
1  

 

1 Deep learning-based relation extraction and knowledge graph-based representation of construction safety 
 

2 requirements 
 

3 Xiyu Wang1 and Nora El-Gohary2 
 

4 1 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews 

5 Ave., Urbana, IL 61801, United States. Email: xiyuw2@illinois.edu 

6 2 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews 

7 Ave., Urbana, IL 61801, United States. Email: gohary@illinois.edu 

8 
 

9 Abstract 

10 Field compliance checking aims to check the compliance of site operations with applicable construction safety 
 

11 regulations for detecting violations. Relation extraction provides an automated solution to extract relations that 
 

12 describe construction safety requirements from unstructured text. However, previous relation extraction efforts are 
 

13 limited in their extraction capabilities, representation, and automation. To address this gap, this paper proposes a deep 
 

14 learning-based method to automatically extract and represent relations that describe fall protection requirements. The 
 

15 proposed method: (1) uses a CNN-based model, with pre-trained word and position embeddings, to automatically 
 

16 extract domain-specific relations, and (2) represents the extracted requirements in the form of knowledge graph-based 
 

17 queries, which helps decompose complex requirements into manageable units while keeping these units connected in 
 

18 a scalable graph structure. The proposed method was tested on 20 OSHA sections, and has achieved 87.5% precision, 
 

19 83.4% recall, and 85.4% F-1 measure, which indicates good relation extraction performance. 

 

20 Keywords: Relation extraction; Construction safety; Fall protection; Field compliance checking; Deep learning; 
 

21 Knowledge graphs; Word embeddings. 
 

22 1 Introduction 

23 Field compliance checking aims to detect violations to construction safety regulations to protect workers from 
 

24 potential safety incidents. This is because a large portion of construction site accidents occur as a result of field 
 

25 noncompliances, which usually include damaged or no personal protective equipment (PPE); inoperative or 
 

26 inappropriate equipment; and wrong poses, operations, or work sequences (Chi and Lin 2018). For fall fatalities in 
 

27 particular, according to an analysis of the Construction FACE Database (CFD), noncompliance of personal fall arrest 
 

28 systems has caused more than 77% of all deaths (Dong et al. 2017). To identify such field noncompliances, different 
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29 solutions have been proposed for mitigating the risks and consequences of potential safety incidents, among which 
 

30 utilizing computer vision techniques for safety checking has attracted an increasing amount of research attention. 
 

31 These research efforts include using computer vision techniques to detect personal protective equipment (PPE) (Nath 
 

32 et al. 2020; Fang et al. 2020a), recognize workers’ operations (Roberts et al. 2020; Tang et al. 2019), and track the 
 

33 trajectory of labor and equipment onsite (Tang et al. 2020). 

 

34 However, compared with the rich body of literature in applying computer vision techniques, limited studies have 
 

35 explored the use of natural language processing (NLP) techniques to analyze construction safety documents. For 
 

36 example, Feng and Chen (2021) proposed a deep learning-based framework to extract extract event-related 
 

37 information (e.g., date, location, and accident type) from accident news reports for construction safety management. 
 

38 Rupasinghe and Panuwatwanich (2021) proposed a rule-based method to mine hazard information from accident 
 

39 reports. Baker et al. (2020) proposed approaches to extract injury precursors using NLP techniques (a set of text 
 

40 patterns). Zhong et al. (2020c) presented a deep learning-based framework to mine hazard knowledge from hazard 
 

41 records. Chi et al. (2017) proposed a semi-automated approach to develop a gazetteer that can eventually support 
 

42 information extraction from construction safety regulations. Collectively, these efforts either focused on the analysis 
 

43 of injury and accident reports or focused on the extraction of hazard factors. There is, thus, a lack of research efforts 
 

44 that focused on automatically extracting requirements from construction safety regulations for supporting field 
 

45 compliance. 

 

46 Information extraction offers an opportunity to automatically extract safety requirements. In recent years, there is a 
 

47 growing body of literature in the construction domain that aims to propose different methods for extracting information 
 

48 from various construction regulatory documents, including but not limited to energy conservation codes, quality 
 

49 standards, and general building codes (Zhong et al. 2022; Moon et al. 2022; Zhong et al. 2020d; Schönfelder and 
 

50 König 2021; Zhang and El-Gohary 2021a; Ren and Zhang 2021; Moon et al. 2021; Guo et al. 2021; Zhong et al. 2020a; 
 

51 Song et al. 2018; Zhou and El-Gohary 2017; Zhang and El-Gohary 2013). These methods mainly vary in two aspects: 
 

52 (1) the approach for extraction, e.g., rule-based (Zhang and El-Gohary 2013; Lee at al. 2019b; Ren and Zhang 2021), 
 

53 machine learning-based (ul Hassan et al. 2020; Kim and Chi 2019), or deep learning-based (Zhang and El-Gohary 
 

54 2021b; Schönfelder and König 2021; Zhong et al. 2020d). These efforts have laid a solid foundation for extracting 
 

55 information from construction safety regulations, with deep learning approaches offering the highest potential for 
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56 limiting human involvement in developing the information extraction methods (e.g., eliminating the need for 
 

57 handcrafted rules); and (2) the targeted semantic information elements to be extracted, e.g., building-code 
 

58 requirements (Zhang and El-Gohary 2021a), utility spatial configurations from utility accommodation policies (Xu 
 

59 and Cai 2019), or construction procedural constraints and attributes for quality compliance (Zhong et al. 2022). 

 

60 However, most of the aforementioned efforts mainly either focused on extracting named entities or considered 
 

61 relations as a type of information element (Wu et al. 2022; Zhong et al. 2020d; Ren and Zhang 2021; Schönfelder and 
 

62 König 2021), which makes them limited in capturing the different types of relation classes and in expressing the rich 
 

63 semantics in the original documents. More research studies are therefore needed to bridge five main knowledge gaps 
 

64 in relation extraction for construction domain applications. First, existing relation classes in other relation extraction 
 

65 efforts (e.g., “Place_Of_Birth” in the linguistics domain) cannot be directly transferred, because they are not suitable 
 

66 to describe situations in the construction safety domain. Thus, relations that describe construction safety requirements 
 

67 need to be identified and extracted. Second, existing efforts (e.g., Wu et al. 2022) in the construction domain are 
 

68 limited in considering non-verbal-predicate relations, redundant relations, and relation directions. Third, most of the 
 

69 existing efforts in the construction domain fall short in their scalability and generalizability, because they require a 
 

70 heavy amount of human assistance. Fourth, limited efforts in the construction domain have explored generating query 
 

71 graphs for knowledge graph-based reasoning directly from text, which would help identify new or missing information 
 

72 not explicitly expressed in the original text for subsequent analysis. Fifth, limited attention has been paid to developing 
 

73 queries that can support deep learning-based automated reasoning, especially hyper-relational queries for representing 
 

74 nested relations. 

 

75 To address these gaps, this paper proposes a new method to automatically extract and represent safety requirements 
 

76 from construction safety regulations. The proposed method: (1) uses deep learning to automatically extract domain- 
 

77 specific relations (e.g., Located_At and Engage_In) about fall protection requirements from the regulations to add 
 

78 interlinks to the isolated named entities extracted in Wang and El-Gohary (2022); (2) uses word- and position- 
 

79 embedding features to improve the relation extraction performance; and (3) represents the extracted safety 
 

80 requirements (both relations and named entities) in the form of query graphs to facilitate future discovery of implicit 
 

81 or missing information, as well as knowledge graph-based compliance reasoning. The proposed method was tested 
 

82 using fall-related sections from Occupational Safety and Health Administration (OSHA) 29 CFR 1926 (OSHA 2020). 
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83 2 Background 

84 2.1 Current Practices for Automated Field Compliance Checking 

85 Automated field compliance checking aims to automatically check whether workers’ behaviors and their surrounding 
 

86 environment are adhering to applicable safety regulations, norms, procedures, and guidelines (Khalid et al. 2021). In 
 

87 addition to the research efforts that utilize computer vision techniques (described in Section 1), existing research 
 

88 efforts and construction site practices have explored using various emerging technologies, such as BIM, wearable 
 

89 devices, and smart systems (e.g., Awolusi et al. 2018; Jebelli et al. 2018; Cheung et al. 2018; Zhang et al. 2017; Zou 
 

90 et al. 2017; Park et al. 2013). However, the majority of these systems or applications are limited in supporting 
 

91 automated field compliance checking because they (1) mainly focused on checking violations in the design to identify 
 

92 potential hazards or risks (e.g., Kincelova 2020); (2) developed ontologies to represent a set of safety checking rules, 
 

93 but often lacked in capturing information about real-time site operations to detect field noncompliance (e.g., Li et al. 
 

