is different from other types of text (e.g., social media text) where one feature or one
component of an entity can be used to refer to the whole. Second, due to the hierarchical structure of the OSHA
regulations, one clause and its subclause(s) can refer to the same entity (e.g., bricklayers’ square scaffolds) even though
a more general entity name (e.g., scaffolds) is used in the subclause(s). An example of this case is shown in Fig. 6(b).
The annotated OSHA clauses were then combined with the CONLL-2012 dataset for transfer learning. For named

entity normalization, each cluster of different mentions was annotated with the correct identifier name.

The final gold standard for evaluating the overall information extraction performance was developed based on the
gold standard for named entity recognition, but with coreferents and referring expressions normalized.

5.2  Named Entity Recognition

5.2.1  Optimization and Performance Results

To optimize the performance of the named entity recognition model, the hyperparameters of the model were fine-
tuned. During optimization, the model used a kernel size of 3 and a dropout rate of 0.5, and was trained for 42 epochs
with a learning rate of 0.001 using a Nadam optimizer. The three embedding layers of the BILSTM-CNN model had
an output dimension of 100, 8, and 30, respectively, which were concatenated into a dimension of 138, to be fed into
the BILSTM layer. The BiLSTM layer had an output dimension of 400, and the MLP layers output tag probabilities

with a dimension of 29 (“B-" and “I-” tags for each of the 14 entity classes and “O” tag).

To evaluate the effectiveness of using deep neural networks on named entity recognition, the performance of the
proposed method was compared with a CRF-based method as a baseline. CRF was selected for comparison because

it was the dominant traditional machine learning-based model for analyzing sequential data such as text, prior to the
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advent of deep learning-based methods (see Section 2.1). The baseline CRF method achieved an average precision,
recall, and F-1 measure of 76.7%, 66.2%, and 69.8%, respectively, while the proposed BILSTM-CNN model achieved
91.6%, 88.7%, and 89.9%, respectively, which indicates better named entity recognition performance. The improved
performance is likely due to the ability of BiILSTM to better adapt to domain-specific semantics and better capture
word dependencies. For example, “flight of stairs” (as a whole) was correctly classified as FAC (facility) using the
BiLSTM-CNN model, but was incorrectly broken down into “flight” (ENT, i.e., other entity) and “stairs” (FAC) using
the CRF-based method. A comparison of the two methods with respect to each entity class is summarized in Table 6.
Improved performance using the proposed method was observed for every entity class, except for DAT (date) class

because it appears the least frequently in the training dataset.

To evaluate the impact of the three types of features (i.e., GloVe embedding, word-level features, and character-level
features, as per Section 4.2) used in the proposed method, an experiment was conducted to compare the named entity
recognition performance with and without these features. As shown in Fig. 7, incorporating these features resulted in
a 3.1% increase in precision, 4.5% in recall, and 3.3% in F-1 measure, which indicates that the three types of features

are effective in improving the named entity recognition performance.

5.2.2  Error Analysis

Fig. 8 shows the confusion matrix for named entity recognition (excluding results of “O” tags which are irrelevant).
The most frequent misclassification is seen in predicting an entity as EQU (equipment). For example, 13 ATT (other
attribute) entities were recognized as EQU (total extracted ATT = 146) and 12 ENT (other entities) were recognized
as EQU (total extracted ENT = 237). This is mainly due to the imbalance of the dataset. As shown in Fig. 5, EQU

constitutes a large portion of the dataset.

Misclassification can be seen for other entity classes such as LOC (location), PRO (property), ATT (other attribute),
and ENT (other entity), as shown in Fig. 8. A major cause for those misclassifications can be word-sense ambiguities,
especially if a single document uses two (or more) different meanings for the same word at different instances, which
makes it difficult for the model to distinguish which meaning is intended at which case. For example, the word
“standard” can be regarded as REF in the phrase “anchorage standard”, since it refers to a subset of regulations whose
topic is anchorage, but as ATT in the phrase “at least a standard 7 inch steel I-beam”, since it means that such

measurement of the [-beam is typical. Similarly, the word “level” can be regarded as LOC in the phase “lower level”,
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since it means some surface or position, but as ATT in the sentence “footings should be level, sound and rigid”, since
it means that the footings should have no slopes or bumps. The word “direction” can be regarded as PRO in the phrase
“in an upward direction”, since it means a path for movement, but as ENT in the phrase “under the supervision and
direction of a competent person”, since it means guidance or management. It is, thus, rather difficult for the model to
distinguish which meaning is applied for which case in the absence of sufficient training samples and/or context

information.

