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Abstract

Field compliance checking aims to check the compliance of site operations with applicable construction safety
regulations for detecting violations. Relation extraction provides an automated solution to extract relations that
describe construction safety requirements from unstructured text. However, previous relation extraction efforts are
limited in their extraction capabilities, representation, and automation. To address this gap, this paper proposes a deep
learning-based method to automatically extract and represent relations that describe fall protection requirements. The
proposed method: (1) uses a CNN-based model, with pre-trained word and position embeddings, to automatically
extract domain-specific relations, and (2) represents the extracted requirements in the form of knowledge graph-based
queries, which helps decompose complex requirements into manageable units while keeping these units connected in
a scalable graph structure. The proposed method was tested on 20 OSHA sections, and has achieved 87.5% precision,

83.4% recall, and 85.4% F-1 measure, which indicates good relation extraction performance.

Keywords: Relation extraction; Construction safety; Fall protection; Field compliance checking; Deep learning;
Knowledge graphs; Word embeddings.

1 Introduction

Field compliance checking aims to detect violations to construction safety regulations to protect workers from
potential safety incidents. This is because a large portion of construction site accidents occur as a result of field
noncompliances, which usually include damaged or no personal protective equipment (PPE); inoperative or
inappropriate equipment; and wrong poses, operations, or work sequences (Chi and Lin 2018). For fall fatalities in
particular, according to an analysis of the Construction FACE Database (CFD), noncompliance of personal fall arrest

systems has caused more than 77% of all deaths (Dong et al. 2017). To identify such field noncompliances, different
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solutions have been proposed for mitigating the risks and consequences of potential safety incidents, among which
utilizing computer vision techniques for safety checking has attracted an increasing amount of research attention.
These research efforts include using computer vision techniques to detect personal protective equipment (PPE) (Nath
et al. 2020; Fang et al. 2020a), recognize workers’ operations (Roberts et al. 2020; Tang et al. 2019), and track the

trajectory of labor and equipment onsite (Tang et al. 2020).

However, compared with the rich body of literature in applying computer vision techniques, limited studies have
explored the use of natural language processing (NLP) techniques to analyze construction safety documents. For
example, Feng and Chen (2021) proposed a deep learning-based framework to extract extract event-related
information (e.g., date, location, and accident type) from accident news reports for construction safety management.
Rupasinghe and Panuwatwanich (2021) proposed a rule-based method to mine hazard information from accident
reports. Baker et al. (2020) proposed approaches to extract injury precursors using NLP techniques (a set of text
patterns). Zhong et al. (2020c) presented a deep learning-based framework to mine hazard knowledge from hazard
records. Chi et al. (2017) proposed a semi-automated approach to develop a gazetteer that can eventually support
information extraction from construction safety regulations. Collectively, these efforts either focused on the analysis
of injury and accident reports or focused on the extraction of hazard factors. There is, thus, a lack of research efforts
that focused on automatically extracting requirements from construction safety regulations for supporting field

compliance.

Information extraction offers an opportunity to automatically extract safety requirements. In recent years, there is a
growing body of literature in the construction domain that aims to propose different methods for extracting information
from various construction regulatory documents, including but not limited to energy conservation codes, quality
standards, and general building codes (Zhong et al. 2022; Moon et al. 2022; Zhong et al. 2020d; Schonfelder and
Konig 2021; Zhang and El-Gohary 2021a; Ren and Zhang 2021; Moon et al. 2021; Guo et al. 2021; Zhong et al. 2020a;
Song et al. 2018; Zhou and El-Gohary 2017; Zhang and El-Gohary 2013). These methods mainly vary in two aspects:
(1) the approach for extraction, e.g., rule-based (Zhang and El-Gohary 2013; Lee at al. 2019b; Ren and Zhang 2021),
machine learning-based (ul Hassan et al. 2020; Kim and Chi 2019), or deep learning-based (Zhang and El-Gohary
2021b; Schonfelder and Konig 2021; Zhong et al. 2020d). These efforts have laid a solid foundation for extracting

information from construction safety regulations, with deep learning approaches offering the highest potential for



56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

limiting human involvement in developing the information extraction methods (e.g., eliminating the need for
handcrafted rules); and (2) the targeted semantic information elements to be extracted, e.g., building-code
requirements (Zhang and El-Gohary 2021a), utility spatial configurations from utility accommodation policies (Xu

and Cai 2019), or construction procedural constraints and attributes for quality compliance (Zhong et al. 2022).