94 2022); and/or (3) were designed as management tools [e.g., HCSS Safety field app (HCSS 2022)] for organizing 
 

95 incident reports, documenting observations from coworkers, and/or collecting workers’ physical states, rather than 
 

96 capturing and comparing site information with safety requirements to detect noncompliance. 

 

97 On the other hand, the majority of BIM software systems available on the market that aim to conduct automated 
 

98 compliance checking are limited in supporting construction field safety checking scenarios. For example, safety 
 

99 checking using Solibri (Solibri 2021) relies heavily on (1) BIM models that are typically covering design information 
 

100 and are lacking real-time field information on construction operations (equipment, labor, etc.); and (2) hard-coded 
 

101 safety requirements embedded in the software, which require manual effort to read the safety regulations and encode 
 

102 the requirements in computable rule formats. Other commercial software systems that can be used in the construction 
 

103 phase are limited in compliance checking scope and generalizability to address various scenarios. For example, 
 

104 smartvid.io (ECT Team 2021) mainly considers checking the existence of PPE such as gloves, reflective vests, and 
 

105 footwear (Nath et al. 2020), but it cannot check compliance with applicable safety requirements, which express 
 

106 different conditions and exceptions for various fall-related scenarios. Therefore, more research efforts are needed to 
 

107 develop methods for identifying noncompliances automatically for diverse accident scenarios in the field. Extracting 
 

108 requirements from construction safety regulations and representing them in a structured and computer-processable 
 

109 format is the first step towards such an automated field checking process. 
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110 2.2 Relation Extraction 

111 Relation extraction is the task of recognizing and classifying semantic relations from unstructured text into several 
 

112 predefined classes (Nguyen and Grishman 2015). For example, in the sentence “Defective safety net components 
 

113 shall be removed from service”, relation extraction would recognize and classify the relation between 
 

114 “safety_net_component” and “defective” as “Is”, and the relation between “safety_net_component” and “service” as 
 

115 “Keep_From”. Early relation extraction efforts have proposed various rule-based and traditional machine learning- 
 

116 based (as opposed to deep learning-based) methods (Wang et al. 2012; Zhang et al. 2009; Culotta and Sorensen 2004), 
 

117 which have achieved good performance but have typically required much human effort to develop the extraction rules 
 

118 or conduct feature engineering. 

 

119 In recent years, outside the construction domain, deep learning-based methods have been used for relation extraction 
 

120 and many novel neural network models have been proposed (Jiang et al. 2020). Among them, convolutional neural 
 

121 networks (CNN)-based models and recurrent neural networks (RNN)-based models have received high popularity and 
 

122 reached good and comparable performance levels (Miwa and Bansal 2016). For example, Hendrickx et al. (2019) 
 

123 achieved an F-1 measure of 84.1% in relation extraction from the SemEval-2010 dataset using a CNN-based model 
 

124 and 84.0% using an RNN-based model. Similar performance was shown for variants of the two model types as well. 
 

125 For example, Shen and Huang (2016) achieved an F-1 measure of 85.9% on the same dataset using an Attention-based 
 

126 CNN model. The entity-aware Attention bidirectional long short term memory (BiLSTM) (Lee et al. 2019a), an RNN- 
 

127 based model, achieved an F-1 measure of 85.2% using the same dataset. Another branch of research efforts has also 
 

128 attempted to improve performance by adding sentence hierarchies such as dependency paths as additional features 
 

129 (Yu et al. 2020; Cai et al. 2016). 

 

130 Depending on the types of supervision received, those deep learning-based methods can be further divided into two 
 

131 categories: distant and fully supervised methods. Distant supervised methods learn from unlabeled data with the help 
 

132 of some external knowledge bases. For example, Mintz et al. (2009) used the Freebase (Bollacker et al. 2008), a 
 

133 semantic knowledge base, for distant supervised learning. In general, research on distant supervised methods attempts 
 

134 to experiment with different deep learning architectures or different knowledge bases for performance improvement. 
 

135 Example efforts that adopt either CNN-based models or RNN-based models but receive different levels of supervision 
 

136 include heterogeneous representations for neural relation extraction (HRERE) (Xu and Barbosa 2019), language 
 

137 understanding with knowledge-based embeddings (LUKE) (Yamada et al. 2020), and advanced prototypical networks 
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138 (Proto-ADV) (Gao et al. 2019). Fully supervised relation extraction methods, on the other hand, are more suitable for 
 

139 construction applications, because (1) they do not require external knowledge bases, which are currently unavailable 
 

140 in the construction domain; and (2) customized relation classes can be easily incorporated through additional 
 

141 classes/labels. 
 

142 2.3 Knowledge Graphs 

143 A knowledge graph is a multi-relational graphical network that uses different relations as directed edges to connect 
 

144 concepts or entities for representing information (e.g., information extracted from text or databases) in a semantically 
 

145 rich and structured way (Bellomarini et al. 2019). Such graphical network structure not only helps express relational 
 

146 connectivity in an intuitive way, but also helps discover implicit, missing, or new information through edge traversal, 
 

147 because some relations may not be explicitly expressed or some entities may be omitted in the original data (e.g., 
 

148 natural language sentences) (Chen at al. 2020c; Ji et al. 2021). Knowledge graphs thus show three significant 
 

149 advantages, which are especially beneficial for field compliance checking applications. First, knowledge graphs can 
 

150 store relations between entities explicitly due to its graph-like structure, unlike other representation approaches such 
 

151 as traditional relational databases in which entities are stored in the form of tables and are linked by separate linking 
 

152 tables that cannot represent the exact semantic relations. Second, knowledge graphs typically allow more flexibility 
 

153 to easily add or remove classes and relations from the knowledge-graph schema. Since construction safety regulations 
 

154 are becoming more stringent as safety knowledge improves (Fang et al. 2020a), using knowledge graphs requires less 
 

155 manual work to keep up with updates. Third, knowledge graphs allow for faster information retrieval due to their 
 

156 structure, compared with other representation approaches (Holzschuher and Peinl 2013). For example, Chen et al. 
 

157 (2020a) showed that knowledge graphs have outperformed traditional relational databases in querying and retrieving 
 

158 transportation data (Chen et al. 2020a). This is because information retrieval using knowledge graphs usually starts 
 

159 from the related named entities, and only scans relations in their neighborhood for desired information. 

 

160 Due to their aforementioned characteristics, and hence the promising performance in various applications such as 
 

161 knowledge retrieval, question-answering, knowledge recommendation, and knowledge visualization, knowledge 
 

162 graphs have been successfully deployed by many leading companies to organize their business data such as Google, 
 

163 Amazon, eBay, IBM, and LinkedIn (Chen at al. 2020c; Chen et al. 2020b). Multiple open knowledge graphs were 
 

164 published as well, such as DBpedia, YAGO, and Google’s Knowledge Graph (Ji et al. 2021). Recently, knowledge 
 

165 graphs have been applied in more research fields. For example, some research efforts have attempted to develop 
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166 knowledge graphs to model hazardous chemical knowledge for risk management (Zheng et al. 2021). In the 
 

167 construction domain, a few efforts focused on developing knowledge graphs for a number of applications. For example, 
 

168 Chen and Luo (2019) constructed an ontology-based knowledge graph using noun phrases extracted from different 
 

169 abstracts in the construction literature for bibliometric analysis. Fang et al. (2020a) developed a small-scale knowledge 
 

170 graph for modeling detected site objects with spatial relations. Jiang et al. (2021) constructed a small-scale knowledge 
 

171 graph for representing the connections among different construction safety standards (e.g., “Specification of 
 

172 Inspection of Construction Hoist Equipment” “instance_of” “Machinery Management”). 
 

173 2.4 Query Representation for Knowledge Graph-Based Reasoning 

174 Reasoning over knowledge graphs aims to infer new information or identify the target information from large amounts 
 

175 of available facts represented in a knowledge graph (Chen et al. 2020b). Traditional reasoning methods depend heavily 
 

176 on external databases and query languages, which can be time-consuming and subject to the quality and coverage of 
 

177 existing knowledge graphs. On the contrary, neural reasoners are faster and can better adapt to the incompleteness in 
 

178 existing knowledge graphs, which makes them potentially efficient for field compliance checking. A research area 
 

179 that has recently attracted research attention is query representation for neural reasoning (Alivanistos et al. 2021; Yu 
 

180 and Yang 2021), especially to represent arbitrary logic operators such as conjunction (∧), disjunction (∨), and negation 
 

181 (¬) together with other triples in complex query graphs. This is particularly important for safety compliance reasoning, 
 

182 because construction safety requirements cover different situations and are typically represented using multiple logic 
 

183 operators. For example, the query graph for the sentence “the attachment point of the body harness shall be located in 
 

184 the center of the wearer’s back near shoulder level, or above the wearer’s head” would contain two locations for the 
 

185 attachment point connected by a disjunction operator. 