ENT is the entity class where most classification errors happen. This is mainly due to the coreference words such as
"they", "it", “that”, "those", or "the" plus an adjective. For example, the word “it” is not referring to any specific entity
in the sentence “It is infeasible or creates a greater hazard to use these systems”, but can be regarded as ENT in the
sentence “Each platform greater than 10 feet shall... unless it is designed so...”, which can cause confusion for the
model to make correct predictions. Moreover, a few entities in the ENT class do not appear as frequently as necessary
for the model to make correct predictions, which caused misclassification errors.

53 Coreference Resolution

5.3.1 Optimization and Performance Results

The hyperparameters of the model were fine-tuned. During optimization, the model used a kernel size of 3, a dropout
rate of 0.4, and a learning rate of 0.001 using Adam optimizer. The embedding layers had an output dimension of 350.
The BiLSTM layer had an output dimension of 400. The weighted vectors produced by the attention mechanism were
then converted into headword vectors of dimension 450. Each span representation was obtained by concatenating two
vectors at the boundary of the span from the BILSTM layer (of size 400) with a headword vector (of size 450), whose
final dimension was 1250. Such span representation was then used to calculate the pairwise scores whose dimension

equals to the number of maximum possible antecedents.

To evaluate the impact of different transfer learning strategies on the coreference resolution model, the model was
trained and tested using two strategies: model-based two-stage training and model-based alternating training
(following the method by Zhang and El-Gohary 2021a). During the two-stage training, the model was first trained on
the source-domain data, then trained further on the target-domain data with the last layer (source output layer) replaced
by a target output layer, whereas during alternating training, the model was alternating between training on the source-
domain data using the source output layer and training on the target-domain data using the target output layer (for

more details on the two training strategies, the readers are referred to Zhang and El-Gohary 2021a). As shown in Fig.
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9(a), the proposed coreference resolution method that utilizes the model-based alternating training strategy achieved
a B precision, B recall, and B? F-1 measure of 77.6%, 70.3%, and 73.8%, respectively, while the same method that
utilizes the model-based two-stage training strategy instead achieved a B3 precision, B recall, and B3 F-1 measure of
60.7%, 75.5%, and 67.3%, respectively. The achieved performance (with alternating strategy) is comparable with the
state-of-the-art LSTM-based coreference resolution performance using general-domain text (69.9%, 64.7%, and
67.2%, see Section 2.2) (Lee et al. (2017), which indicates that the proposed coreference solution method is effective
in addressing domain-specific referential ambiguities. Similar to the findings in Section 5.2, incorporating the three
types of features also improved the performance of coreference resolution. As shown in Fig. 9(b), an increase of 6.6%

in precision, 7.7% in recall, and 7.3% in F-1 measure was observed for the model that uses an alternating strategy.

5.3.2  Error Analysis

One major source of error is that the proposed deep learning model can only consider a fixed span width L. Spans that
are longer than the fixed width are pruned to reduce computational complexity. However, different from general-
domain text where coreferents occur relatively close to each other, due to the hierarchical structure of OSHA
regulations, coreferents can occur across a longer span than the fixed span width L. For example, if a clause has several
subclauses, then the coreferent in the last subclause can be far away from the first coreferent. Therefore, the model

could fail to capture all coreferents across spans that are longer than the fixed span width L.

