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11 Abstract 

12 Construction safety regulations and standards contain a massive number of fall protection requirements with respect 
 

13 to different equipment, facilities, and operations. Automated field compliance checking aims to detect field violations 
 

14 to construction safety regulations for improved compliance and safety. Recent research efforts focused on automated 
 

15 tracking of labor and equipment towards improved violation detection and safety compliance. However, extracting 
 

16 and modeling safety requirements for supporting automated violation detection or safety alert systems remains highly 
 

17 manual. Towards addressing this gap, information extraction provides an opportunity to automatically extract 
 

18 requirements from construction safety regulations for comparisons with field information to detect violations (or 
 

19 predict and prevent violations before they occur). However, existing information extraction methods are limited in 
 

20 terms of their scalability and/or accuracy. To address this need, this paper proposes a deep learning-based information 
 

21 extraction method for automatically extracting named entities describing fall protection requirements (e.g., scaffold, 
 

22 horizontal direction, 6 feet) from construction safety regulations and resolving referential ambiguities. The proposed 
 

23 information extraction method consists of three main submethods: (1) a deep learning-based method to recognize 
 

24 entities from the regulations, (2) a deep learning-based method to recognize referential ambiguities in the extracted 
 

25 entities, and (3) a named entity normalization method to resolve these ambiguities. The proposed method was 
 

26 implemented and tested on 20 selected Occupational Safety and Health Administration (OSHA) sections related to 
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27 fall protection. An overall information extraction precision, recall, and F-1 measure of 93.2%, 89.6%, and 91.1% were 
 

28 obtained, which indicates good information extraction performance. 
 

29 1 Introduction 

30 Fall accidents are a major concern for construction safety. A total of 1,102 fatalities in the construction industry were 
 

31 reported in 2019, which represented 20.7% of the total workplace fatalities in the United States (5,333) (OSHA, 2020a; 
 

32 Tang et al. 2020); and 174,100 injuries, with more than 130,000 workers missing days of work, were reported in 2020 
 

33 (Labor 2021a; Labor 2022). Among all accident types, falling is the leading cause of construction fatalities. It is 
 

34 responsible for more than 30% of all construction deaths (Labor 2021b; Mutual 2020) and is the second leading cause 
 

35 of serious injuries, with higher compensation costs than other types of injuries (OSHA, 2020b). 

 

36 A large number of fall accidents happen due to field noncompliance with safety regulations, particularly the 
 

37 Occupational Safety and Health Administration (OSHA) regulations. For example, an analysis of fall fatalities in the 
 

38 Construction FACE Database (CFD) revealed that compliance of personal fall arrest systems (PFAS) plays an 
 

39 important role (Dong et al. 2017). Among those fall fatalities, 54% occurred when PFAS were not available, and 23% 
 

40 when the decedents had access to PFAS but were not using them. Some other fall decedents were using PFAS, but the 
 

41 PFAS were either damaged, misused, or did not provide adequate protection. One major reason for such lack of field 
 

42 compliance is that existing onsite safety inspections are not effective. For example, a study showed that 61.5% of the 
 

43 surveyed workers complained that there was no safety supervision during their work (Tadesse et al. 2016). Although 
 

44 OSHA requires “a competent person” to make compliance decisions onsite (OSHA 2020c), those manual observers 
 

45 typically only produce biweekly or monthly safety reports (Tang et al. 2020). At this frequency, potential 
 

46 noncompliance issues can be neglected or stay unresolved, which can possibly lead to serious accidents. It is also 
 

47 difficult to carry out field compliance checking promptly using pure human labor, because (1) skilled supervisory 
 

48 manpower for different activities is not always present onsite (Seo et al. 2015), and (2) manual observation and 
 

49 supervision is labor intensive, time consuming, and error prone (Chen et al. 2019). 

 

50 Therefore, there is a need for automated field compliance checking to help detect and correct field noncompliance in 
 

51 a timely manner to prevent fall accidents. Automated field compliance checking seeks to automate the process of 
 

52 extracting safety requirements from relevant regulations, capturing relevant site conditions, comparing conditions to 
 

53 requirements to detect violations, and producing prompt feedback to relevant workers. Existing research efforts on 
 

54 field compliance checking have achieved good progress on automated tracking of labor and equipment onsite towards 
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55 improved safety compliance (e.g., the work by Fang et al. 2018 to detect the existence of PPE). However, extracting 
 

56 construction safety requirements from applicable regulations and representing these requirements in a computable 
 

57 format for subsequent compliance checking is still conducted in a largely manual way. For example, research efforts 
 

58 have proposed manual ontology-based approaches to extract hazard or safety knowledge from fatality reports or 
 

59 industry safety best practice reports (e.g., Zhong et al. 2020b). Such manual process is expensive and unscalable, 
 

60 considering the large number of requirements to be extracted from various safety regulatory documents. A fully 
 

61 automated information extraction method is thus needed. 

 

62 However, automated information extraction from construction safety regulations is still challenging, despite the 
 

63 current information extraction efforts in the construction domain (Zhong et al. 2022; Zhang and El-Gohary 2021a; 
 

64 Ren and Zhang 2021; Zhou and El-Gohary 2017; Zhang and El-Gohary 2013; Nepal et al. 2013). On one hand, 
 

65 sentences from construction safety regulations are more complex compared to other types of text (e.g., international 
 

66 building codes and energy conservation codes). Such complexity includes (1) the text has referential ambiguities (e.g., 
 

67 multiple expressions are used to refer to the same entity). In other types of text, relative or attributive clauses (which 
 

68 typically contain more coreferents) are less frequently used, and hence the text contains fewer referential ambiguities; 
 

69 (2) different OSHA sections have different text patterns and different ways of organizing requirements for one topic 
 

70 and its subtopics, and (3) a single clause could have nested conditions and exceptions to describe a particular scenario 
 

71 that involves multiple interactions and spatial relations between workers and their environment. Thus, the density of 
 

72 information in a single sentence from safety regulations is relatively high compared to other types of text. It is rather 
 

73 difficult to achieve good performance given such complex text. On the other hand, existing information extraction 
 

74 methods in the construction domain are limited. First, most of the aforementioned efforts used rule-based methods 
 

75 whose performance relies heavily on a set of hand-crafted rules, which require significant amount of human effort to 
 

76 discover the text patterns and develop the corresponding information extraction rules, and are difficult to scale up 
 

77 across other documents with different text patterns. A small number of information extraction methods used traditional 
 

78 machine learning-based methods, which also suffer from level of effort and scalability limitations due to their 
 

79 dependence on traditional feature engineering. In comparison, deep learning-based methods can automatically extract 
 

80 syntactic and semantic features from unstructured text, instead of using hand-crafted rules or highly engineered 
 

81 features, which minimizes the amount of human effort involved in the extraction process and improves the scalability 
 

82 of the approach. Second, none of the aforementioned efforts addressed the problem of referential ambiguity. 
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83 To address these limitations, this paper proposes a deep learning-based information extraction method to automatically 
 

84 extract entities that describe fall protection requirements from construction safety regulations, particularly OSHA. The 
 

85 proposed method consists of three main submethods. First, a deep learning-based method is proposed to recognize 
 

86 entities from the regulations. The method uses three types of features to improve performance: GloVe embedding, 
 

87 word-level features, and character-level features. Second, a deep learning-based method is proposed to recognize 
 

88 referential ambiguities in the extracted entities. The method uses transfer learning to deal with the lack of annotated 
 

89 training data, leveraging both out-of-domain, large-scale annotated data together with domain-specific data 
 

90 (construction safety regulations). Third, a named entity normalization method is proposed to resolve these ambiguities. 
 

91 The method measures the similarity between the recognized ambiguous expressions and a list of candidate identifier 
 

92 names to identify their correspondence. The proposed method was tested using fall-related sections from the OSHA 
 

93 29 CFR 1926 (OSHA 2020c), and the CoNLL-2012 dataset (Pradhan et al. 2012) from the computational linguistic 
 

94 domain. 
 

95 2 Background 

96 2.1 Named Entity Recognition 

97 Named entity recognition identifies and classifies entities from unstructured text into pre-defined categories (Chiu and 
 

98 Nichols 2016). In the context of construction safety, those entities are semantic information elements describing fall 
 

99 protection requirements such as “scaffold”, “horizontal direction”, “6 feet”. These requirements could be classified as 
 

100 quantitative or existential. Quantitative requirements describe the properties of fall protection measures, e.g., “Each 
 

101 end of a platform, unless cleated or otherwise restrained by hooks or equivalent means, shall extend over the centerline 
 

102 of its support at least 6 inches (15 cm)”. Existential requirements describe the existence of fall protection measures, 
 

103 e.g., “Unstable objects shall not be used to support scaffolds or platform units”. 