 

186 There exist two ways to represent query graphs that involve logic operators: (1) as directed acyclic graphs with 
 

187 symbolic logic operators. Knowledge graph-based reasoning methods then seek to retrieve subgraphs that match with 
 

188 the query graphs. However, subgraph matching is relatively sensitive to data quality, producing correct answers largely 
 

189 when facts in the knowledge graph are complete and accurate, which is not the case in real-world knowledge graphs 
 

190 (Ren et al. 2020; Chen et al. 2020b; Zhu et al. 2022); and (2) as dependency or computation graphs to be mapped to 
 

191 an embedding space together with facts from the knowledge graph (Ren et al. 2020; Ren and Leskovec 2020). 
 

192 Knowledge graph-based reasoning methods then seek to identify entities or relations which are nearest to the queries 
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193 in the embedding space as answers to be returned. Such embedding methods can robustly handle missing relations 
 

194 and have achieved good performance in various reasoning tasks such as knowledge graph completion (Zhu et al. 2021). 
 

195 3 State of the Art and Knowledge Gaps in Relation Extraction 

196 In the area of relation extraction, in addition to the efforts outside the construction domain as discussed in Section 2, 
 

197 there is a growing number of research efforts undertaken to extract relations from construction documents. For 
 

198 example, Zhang and El-Gohary (2013) proposed a semantic rule-based natural language processing approach to 
 

199 automatically extract requirements, including quantitative relations and comparative relations, from building codes. 
 

200 Ren and Zhang (2021) proposed a semantic rule-based method with a set of natural language processing techniques 
 

201 to extract successive and parallel relations from construction procedural documents. Liu and El-Gohary (2021) 
 

202 proposed a semantic neural network ensemble–based dependency parsing method to automatically extract dependency 
 

203 relations between bridge-related entities. Zhong et al. (2020d) proposed a deep learning-based method to classify 
 

204 relations between entities about construction procedural requirements into seven predefined categories. Despite the 
 

205 contributions of these efforts, five gaps of knowledge exist. 

 

206 First, existing relation classes in other relation extraction efforts are not sufficient/suitable to describe the complex 
 

207 situations in the construction safety domain, and thus cannot be directly applied. For example, only nine relation 
 

208 classes such as “Cause-Effect” and “Part-Whole” have been considered in the SemEval-2010 dataset, six relation 
 

209 classes such as “Agent-Artifact” and “Organization-Affiliation” have been considered in the ACE05 dataset (Walker 
 

210 et al. 2006), and 24 relation classes such as “Contain” and “Place_Of_Birth” have been considered in the New York 
 

211 Times dataset (Riedel et al. 2010). Also, as can be inferred from these examples, which are all from relation extraction 
 

212 efforts outside of the construction domain, many of the existing relation classes in these efforts can be either too 
 

213 general or irrelevant to describe construction safety requirements. Similarly, existing relation classes from other 
 

214 construction subdomains cannot be directly applied to construction safety applications either. This is because relations 
 

215 in  domain-specific  applications  tend  to  be  specific and  can  vary  in  semantics  and  detail  from one 
 

216 subdomain/application to another. For example, construction safety regulations can include interactions between the 
 

217 workers and their environment. Thus, for instance, relations describing construction procedural constraints [e.g., the 
 

218 seven relations such as “Before”, “Start”, and “During” in (Zhong et al. 2020d)] are not sufficient to describe those 
 

219 interactions. In addition, most of the existing research efforts in the construction domain paid limited attention to the 
 

220 directions of relations. However, in natural language sentences, each relation often has two associated directions (e.g., 



9  

221 “support” and “supported by” can both indicating a relation of “Support”), which need to be inferred from the context 
 

222 for accurate representation of the requirement semantics. 

 

223 Second, most of the existing relation extraction methods, especially the research efforts in the construction domain, 
 

224 are limited in considering non-verbal-predicate or redundant relations. On one hand, existing efforts mainly focus on 
 

225 extracting simple predicates (i.e., verbs) as relations (e.g., Wu et al. 2022). However, relations sometimes exist not 
 

226 only in the form of predicates, in which case extracting merely predicates can lead to missing information. For example, 
 

227 “Same_As” is an important type of relation that describes the comparison between entities, but it cannot be extracted 
 

228 using methods that only consider predicates as relations. Missing such information in the extracted safety requirements 
 

229 could lead to missing the detection of noncompliance instances and eventually serious accidents onsite. On the other, 
 

230 current research efforts extract relations without considering that different expressions can be used to refer to the same 
 

231 relation (e.g., Wu et al. 2022). For example, relations such as “Conform_To” and “Meet” can both express that the 
 

232 compliance checking subject should be compliant to a specific requirement; however, they are considered as different 
 

233 relations in the extracted requirements using the existing extraction methods. 

 

234 Third, most of the existing relation extraction methods in the construction domain still rely heavily on human 
 

235 assistance, thus can fall short in their scalability and generalization. On one hand, rule-based information/relation 
 

236 extraction methods (e.g., Zhang and El-Gohary 2015; Xu and Cai 2019; Ren and Zhang 2021; Wu et al. 2022) require 
 

237 hand-crafted rules. On the other hand, traditional machine learning-based (as opposed to deep learning-based) 
 

238 extraction methods (e.g., Liu and El-Gohary 2017; ul Hassan et al. 2020) require highly engineered features that are 
 

239 obtained through trial and error. Only a limited number of efforts have explored deep learning approaches (e.g., Zhong 
 

240 et al. 2020d; Zhang and El-Gohary 2021b; Schönfelder and König 2021). More research efforts are needed to further 
 

241 explore the use of deep learning (especially fully supervised deep learning, as described in Section 2.2) in relation 
 

242 extraction – for example to explore the use of feature embeddings to enhance the extraction capabilities and 
 

243 performance. 

 

244 Fourth, there is a lack of information extraction efforts that allow a direct pipeline to generate queries for discovery 
 

245 of new information and improved analytics using knowledge graphs, which is especially needed for regulation 
 

246 analytics. Knowledge graphs use a graphical network to represent relations as interlinks to connect concepts or entities 
 

247 for maintaining the rich semantics in the original data (Bellomarini et al. 2019). Due to the ability to traverse through 
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248 edges, reasoning over such graphical structure can help discover new relations or entities that are not explicitly 
 

249 expressed (e.g., spatial relations that were not identified from site images, or omissions of named entities in the text) 
 

250 (Chen at al. 2020c; Ji et al. 2021), which are important in identifying noncompliance instances. Thus, knowledge 
 

251 graphs and queries have been used in compliance-related applications outside of the construction domain. For example, 
 

252 Kaltenboeck (2022) developed queries based on different European laws for international-business applications. In 
 

253 the construction domain, Fang et al. (2020b) converted a checklist of unsafe behavior rules into Cypher queries to 
 

254 identify hazards in a knowledge graph, which stores detected site information, for improved hazard identification. 
 

255 However, most queries from previous knowledge graph-based reasoning efforts were developed manually, thus are 
 

256 small in scale [e.g., six rules in Fang et al. (2020b)]. There is a lack of efforts that use NLP techniques to directly 
 

257 create queries from construction-domain text for supporting knowledge graph-based reasoning. 

 

258 Fifth, studies in query representations are needed for developing query graphs that can support deep learning-based 
 

259 field compliance reasoning. Queries in most of the previous efforts were developed in a traditional way using some 
 

260 particular query languages such as SPARQL and GQL. Reasoning using such queries relies heavily on external 
 

261 databases and query engines, requires longer processing time, and can be dependent on the quality of knowledge 
 

262 graphs, which can eventually impede the effectiveness of field compliance checking. There are a few research efforts 
 

263 on developing query graphs to perform deep learning-based reasoning directly in the embedding space. However, 
 

264 despite considering the conjunction and disjunction logic operators, these efforts paid less attention to hyper-relational 
 

265 queries or nested relations (Alivanistos et al. 2021; Yu and Yang 2021), which are important for accurately 
 

266 representing the extracted safety requirements. 
 

267 4 Proposed Method for Relation Extraction 

268 The proposed information extraction and information modeling method uses deep learning models to automatically 
 

269 extract domain-specific relations and represent the extracted safety requirements in a semantically rich and structured 
 

270 way. The proposed relation extraction method seeks to automatically identify semantic relations such as “Break” and 
 

271 “Tip_Over” from unstructured text, and classify them into several predefined relation classes such as “Fail” for 
 

272 normalizing different expressions that refer to the same relation, as illustrated in Fig. 1. A total of 56 relation classes 
 

273 were first identified based on a thorough review of relevant documents and research efforts. After predefining the 
 

274 relation classes and preprocessing the raw text, a deep learning-based model was developed to automatically recognize 
 

275 and classify relations based on their syntactic and semantic features. In developing the relation extraction model, two 
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276 alternative deep learning models were tested: CNN-based (Attention-based CNN) and RNN-based model (Entity- 
 

277 aware Attention BiLSTM). These two types of models were selected for testing because they are two mature types of 
 

278 deep learning models that have achieved comparable performance in the computational linguistics domain (see Section 
 

279 2.2) but that also have different focuses and merits (see Section 2.2), thus a comparison of the two can help provide 
 

280 insights in terms of which structures, layers, or techniques are more effective in addressing complex domain-specific 
 

281 text, which can ultimately lead to optimized model structures specifically for tasks in the construction safety domain. 
 