The most difficult type of coreferent for the proposed model to recognize is the discontinuous sets where the pronoun
refers to more than one antecedent. For example, in the sentence “lifelines, lanyards, and deceleration devices should
be ... as they would be ...”, the pronoun “they” refers to three entities: lifelines, lanyards, and deceleration devices.
However, the proposed model predicted only one of the three entities as the coreferent, instead of all of them. There
are multiple causes for this error. First, there is no enough training data for this case because it is not considered in the
CoNLL-2012 dataset. Second, since the three coreferents are all in plural forms, none of the number agreement
constraint or verb agreement constraint can work in this case. Third, the proposed deep learning model is designed to

output coreferents with the highest probability, and therefore cannot output more than one coreferent.

The lack of domain-specific context is also causing difficulty for the model to decide whether two mentions are

coreferents, referring expressions, or not. For example, phrases of “safety monitor”, “competent person”, and “the
b b b 2 2

person making the determination and certification” are the same expressions by the meaning they convey. However,
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it is difficult for the model to understand their interconnections and therefore predict them as referring expressions.
This is because no background knowledge is provided in the relevant OSHA clauses in terms of role definitions or
how construction teams are organized. To solve problems such as this, more domain-specific prior knowledge needs
to be incorporated in future work.

54  Named Entity Normalization

For the list of candidate identifier names, a total of 1246 candidate identifier names (e.g., “body belt”,
“personal fall arrest system”, and “positioning device system”, as per Fig. 2) were collected from the
aforementioned OSHA sections (see Section 5.1), which covers most of the fall protection-related entities that could
have referential ambiguities. For similarity assessment, example results are shown in Fig. 10 (with an embedding size
of 2 for visualization purpose). The figure shows that the vectorized representation has the ability to encode the
semantics of the domain-specific entities — entity names that are similar in meaning are closer in their embedding
space. For example, “rope” and “pendant_rope” are closer than “rope” and “walkway”. After identifier name mapping,
this normalization process achieved an average precision, recall, and F-1 measure of 93.0%, 93.0%, and 93.0%,

indicating good normalization performance.

The proposed method for named entity normalization was also helpful in correcting some errors in named entity
recognition (i.e., in resolving referential ambiguities). For example, the phrases “edge of the walking/working surface”,
“the working edge”, and “the edge” (all in one cluster) were initially recognized as LOC (correct), LOC (correct), and
ENT (incorrect), respectively. In this normalization step, all three phrases were however mapped to the identifier name
“walking_working_edge”. As a result, the tag of “the edge” was corrected to LOC (tag of “walking_working_edge”).

More example results of the proposed named entity normalization method are shown in Table 7.

55 Overall Information Extraction

The overall information extraction performance was evaluated by comparing the final extraction results (after named
entity recognition, coreference resolution, and named entity normalization) with the final gold standard (see Section
5.1). As shown in Table 8, a macro precision, recall, and F-1 measure of 93.2%, 89.6%, and 91.1% was achieved,
which indicates that the proposed named entity recognition method is effective in extracting named entities from
construction safety regulations, and that the coreference resolution method and the named entity normalization method
are effective in addressing referential ambiguities in the text. To provide a comparative benchmark, recent efforts

(outside the construction domain), which covered both named entity recognition and resolution of referential
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ambiguities, showed comparable performance results [e.g., 83% precision, 87% recall, and 85% F-1 measure in
Agrawal et al. (2022) from the medical domain]. An example of the overall information extraction results is illustrated

in Fig. 11.

An additional experiment was conducted to further evaluate the effectiveness of the proposed information extraction
method (including the three submethods) in resolving referential ambiguities — i.e., the results with and without
resolving referential ambiguities were compared. The named entity recognition results from Section 5.2 (i.e., without
resolving referential ambiguities) were compared with the final gold standard (which has the coreferents and referring
expressions normalized), as per Table 8. The results showed 5.1% (93.2% vs. 88.1%), 10.9% (89.6% vs. 78.7%), and
8.9% (91.1% vs. 82.2%) improvement in precision, recall, and F-1 measure, respectively, which indicates the
effectiveness of the proposed approach in addressing referential ambiguities.