 

104 Various traditional (i.e., not deep learning) machine learning algorithms have been used for named entity recognition, 
 

105 such as support vector machines (SVM) (Isozaki and Kazawa 2002), conditional random fields (CRF) (Lafferty et al., 
 

106 2001), and hidden Markov model (HMM) (Bikel et at. 1998). Before the advent of deep learning, CRF was the 
 

107 dominant model for named entity recognition. It has, for example, achieved an F-1 measure of 81.15% on the CoNLL- 
 

108 2003 dataset (Yadav and Bethard 2019). Machine learning-based methods have also been utilized within the 
 

109 construction domain. For example, Liu and El-Gohary (2017) used an ontology-based, semi-supervised CRF approach 
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110 to extract bridge-related entities from bridge inspection reports. Kim and Chi (2019) used a CRF approach to extract 
 

111 safety knowledge from construction accident reports. 
 

112 2.2 Coreference Resolution 

113 Coreference resolution aims to identify all mentions that refer to the same real-world entity (Lee et al. 2017). In 
 

114 construction safety regulations (e.g., in contrast to building codes), coreferents such as “it” or “them” are frequently 
 

115 used to refer back to an entity mentioned earlier. Depending on the context, sometimes it is even difficult for human 
 

116 to interpret which entity the coreferent is referring to. Such referential ambiguity can cause confusion for information 
 

117 extraction. Similarly, different expressions are used in the same document to refer to the same entity. For example, in 
 

118 OSHA, “two-point adjustable suspension scaffold” and “two-point scaffold” are used at different instances to refer to 
 

119 the same entity. Such use of different expressions can introduce errors in the extracted requirements. Coreference 
 

120 resolution is, thus, vital to prevent referential errors from causing errors in information extraction and propagating 
 

121 into compliance checking errors. 

 

122 Traditional machine learning-based methods for coreference resolution can be divided into three categories: mention- 
 

123 pair, entity-mention, and mention-ranking models. Mention-pair models, which are the most commonly used for 
 

124 coreference resolution, regard coreference as a pairwise classification task. Entity-mention models classify whether a 
 

125 mention belongs to a preceding coreference cluster. However, these two methods fall short in determining which 
 

126 candidate antecedent is the best for prediction. Mention-ranking models can solve this problem by explicitly ranking 
 

127 all candidate antecedents for each mention. These models have, for example, achieved 54.1%, 54.3%, and 56.6% B3 
 

128 F-1 on the ACE2004 dataset, respectively (Rahman and Ng 2009). 
 

129 2.3 Named Entity Normalization 

130 Named entity normalization seeks to map different mentions of an entity, such as ambiguous surface forms or 
 

131 synonyms, into one canonical form (an identifier name) (Jijkoun et al. 2008). It has been extensively studied in the 
 

132 past few decades and has been adopted for various semantically oriented applications such as question answering, 
 

133 entity retrieval, trend detection, and event tracking (Jijkoun et al. 2008). Especially in recent years, there is a growing 
 

134 body of literature in the biomedical domain proposing different methods for normalizing ambiguous names of 
 

135 chemicals, genes, and diseases (Zhou et al. 2020; Cho et al. 2017; Leaman et al. 2015). In the construction domain, a 
 

136 research effort has proposed to normalize different expressions of the entity names extracted from bridge inspection 
 

137 reports (Liu and El-Gohary 2018). 
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138 Methods for named entity normalization can be divided into two categories: dictionary-based and machine learning- 
 

139 based methods. Dictionary-based methods normalize entity names with the help of pre-established knowledge in the 
 

140 identifier names involved, usually stored in the form of gazetteer lists (Yenkar and Sawarkar 2021; Nadeau et al. 2006), 
 

141 lexicons (Névéol et al. 2015), and knowledge bases (Zhou et al. 2007). Machine learning-based methods (Zhou et al. 
 

142 2020; Cho et al. 2017; Leaman et al. 2015), on the other hand, are more suitable for situations where such pre- 
 

143 established knowledge is unavailable. Instead, it learns to normalize entity names by utilizing a set of features such as 
 

144 frequency, part-of-speech tags, and lemma of each entity name. 
 

145 2.4 Deep Learning-Based Methods 

146 Deep learning-based methods use stacked neural networks that automatically extract features and patterns from large- 
 

147 scale unstructured text. They can achieve better results than traditional machine learning models by allowing different 
 

148 information paths through the connected neurons. Deep learning has recently been utilized for extracting information 
 

149 from regulatory documents and proved to be promising. For example, Zhang and El-Gohary (2021b) have developed 
 

150 a long short term memory (LSTM) model to extract requirement hierarchies from building codes and standards. 
 

151 Outside the construction domain, many deep learning methods have been proposed to improve the performance of 
 

152 named entity recognition and coreference resolution. Those methods include: (1) proposing new deep learning 
 

153 architectures based on existing ones, (2) creating hybrid models by combining existing ones, such as LSTM combined 
 

154 with convolutional neural network (CNN), and (3) developing state-of-the-art word embeddings as additional features 
 

155 such as embeddings from language models (ELMo) (Peters et al. 2018) or the global vector (GloVe) (Pennington et 
 

156 al. 2014). For example, for named entity recognition, bi-directional LSTM and CNN (BiLSTM-CNN) (Chiu and 
 

157 Nichols 2016) has achieved 91.6% F-1 on the CoNLL-2003 dataset. For coreference resolution, a Neural Coreference 
 

158 Resolution model proposed by Lee et al. (2017) has achieved 67.2% B3 F-1 on the CoNLL-2012 dataset. Existing 
 

159 research efforts on deep learning-based named entity normalization have mainly focused on experimenting with 
 

160 different word embeddings or similarity metrics for improving the normalization performance (Yuan et al. 2022; Fang 
 

161 et al. 2021; Fakhraei et al. 2019; Roy et al. 2018). 
 

162 3 State of the Art and Knowledge Gaps 

163 In the area of named entity recognition, a number of research efforts in the construction domain have been undertaken 
 

164 to propose different methods for improving the extraction performance. A large portion of them have focused on 
 

165 developing rule-based extraction methods. For example, Ren and Zhang (2021), Zhou and El-Gohary (2017), and 
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166 Zhang and El-Gohary (2013) developed rule-based information extraction methods to extract from construction 
 

167 regulatory documents such as construction procedural documents, building codes, and energy conservation codes, 
 

168 through the use of syntactic and semantic features. Later research efforts have explored utilizing and comparing 
 

169 different traditional machine learning-based methods. For example, Zhang et al. (2019) compared a set of machine 
 

170 learning-based methods such as SVM, linear regression, K-nearest neighbor, decision tree, Naive Bayes, and an 
 

171 ensemble model for text mining from construction accident reports. Liu and El-Gohary (2017) and Kim and Chi (2019) 
 

172 proposed CRF-based methods to extract information from various domain-specific documents such as bridge 
 

173 inspection reports and construction accident reports. Recently, deep learning-based methods have been attracting more 
 

174 research attention. A few LSTM-based methods have been proposed, such as the efforts by Zhang and El-Gohary 
 

175 (2021a) and Zhang and El-Gohary (2021b) to extract semantic and syntactic information elements and requirement 
 

176 hierarchies from building codes. 

 

177 Despite the importance of these efforts, three main knowledge gaps still exist. First, most of the existing information 
 

178 extraction methods are limited in terms of level of manual effort and scalability. Rule-based methods usually require 
 

179 significant amount of human effort in discovering the text patterns and developing the corresponding information 
 

180 extraction rules. The rules also require adaptation (additions or changes) across different documents, especially if the 
 

181 characteristics of the text change, which further limits scalability. Traditional machine learning-based methods do 
 

182 require less human involvement and offer better scalability, but their performance depends heavily on the quality of 
 

183 the engineered features which are obtained through trial and error. Deep learning-based approaches, on the other hand, 
 

184 are more promising in terms of reducing human effort and improving scalability due to their ability to automatically 
 

185 capture various syntactic and semantic features and patterns from the text, thereby eliminating the manual effort 
 

186 needed to develop the hand-crafted extraction rules or conduct traditional feature engineering. In general, traditional 
 

187 feature engineering can become labor-intensive and time-consuming (Janiesch et al. 2021; Dargan et al. 2020). Second, 
 

188 methods with better performance to deal with the complexity in the text are desired. As discussed in the “Introduction” 
 

189 section, sentences from construction safety regulations are more complex in three aspects. However, most of the 
 

190 existing traditional machine learning-based methods perform shallow extraction by using pattern-based grammars 
 

191 with domain-specific interpretations. Such pattern-based grammars cannot capture complex linguistic features such 
 

192 as long distance dependencies and passive/active voices which are frequently used in construction safety regulations. 
 