However, most of the aforementioned efforts mainly either focused on extracting named entities or considered
relations as a type of information element (Wu et al. 2022; Zhong et al. 2020d; Ren and Zhang 2021; Schonfelder and
Konig 2021), which makes them limited in capturing the different types of relation classes and in expressing the rich
semantics in the original documents. More research studies are therefore needed to bridge five main knowledge gaps
in relation extraction for construction domain applications. First, existing relation classes in other relation extraction
efforts (e.g., “Place_Of Birth” in the linguistics domain) cannot be directly transferred, because they are not suitable
to describe situations in the construction safety domain. Thus, relations that describe construction safety requirements
need to be identified and extracted. Second, existing efforts (e.g., Wu et al. 2022) in the construction domain are
limited in considering non-verbal-predicate relations, redundant relations, and relation directions. Third, most of the
existing efforts in the construction domain fall short in their scalability and generalizability, because they require a
heavy amount of human assistance. Fourth, limited efforts in the construction domain have explored generating query
graphs for knowledge graph-based reasoning directly from text, which would help identify new or missing information
not explicitly expressed in the original text for subsequent analysis. Fifth, limited attention has been paid to developing
queries that can support deep learning-based automated reasoning, especially hyper-relational queries for representing

nested relations.

To address these gaps, this paper proposes a new method to automatically extract and represent safety requirements
from construction safety regulations. The proposed method: (1) uses deep learning to automatically extract domain-
specific relations (e.g., Located At and Engage In) about fall protection requirements from the regulations to add
interlinks to the isolated named entities extracted in Wang and El-Gohary (2022); (2) uses word- and position-
embedding features to improve the relation extraction performance; and (3) represents the extracted safety
requirements (both relations and named entities) in the form of query graphs to facilitate future discovery of implicit
or missing information, as well as knowledge graph-based compliance reasoning. The proposed method was tested

using fall-related sections from Occupational Safety and Health Administration (OSHA) 29 CFR 1926 (OSHA 2020).
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2 Background
2.1 Current Practices for Automated Field Compliance Checking

Automated field compliance checking aims to automatically check whether workers’ behaviors and their surrounding
environment are adhering to applicable safety regulations, norms, procedures, and guidelines (Khalid et al. 2021). In
addition to the research efforts that utilize computer vision techniques (described in Section 1), existing research
efforts and construction site practices have explored using various emerging technologies, such as BIM, wearable
devices, and smart systems (e.g., Awolusi et al. 2018; Jebelli et al. 2018; Cheung et al. 2018; Zhang et al. 2017; Zou
et al. 2017; Park et al. 2013). However, the majority of these systems or applications are limited in supporting
automated field compliance checking because they (1) mainly focused on checking violations in the design to identify
potential hazards or risks (e.g., Kincelova 2020); (2) developed ontologies to represent a set of safety checking rules,
but often lacked in capturing information about real-time site operations to detect field noncompliance (e.g., Li et al.
2022); and/or (3) were designed as management tools [e.g., HCSS Safety field app (HCSS 2022)] for organizing
incident reports, documenting observations from coworkers, and/or collecting workers’ physical states, rather than

capturing and comparing site information with safety requirements to detect noncompliance.

On the other hand, the majority of BIM software systems available on the market that aim to conduct automated
compliance checking are limited in supporting construction field safety checking scenarios. For example, safety
checking using Solibri (Solibri 2021) relies heavily on (1) BIM models that are typically covering design information
and are lacking real-time field information on construction operations (equipment, labor, etc.); and (2) hard-coded
safety requirements embedded in the software, which require manual effort to read the safety regulations and encode
the requirements in computable rule formats. Other commercial software systems that can be used in the construction
phase are limited in compliance checking scope and generalizability to address various scenarios. For example,
smartvid.io (ECT Team 2021) mainly considers checking the existence of PPE such as gloves, reflective vests, and
footwear (Nath et al. 2020), but it cannot check compliance with applicable safety requirements, which express
different conditions and exceptions for various fall-related scenarios. Therefore, more research efforts are needed to
develop methods for identifying noncompliances automatically for diverse accident scenarios in the field. Extracting
requirements from construction safety regulations and representing them in a structured and computer-processable

format is the first step towards such an automated field checking process.
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2.2 Relation Extraction