282 Additional deep learning models, such as transformer-based models, can also be tested in future work, as discussed in 
 

283 Section 6. Pre-trained features were used to leverage the rich semantics of these features, which were obtained using 
 

284 a large amount of annotated data from the computational linguistics domain. Two state-of-the-art static word 
 

285 embeddings were selected and incorporated into the proposed method for comparative evaluation: the continuous bag- 
 

286 of-words (CBOW) embedding (Mikolov et al. 2013) and the global vector (GloVe) embedding (Pennington et al. 
 

287 2014). After relation extraction, all the extracted requirements [including relations extracted in this study and named 
 

288 entities extracted in (Wang and El-Gohary 2022)] were represented in the form of knowledge graph-based queries. 
 

289 Fig. 2 summarizes the research methodology, which includes six primary tasks: relation identification, text 
 

290 preprocessing, feature preparation, relation extraction, knowledge graph-based relation representation, and evaluation. 
 

291 
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An example to further illustrate the application of the proposed relation extraction method is shown in Fig. 3. 

 

Fig. 1. Example relations extracted from an OSHA clause. 

 
 

Fig. 2. Research methodology. 
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299 

300 Fig. 3. Application of proposed relation extraction method, with example. 

301 

302 4.1 Relation Identification 

303 A review of 20 OSHA sections related to fall protection and of previous efforts on ontology-based modeling of 
 

304 construction safety knowledge was conducted to identify the main semantic relations that are needed to represent fall 
 

305 protection requirements (Zhong et al. 2020b; Xing et al. 2019; Lu et al. 2015; Zhang et al. 2015). A total of 56 relation 
 

306 classes were identified, which aim to cover the main relations without redundant expressions. They were further 
 

307 grouped into five main types: (1) comparative or spatial relations, which describe comparisons or spatial locations, 
 

308 such as “Above” and “Below”; (2) interaction relations, which describe the interactions of the workers with their 
 

309 environment, such as “Face”, “Access”, and “Change”; (3) constraint relations, which describe conditions or situations, 
 

310 such as “Except” and “Conditioned_On”; (4) descriptive relations, which describe the the properties, characteristics, 
 

311 or components of the entities, such as “Is” (e.g., is steep) and “Has” (e.g., has unprotected side and edge); and (5) 
 

312 logic relations such as “And” and “Or”. Most of the negated relations (e.g., “does not create a hazard”) were treated 
 

313 as separate relations (e.g., “Not_Cause”) to minimize the number of negation operations for enhancing the efficiency 
 

314 of the knowledge graph-based reasoning. Table 1 lists all the identified relation classes with examples and their 
 

315 corresponding relation types. Most of these relations are bidirectional (except relations such as “And”, “Or”, 
 

316 “Same_As”, “Whichever_Greater”, and “Whichever_Less”): either direction from head entity to tail entity or direction 
 

317 from tail entity to head entity. For example, in the sentence “anticipated loads(1) caused by ice buildup(2) …”, the 
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318 relation is that tail entity (2) causes the head entity (1). In the sentence “ladder deflection(1) cause the ladder(2) to …”, 
 

319 the relation is that head entity (1) causes the tail entity (2). 
 

320 Table 1. Identified Relation Classes with Examples 
Relation Example(s) Relation type 

Located_At in, on the face of, at the edge of  

 

 

 

 

 

 

 

Comparative or 

spatial relation 

Part_Of steps of portable ladders, wells for fixed ladders 

Less_Or_Equal_To nor beyond, less than, nor more than, not to exceed 

Greater_Or_Equal_To more than, at least, not less than, exceed 

Same_As same as, i.e. 

Whichever_Greater whichever is greater, whichever is later 

Whichever_Less whichever is less 

Related_To related, about 

Close_To is closer to, near 

Above above 

Below below 

Over over the edge of … 

Not_Over would not go over, not overhang 

Into into or through, falling through 

Behind behind 

Between within, at intervals 

From from, between ... and ..., start at 

To to, between ... and ..., to which 

After after 

Before until, before, prior to 

Cause cause, so that, such that, because of  

 

 

 

 

 

 

 

 

 

 
Interaction relation 

Not_Cause in no case … be such that, it will not create a greater hazard to … 

Conform_To shall conform to, in conformance with, meet 

Provide provide, to provide, shall be provided 

Support supported, to support, shall be capable of supporting 

Not_Support shall not be used to support, without supporting 

Decide decide, shall determine 

Protect shall be protected by, protect 

Keep_From keep from, prohibit from, be removed from, be withdrawn from 

Allow shall permit, to allow 

Use by the use of, by, through 

Use_For for, apply to, are used for, are designed for 

Not_Use_For not apply to, used … not for 

Use_As as, is used as 

Not_Use_As shall not be used as 

Engage_In engaged in, performing 

Not_Engage_In who is not engaged in, not in 

Change change, affect 

Match be compatible with, match 

Fail break, tip over, fail, fall 

Not_Reduce shall not reduce 

Access to reach, access 

Parallel that parallels, shall be parallel, along 

Surround around, encircle 

Face shall face, face 

Conditioned_On only when, if, provided that  
Constraint relation 

Except unless, except, excluding 

Because because, because of, for, as 

Otherwise otherwise, or 

Has shall have, to have, have, contain  
Descriptive 

relation 

Not_Has without, shall not have 

Is shall be, were, are 

Is_Not shall not be 
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But but, however  

Logic relation Or or 

And and, in addition to, besides 

321 

322 4.2 Text Preprocessing 

323 Text preprocessing aims to prepare the raw text in a format that would be ready for subsequent analysis. Preprocessing 
 

324 consists of correcting misspelling, removing redundant punctuation, tokenization, and sentence splitting. Correcting 
 

325 misspelling and removing redundant punctuation aims to reduce the noise in the text. Tokenization aims to divide 
 

326 each sequence from the text into units of words. Sentence splitting aims to recognize the boundaries of sentences and 
 

327 divides them into chunks. 
 

328 4.3 Feature Preparation 

329 Two types of features were used for relation extraction: word embedding and position embedding. For word 
 

330 embedding, two state-of-the-art static word embeddings were selected for comparison: CBOW and GloVe embeddings. 
 

331 The CBOW embedding is pre-trained on 100 billion words from Google News. However, it does not encode explicit 
 

332 global information. The GloVe embedding, on the other hand, develops a global co-occurrence matrix to represent 
 

333 probabilities that a given word will co-occur with others. It is pre-trained on Wikipedia and Web text of 6 billion 
 

334 words. Both word embeddings can capture the semantics of each word, with its context, and represent them in the 
 

335 form of continuous and dense feature vectors, so that words similar in meaning are closer to each other in their 
 

336 embedding space. Compared to other static word embeddings (e.g., Skip Gram), CBOW and GloVe were selected for 
 

337 testing because they typically show better performance in relation extraction (İrsoy et al. 2020; Lai et al. 2018). 
 

338 Position embedding is used to differentiate the importance of each word due to its location in the sentence. This is 
 

339 because usually words closer to the given entities are more informative. Position information is thus calculated with 
 

340 reference to the head entity. For example, in the sentence “All <e1>fall protection</e1> required by 
 

341 <e2>1926.501</e2> shall …”, the relative distance from the word “required” to the head entity is 1, and the relative 
 

342 distance from the tail entity “1926.501” to the head entity is 3, which are encoded in the position embedding. 
 