193 Those traditional machine learning-based extraction methods, thus, lack the ability to extract the entire semantics 
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194 which are essential for detecting field noncompliances to prevent fall accidents. Therefore, methods for deeper 
 

195 information extraction need to be developed, to fully understand the semantics in construction safety regulations. Deep 
 

196 learning-based methods are such methods that can perform deeper information extraction. They have outperformed 
 

197 traditional machine learning-based methods in many applications, including information extraction from building 
 

198 codes (Zhang and El-Gohary 2021a), and are flexible in dealing with various patterns in the text. It is then necessary 
 

199 to further explore their use in extracting information from construction safety regulations that contain high complexity, 
 

200 to achieve good extraction performance for supporting automated field compliance checking. Third, previous efforts 
 

201 have only considered information extraction from quantitative requirements (Zhang and El-Gohary 2013). However, 
 

202 as discussed in the “Background” section, there are two types of requirements in construction safety regulations, which 
 

203 are equally considered in this study. 

 

204 Most importantly, existing information extraction efforts in the construction domain have mainly focused on named 
 

205 entity recognition, without resolving the referential ambiguities in the extracted requirements. The closest effort, for 
 

206 example, is the named entity normalization method proposed by Liu and El-Gohary (2018) to map the referring 
 

207 expressions from bridge reports to their identifier concepts. There are three main knowledge gaps that this research 
 

208 aims to address in this regard. In terms of scope, there are more types of referential ambiguities than referring 
 

209 expressions in construction safety regulations, including coreferents. Both types of referential ambiguities can directly 
 

210 affect the performance and effectiveness of subsequent compliance reasoning. Thus, there is a need to resolve these 
 

211 referential ambiguities in the extracted requirements. In terms of data, since referential ambiguities do not appear in 
 

212 every sentence, there is no sufficient training data from the construction safety domain alone, which is especially a 
 

213 challenge for deep learning based-methods because they typically require more training data than rule-based or 
 

214 traditional machine learning-based methods. There is, thus, a need for leveraging the large amount of annotated data 
 

215 from other domains to resolve referential ambiguities in the construction safety domain. In terms of method, most of 
 

216 the existing rule-based methods for resolving referential ambiguities cannot be applied in the construction safety 
 

217 domain directly. For example, gender agreement and person agreement that could apply for general-domain text or 
 

218 other applications, are not applicable to construction regulations and safety topics. Moreover, these rules and their 
 

219 orderings are often subject to changes from one topic to another. Given the large number of topics involved in 
 

220 constructions safety regulations, there is a need to develop methods that can automatically capture the distinctive 
 

221 patterns in the domain-specific text. 
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222 4 Proposed Method for Information Extraction from Construction Safety Regulations 

223 This study proposes a deep learning-based information extraction method to automatically extract entities that describe 
 

224 fall protection requirements from construction safety regulations and to resolve referential ambiguities in the extracted 
 

225 results. The proposed information extraction method consists of three main submethods for named entity recognition, 
 

226 coreference resolution, and named entity normalization. Named entity recognition aims to recognize entities (e.g., 
 

227 “scaffolds”) and classify them into pre-defined entity classes (e.g., equipment). The entity classes were pre-defined 
 

228 based on a review of 20 OSHA sections related to fall protection, and a review of ontology-based modeling of 
 

229 construction safety knowledge (Zhang et al. 2014; Lu et al. 2015; Zhang et al. 2015; Zhong et al. 2020a; Fang et al. 
 

230 2020). The pre-defined entity classes include person, equipment, reference, hazard, facility, location, operation, 
 

231 material, property, date, other attribute, quantity value, quantity unit, and other entity. Table 1 shows examples of the 
 

232 most frequent entity names within each class. A BiLSTM-CNN-based model was trained to automatically recognize 
 

233 and classify the entities based on their syntactic and semantic features. Coreference resolution aims to identify all 
 

234 mentions that refer to the same entity, including coreferents and referring expressions. Transfer learning was used to 
 

235 deal with the lack of training data. For the first two submethods, three types of features were used to improve the 
 

236 performance of the models: GloVe embedding, word-level features, and character-level features. Named entity 
 

237 normalization aims to map the recognized coreferents and referring expressions of an entity to one identifier name to 
 

238 remove the referential ambiguities in the extracted requirements. Similarity assessment was conducted to map the 
 

239 recognized different mentions to their closest identifier names. Fig. 1 summarizes the research methodology, which 
 

240 includes six primary tasks: data preprocessing, feature preparation, named entity recognition, coreference resolution, 
 

241 named entity normalization, and evaluation. Fig. 2 further illustrates the application of the proposed method, with an 
 

242 example. 
 

243 4.1 Data Preprocessing 

244 Data preprocessing aims to process the raw text to be ready for the subsequent steps of information extraction. Two 
 

245 preprocessing methods were used: tokenization and sentence splitting. Tokenization divides a character sequence in 
 

246 the text into units (words). Sentence splitting detects the boundary of each sentence by recognizing the sentence- 
 

247 ending characters such as periods and questions marks. 
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248 4.2 Feature Preparation 

249 Three types of features were utilized to improve the performance of both the named entity recognition model and the 
 

250 coreference resolution model: GloVe embedding, word-level features, and character-level features. GloVe embedding 
 

251 is the state-of-the-art word embedding, which is pre-trained on Wikipedia and Web text of 6 billion words. It represents 
 

252 the semantics of words in the form of rich and dense feature vectors. Additional word-level features and character- 
 

253 level features, which are not included in the GloVe embedding, were added to the embedding because they help 
 

254 differentiate the different entities (e.g., equipment vs. quantity value). The word-level features include four types of 
 

255 information: (1) if the word is all lower-cased, (2) if the word is all upper-cased, (3) if the word contains numbers, and 
 

256 (4) if the word contains capital letters. The character-level features include: (1) if the character is punctuation, (2) if 
 

257 the character is a digit, (3) if the character is uppercase, and (4) if the character is lowercase. 
 

258 4.3 Named Entity Recognition 

259 The deep neural network, BiLSTM-CNN, by Chiu and Nichols (2016) was adopted for named entity recognition. This 
 

260 hybrid model was chosen for its potential to achieve better extraction performance, because it can combine the benefits 
 

261 of both BiLSTM model and CNN model which are designed with different strengths. BiLSTM is better at capturing 
 

262 context and long dependency, while CNN is better at capturing character-level information, both of which can 
 

263 contribute to more accurate predictions. The proposed BiLSTM-CNN-based model contains three main types of layers: 
 

264 embedding layers, BiLSTM layer, and multi-layer perceptron (MLP) layers. The embedding layers consist of a GloVe 
 

265 embedding layer, a word-level feature embedding layer, and a CNN-extracted character embedding layer. The GloVe 
 

266 embedding layer uses the pre-trained embedding as a starting point, then adjusts itself to the semantics of construction 
 

267 safety text during training. The word-level embedding layer represents the word-level features described in Section 
 

268 4.2. The CNN-extracted character embedding layer is used to represent the character-level features prepared in Section 
 

269 4.2, as well as other character-level features extracted using CNN, such as prefix and suffix. The outputs from the 
 

270 three embedding layers are concatenated before being fed into the BiLSTM layer. The BiLSTM layer is used to 
 

271 compute the feature values using the output from the embedding layers of the current word and its context words. The 
 

272 MLP layers consist of a linear layer and a softmax layer, which transform the feature values from the BiLSTM layer 
 

273 into log probabilities for the tag categories, where tags with the highest probabilities are returned as predictions. Cross 
 

274 entropy was used as the loss function. The BiLSTM-CNN architecture is illustrated in Fig. 3. 
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275 4.4 Coreference Resolution 

276 Coreference resolution aims to identify referential ambiguities in the document, i.e., all mentions that refer to the same 
 

277 entity, including coreferents and referring expressions. Different types of coreferents and referring expressions were 
 

278 first identified based on an analysis of the selected OSHA sections. Examples of different types of coreferents and 
 

279 referring expressions are shown in Tables 2 and 3, respectively. 