Relation extraction is the task of recognizing and classifying semantic relations from unstructured text into several
predefined classes (Nguyen and Grishman 2015). For example, in the sentence “Defective safety net components
shall be removed from service”, relation extraction would recognize and classify the relation between
“safety net component” and “defective” as “Is”, and the relation between “safety net component” and “service” as
“Keep From”. Early relation extraction efforts have proposed various rule-based and traditional machine learning-
based (as opposed to deep learning-based) methods (Wang et al. 2012; Zhang et al. 2009; Culotta and Sorensen 2004),
which have achieved good performance but have typically required much human effort to develop the extraction rules

or conduct feature engineering.

In recent years, outside the construction domain, deep learning-based methods have been used for relation extraction
and many novel neural network models have been proposed (Jiang et al. 2020). Among them, convolutional neural
networks (CNN)-based models and recurrent neural networks (RNN)-based models have received high popularity and
reached good and comparable performance levels (Miwa and Bansal 2016). For example, Hendrickx et al. (2019)
achieved an F-1 measure of 84.1% in relation extraction from the SemEval-2010 dataset using a CNN-based model
and 84.0% using an RNN-based model. Similar performance was shown for variants of the two model types as well.
For example, Shen and Huang (2016) achieved an F-1 measure of 85.9% on the same dataset using an Attention-based
CNN model. The entity-aware Attention bidirectional long short term memory (BiLSTM) (Lee et al. 2019a), an RNN-
based model, achieved an F-1 measure of 85.2% using the same dataset. Another branch of research efforts has also
attempted to improve performance by adding sentence hierarchies such as dependency paths as additional features

(Yu et al. 2020; Cai et al. 2016).

Depending on the types of supervision received, those deep learning-based methods can be further divided into two
categories: distant and fully supervised methods. Distant supervised methods learn from unlabeled data with the help
of some external knowledge bases. For example, Mintz et al. (2009) used the Freebase (Bollacker et al. 2008), a
semantic knowledge base, for distant supervised learning. In general, research on distant supervised methods attempts
to experiment with different deep learning architectures or different knowledge bases for performance improvement.
Example efforts that adopt either CNN-based models or RNN-based models but receive different levels of supervision
include heterogeneous representations for neural relation extraction (HRERE) (Xu and Barbosa 2019), language

understanding with knowledge-based embeddings (LUKE) (Yamada et al. 2020), and advanced prototypical networks

5
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(Proto-ADV) (Gao et al. 2019). Fully supervised relation extraction methods, on the other hand, are more suitable for
construction applications, because (1) they do not require external knowledge bases, which are currently unavailable
in the construction domain; and (2) customized relation classes can be easily incorporated through additional
classes/labels.

2.3  Knowledge Graphs

A knowledge graph is a multi-relational graphical network that uses different relations as directed edges to connect
concepts or entities for representing information (e.g., information extracted from text or databases) in a semantically
rich and structured way (Bellomarini et al. 2019). Such graphical network structure not only helps express relational
connectivity in an intuitive way, but also helps discover implicit, missing, or new information through edge traversal,
because some relations may not be explicitly expressed or some entities may be omitted in the original data (e.g.,
natural language sentences) (Chen at al. 2020c; Ji et al. 2021). Knowledge graphs thus show three significant
advantages, which are especially beneficial for field compliance checking applications. First, knowledge graphs can
store relations between entities explicitly due to its graph-like structure, unlike other representation approaches such
as traditional relational databases in which entities are stored in the form of tables and are linked by separate linking
tables that cannot represent the exact semantic relations. Second, knowledge graphs typically allow more flexibility
to easily add or remove classes and relations from the knowledge-graph schema. Since construction safety regulations
are becoming more stringent as safety knowledge improves (Fang et al. 2020a), using knowledge graphs requires less
manual work to keep up with updates. Third, knowledge graphs allow for faster information retrieval due to their
structure, compared with other representation approaches (Holzschuher and Peinl 2013). For example, Chen et al.
(2020a) showed that knowledge graphs have outperformed traditional relational databases in querying and retrieving
transportation data (Chen et al. 2020a). This is because information retrieval using knowledge graphs usually starts

from the related named entities, and only scans relations in their neighborhood for desired information.