343 4.4 Deep Learning-Based Relation Extraction 

344 Two deep learning-based relation extraction models, a CNN-based model (Attention-based CNN) and an RNN-based 
 

345 model (Entity-aware Attention BiLSTM), were developed and tested for comparative evaluation. CNN and RNN were 
 

346 selected for the reasons outlined at the beginning of Section 4. A fully supervised learning approach was adopted for 
 

347 the reasons outlined in Section 2.2. 
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348 4.4.1 Proposed Attention-Based CNN Model 

349 The proposed Attention-based CNN model contains four main types of layers: embedding layers, convolution layer, 
 

350 attention layer, and multi-layer perceptron layers. The embedding layers consist of three components: word embedding, 
 

351 position embedding, and part-of-speech (POS) embedding. The word embedding layer starts from the pre-trained 
 

352 embedding (CBOW or GloVe, as per Section 4.3), then adjusts itself to the semantics in the construction safety domain 
 

353 during training. The position embedding layer provides the relative location information of each word, as described 
 

354 previously. The POS embedding layer aims to encode the POS tag of each word, which indicates the lexical category 
 

355 of that word, such as noun, verb, and adjective. A total of 15 POS categories were considered and obtained using the 
 

356 Stanford CoreNLP Toolkit (Manning et al. 2014). With the lexical category of each word encoded, the model can 
 

357 capture more relation classes than predicates. The outputs for each word from these three embeddings are then 
 

358 concatenated before being fed into the CNN layer and the attention layer. The CNN layer, consisting of a convolution 
 

359 layer and a max-pooling layer, is used to extract local character-level features. The convolution process in the 
 

360 convolution layer aims to extract features by applying different filters. The max-pooling layer aims to keep the most 
 

361 important features for sentences with variable lengths. The outputs from the CNN layer are represented as sentence 
 

362 convolution vectors. For the attention layer, attention weights are calculated to quantitatively model the contextual 
 

363 relevance of the words. Then attention-based context vectors are calculated as a weighted sum of the words based on 
 

364 their attention weights. The outputs from both the CNN layer and the attention layer, namely sentence convolution 
 

365 vectors and attention-based context vectors, are concatenated together for a full representation of an input sentence. 
 

366 The multi-layer perceptron layers take in all the concatenated vectors and transform them into probabilities. Relation 
 

367 class tags with the highest probabilities are then selected as predictions. The Attention-based CNN architecture is 
 

368 illustrated in Fig. 4. 
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373 

 
Fig. 4. Architecture of proposed Attention-based CNN model. 

 

4.4.2 Proposed Entity-Aware Attention BiLSTM Model 

The proposed Entity-aware Attention BiLSTM model contains five main types of layers: embedding layers, self- 
 

374 attention layer, bidirectional LSTM layer, entity-aware attention layer, and the multi-layer perceptron layers. The 
 

375 embedding layers consist of two components that correspond to the aforementioned two features. The outputs from 
 

376 the two embedding layers are concatenated before being fed into the self-attention layer, which is implemented using 
 

377 the multi-head attention formulation. The self-attention layer is used to capture the distinctive information in a 
 

378 sentence by measuring the correlation between words. Then the outputs from the self-attention layer are fed into the 
 

379 bidirectional LSTM layer for computing the feature values and capturing the context information of each word. The 
 

380 entity-aware attention layer is used afterwards to calculate the attention weights by considering three factors: (1) the 
 

381 semantic and syntactic features of each given entity pair, (2) the relative positions of the surrounding words to the 
 

382 target entity pair, and (3) the entity classes of the target entity pair. The multi-layer perceptron layers then transform 
 

383 the outputs from the entity-aware attention layer into relation class predictions, in the same way as the proposed 
 

384 Attention-based CNN model. To prevent overfitting, L2 (squared) regularization was added to the model. The Entity- 
 

385 aware Attention BiLSTM architecture is shown in Fig. 5. 
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Fig. 5. Architecture of proposed Entity-aware Attention BiLSTM model. 

 

4.5 Knowledge Graph-Based Relation Representation 

4.5.1 Query Structure Development 

The extracted safety requirements were represented as query graphs, using computation graphs, for supporting 
 

392 subsequent field compliance reasoning using knowledge graphs, where nodes correspond to named entities and edges 
 

393 correspond to relations, as illustrated in Fig. 6(a). Extracted entity-relation triples (i.e., output from relation extraction) 
 

394 were treated as atomic components of query graphs, which were connected using a set of logic operators. Conjunction 
 

395 and disjunction operators are handled using additional blank nodes and auxiliary edges, as illustrated in Fig. 6(b) and 
 

396 Fig. 6(c). There are three types of edges: (1) projection, which uses the semantic relations predefined in Section 4.1 
 

397 (except logic relations) to connect the nodes; (2) union, which indicates a disjunction operation at the additional blank 
 

398 node it points to; and (3) intersection, which indicates a conjunction operation at the additional blank node it points 
 

399 to. For example, in the sentence “employee … shall be protected by guardrail systems or personal fall arrest systems”, 
 

400 two nodes, “guardrail_system” and “personal_fall_arrest_system”, were first projected to their corresponding blank 
 

401 nodes using the “Protect” relation, then connected to a single blank node (where the disjunction will be executed) 
 

402 using union edges. Similarly, in the sentence “Articulating boom platforms …shall have both upper and lower 
 

403 controls”, the “articulating_boom_platform” node is connected to a blank node for representing the conjunction 
 

404 operation, which is further connected to two blank nodes using intersection edges and then further connected to the 
 

405 two nodes “upper_control” and “lower_control”. Qualifiers were then added, to convert the triple-based queries into 
 

406 hyper-relational queries, which can provide further fine-grained constraints for reasoning (Alivanistos et al. 2021; Yu 
 

407 and Yang 2021). This is especially necessary in representing construction safety requirements because relations are 
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408 sometimes nested. For example, in the phrase “employee on a walking/working surface 6 feet or more above a lower 
 

409 level”, three triples were extracted using relation extraction methods that assume flat relations: “Located_At(employee, 
 

410 walking_working_surface)”, “Above(walking_working_surface, lower_level)”, and 
 

411 “Greater_Or_Equal_To(walking_working_surface, 6_feet)”. However, the relation “Greater_Or_Equal_To” is in fact 
 

412 constraining the relation “Above”, with a “distance” attribute and some particular value. Therefore, a qualifier of 
 

413 distance was added to the relation of “Above”, with a qualifier value of “>=6 feet”, as follows: “Above{(distance: >= 6 
 

414 

 

 

 

 

 

 

 
 

415 
416 

417 

418 

419 

420 

feet)}(walking_working_surface, lower_level)”. 

 
 

Fig. 6. Example of query structure development: (a) Components of query graphs; (b) Query graph with disjunction 

operation; and (c) Query graph with conjunction operation. 

 

4.5.2 Query Graph Coding 

Query graph coding aims to represent query graphs with the structure described previously into a computer- 
 

421 processable format. The atomic components of the query graphs are in the form of (h, r, t, qp), where h means head 
 

422 entity, r means relation, t means tail entity, and the optional qp = {(qa1, qe1), …} means the set of qualifiers, with 
 

423 {qa1, qa2, …} as qualifier attributes and {qe1, qe2, …} as qualifier values. Query graph coding includes four main 
 

424 steps. First, the entity-relation triples obtained from the relation extraction were converted to the correct form, i.e., 
 

425 directions corrected to be from head entity to tail entity, and relation corrected to be in the middle. For example, the 
 

426 triple from the sentence “anticipated loads(1) caused by ice buildup(2) …” was converted to (ice_buildup, Cause, 
 

427 anticipated_ice), with head entity and tail entity switched. Second, entities and relations in the query graph were 
 

428 assigned with an index, such that the developed query graphs can be more simplified and less repetitive for subsequent 
 

429 compliance reasoning. For example, the triple “(employee, Above, dangerous_equipment)” was mapped to “(11, 11, 
 

430 65)”. Third, qualifiers were added to the main triples for providing additional constraints. Especially, triples indicating 
 

431 comparisons or spatial relations with values were checked for their validity as qualifiers. For example, as per Fig. 7(a), 
 

432 “Above(walking_working_surface, lower_level)” and “Greater_Or_Equal_To(walking_working_surface, 6_feet)”, 
 

433 which were extracted from the sentence “each employee on a walking/working surface 6 feet (1.8 m) or more above 
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434 a lower level”, are indicating a spatial relation with values and were thus merged into one triple with a qualifier 
 

435 “(walking_working_surface, Above, lower_level,{(distance, >= 6_feet)})” for a more accurate representation. Fourth, 
 

436 brackets were added to connect the atomic components in each clause, which include logic operators such as “And” 
 

437 and “Or”, with a proper name to indicate the query types in terms of number of nodes and operators. For example, 
 

438 “employee … shall be protected from falling by the use of guardrail systems, safety net systems, or personal fall arrest 
 

439 systems”, a name of “3u” was used to describe the query of “((guardrail_system, Protect, employee), 
 

440 (safety_net_system, Protect, employee), (personal_fall_arrest _system, Protect, employee))”, which involves a 
 

441 disjunction operation among the three types of protection systems that are combined using brackets. Query graphs for 
 

442 each clause were coded using Python 3 and were stored in separate files. 