6 Limitations

Five limitations of this research are acknowledged. First, the proposed coreference resolution method is limited in
recognizing cataphoras. This is because the proposed deep learning model only considers spans that happen before
the current one for identifying potential coreferents. To address cataphoras, the authors plan to further modify the
proposed deep learning model, in their future work, to allow for considerations of the spans that happen ahead. Second,
this study proposed BiLSTM-based models for named entity recognition and coreference resolution, without testing
on other deep learning model structures. Although the BiILSTM-based models are suitable for addressing sequential
data, validating the proposed information extraction method, and evaluating the impacts of the features and strategies,
they fall short in dealing with long sentences. In future work, the authors plan to explore different types of models,
such as transformer-based models, to deal with variable sentence lengths for achieving better extraction performance.
Third, like any other dictionary- or ontology-based method, the performance of the proposed named entity
normalization method depends on the quality of the selected domain-specific dictionary. As the proposed method is
applied to a different regulation or subdomain of safety knowledge, a different dictionary/sections would be used, and
hence the performance results may vary, although a similar performance level is expected if the quality/coverage of
the dictionary/sections are similar. In their future work, the authors will test the proposed method in extracting
information from other documents to further verify if a similar level of performance can be achieved in such case.
Fourth, the scope of this study was limited to referential ambiguities; word-sense ambiguities, which are a major

source of error during named entity recognition, were not addressed. To further improve the extraction performance,
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the authors plan to conduct word-sense disambiguation, in future work, to determine which sense a word is being used
in a particular situation. Fifth, the proposed method was only tested on one source of construction safety regulations
— OSHA. In future work, the authors plan to test the proposed method using more construction safety regulatory
documents such as the fall-related standards from the American National Standards Institute (ANSI).

7  Contributions to the Body of Knowledge

This research offers a deep learning-based information extraction method for automatically extracting named entities
that describe fall protection requirements from construction safety regulations for supporting automated field
compliance checking and resolving referential ambiguities. The proposed method improves the information extraction
methodology and application in the construction domain in five primary ways. First, to the best of the authors’
knowledge, it is the first effort in the construction domain to address referential ambiguities through coreference
resolution and named entity normalization. Resolving referential ambiguities is important to maintain consistent
expressions in the extracted entities and prevent/reduce referential errors in the information extraction, which could
cause serious errors in the compliance checking results. Second, the proposed method uses a combination of three
types of features — GloVe embedding, word-level features, and character-level features — to improve the feature
representation of the text. Complementing the GloVe embedding features with the proposed word-level and character-
level features helps better capture the syntactic differences across different entities, which helps better differentiate
these entities. Third, the proposed method leverages both source- and target-domain data, using transfer learning, for
enhanced coreference resolution. The use of transfer learning allows the model to leverage the rich syntactic and
semantic text patterns from the large-scale general-domain data while adapting these patterns to be closer to those
found in the domain-specific text, thereby improving both performance and scalability. Fourth, this study identified a
set of entity classes, different types of coreferents, and different types of referring expressions, which were effective
in extracting fall protection-related information from OSHA and can be applied in other applications (e.g., extracting
information related to other OSHA topics or from other regulations). This new knowledge can bring additional insights
to better understand the types of referential ambiguities in this domain-specific text (construction domain or more
specifically construction safety domain), and their different syntactic and semantic forms, and how to best resolve
these ambiguities for improved document analytics and related artificial intelligence (Al) applications. Fifth, the
application of the proposed method could provide a better understanding of construction safety requirements and

potential fall protection accidents, and how to improve field compliance and prevent such accidents, considering
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different contexts and scenarios. The proposed deep learning models for named entity recognition, coreference
resolution, and named entity normalization — including their features and transfer learning strategies — could also be
applied to more accident types such as struck-by and caught-in-between, or to different regulatory documents such as
company-level construction safety rules and reports.