 

280 A deep learning model was adapted and trained using transfer learning strategy for coreference resolution. Transfer 
 

281 learning is used to leverage rich syntactic and semantic information from existing large-scale annotated source-domain 
 

282 data for solving problems in a target-domain (construction safety domain in the problem at hand). The CoNLL-2012 
 

283 dataset was used as source-domain data. It was developed in the computational linguistic domain to predict 
 

284 coreferences in English, Chinese, and Arabic. The English portion contains around one million words from various 
 

285 sources such as newswire, magazines, broadcasts, weblogs, and speeches. The deep neural network by Lee et al. (2017) 
 

286 was adopted. The task is formulated as finding antecedent yi for every possible span i in the document, where each 
 

287 span is represented by considering two main factors: the headword and the context. For a given span, possible 
 

288 antecedents could be all the spans before itself. If no antecedent is found for a span, it is because either the span is not 
 

289 an entity mention, or the span is an entity mention but is not a coreferent with any previous span. A pairwise score is 
 

290 used to measure the similarity between two spans by considering three factors: (1) if span i is a mention, (2) if span j 
 

291 is a mention, and (3) if j is an antecedent of i. To reduce computational complexity, low scoring spans are pruned. 

 

292 The deep learning model contains three main types of layers: embedding layers, BiLSTM layer, and the MLP layers. 
 

293 The embedding layers and BiLSTM layer are similar to the model used for named entity recognition. However, an 
 

294 attention mechanism (Vaswani et al. 2017) was added to the BiLSTM layer to model the headwords of each span in 
 

295 the form of a weighted vector. The output of the BiLSTM layer and the headwords vectors are then concatenated to 
 

296 produce the span representation. In the MLP layers, pairwise scores are calculated using the span representation. 
 

297 Headwords of the spans with the highest pairwise score are considered as coreferents. The marginal log-likelihood of 
 

298 correct coreferents implied by the gold standard was used as the loss function. The architecture of the coreference 
 

299 resolution model is illustrated in Fig. 4. 
 

300 4.5 Named Entity Normalization 

301 Named entity normalization aims to map different mentions of an entity to one canonical identifier name to resolve 
 

302 the referential ambiguities for supporting subsequent compliance reasoning. Those different mentions include the 
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303 coreferents and referring expressions recognized during coreference resolution. Therefore, the proposed named entity 
 

304 normalization method seeks to map the recognized different mentions to their identifier names automatically with the 
 

305 help of a domain-specific dictionary. The proposed named entity normalization method includes three main steps: 
 

306 candidate identifier name extraction, similarity assessment, and identifier name mapping. 

 

307 The OSHA sections that cover the scope, application, and definitions of the OSHA subparts were used as a domain- 
 

308 specific dictionary. This is because these sections include definitions of the terms covered in each subpart, such as 
 

309 specific tools and equipment. Each of these sections typically contains named entities related to various accident types, 
 

310 not only fall protection-related topics, because each OSHA subpart consists of a few sections addressing different 
 

311 safety topics. For example, section 1926.1400 describes the scope for 1926 Subpart CC, which includes a variety of 
 

312 topics such as power line safety, signal person qualification, and fall protection, and thus contains more entities than 
 

313 fall protection-related entities. Therefore, they are sufficient in covering most of the fall-related entity names. Entity 
 

314 names were automatically extracted from this domain-specific dictionary (i.e., the scope, application, and definitions 
 

315 sections) using the trained named entity recognition model (in Section 4.3). The extracted entities were then used as 
 

316 candidate identifier names. 

 

317 Similarity assessment aims to assess the similarities between the extracted identifier names, as well as the output from 
 

318 the coreference resolution task, i.e., multiple clusters each containing different mentions of an entity in one clause. 
 

319 The proposed similarity assessment is an embedding-based method, similar to the method proposed by Farouk (2020). 
 

320 To measure the similarities, these two sets of entities (candidate identifier names and identified different mentions) 
 

321 were converted to a vectorized representation, using the embedding layer from the trained named entity recognition 
 

322 model. This is because the trained embeddings can encode the semantic information of domain-specific entities such 
 

323 that entities that are similar in meanings are closer in the embedding space. A similarity matrix was calculated between 
 

324 each cluster of different mentions and each candidate identifier name, using an average embedding for one entity name 
 

325 (excluding the embeddings of the stopwords which are too frequently used to provide distinctive information). The 
 

326 similarity scores in the similarity matrix were calculated using cosine similarity, which has shown better performance 
 

327 in capturing the similarity between texts (Sitikhu et al. 2019), compared with the Euclidean similarity (which is 
 

328 frequently used in other applications). This is because cosine similarity measures the directions of vectors to ensure 
 

329 that entities containing different meanings (i.e., vectors pointing in different directions in the embedding space) receive 
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330 lower similarity scores. Then, for different mentions in one cluster, the identifier name with the highest similarity 
 

331 score among all other candidates is selected for normalization. 

 

332 After similarity assessment, identifier name mapping is conducted to convert the different mentions in each cluster to 
 

333 their corresponding selected identifier name. This mapping process is conducted automatically through a lookup table 
 

334 storing the correspondence between these two sets of entities. In this way, different mentions of an entity, including 
 

335 coreferents and referring expressions, can all be replaced with a well-established entity name in the construction safety 
 

336 domain. 
 

337 4.6 Evaluation 

338 The performance of named entity recognition, named entity normalization, and overall information extraction (after 
 

339 coreference resolution and named entity normalization) was evaluated by comparing the recognized/extracted entities 
 

340 with the gold standard using three metrics: precision (P), recall (R), and F-1 measure, as per Eqs. 1-3. Precision is 
 

341 defined as the number of correctly recognized/extracted entities divided by the total number of recognized/extracted 
 

342 entities. Recall is defined as the number of correctly recognized/extracted entities divided by the total number of 
 

343 entities that should be recognized/extracted. F-1 measure is the weighted harmonic mean of precision and recall. Due 
 

344 to data imbalance, macro average of precision, recall, and F-1 measure were used to evaluate performance – to avoid 
 

345 majority classes (those with larger instances) skewing the results. Macro average provides an average over classes, 
 

346 

 
347 

 

348 

 
349 

thereby weighing all classes equally, as opposed to micro average that provides an average over instances. 

 

𝑃 = 
number of correctly recognized/extracted entities 

total number of all recognized/extracted entities 

 

𝑅 =  
number of correctly recognized/extracted entities 

total number of entities that should be recognized/extracted 

 

F-1 = 
2×P×R 

𝑃+𝑅 

 

 
(1) 

 

(2) 

 
(3) 

 

350 For coreference resolution, the performance was evaluated using the B3 precision, recall, and F-1 measure (Bagga and 
 

351 

 
352 

Baldwin 1998), as per Eqs. 4-6, where is n is the number of entities that have coreferents. 

 
𝐵3 𝑃 = 

1 
∑ 

number of correctly recognized coreferents for entity 𝑖 

 

 
(4) 

𝑛  𝑖 total number of all recognized coreferents for entity 𝑖 
 

353 𝐵3 𝑅 = 
1 
∑ 

number of correctly recognized coreferents for entity 𝑖 (5) 

 

 
354 

𝑛  𝑖 total number of coreferents that should be recognized for entity 𝑖 

 

B3 F-1 = 
2×B3 P×B3 R 

B P+B R 

 

 
(6) 
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355 5 Experimental Results and Discussion 

356 The proposed information extraction method was tested using OSHA sections related to fall protection. A set of 
 

357 experiments were conducted to evaluate: (1) the performance of the proposed deep learning-based named entity 
 

358 recognition method by comparing it with a baseline method (Section 5.2); (2) the impact of different transfer learning 
 

359 strategies on the proposed coreference resolution method (Section 5.3); (3) the impact of the three types of features 
 

360 used in the proposed models on named entity recognition and coreference resolution (Sections 5.2 and 5.3); (4) the 
 

361 performance of the named entity normalization method (Section 5.4); and (5) the overall information extraction 
 

362 performance, including the three constituent submethods and their collective effectiveness in addressing referential 
 

363 ambiguities (Section 5.5). The hyperparameters of the named entity recognition and coreference resolution models 
 

364 were fine-tuned during the experiments for improved performance. The experiments were implemented using Keras 
 

365 and tensorflow on NVIDIA GeForce RTX 2070 SUPER. 
 