 

443 This query-graph representation helps decompose complex requirements into manageable units, while keeping these 
 

444 units connected in a robust and scalable graph structure for supporting subsequent field compliance checking. The 
 

445 graph structure can also help identify missing information in the original regulations, due to occasional omissions in 
 

446 the natural language sentences. For example, for the sentence “employee on a walking/working surface with an 
 

447 unprotected side or edge which is 6 feet (1.8 m) or more above a lower level” [as in Fig. 7(a)], there exists a triple 
 

448 “Above(walking_working_surface, lower_level)” with a certain value. It can be inferred that since the employee is 
 

449 located on the “walking_working_surface”, they can be above the “lower_level” as well. Thus, an edge from 
 

450 “employee” to “lower_level” can be identified and added through traversing the links, such that the represented safety 
 

451 requirements can be more complete and accurate in describing interconnections among the entities. 
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456 

 
Fig. 7. Query graphs for representing safety requirements: (a) 1926.501(b)(1); and (b)1926.451(g)(1)(ii). 

 

4.6 Evaluation Metrics 

Precision (P), recall (R), and F-1 measure were used to evaluate the relation extraction performance. The three metrics 
 

457 were calculated by comparing the recognized relations with the annotated gold standard, as shown in Eqs. (1)-(3). 
 

458 Precision is defined as the number of correctly recognized relations divided by the total number of all recognized 
 

459 relations. Recall is defined as the number of correctly recognized relations divided by the total number of all relations 
 

460 that should be recognized. F-1 measure is the weighted harmonic mean of precision and recall. A precision-recall 
 

461 curve was also plotted to illustrate the tradeoff between precision and recall across different probabilities, and the area 
 

462 under the curve (AUC) was calculated. A higher AUC indicates that misclassification is less likely to happen. The 
 

463 margins of error at 95% confidence level were also calculated for the precision, recall, and F-1 measure to evaluate 
 

464 the sensitivity of the performance results. 
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465 

 
466 

 
467 

𝑃 = 
number of correctly recognized relations 

total number of all recognized relations 

 
𝑅 = 

number of correctly recognized relations 

total number of all relations that should be recognized 

 

F-1 = 
2×P×R 

𝑃+𝑅 

(1) 

 
(2) 

 
(3) 

 

468 5 Experimental Results and Discussion 

469 The proposed relation extraction method was tested using OSHA sections related to fall protection. A set of 
 

470 experiments were conducted to evaluate the proposed method, including: (1) comparing the performance of the two 
 

471 deep learning models in relation extraction (see Section 4.4), and (2) evaluating the impact of different word 
 

472 embeddings (see Section 4.3). The experiments were implemented using tensorflow and PyTorch on NVIDIA 
 

473 GeForce RTX 2070 SUPER. 
 

474 5.1 Data Preparation and Gold Standard Development 

475 Twenty (20) OSHA sections related to fall protection were used for developing the dataset. The selected sections cover 
 

476 a variety of fall-related topics such as general fall protection, fall protection systems, guardrail systems, and 
 

477 positioning device systems, as listed in Table 2. The dataset was annotated, following the tagging scheme of the 
 

478 SemEval-2010 dataset from the computational linguistics domain, to create the gold standard for training and testing 
 

479 the relation extraction model. During the annotation, special situations were considered for the “And” relation: (1) 
 

480 most requirements containing “And” were extracted as separate entity-relation triples according to algebraic properties. 
 

481 For example, in the sentence “Dee-rings and snaphooks shall have a minimum tensile strength of 5,000 pounds (22.2 
 

482 kN)”, triples of “Has(dee-ring, tensile_strength)” and “Has(snaphook, tensile_strength)” were annotated, instead of 
 

483 annotating a triple of “And(dee-ring, tensile_strength)” which does not accurately reflect the semantics in the original 
 

484 text. This can also help minimize the number of conjunction operations to simplify subsequent compliance reasoning; 
 

485 and (2) depending on the context in the sentence, the word “and” can sometimes indicate an “Or” relation, which was 
 

486 corrected during annotation. For example, in the sentence “Guardrail systems used on ramps and runways shall be 
 

487 erected along each unprotected side or edge”, the requirement actually applies to guardrail systems at any of the two 
 

488 locations (i.e., ramps or runways), thus was corrected to “Or”. The annotation process was conducted by three 
 

489 annotators who have background in both civil engineering and natural language processing. An inter-annotator 
 

490 agreement of 91.3% in F-1 measure was achieved, which indicates the reliability of the gold standard (Artstein 2017). 
 

491 Due to the complexity of OSHA clauses, one clause can contain multiple entity-relation triples. The resulting dataset, 
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492 thus, included a total number of 7,927 entity-relation triples after the annotation (represented as 1,147 query graphs), 
 

493 which were split into training and testing datasets at a ratio of 85:15. The relation extraction performance was 
 

494 evaluated by comparing the extracted results with the developed gold standard, using the aforementioned evaluation 
 

495 metrics (Section 4.6). An example of the annotation is shown in Table 3, and the distribution of relation classes is 
 

496 illustrated in Fig. 8. 

 

497 A normality test was then conducted to determine whether the dataset follows a normal distribution to further 
 

498 understand its characteristics. Two metrics for measuring the shape of the distribution were calculated for a statistical 
 

499 test: skewness and kurtosis (Jones 1969). Skewness is used to describe if the distribution is symmetrical. A 
 

500 symmetrical distribution will have a skewness of 0. A highly skewed distribution will have a skewness of less than 1 
 

501 or greater than 1. The annotated dataset resulted in a skewness of 0.5107, which means that it is moderately skewed. 
 

502 Kurtosis is used to describe the height and sharpness of the central peak, compared to a standard bell curve. A normal 
 

503 distribution will have a kurtosis of 0 (Fisher 1992). The annotated dataset resulted in a kurtosis of -0.9994, which 
 

504 means that the distribution has thinner tails and fewer classes with extremely low frequency than a normal distribution. 
 

505 Therefore, the relation classes are not normally distributed. This matches with Zipf’s law in the computational 
 

506 linguistics domain (Manning and Schutze 1999), which points out that the distribution of words is highly imbalanced, 
 

507 with some occurring very frequently and others occurring rarely. 
 

508 Table 2. Selected OSHA Sections Related to Fall Protection 
Topic Section(s) 

General requirements 1926.451, 1926.501, 1926.1051 

Fall protection systems 1926.502, 1926.760, 1926.1423, 1926 Subpart R App G 

Guardrail systems 1926 Subpart M App B 

Personal fall arrest systems 1926 Subpart M App C 

Positioning device systems 1926.104, 1926.105, 1926 Subpart M App D 

Personal protective equipment 1926.95, 1926.96, 1926.100 

Scaffolds 1926.452, 1926 Subpart L App A 

Ladders 1926.1053 

Aerial lifts 1926.453 

Housekeeping 1926.25 

509 

510 Table 3. Examples of Annotated Entity-Relation Triples 
Original sentence Annotated sentence1 Relation class Relation index2 

Each employee on a walking/working 

surface shall be protected from objects 

falling through holes (including 
skylights) by covers. 

Each <e1>employee</e1> on a 

<e2>walking working surface</e2> shall 

be protected from objects falling through 
holes (including skylights) by covers. 

 
Located_At 

 
1 

No employee shall be allowed in an 

area where an employee is being 

protected by a safety monitoring 
system. 

No employee shall be allowed in an area 

where an <e1>employee</e1> is being 

protected by a <e2>safety monitoring 
system</e2>. 

 
Protect 

 
48 

511 1 e1 = head tag; e2 = tail tag. 

512 2 odd number = relation direction is head to tail; even number = relation direction is tail to head. 
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514 
515 

516 

517 

 
Fig. 8. Distribution of relation classes. 

 

5.2 Relation Extraction Performance 

A total number of 1,190 entity-relation triples were extracted from the testing dataset, resulting in 671 query graphs 
 

518 after query graph coding. Example computation graphs and coded queries for each query graph are illustrated in Fig. 
 

519 7. The hyperparameters of the two models were finetuned for achieving optimized performance. The selected 
 

520 hyperparameters are listed in Table 4. The performance results and precision-recall curves for the two models are 
 

521 shown in Figs. 9 and 10, respectively, which show that both models achieved good relation extraction performance. 
 

522 The proposed Attention-based CNN model, with GloVe embedding, achieved the best results, 87.5% precision, 83.4% 
 

523 recall, and 85.4% F-1 measure (as per Fig. 9), and was hence selected. Comparatively, it also showed a slightly lower 
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524 margin of error. In comparison, the proposed (RNN-based) Entity-aware Attention BiLSTM model achieved 83.7%, 
 

525 81.9%, and 82.8%, respectively, as shown in Fig. 9. The superior performance of the proposed CNN-based model is 
 

526 likely because CNN better captures local features with small translations, while RNN better captures context with 
 

527 sequential features. In the construction safety regulations, informative words indicating relations are usually in the 
 

528 vicinity of the given entity pairs, which can be more useful than the dependency structure and sequential features 
 

529 captured by an RNN-based model. 