8 Conclusions and Future Work

This paper proposed a deep learning-based information extraction method to extract named entities from construction
safety regulations for supporting automated field compliance checking and to resolve referential ambiguities in the
extracted results. The proposed information extraction method consists of three submethods: named entity recognition,
coreference resolution, and named entity normalization. For named entity recognition, a BILSTM-CNN model was
proposed and trained to recognize and classify named entities from unstructured text. Three types of features (GloVe
embedding, word-level features, and character-level features) were used in the proposed method for improving the
extraction performance. For coreference resolution, a deep learning-based model was proposed and trained, using
transfer learning strategy to leverage the rich semantics from the source-domain data. Two types of training data,
including the CoNLL-2012 dataset from the computational linguistic domain and documents from construction safety
regulations, were prepared for transfer learning. For named entity normalization, the proposed method mapped

different mentions of an entity to its identifier name by considering the similarity between them.

The proposed method was tested on 20 OSHA sections related to fall protection. The proposed named entity
recognition method achieved an average precision, recall, and F-1 measure of 91.6%, 88.7%, and 89.9%, respectively,
showing better performance than the baseline CRF-based method. The proposed coreference resolution method using
model-based alternating training strategy achieved an average B? precision, B? recall, and B? F-1 measure of 77.6%,
70.3%, and 73.8%, respectively, which indicates good coreference resolution performance given such complex text.
The proposed named entity normalization method achieved an average precision, recall, and F-1 measure of 93.0%,
93.0%, and 93.0%, indicating its effectiveness in mapping different mentions to their corresponding identifier names.
The performance of named entity recognition and coreference resolution with the three sets of features also
outperformed those without these features, which indicates that the proposed features have a positive impact on the
extraction performance. The proposed information extraction method achieved an overall precision, recall, and F-1

measure of 93.2%, 89.6%, and 91.1%, respectively, which indicates that the proposed coreference resolution method

22



603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

and named entity normalization method were effective in addressing the referential ambiguities in the domain-specific

text.

In their future work, the authors plan to focus their research efforts on four main research directions. First, different
deep learning model structures or algorithms could be explored to further enhance the extraction performance. For
example, multiple transformer-based models that are able to deal with variable sentence lengths, especially
Bidirectional Encoder Representations from Transformers (BERT), can be adapted and trained for coreference
resolution. Second, the proposed information extraction method (including all three submethods) could be further
tested in extracting requirements from other construction safety regulations. Additional adaptation effort may be
needed depending on the experimental results and the variability in the text characteristics. Third, the authors will
further adapt the proposed method to extract requirements about other types of accidents. Such application could
provide additional insights into the generalizability of the proposed method and could help identify ways to improve
the field compliance checking process. Fourth, beyond extracting named entities, the authors will develop a relation
extraction method, to further add the needed interlinks to the named entities extracted in this work. These interlinks
are important in determining compliance, because they would help describe the requirements in terms of the spatial
relations between site objects, interactions of workers and their environment, and comparisons of the site objects’
attributes with certain values. With the help of such interlinks, the extracted safety requirements can be represented in
a structured way for supporting subsequent analytics. All the aforementioned efforts would lead to a better
understanding of how to automatically analyze construction safety regulations and how to advance the underlying

models for supporting automated and Al-based field compliance checking processes.
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Table 1. Examples of most frequent entities in each pre-defined class.

Class Examples
Person Employer, employee, competent person, qualified person, engineer
Equipment Scaffold, ladder, safety net system, lanyard
Reference This section, paragraph (k) of 1926.502, paragraphs (a), (b), or (c)
Hazard Falling, damage, snag of clothing, tripping, shake
Facility Beam, roof, foundation, metal decking, other structure
Location Walking/working surface, work area, level
Operation Hoisting, dropping, rigging, lifting
Material Reinforcing steel, wood, metal, debris
Property Weight, length, diameter, direction, speed
Date January 1, 1998, Apr. 6
Other attribute In use, center-to-center, under construction

Quantity value

6, 3.3, ¥, half, one

Quantity unit

Feet, times, meters, inches, mps

Other entity

Fall protection plan, requirement, test

Table 2. Examples of different types of coreferents.