366 5.1 Data Preparation and Gold Standard Development 
 

367 All 20 OSHA sections that are related to fall protection were selected for developing the dataset for training and testing, 
 

368 which cover a number of topics such as personal fall arrest systems, fall protection systems, guardrail systems, 
 

369 positioning device systems, scaffolds, ladders, and aerial lifts, as per Table 4. The resulting dataset included 2,091 
 

370 sentences, which were split into a training and validation dataset and a testing dataset at a ratio of 8:2. The testing 
 

371 dataset included 418 sentences, 7312 words (prior to resolving referential ambiguities), 169 cluster of different 
 

372 mentions, and 7334 (after resolving referential ambiguities). The first dataset was further split into a training set and 
 

373 a validation set at the same ratio. The dataset was annotated to create the gold standard for training and testing. The 
 

374 gold standard was developed by three annotators who have background in both civil engineering and natural language 
 

375 processing. An inter-annotator agreement of 94.5% in F-1 measure was achieved, which indicates the reliability of the 
 

376 gold standard (Artstein 2017). For named entity normalization, the following sections (those acting as the dictionary, 
 

377 which cover all necessary sections for describing the scope and applications) were used for extracting the identifier 
 

378 names: 1926.20, 1926.107, 1926.450, 1926.500, 1926.750, 1926.751, 1926.1050, and 1926.1400. 

 

379 For named entity recognition, the entities were annotated using the following labels: person (PER), equipment (EQU), 
 

380 reference (REF), hazard (HAZ), facility (FAC), location (LOC), operation (OPE), material (MAT), property (PRO), 
 

381 date (DAT), other attribute (ATT), quantity value (QUA), quantity unit (UNI), and other entity (ENT). To distinguish 
 

382 adjacent entities with the same tag, a BIO tagging scheme was used, where “B” denotes the beginning of an entity, “I” 
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383 stands for “inside”, and “O” means the absence of an entity. An example sentence annotated using the BIO tagging 
 

384 scheme is shown in Table 5. Fig. 5 depicts the entity class distribution, which shows that the developed dataset is 
 

385 unbalanced, with equipment (EQU) being the most frequent class and date (DAT) the least frequent class. 

 

386 For coreference resolution, the sentences (i.e., our domain-specific data) were annotated following the same tagging 
 

387 scheme as the CoNLL-2012 dataset (i.e., the general-domain data), where each unique entity name and its different 
 

388 mentions in one clause were assigned the same index. An example clause annotated using this tagging scheme is 
 

389 shown in Fig. 6(a). Two special situations were considered during the annotation. First, an equipment and its 
 

390 components were not regarded as coreferents, because OSHA regulations can contain specific requirements about 
 

391 components as well. This is different from other types of text (e.g., social media text) where one feature or one 
 

392 component of an entity can be used to refer to the whole. Second, due to the hierarchical structure of the OSHA 
 

393 regulations, one clause and its subclause(s) can refer to the same entity (e.g., bricklayers’ square scaffolds) even though 
 

394 a more general entity name (e.g., scaffolds) is used in the subclause(s). An example of this case is shown in Fig. 6(b). 
 

395 The annotated OSHA clauses were then combined with the CoNLL-2012 dataset for transfer learning. For named 
 

396 entity normalization, each cluster of different mentions was annotated with the correct identifier name. 

 

397 The final gold standard for evaluating the overall information extraction performance was developed based on the 
 

398 gold standard for named entity recognition, but with coreferents and referring expressions normalized. 
 

399 5.2 Named Entity Recognition 

400 5.2.1 Optimization and Performance Results 

401 To optimize the performance of the named entity recognition model, the hyperparameters of the model were fine- 
 

402 tuned. During optimization, the model used a kernel size of 3 and a dropout rate of 0.5, and was trained for 42 epochs 
 

403 with a learning rate of 0.001 using a Nadam optimizer. The three embedding layers of the BiLSTM-CNN model had 
 

404 an output dimension of 100, 8, and 30, respectively, which were concatenated into a dimension of 138, to be fed into 
 

405 the BiLSTM layer. The BiLSTM layer had an output dimension of 400, and the MLP layers output tag probabilities 
 

406 with a dimension of 29 (“B-” and “I-” tags for each of the 14 entity classes and “O” tag). 

 

407 To evaluate the effectiveness of using deep neural networks on named entity recognition, the performance of the 
 

408 proposed method was compared with a CRF-based method as a baseline. CRF was selected for comparison because 
 

409 it was the dominant traditional machine learning-based model for analyzing sequential data such as text, prior to the 
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410 advent of deep learning-based methods (see Section 2.1). The baseline CRF method achieved an average precision, 
 

411 recall, and F-1 measure of 76.7%, 66.2%, and 69.8%, respectively, while the proposed BiLSTM-CNN model achieved 
 

412 91.6%, 88.7%, and 89.9%, respectively, which indicates better named entity recognition performance. The improved 
 

413 performance is likely due to the ability of BiLSTM to better adapt to domain-specific semantics and better capture 
 

414 word dependencies. For example, “flight of stairs” (as a whole) was correctly classified as FAC (facility) using the 
 

415 BiLSTM-CNN model, but was incorrectly broken down into “flight” (ENT, i.e., other entity) and “stairs” (FAC) using 
 

416 the CRF-based method. A comparison of the two methods with respect to each entity class is summarized in Table 6. 
 

417 Improved performance using the proposed method was observed for every entity class, except for DAT (date) class 
 

418 because it appears the least frequently in the training dataset. 

 

419 To evaluate the impact of the three types of features (i.e., GloVe embedding, word-level features, and character-level 
 

420 features, as per Section 4.2) used in the proposed method, an experiment was conducted to compare the named entity 
 

421 recognition performance with and without these features. As shown in Fig. 7, incorporating these features resulted in 
 

422 a 3.1% increase in precision, 4.5% in recall, and 3.3% in F-1 measure, which indicates that the three types of features 
 

423 are effective in improving the named entity recognition performance. 

 

424 5.2.2 Error Analysis 

425 Fig. 8 shows the confusion matrix for named entity recognition (excluding results of “O” tags which are irrelevant). 
 

426 The most frequent misclassification is seen in predicting an entity as EQU (equipment). For example, 13 ATT (other 
 

427 attribute) entities were recognized as EQU (total extracted ATT = 146) and 12 ENT (other entities) were recognized 
 

428 as EQU (total extracted ENT = 237). This is mainly due to the imbalance of the dataset. As shown in Fig. 5, EQU 
 

429 constitutes a large portion of the dataset. 

 

430 Misclassification can be seen for other entity classes such as LOC (location), PRO (property), ATT (other attribute), 
 

431 and ENT (other entity), as shown in Fig. 8. A major cause for those misclassifications can be word-sense ambiguities, 
 

432 especially if a single document uses two (or more) different meanings for the same word at different instances, which 
 

433 makes it difficult for the model to distinguish which meaning is intended at which case. For example, the word 
 

434 “standard” can be regarded as REF in the phrase “anchorage standard”, since it refers to a subset of regulations whose 
 

435 topic is anchorage, but as ATT in the phrase “at least a standard 7 inch steel I-beam”, since it means that such 
 

436 measurement of the I-beam is typical. Similarly, the word “level” can be regarded as LOC in the phase “lower level”, 
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437 since it means some surface or position, but as ATT in the sentence “footings should be level, sound and rigid”, since 
 

438 it means that the footings should have no slopes or bumps. The word “direction” can be regarded as PRO in the phrase 
 

439 “in an upward direction”, since it means a path for movement, but as ENT in the phrase “under the supervision and 
 

440 direction of a competent person”, since it means guidance or management. It is, thus, rather difficult for the model to 
 

441 distinguish which meaning is applied for which case in the absence of sufficient training samples and/or context 
 

442 information. 

 

443 ENT is the entity class where most classification errors happen. This is mainly due to the coreference words such as 
 

444 "they", "it", “that”, "those", or "the" plus an adjective. For example, the word “it” is not referring to any specific entity 
 

445 in the sentence “It is infeasible or creates a greater hazard to use these systems”, but can be regarded as ENT in the 
 

446 sentence “Each platform greater than 10 feet shall… unless it is designed so…”, which can cause confusion for the 
 

447 model to make correct predictions. Moreover, a few entities in the ENT class do not appear as frequently as necessary 
 

448 for the model to make correct predictions, which caused misclassification errors. 
 