 

530 Despite the performance difference, both models were effective in capturing the distinctive semantics between or 
 

531 outside the given entity pairs using the attention mechanism. Example results for the attention mechanism are shown 
 

532 in Table 5. In each example sentence, words with the highest attention weight(s) from both models are marked in bold. 
 

533 For example, in the sentence “1926.501 sets forth requirements for employers(1) to provide fall protection systems(2)”, 
 

534 the word “provide” between the given entity pair was assigned with the highest attention weight. In the sentence “Each 
 

535 employee who is constructing a leading edge(1) 6 feet(2) (1.8 m) or more”, the words “or more” outside the given 
 

536 entity pair were assigned with the highest attention weights. 

 

537 Fig. 9 illustrates the results of testing the two word embeddings, CBOW and GloVe. The results showed a small 
 

538 difference in the performance of the CBOW and GloVe embeddings. For example, an average precision, recall, and 
 

539 F-1 measure of 87.5%, 83.4%, and 85.4%, respectively, were obtained for the proposed Attention-based CNN model 
 

540 with GloVe embedding, compared to 86.4%, 83.1%, and 84.7% with CBOW embedding. Similarly, comparing the 
 

541 GloVe and CBOW embeddings, in Fig. 10(a) and (b), also shows that both achieved comparable performance (slightly 
 

542 better for the GloVe). These results may indicate that different types of static word embeddings might show similar 
 

543 performance levels for this domain-specific application, and hence it might be beneficial to further explore dynamic 
 

544 word embeddings such as ELMO (Embeddings from Language Models) and BERT (Bidirectional Encoder 
 

545 Representations from Transformers) embeddings in future work. 
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Fig. 9. Relation extraction performance results using CNN-based and RNN-based models with different word 

embeddings. 

 

Fig. 10. Precision-recall curve: (a) Curve for proposed Attention-based CNN model; and (b) Curve for proposed 

Entity-aware Attention BiLSTM model. 

 

Table 4. Hyperparameters of the Models 
Hyperparameter Attention-based CNN model Entity-aware Attention BiLSTM model 

Dropout rate 0.5 0.7 

Word-embedding dimension 300 300 

Position-embedding dimension 50 50 

POS-embedding dimension 15 N/A 

Max-sentence length 150 150 

L2 weight N/A 0.00001 

Epoch 40 40 

Optimizer Stochastic gradient descent Adadelta 
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557 Table 5. Example Results for Attention Mechanism 
Relation Example results of attention weights 

Provide 
1926.501 sets forth requirements for <e1>employers</e1> to provide <e2>fall protection 

systems</e2> . 

Conditioned_On 
<e1>Employees</e1> shall be allowed to work on walking working surfaces only when 
<e2>walking working surfaces</e2> have the strength . 

Greater_Or_Equal_To Each employee who is constructing a <e1>leading edge</e1> <e2>6 feet</e2> ( 1.8 m ) or more , 

Less_Or_Equal_To <e1>length of climb</e1> is less than <e2>24 feet</e2> 

Not_Has 
The <e1>cantilevered portion</e1> of the platform is able to support employees without 
<e2>tipping</e2> . 

Except 
Except when <e1>portable ladders</e1> are used to gain access to fixed ladders, the <e2> 

portable ladders</e2> shall be offset with a platform . 

558 

559 5.3 Error Analysis 

560 An error analysis was conducted to identify the sources of errors. Ambiguity is a major error source for both models, 
 

561 especially when the relations are indicated using prepositions only. For example, in the phrase “the ability(1) of a 
 

562 ladder(2) to sustain”, the actual relation class is “Has”, with a direction from (2) to (1), since (1) is one attribute (2) 
 

563 possesses. However, in the phrase “steps(1) of portable ladders(2)”, the actual relation class is “Part_Of”, with a 
 

564 direction from (1) to (2), since (1) is a component of (2). In both cases, there is only one preposition “of” that can 
 

565 provide relevant information for predictions, hence the difficulty to distinguish such cases. Similar situations can be 
 

566 found with other prepositions such as “for”, “at”, “in”, “by”, and “to”. Therefore, extracting relations from the text 
 

567 with such ambiguities can be difficult. 

 

568 Frequent omission is another source of error, in which case there is no sufficient information for the model to make 
 

569 the correct predictions. For example, in the phrase “leaving both hands(1) free(2)”, the actual relation class is “Is”, 
 

570 with a direction from (1) to (2), since (2) is an attribute of (1). However, there are no other words near the given 
 

571 entities supporting such prediction due to omission. Similarly, in the phrase “one-eighth(1) the working length(2)”, 
 

572 words for indicating relations between the given entities are omitted, which makes it difficult to predict the correct 
 

573 relations. 

 

574 A lack of domain knowledge can also lead to incorrect predictions. For example, in the sentence “When the 
 

575 employee(1) is ascending or descending a ladder(2)…”, the actual relation is “Use”, with a direction from (1) to (2), 
 

576 since both ascending and descending are the actions for (1) to use (2). Similarly, in the phrase “If the slope(1) is steeper 
 

577 than one vertical in eight horizontal(2)…”, the actual relation class is “Greater_Or_Equal_To”, with a direction from 
 

578 (1) to (2), since a steeper slope has a higher ratio. However, there is no sufficient context, background information, or 
 

579 term explanations for each OSHA clause. It is, therefore, difficult for the model to make the desired predictions. 
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580 Depending on the context, keywords that occur in certain relation classes sometimes do not indicate that relation, 
 

581 which makes it difficult for both models to produce correct predictions, even when the attention mechanism can 
 

582 effectively capture the most distinctive words. For example, the word “or” can indicate an “Otherwise” relation 
 

583 between “perpendicular” and “opposing_angle_tieback”, rather than an “Or” relation in the sentence “tiebacks shall 
 

584 be installed perpendicular to …, or opposing angle tiebacks shall be installed”, because it refers to the situation that 
 

585 the first condition is not met. The word “and” can indicate a “To” relation in the phrase “distance between the bottom 
 

586 horizontal band and the next higher band”, because it indicates the end of that distance. Another example is related to 
 

587 word “but” in the sentence “safety nets shall be installed …, but in no case more than 30 feet below the 
 

588 walking/working surface”, which does not indicate a “but” relation between “safety_net” and “30_feet”. However, it 
 

589 is combined with its subsequent phrase of “in no case” to be a negation for phrase of “more than”, which eventually 
 

590 indicates a “Less_Or_Equal_To” relation for describing the distance between the two levels. 

 

591 There are two other sources of error for domain-specific relation extraction. First, there are significantly more relation 
 

592 classes in this study, with fewer training samples within each relation class. For example, the SemEval-2010 dataset 
 

593 using general-domain text considers nine relation classes, while in our application, a total of 56 relation classes were 
 

594 considered. Considering that our dataset size is smaller, it may not contain sufficient training samples for certain 
 

595 relation classes. Second, sentences in construction safety regulations are more complex, which makes relation 
 

596 extraction difficult. Such complexity includes longer sentences with a high density of information to be extracted, 
 

597 clauses with nested conditions to describe a particular scenario, and different text patterns across sections. 
 

598 6 Limitations 

599 Four main limitations of the work are acknowledged, which point to four directions of future work. First, the identified 
 

600 relations are not necessarily complete or exhaustive, especially if additional safety topics or contexts are considered. 
 

601 This is expected because relations in domain-specific applications can vary in semantics and detail from one 
 

602 subdomain/topic to another. Additional testing on different OSHA topics is needed to assess if the identified relations 
 

603 are sufficient, or if additional adaptation or extension effort is needed. Second, in developing the relation extraction 
 

604 model only two alternative deep learning models were tested, a CNN-based model (Attention-based CNN) and an 
 

605 RNN-based model (Entity-aware Attention BiLSTM). In future work, the authors plan to test additional types of deep 
 

606 learning-based models, especially transformer-based models, including different transformer variants and model 
 

607 architectures. Third, only two different static word embeddings were tested and compared in this study. Additional 
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608 existing word embeddings could be tested in future work, including dynamic word embeddings (e.g., ELMO) or 
 

609 existing domain-specific word embeddings (e.g., Zhang and El-Gohary 2021a). In addition, in future work, the authors 
 

610 also plan to train a domain-specific word embedding using large quantities of construction regulatory documents or 
 

611 dictionaries from multiple construction subdomains, which can be more effective in further improving the relation 
 

612 extraction performance (and performance of other NLP applications in the construction domain). Fourth, the proposed 
 

613 query graph representation may be limited in representing cardinality (e.g., “both” is treated as an attribute not 
 

614 cardinality). The use of additional operators such as cardinality and aggregation can be considered and tested in future 
 

615 work. Fifth, the dataset size used in this study is limited. Given there are 56 relations classes in total, the developed 
 

616 dataset in this study may not contain sufficient training samples for certain relation classes. To further improve the 
 

617 relation extraction performance and generalizability, more text (including clauses from other sources of construction 
 

618 safety regulations) needs to be added to the current dataset. 
 