Type of coreferent

Description

Example

Demonstrative
pronoun

Comparison exists with
something that occurred earlier.

In the sentence “scaffold strength(1) is less than that(2) required by
paragraph (a) of this section”, the anaphor (2) refers to (1).

Discontinuous set

Pronoun refers to more than one
antecedent.

In the sentence “lifelines(1), lanyards(2), and deceleration devices(3)
should be ... as they(4) would be ...”, pronoun (4) refers to (1), (2),
and (3) together as a single entity.

One anaphora

Pronoun “one” refers to

In the sentence “that component(1) should be replaced by a stronger

antecedent. one(2)”, anaphora (2) refers back to (1).
Definit inal Pronoun “it” refers to In the sentence “sliding hitch knot(1) should never be used because
chinite pronomina antecedent. it(2) is unreliable in stopping a fall”, pronoun (2) refers back to (1).

Adjectival pronominal

Coreferent refers to adjective
form of entity that occurred
earlier.

In the sentence “under the walking/working surface(1), but in no case
more than 30 feet below such level(2)”, (1) is an adjectival form that
has been referred to by (2).

In the sentence “only those items(1) specifically designed as

Cataphora Opposite of anaphora. counterweights(2)”, (1) refers to (2) that precedes it.
In the sentence “the person making the determination and
S Coreferent refers to the . . o .
Inferable or bridging antecedent ambicuously through certification(1)... until inspected and determined by a competent
anaphora guously & person(2) shall be removed from service”, (2) refers to (1) though not

context.

stated explicitly, but can be inferred by their context.

Table 3. Examples of different types of referring expressions.

Type of referring expression

Example of two expressions referring to same entity

Possessive “edge of roof” and “roof edge”

Article “edge of the higher level” and “edge of a higher level”
Hyphen “double-pole scaffold” and “double pole scaffold”
Synonym “metatarsal protection” and “metatarsal guards”
Space “eye splice” and “eyesplice”

Active-passive voice

“complete system” and “completed system”

Detailed description omitted

“two-point adjustable suspension scaffold” and “two-point scaffold”

Abbreviation

“controlled decking zone” and “CDZ”
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Table 4. Selected OSHA sections.

Topic

Section(s)

General requirement

1926.451, 1926.501, 1926.1051

Fall protection systems

1926.502, 1926.760, 1926.1423, 1926 Subpart R App G

Guardrail systems

1926 Subpart M App B

Personal fall arrest systems

1926 Subpart M App C

Positioning device systems

1926.104, 1926.105, 1926 Subpart M App D

Personal protective equipment

1926.95, 1926.96, 1926.100

Scaffolds

1926.452, 1926 Subpart L App A

Ladders 1926.1053
Aerial lifts 1926.453
Housekeeping 1926.25

Table 5. Example clause annotated using BIO tagging scheme.

Original sentence

Annotated sentence

Each employee on a
walking/working surface shall
be protected from objects falling
through holes by covers .

<0>Each</O> <B-PER>employee</B-PER> <O>0n</0> <O>a</0> <B-
LOC>walking/working</B-LOC> <I-LOC>surface</I-LOC> <O>shall</O>
<0>be</O> <O>protected</O> <O>from</O> <B-ENT>objects</B-ENT>
<O>falling</O> <O>through</O> <B-ENT>holes</B-ENT> <O>by</0> <B-
EQU>covers</B-EQU> <0>.</O>

Note: “B”=beginning of an entity; “I’=inside of an entity; “O”=absence of an entity; PER=person; EQU=equipment; LOC= location; and

ENT=other entity.

Table 6. Performance of proposed named entity recognition method compared to baseline.