449 5.3 Coreference Resolution 

450 5.3.1 Optimization and Performance Results 

451 The hyperparameters of the model were fine-tuned. During optimization, the model used a kernel size of 3, a dropout 
 

452 rate of 0.4, and a learning rate of 0.001 using Adam optimizer. The embedding layers had an output dimension of 350. 
 

453 The BiLSTM layer had an output dimension of 400. The weighted vectors produced by the attention mechanism were 
 

454 then converted into headword vectors of dimension 450. Each span representation was obtained by concatenating two 
 

455 vectors at the boundary of the span from the BiLSTM layer (of size 400) with a headword vector (of size 450), whose 
 

456 final dimension was 1250. Such span representation was then used to calculate the pairwise scores whose dimension 
 

457 equals to the number of maximum possible antecedents. 

 

458 To evaluate the impact of different transfer learning strategies on the coreference resolution model, the model was 
 

459 trained and tested using two strategies: model-based two-stage training and model-based alternating training 
 

460 (following the method by Zhang and El-Gohary 2021a). During the two-stage training, the model was first trained on 
 

461 the source-domain data, then trained further on the target-domain data with the last layer (source output layer) replaced 
 

462 by a target output layer, whereas during alternating training, the model was alternating between training on the source- 
 

463 domain data using the source output layer and training on the target-domain data using the target output layer (for 
 

464 more details on the two training strategies, the readers are referred to Zhang and El-Gohary 2021a). As shown in Fig. 
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465 9(a), the proposed coreference resolution method that utilizes the model-based alternating training strategy achieved 
 

466 a B3 precision, B3 recall, and B3 F-1 measure of 77.6%, 70.3%, and 73.8%, respectively, while the same method that 
 

467 utilizes the model-based two-stage training strategy instead achieved a B3 precision, B3 recall, and B3 F-1 measure of 
 

468 60.7%, 75.5%, and 67.3%, respectively. The achieved performance (with alternating strategy) is comparable with the 
 

469 state-of-the-art LSTM-based coreference resolution performance using general-domain text (69.9%, 64.7%, and 
 

470 67.2%, see Section 2.2) (Lee et al. (2017), which indicates that the proposed coreference solution method is effective 
 

471 in addressing domain-specific referential ambiguities. Similar to the findings in Section 5.2, incorporating the three 
 

472 types of features also improved the performance of coreference resolution. As shown in Fig. 9(b), an increase of 6.6% 
 

473 in precision, 7.7% in recall, and 7.3% in F-1 measure was observed for the model that uses an alternating strategy. 

 

474 5.3.2 Error Analysis 

475 One major source of error is that the proposed deep learning model can only consider a fixed span width L. Spans that 
 

476 are longer than the fixed width are pruned to reduce computational complexity. However, different from general- 
 

477 domain text where coreferents occur relatively close to each other, due to the hierarchical structure of OSHA 
 

478 regulations, coreferents can occur across a longer span than the fixed span width L. For example, if a clause has several 
 

479 subclauses, then the coreferent in the last subclause can be far away from the first coreferent. Therefore, the model 
 

480 could fail to capture all coreferents across spans that are longer than the fixed span width L. 

 

481 The most difficult type of coreferent for the proposed model to recognize is the discontinuous sets where the pronoun 
 

482 refers to more than one antecedent. For example, in the sentence “lifelines, lanyards, and deceleration devices should 
 

483 be … as they would be …”, the pronoun “they” refers to three entities: lifelines, lanyards, and deceleration devices. 
 

484 However, the proposed model predicted only one of the three entities as the coreferent, instead of all of them. There 
 

485 are multiple causes for this error. First, there is no enough training data for this case because it is not considered in the 
 

486 CoNLL-2012 dataset. Second, since the three coreferents are all in plural forms, none of the number agreement 
 

487 constraint or verb agreement constraint can work in this case. Third, the proposed deep learning model is designed to 
 

488 output coreferents with the highest probability, and therefore cannot output more than one coreferent. 

 

489 The lack of domain-specific context is also causing difficulty for the model to decide whether two mentions are 
 

490 coreferents, referring expressions, or not. For example, phrases of “safety monitor”, “competent person”, and “the 
 

491 person making the determination and certification” are the same expressions by the meaning they convey. However, 



19  

492 it is difficult for the model to understand their interconnections and therefore predict them as referring expressions. 
 

493 This is because no background knowledge is provided in the relevant OSHA clauses in terms of role definitions or 
 

494 how construction teams are organized. To solve problems such as this, more domain-specific prior knowledge needs 
 

495 to be incorporated in future work. 
 

496 5.4 Named Entity Normalization 

497 For the list of candidate identifier names, a total of 1246 candidate identifier names (e.g., “body_belt”, 
 

498 “personal_fall_arrest_system”, and “positioning_device_system”, as per Fig. 2) were collected from the 
 

499 aforementioned OSHA sections (see Section 5.1), which covers most of the fall protection-related entities that could 
 

500 have referential ambiguities. For similarity assessment, example results are shown in Fig. 10 (with an embedding size 
 

501 of 2 for visualization purpose). The figure shows that the vectorized representation has the ability to encode the 
 

502 semantics of the domain-specific entities – entity names that are similar in meaning are closer in their embedding 
 

503 space. For example, “rope” and “pendant_rope” are closer than “rope” and “walkway”. After identifier name mapping, 
 

504 this normalization process achieved an average precision, recall, and F-1 measure of 93.0%, 93.0%, and 93.0%, 
 

505 indicating good normalization performance. 

 

506 The proposed method for named entity normalization was also helpful in correcting some errors in named entity 
 

507 recognition (i.e., in resolving referential ambiguities). For example, the phrases “edge of the walking/working surface”, 
 

508 “the working edge”, and “the edge” (all in one cluster) were initially recognized as LOC (correct), LOC (correct), and 
 

509 ENT (incorrect), respectively. In this normalization step, all three phrases were however mapped to the identifier name 
 

510 “walking_working_edge”. As a result, the tag of “the edge” was corrected to LOC (tag of “walking_working_edge”). 
 

511 More example results of the proposed named entity normalization method are shown in Table 7. 
 

512 5.5 Overall Information Extraction 

513 The overall information extraction performance was evaluated by comparing the final extraction results (after named 
 

514 entity recognition, coreference resolution, and named entity normalization) with the final gold standard (see Section 
 

515 5.1). As shown in Table 8, a macro precision, recall, and F-1 measure of 93.2%, 89.6%, and 91.1% was achieved, 
 

516 which indicates that the proposed named entity recognition method is effective in extracting named entities from 
 

517 construction safety regulations, and that the coreference resolution method and the named entity normalization method 
 

518 are effective in addressing referential ambiguities in the text. To provide a comparative benchmark, recent efforts 
 

519 (outside the construction domain), which covered both named entity recognition and resolution of referential 
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520 ambiguities, showed comparable performance results [e.g., 83% precision, 87% recall, and 85% F-1 measure in 
 

521 Agrawal et al. (2022) from the medical domain]. An example of the overall information extraction results is illustrated 
 

522 in Fig. 11. 

 

523 An additional experiment was conducted to further evaluate the effectiveness of the proposed information extraction 
 

524 method (including the three submethods) in resolving referential ambiguities – i.e., the results with and without 
 

525 resolving referential ambiguities were compared. The named entity recognition results from Section 5.2 (i.e., without 
 

526 resolving referential ambiguities) were compared with the final gold standard (which has the coreferents and referring 
 

527 expressions normalized), as per Table 8. The results showed 5.1% (93.2% vs. 88.1%), 10.9% (89.6% vs. 78.7%), and 
 

528 8.9% (91.1% vs. 82.2%) improvement in precision, recall, and F-1 measure, respectively, which indicates the 
 

529 effectiveness of the proposed approach in addressing referential ambiguities. 
 

530 6 Limitations 

531 Five limitations of this research are acknowledged. First, the proposed coreference resolution method is limited in 
 

532 recognizing cataphoras. This is because the proposed deep learning model only considers spans that happen before 
 

533 the current one for identifying potential coreferents. To address cataphoras, the authors plan to further modify the 
 

534 proposed deep learning model, in their future work, to allow for considerations of the spans that happen ahead. Second, 
 

535 this study proposed BiLSTM-based models for named entity recognition and coreference resolution, without testing 
 

536 on other deep learning model structures. Although the BiLSTM-based models are suitable for addressing sequential 
 

537 data, validating the proposed information extraction method, and evaluating the impacts of the features and strategies, 
 

538 they fall short in dealing with long sentences. In future work, the authors plan to explore different types of models, 
 

539 such as transformer-based models, to deal with variable sentence lengths for achieving better extraction performance. 
 