619 7 Contributions to the Body of Knowledge 

620 This research offers a new method for automatically extracting relations that describe fall protection requirements 
 

621 from construction safety regulations and representing the extracted information in the form of knowledge graph-based 
 

622 queries. From an intellectual perspective, the proposed method improves the information extraction methodology and 
 

623 application in the construction safety domain in four primary ways. First, it is the first effort to use a deep learning- 
 

624 based method with a combination of word and position embeddings to improve the domain-specific relation extraction 
 

625 performance. The proposed deep learning-based method can reduce the amount of human assistance required in the 
 

626 relation extraction process. The adopted two embeddings can bring rich semantics from the computational linguistics 
 

627 domain and distinguish informative words in a sentence for a deeper understanding of the text and better capturing of 
 

628 the domain-specific features. Second, this study considered non-verbal predicate relations, redundant relations, and 
 

629 the directions of the relations in the relation extraction, which helps accurately describe complex situations considered 
 

630 in the safety regulations without redundancy. The set of relation classes it identified was effective in describing fall- 
 

631 related requirements from OSHA. The relations could also be utilized – as is or with adaptation – for analyzing other 
 

632 construction safety documents such as the fall-related standards from the American National Standards Institute 
 

633 (ANSI), safety reports, etc. Third, the proposed method can directly generate a structured representation for the 
 

634 requirements extracted from construction-domain text. The query-graph representation helps decompose complex 
 

635 requirements into smaller manageable units that are connected in a robust and scalable graph structure. The graph 
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636 structure can also facilitate the discovery of implicit information through edge traversal to allow for more complete 
 

637 and accurate representation of the safety requirements. Deep learning-based automated reasoning methods can also 
 

638 be developed based on such query graphs. Deep learning-based reasoning methods do not rely on external databases 
 

639 or query languages and can conduct reasoning in a dense and compact embedding space, which would allow for better 
 

640 reasoning performance, generalizability, flexibility, and speed than traditional query language-based compliance 
 

641 checking methods. The query graphs developed in this study can also be integrated with existing query graphs from 
 

642 other domains [e.g., the WD50K-Q (Alivanistos et al. 2021) and FB15k (Ren et al. 2020)] to support future potential 
 

643 efforts that may leverage out-of-domain large-scale graph structures with techniques like transfer learning for 
 

644 improved knowledge graph-based question answering and reasoning. Fourth, the proposed deep learning-based 
 

645 relation extraction method with the two types of features, as well as the method for developing query graphs, are 
 

646 adaptable to more safety topics and more accident types. Adapting and using the proposed method for multiple safety 
 

647 subdomains could help address different types, scenarios, and contexts of accidents – and possibly interdependencies 
 

648 and/or interactions among them – for improved field compliance checking. 

 

649 From a practical perspective, this paper contributes to the practice of field compliance checking in three ways. First, 
 

650 the paper offers a relation extraction method to automatically extract safety requirements from construction safety 
 

651 regulations, which could be integrated into existing or future software applications for field compliance checking. The 
 

652 use of the proposed method could help eliminate (or reduce) the manual effort that would be needed to hardcode the 
 

653 extracted requirements into computable rules (which is the status-quo if using existing software). Second, the proposed 
 

654 method can extract and represent requirements that cover a variety of safety-related operation scenarios in the field, 
 

655 which could help in checking compliance for different situations onsite. The use of the proposed method could, thus, 
 

656 help improve the application, scope, and generalizability of existing field compliance checking systems and practices. 
 

657 Third, the resulting knowledge graph-represented safety requirements can be easily integrated with other 
 

658 data/information/knowledge or within other existing software systems. For example, safety checking software could 
 

659 easily add a module to represent the construction safety requirements in the form of knowledge queries, such that 
 

660 when real-time field information is collected, it could be checked for compliance with these requirements. 
 

661 8 Conclusions and Future Work 

662 This paper proposed a method to automatically extract domain-specific relations that describe fall protection 
 

663 requirements from construction safety regulations, as well as represent the extracted requirements as query graphs for 
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664 supporting subsequent knowledge graph-based field compliance checking. The proposed relation extraction method 
 

665 uses a deep learning model to automatically identify relations from unstructured text and classify them into predefined 
 

666 relation classes. Two types of features were used to leverage the rich semantics from the computational linguistics 
 

667 domain and to help distinguish informative words in a sentence: pre-trained word embedding and position embedding. 
 

668 Two alternative deep learning models, a CNN-based model (Attention-based CNN) and an RNN-based model (Entity- 
 

669 aware Attention BiLSTM), were developed and comparatively evaluated. An attention mechanism was added to both 
 

670 models to better capture distinctive words. A query-graph representation was proposed to represent the extracted safety 
 

671 requirements with explicit semantics in a structured way that represents requirements in the form of smaller 
 

672 manageable units that are connected in a robust and scalable graph structure. The proposed method was tested on 20 
 

673 OSHA sections related to fall protection. 

 

674 The proposed Attention-based CNN model with GloVe embedding achieved an average precision, recall, and F-1 
 

675 measure of 87.5%, 83.4%, and 85.4%, respectively, which showed higher performance than the Entity-aware 
 

676 Attention BiLSTM model with GloVe embedding (83.7%, 81.9%, and 82.8% in precision, recall, and F-1 measure, 
 

677 respectively). A small difference in the relation extraction performance was shown across the two word embeddings. 
 

678 For example, the Attention-based CNN model with CBOW embedding showed insignificantly lower results (86.4%, 
 

679 83.1%, and 84.7%) than with GloVe embedding (87.5%, 83.4%, and 85.4%, respectively). Five conclusions can, thus, 
 

680 be drawn from the experimental results. First, the proposed relation extraction method was effective in automatically 
 

681 recognizing and classifying domain-specific relations from unstructured text with good performance and minimized 
 

682 human assistance. Second, the proposed CNN-based model (Attention-based CNN) showed better performance than 
 

683 the proposed RNN-based model (Entity-aware Attention BiLSTM), due to its ability to better capture local features 
 

684 with small translations. Third, the attention mechanism used in both models was able to capture the distinctive 
 

685 information located either between or outside the given entity pairs, which helps enhance the extraction performance. 
 

686 Fourth, the models using GloVe embedding achieved comparable performance in extracting the domain-specific 
 

687 relations compared with those using the CBOW embedding. Fifth, the developed query graphs were able to 
 

688 successfully represent the extracted safety requirements and logic operators. 

 

689 In their future work, the authors plan to explore four main directions. First, the authors will conduct additional research, 
 

690 implementation, and testing efforts to address the aforementioned limitations, as discussed in Section 6. Second, the 
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691 authors will explore the integration of ontologies with knowledge graphs to enhance the representation and reasoning 
 

692 capabilities of the proposed query-graph representation. Integrating ontologies with knowledge graphs provides 
 

693 knowledge graphs with enhanced schema(s), enriched semantics, and improved reasoning capabilities. Third, the 
 

694 authors will also explore the use of the proposed graph-based representation to support further document and safety 
 

695 analytics. For example, we could leverage the graph analytics to uncover hidden links to discover the underlying 
 

696 reasons leading to noncompliances or common factors contributing to multiple violations. We will also focus on using 
 

697 the query graphs to discover missing requirements, which were hidden due to the implicitness in the natural language 
 

698 sentences, to improve the accuracy and completeness of the represented safety requirements and hence improved 
 

699 compliance assessment. Such analysis could also help bring new insights on how to further improve/refine the writing 
 

700 of the safety regulations to prevent/reduce requirements from being vulnerable to subjective (incorrect) interpretations 
 

701 that could compromise safety and lead to accidents. This is essential because current safety practices are in many cases 
 

702 noncompliant, because workers heavily depend on their own understanding/interpretation of the OSHA requirements 
 

703 and/or the direct guidance they receive from the safety manager – both which may not be fully compliant with OSHA. 
 

704 Fourth, beyond information extraction, the authors will devote their efforts to developing computer vision-based 
 

705 methods to detect site information from images or videos and using graph-based automated reasoning for supporting 
 

706 field compliance checking. Special attention will be paid to how to align these two sets of information properly and 
 

707 how to interpret compliance checking scenarios correctly. These factors are crucial in identifying noncompliances, 
 

708 sending feedback to relevant workers promptly, and improving overall field compliance. Our ultimate goal is to 
 

709 leverage deep learning as well as other artificial intelligence techniques, including natural language processing and 
 

710 computer vision, to automate the process of detecting violations to construction safety regulations promptly and 
 

711 consistently with minimized human assistance. 
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