Due to their aforementioned characteristics, and hence the promising performance in various applications such as
knowledge retrieval, question-answering, knowledge recommendation, and knowledge visualization, knowledge
graphs have been successfully deployed by many leading companies to organize their business data such as Google,
Amazon, eBay, IBM, and LinkedIn (Chen at al. 2020c; Chen et al. 2020b). Multiple open knowledge graphs were
published as well, such as DBpedia, YAGO, and Google’s Knowledge Graph (Ji et al. 2021). Recently, knowledge

graphs have been applied in more research fields. For example, some research efforts have attempted to develop
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knowledge graphs to model hazardous chemical knowledge for risk management (Zheng et al. 2021). In the
construction domain, a few efforts focused on developing knowledge graphs for a number of applications. For example,
Chen and Luo (2019) constructed an ontology-based knowledge graph using noun phrases extracted from different
abstracts in the construction literature for bibliometric analysis. Fang et al. (2020a) developed a small-scale knowledge
graph for modeling detected site objects with spatial relations. Jiang et al. (2021) constructed a small-scale knowledge
graph for representing the connections among different construction safety standards (e.g., “Specification of

Inspection of Construction Hoist Equipment” “instance of” “Machinery Management”).

24  Query Representation for Knowledge Graph-Based Reasoning

Reasoning over knowledge graphs aims to infer new information or identify the target information from large amounts
of'available facts represented in a knowledge graph (Chen et al. 2020b). Traditional reasoning methods depend heavily
on external databases and query languages, which can be time-consuming and subject to the quality and coverage of
existing knowledge graphs. On the contrary, neural reasoners are faster and can better adapt to the incompleteness in
existing knowledge graphs, which makes them potentially efficient for field compliance checking. A research area
that has recently attracted research attention is query representation for neural reasoning (Alivanistos et al. 2021; Yu
and Yang 2021), especially to represent arbitrary logic operators such as conjunction (A), disjunction (V), and negation
(—) together with other triples in complex query graphs. This is particularly important for safety compliance reasoning,
because construction safety requirements cover different situations and are typically represented using multiple logic
operators. For example, the query graph for the sentence “the attachment point of the body harness shall be located in
the center of the wearer’s back near shoulder level, or above the wearer’s head” would contain two locations for the

attachment point connected by a disjunction operator.

There exist two ways to represent query graphs that involve logic operators: (1) as directed acyclic graphs with
symbolic logic operators. Knowledge graph-based reasoning methods then seek to retrieve subgraphs that match with
the query graphs. However, subgraph matching is relatively sensitive to data quality, producing correct answers largely
when facts in the knowledge graph are complete and accurate, which is not the case in real-world knowledge graphs
(Ren et al. 2020; Chen et al. 2020b; Zhu et al. 2022); and (2) as dependency or computation graphs to be mapped to
an embedding space together with facts from the knowledge graph (Ren et al. 2020; Ren and Leskovec 2020).

Knowledge graph-based reasoning methods then seek to identify entities or relations which are nearest to the queries
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in the embedding space as answers to be returned. Such embedding methods can robustly handle missing relations
and have achieved good performance in various reasoning tasks such as knowledge graph completion (Zhu et al. 2021).

3 State of the Art and Knowledge Gaps in Relation Extraction

In the area of relation extraction, in addition to the efforts outside the construction domain as discussed in Section 2,
there is a growing number of research efforts undertaken to extract relations from construction documents. For
example, Zhang and El-Gohary (2013) proposed a semantic rule-based natural language processing approach to
automatically extract requirements, including quantitative relations and comparative relations, from building codes.
Ren and Zhang (2021) proposed a semantic rule-based method with a set of natural language processing techniques
to extract successive and parallel relations from construction procedural documents. Liu and El-Gohary (2021)
proposed a semantic neural network ensemble—based dependency parsing method to automatically extract dependency
relations between bridge-related entities. Zhong et al. (2020d) proposed a deep learning-based method to classify
relations between entities about construction procedural requirements into seven predefined categories. Despite the

contributions of these efforts, five gaps of knowledge exist.