CREF (baseline) BiLSTM-CNN
Class Precision Recall F-1 measure Precision Recall F-1 measure
PER 93.3% 75.7% 83.6% 95.5% 95.5% 95.5%
EQU 65.9% 88.9% 75.7% 92.9% 96.8% 94.8%
REF 74.2% 85.2% 79.3% 84.5% 97.3% 90.4%
HAZ 76.9% 43.5% 55.6% 91.4% 78.0% 84.2%
FAC 75.9% 47.3% 58.3% 88.4% 92.4% 90.4%
LOC 68.7% 61.2% 64.7% 94.6% 91.8% 93.2%
OPE 46.5% 29.9% 36.4% 84.7% 81.3% 83.0%
MAT 62.5% 30.6% 41.1% 97.3% 92.3% 94.7%
PRO 77.0% 73.8% 75.4% 86.5% 92.8% 89.5%
DAT 100.0% 100.0% 100.0% 100.0% 80.0% 88.9%
ATT 80.1% 47.6% 59.7% 85.6% 64.4% 73.5%
QUA 99.5% 92.2% 95.7% 99.0% 97.6% 98.3%
UNI 94.3% 94.3% 94.3% 96.2% 98.1% 97.1%
ENT 59.4% 56.6% 58.0% 85.4% 84.1% 84.7%
Macro average 76.7% 66.2% 69.8% 91.6% 88.7% 89.9%

Note: PER=person; EQU=equipment; REF=reference; HAZ=hazard; FAC=facility; LOC=location; OPE=operation; MAT=material;
PRO=property; DAT=date; ATT=other attribute; QUA=quantity value; UNI=quantity unit; and ENT=other entity.
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Table 7. Examples of named entity normalization results.

Entity class
Different mentions Entity name after normalization tag after
normalization
walking/working level, walking/working surface, work walking working surface LOC
surface, such level, work platform
supporting formwork, supporting surface, their .
member, supporting structure supporting_structure FAC
the member to which they are connected, connected
object, itself, object connected member ENT
registered professional engineer, safety monitor, the
person making the determination and certification, competent_person PER
competent person
quahﬁed person Wlth appropriate education and qualified_person PER
experience, qualified person
personal protective equipment, such equipment, PPE personal_protective_equipment EQU
g:égg;?gﬁiil;fgfl(iz’ scaffold, two-point adjustable two_point adjustable suspension_scaffold EQU
Table 8. Comparisons of the proposed method before and after resolving referential ambiguities.
Proposed Method

Gold standard for NER (%) CR (%) NEN (%) NER + CR + NEN (%)
comparison

P R F-1 | B3P | B’R | B3F-1 P R F-1 P R F-1
Named entity
recognition (NER) 91.6 | 88.7 | 89.9 | NA NA NA NA | NA | NA | NA NA NA
gold standard
Coreference resolution
(CR) gold standard NA | NA | NA | 776 70.3 73.8 NA | NA | NA | NA NA NA
Named entity
normalization (NEN) NA | NA | NA NA NA NA 93.0 | 93.0 | 93.0 | NA NA NA
gold standard
Final gold standard
(after resolving 88.1| 787 | 822 | NA | NA | NA | NA| NA | NA | 932 | 896 | o911
referential
ambiguities)

Note: P=precision; R=recall; F-1=F-1 measure; B* P=B? precision; B> R=B? recall; B> F-1=B? F-1 measure; NA=not applicable.
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Fig. 1. Research methodology.

Fig. 2. Application of proposed information extraction method, with example.

Fig. 3. Architecture of proposed BILSTM-CNN model for named entity recognition.

Fig. 4. Architecture of proposed deep learning model for coreference resolution.

Fig. 5. Distribution of entity classes.

Fig. 6. Examples of annotated clauses for coreference resolution: (a) Example clause annotated by following the

tagging scheme of the CoNLL-2012 dataset; and (b) Coreferents in one example clause and its subclause.

Fig. 7. Performance of proposed named entity recognition method with and without the three types of features.

Fig. 8. Confusion matrix for proposed named entity recognition method.

Fig. 9. Performance of proposed coreference resolution method: (a) Comparison of different transfer learning

strategies; and (b) Comparison with and without the three types of features.

Fig. 10. Similarity of entity names in the embedding space.

Fig. 11. Example of extracted semantic information elements using the proposed information extraction method.
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