540 Third, like any other dictionary- or ontology-based method, the performance of the proposed named entity 
 

541 normalization method depends on the quality of the selected domain-specific dictionary. As the proposed method is 
 

542 applied to a different regulation or subdomain of safety knowledge, a different dictionary/sections would be used, and 
 

543 hence the performance results may vary, although a similar performance level is expected if the quality/coverage of 
 

544 the dictionary/sections are similar. In their future work, the authors will test the proposed method in extracting 
 

545 information from other documents to further verify if a similar level of performance can be achieved in such case. 
 

546 Fourth, the scope of this study was limited to referential ambiguities; word-sense ambiguities, which are a major 
 

547 source of error during named entity recognition, were not addressed. To further improve the extraction performance, 
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548 the authors plan to conduct word-sense disambiguation, in future work, to determine which sense a word is being used 
 

549 in a particular situation. Fifth, the proposed method was only tested on one source of construction safety regulations 
 

550 – OSHA. In future work, the authors plan to test the proposed method using more construction safety regulatory 
 

551 documents such as the fall-related standards from the American National Standards Institute (ANSI). 
 

552 7 Contributions to the Body of Knowledge 

553 This research offers a deep learning-based information extraction method for automatically extracting named entities 
 

554 that describe fall protection requirements from construction safety regulations for supporting automated field 
 

555 compliance checking and resolving referential ambiguities. The proposed method improves the information extraction 
 

556 methodology and application in the construction domain in five primary ways. First, to the best of the authors’ 
 

557 knowledge, it is the first effort in the construction domain to address referential ambiguities through coreference 
 

558 resolution and named entity normalization. Resolving referential ambiguities is important to maintain consistent 
 

559 expressions in the extracted entities and prevent/reduce referential errors in the information extraction, which could 
 

560 cause serious errors in the compliance checking results. Second, the proposed method uses a combination of three 
 

561 types of features – GloVe embedding, word-level features, and character-level features – to improve the feature 
 

562 representation of the text. Complementing the GloVe embedding features with the proposed word-level and character- 
 

563 level features helps better capture the syntactic differences across different entities, which helps better differentiate 
 

564 these entities. Third, the proposed method leverages both source- and target-domain data, using transfer learning, for 
 

565 enhanced coreference resolution. The use of transfer learning allows the model to leverage the rich syntactic and 
 

566 semantic text patterns from the large-scale general-domain data while adapting these patterns to be closer to those 
 

567 found in the domain-specific text, thereby improving both performance and scalability. Fourth, this study identified a 
 

568 set of entity classes, different types of coreferents, and different types of referring expressions, which were effective 
 

569 in extracting fall protection-related information from OSHA and can be applied in other applications (e.g., extracting 
 

570 information related to other OSHA topics or from other regulations). This new knowledge can bring additional insights 
 

571 to better understand the types of referential ambiguities in this domain-specific text (construction domain or more 
 

572 specifically construction safety domain), and their different syntactic and semantic forms, and how to best resolve 
 

573 these ambiguities for improved document analytics and related artificial intelligence (AI) applications. Fifth, the 
 

574 application of the proposed method could provide a better understanding of construction safety requirements and 
 

575 potential fall protection accidents, and how to improve field compliance and prevent such accidents, considering 
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576 different contexts and scenarios. The proposed deep learning models for named entity recognition, coreference 
 

577 resolution, and named entity normalization – including their features and transfer learning strategies – could also be 
 

578 applied to more accident types such as struck-by and caught-in-between, or to different regulatory documents such as 
 

579 company-level construction safety rules and reports. 
 

580 8 Conclusions and Future Work 

581 This paper proposed a deep learning-based information extraction method to extract named entities from construction 
 

582 safety regulations for supporting automated field compliance checking and to resolve referential ambiguities in the 
 

583 extracted results. The proposed information extraction method consists of three submethods: named entity recognition, 
 

584 coreference resolution, and named entity normalization. For named entity recognition, a BiLSTM-CNN model was 
 

585 proposed and trained to recognize and classify named entities from unstructured text. Three types of features (GloVe 
 

586 embedding, word-level features, and character-level features) were used in the proposed method for improving the 
 

587 extraction performance. For coreference resolution, a deep learning-based model was proposed and trained, using 
 

588 transfer learning strategy to leverage the rich semantics from the source-domain data. Two types of training data, 
 

589 including the CoNLL-2012 dataset from the computational linguistic domain and documents from construction safety 
 

590 regulations, were prepared for transfer learning. For named entity normalization, the proposed method mapped 
 

591 different mentions of an entity to its identifier name by considering the similarity between them. 

 

592 The proposed method was tested on 20 OSHA sections related to fall protection. The proposed named entity 
 

593 recognition method achieved an average precision, recall, and F-1 measure of 91.6%, 88.7%, and 89.9%, respectively, 
 

594 showing better performance than the baseline CRF-based method. The proposed coreference resolution method using 
 

595 model-based alternating training strategy achieved an average B3 precision, B3 recall, and B3 F-1 measure of 77.6%, 
 

596 70.3%, and 73.8%, respectively, which indicates good coreference resolution performance given such complex text. 
 

597 The proposed named entity normalization method achieved an average precision, recall, and F-1 measure of 93.0%, 
 

598 93.0%, and 93.0%, indicating its effectiveness in mapping different mentions to their corresponding identifier names. 
 

599 The performance of named entity recognition and coreference resolution with the three sets of features also 
 

600 outperformed those without these features, which indicates that the proposed features have a positive impact on the 
 

601 extraction performance. The proposed information extraction method achieved an overall precision, recall, and F-1 
 

602 measure of 93.2%, 89.6%, and 91.1%, respectively, which indicates that the proposed coreference resolution method 
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603 and named entity normalization method were effective in addressing the referential ambiguities in the domain-specific 
 

604 text. 

 

605 In their future work, the authors plan to focus their research efforts on four main research directions. First, different 
 

606 deep learning model structures or algorithms could be explored to further enhance the extraction performance. For 
 

607 example, multiple transformer-based models that are able to deal with variable sentence lengths, especially 
 

608 Bidirectional Encoder Representations from Transformers (BERT), can be adapted and trained for coreference 
 

609 resolution. Second, the proposed information extraction method (including all three submethods) could be further 
 

610 tested in extracting requirements from other construction safety regulations. Additional adaptation effort may be 
 

611 needed depending on the experimental results and the variability in the text characteristics. Third, the authors will 
 

612 further adapt the proposed method to extract requirements about other types of accidents. Such application could 
 

613 provide additional insights into the generalizability of the proposed method and could help identify ways to improve 
 

614 the field compliance checking process. Fourth, beyond extracting named entities, the authors will develop a relation 
 

615 extraction method, to further add the needed interlinks to the named entities extracted in this work. These interlinks 
 

616 are important in determining compliance, because they would help describe the requirements in terms of the spatial 
 

617 relations between site objects, interactions of workers and their environment, and comparisons of the site objects’ 
 

618 attributes with certain values. With the help of such interlinks, the extracted safety requirements can be represented in 
 

619 a structured way for supporting subsequent analytics. All the aforementioned efforts would lead to a better 
 

620 understanding of how to automatically analyze construction safety regulations and how to advance the underlying 
 

621 models for supporting automated and AI-based field compliance checking processes. 
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762 Table 1. Examples of most frequent entities in each pre-defined class. 
Class Examples 

Person Employer, employee, competent person, qualified person, engineer 

Equipment Scaffold, ladder, safety net system, lanyard 

Reference This section, paragraph (k) of 1926.502, paragraphs (a), (b), or (c) 

Hazard Falling, damage, snag of clothing, tripping, shake 

Facility Beam, roof, foundation, metal decking, other structure 

Location Walking/working surface, work area, level 

Operation Hoisting, dropping, rigging, lifting 

Material Reinforcing steel, wood, metal, debris 

Property Weight, length, diameter, direction, speed 

Date January 1, 1998, Apr. 6 

Other attribute In use, center-to-center, under construction 

Quantity value 6, 3.3, ½, half, one 

Quantity unit Feet, times, meters, inches, mps 

Other entity Fall protection plan, requirement, test 

763 

764 Table 2. Examples of different types of coreferents. 
Type of coreferent Description Example 

Demonstrative 

pronoun 

Comparison exists with 

something that occurred earlier. 

In the sentence “scaffold strength(1) is less than that(2) required by 

paragraph (a) of this section”, the anaphor (2) refers to (1). 

 

Discontinuous set 
Pronoun refers to more than one 

antecedent. 

In the sentence “lifelines(1), lanyards(2), and deceleration devices(3) 

should be … as they(4) would be …”, pronoun (4) refers to (1), (2), 

and (3) together as a single entity. 

One anaphora 
Pronoun “one” refers to 
antecedent. 

In the sentence “that component(1) should be replaced by a stronger 
one(2)”, anaphora (2) refers back to (1). 

Definite pronominal 
Pronoun “it” refers to 

antecedent. 

In the sentence “sliding hitch knot(1) should never be used because 
it(2) is unreliable in stopping a fall”, pronoun (2) refers back to (1). 

 

Adjectival pronominal 

Coreferent refers to adjective 

form of entity that occurred 

earlier. 

In the sentence “under the walking/working surface(1), but in no case 

more than 30 feet below such level(2)”, (1) is an adjectival form that 

has been referred to by (2). 

Cataphora Opposite of anaphora. 
In the sentence “only those items(1) specifically designed as 
counterweights(2)”, (1) refers to (2) that precedes it. 

 

Inferable or bridging 

anaphora 

Coreferent refers to the 

antecedent ambiguously through 

context. 

In the sentence “the person making the determination and 

certification(1)… until inspected and determined by a competent 

person(2) shall be removed from service”, (2) refers to (1) though not 
stated explicitly, but can be inferred by their context. 

765 

766 Table 3. Examples of different types of referring expressions. 
Type of referring expression Example of two expressions referring to same entity 

Possessive “edge of roof” and “roof edge” 

Article “edge of the higher level” and “edge of a higher level” 

Hyphen “double-pole scaffold” and “double pole scaffold” 

Synonym “metatarsal protection” and “metatarsal guards” 

Space “eye splice” and “eyesplice” 

Active-passive voice “complete system” and “completed system” 

Detailed description omitted “two-point adjustable suspension scaffold” and “two-point scaffold” 

Abbreviation “controlled decking zone” and “CDZ” 

767 

768 
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Table 4. Selected OSHA sections. 
Topic Section(s) 

General requirement 1926.451, 1926.501, 1926.1051 

Fall protection systems 1926.502, 1926.760, 1926.1423, 1926 Subpart R App G 

Guardrail systems 1926 Subpart M App B 

Personal fall arrest systems 1926 Subpart M App C 

Positioning device systems 1926.104, 1926.105, 1926 Subpart M App D 

Personal protective equipment 1926.95, 1926.96, 1926.100 

Scaffolds 1926.452, 1926 Subpart L App A 

Ladders 1926.1053 

Aerial lifts 1926.453 

Housekeeping 1926.25 

 

Table 5. Example clause annotated using BIO tagging scheme. 
Original sentence Annotated sentence 

Each employee on a 

walking/working surface shall 

be protected from objects falling 

through holes by covers . 

<O>Each</O> <B-PER>employee</B-PER> <O>on</O> <O>a</O> <B- 

LOC>walking/working</B-LOC> <I-LOC>surface</I-LOC> <O>shall</O> 

<O>be</O> <O>protected</O> <O>from</O> <B-ENT>objects</B-ENT> 
<O>falling</O> <O>through</O> <B-ENT>holes</B-ENT> <O>by</O> <B- 

EQU>covers</B-EQU> <O>.</O> 
Note: “B”=beginning of an entity; “I”=inside of an entity; “O”=absence of an entity; PER=person; EQU=equipment; LOC= location; and 

ENT=other entity. 

 
Table 6. Performance of proposed named entity recognition method compared to baseline. 

Class 
CRF (baseline) BiLSTM-CNN 

Precision Recall F-1 measure Precision Recall F-1 measure 

PER 93.3% 75.7% 83.6% 95.5% 95.5% 95.5% 

EQU 65.9% 88.9% 75.7% 92.9% 96.8% 94.8% 

REF 74.2% 85.2% 79.3% 84.5% 97.3% 90.4% 

HAZ 76.9% 43.5% 55.6% 91.4% 78.0% 84.2% 

FAC 75.9% 47.3% 58.3% 88.4% 92.4% 90.4% 

LOC 68.7% 61.2% 64.7% 94.6% 91.8% 93.2% 

OPE 46.5% 29.9% 36.4% 84.7% 81.3% 83.0% 

MAT 62.5% 30.6% 41.1% 97.3% 92.3% 94.7% 

PRO 77.0% 73.8% 75.4% 86.5% 92.8% 89.5% 

DAT 100.0% 100.0% 100.0% 100.0% 80.0% 88.9% 

ATT 80.1% 47.6% 59.7% 85.6% 64.4% 73.5% 

QUA 99.5% 92.2% 95.7% 99.0% 97.6% 98.3% 

UNI 94.3% 94.3% 94.3% 96.2% 98.1% 97.1% 

ENT 59.4% 56.6% 58.0% 85.4% 84.1% 84.7% 

Macro average 76.7% 66.2% 69.8% 91.6% 88.7% 89.9% 

Note: PER=person; EQU=equipment; REF=reference; HAZ=hazard; FAC=facility; LOC=location; OPE=operation; MAT=material; 
PRO=property; DAT=date; ATT=other attribute; QUA=quantity value; UNI=quantity unit; and ENT=other entity. 
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Table 7. Examples of named entity normalization results. 
 

Different mentions 

 

Entity name after normalization 

Entity class 

tag after 
normalization 

walking/working level, walking/working surface, work 

surface, such level, work platform 
walking_working_surface LOC 

supporting formwork, supporting surface, their 

member, supporting structure 
supporting_structure FAC 

the member to which they are connected, connected 
object, itself, object 

connected_member ENT 

registered professional engineer, safety monitor, the 

person making the determination and certification, 
competent person 

 

competent_person 

 

PER 

qualified person with appropriate education and 

experience, qualified person 
qualified_person PER 

personal protective equipment, such equipment, PPE personal_protective_equipment EQU 

two-point scaffolds, scaffold, two-point adjustable 

suspension scaffold 
two_point_adjustable_suspension_scaffold EQU 

 

Table 8. Comparisons of the proposed method before and after resolving referential ambiguities. 

 
Gold standard for 

comparison 

Proposed Method 

NER (%) CR (%) NEN (%) NER + CR + NEN (%) 

P R F-1 B3 P B3 R B3 F-1 P R F-1 P R F-1 

Named entity 

recognition (NER) 

gold standard 

 

91.6 

 

88.7 

 

89.9 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

Coreference resolution 

(CR) gold standard 
NA NA NA 77.6 70.3 73.8 NA NA NA NA NA NA 

Named entity 

normalization (NEN) 
gold standard 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

93.0 

 

93.0 

 

93.0 

 

NA 

 

NA 

 

NA 

Final gold standard 

(after resolving 

referential 

ambiguities) 

 
88.1 

 
78.7 

 
82.2 

 
NA 

 
NA 

 
NA 

 
NA 

 
NA 

 
NA 

 
93.2 

 
89.6 

 
91.1 

Note: P=precision; R=recall; F-1=F-1 measure; B3 P=B3 precision; B3 R=B3 recall; B3 F-1=B3 F-1 measure; NA=not applicable. 
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786 Fig. 1. Research methodology. 

 

787 Fig. 2. Application of proposed information extraction method, with example. 

 

788 Fig. 3. Architecture of proposed BiLSTM-CNN model for named entity recognition. 

 

789 Fig. 4. Architecture of proposed deep learning model for coreference resolution. 

 

790 Fig. 5. Distribution of entity classes. 

 

791 Fig. 6. Examples of annotated clauses for coreference resolution: (a) Example clause annotated by following the 
 

792 tagging scheme of the CoNLL-2012 dataset; and (b) Coreferents in one example clause and its subclause. 

 

793 Fig. 7. Performance of proposed named entity recognition method with and without the three types of features. 

 

794 Fig. 8. Confusion matrix for proposed named entity recognition method. 

 

795 Fig. 9. Performance of proposed coreference resolution method: (a) Comparison of different transfer learning 
 

796 strategies; and (b) Comparison with and without the three types of features. 

 

797 Fig. 10. Similarity of entity names in the embedding space. 

 

798 Fig. 11. Example of extracted semantic information elements using the proposed information extraction method. 