First, existing relation classes in other relation extraction efforts are not sufficient/suitable to describe the complex
situations in the construction safety domain, and thus cannot be directly applied. For example, only nine relation
classes such as “Cause-Effect” and “Part-Whole” have been considered in the SemEval-2010 dataset, six relation
classes such as “Agent-Artifact” and “Organization-Affiliation” have been considered in the ACEQS5 dataset (Walker
et al. 2006), and 24 relation classes such as “Contain” and “Place_Of Birth” have been considered in the New York
Times dataset (Riedel et al. 2010). Also, as can be inferred from these examples, which are all from relation extraction
efforts outside of the construction domain, many of the existing relation classes in these efforts can be either too
general or irrelevant to describe construction safety requirements. Similarly, existing relation classes from other
construction subdomains cannot be directly applied to construction safety applications either. This is because relations
in domain-specific applications tend to be specific and can vary in semantics and detail from one
subdomain/application to another. For example, construction safety regulations can include interactions between the
workers and their environment. Thus, for instance, relations describing construction procedural constraints [e.g., the
seven relations such as “Before”, “Start”, and “During” in (Zhong et al. 2020d)] are not sufficient to describe those
interactions. In addition, most of the existing research efforts in the construction domain paid limited attention to the

directions of relations. However, in natural language sentences, each relation often has two associated directions (e.g.,
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“support” and “supported by” can both indicating a relation of “Support™), which need to be inferred from the context

for accurate representation of the requirement semantics.

Second, most of the existing relation extraction methods, especially the research efforts in the construction domain,
are limited in considering non-verbal-predicate or redundant relations. On one hand, existing efforts mainly focus on
extracting simple predicates (i.e., verbs) as relations (e.g., Wu et al. 2022). However, relations sometimes exist not
only in the form of predicates, in which case extracting merely predicates can lead to missing information. For example,
“Same_As” is an important type of relation that describes the comparison between entities, but it cannot be extracted
using methods that only consider predicates as relations. Missing such information in the extracted safety requirements
could lead to missing the detection of noncompliance instances and eventually serious accidents onsite. On the other,
current research efforts extract relations without considering that different expressions can be used to refer to the same
relation (e.g., Wu et al. 2022). For example, relations such as “Conform_To” and “Meet” can both express that the
compliance checking subject should be compliant to a specific requirement; however, they are considered as different

relations in the extracted requirements using the existing extraction methods.

Third, most of the existing relation extraction methods in the construction domain still rely heavily on human
assistance, thus can fall short in their scalability and generalization. On one hand, rule-based information/relation
extraction methods (e.g., Zhang and El-Gohary 2015; Xu and Cai 2019; Ren and Zhang 2021; Wu et al. 2022) require
hand-crafted rules. On the other hand, traditional machine learning-based (as opposed to deep learning-based)
extraction methods (e.g., Liu and El-Gohary 2017; ul Hassan et al. 2020) require highly engineered features that are
obtained through trial and error. Only a limited number of efforts have explored deep learning approaches (e.g., Zhong
et al. 2020d; Zhang and El-Gohary 2021b; Schonfelder and Konig 2021). More research efforts are needed to further
explore the use of deep learning (especially fully supervised deep learning, as described in Section 2.2) in relation
extraction — for example to explore the use of feature embeddings to enhance the extraction capabilities and

performance.

Fourth, there is a lack of information extraction efforts that allow a direct pipeline to generate queries for discovery
of new information and improved analytics using knowledge graphs, which is especially needed for regulation
analytics. Knowledge graphs use a graphical network to represent relations as interlinks to connect concepts or entities

for maintaining the rich semantics in the original data (Bellomarini et al. 2019). Due to the ability to traverse through
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edges, reasoning over such graphical structure can help discover new relations or entities that are not explicitly
expressed (e.g., spatial relations that were not identified from site images, or omissions of named entities in the text)
(Chen at al. 2020c; Ji et al. 2021), which are important in identifying noncompliance instances. Thus, knowledge
graphs and queries have been used in compliance-related applications outside of the construction domain. For example,
Kaltenboeck (2022) developed queries based on different European laws for international-business applications. In
the construction domain, Fang et al. (2020b) converted a checklist of unsafe behavior rules into Cypher queries to
identify hazards in a knowledge graph, which stores detected site information, for improved hazard identification.
However, most queries from previous knowledge graph-based reasoning efforts were developed manually, thus are
small in scale [e.g., six rules in Fang et al. (2020b)]. There is a lack of efforts that use NLP techniques to directly

create queries from construction-domain text for supporting knowledge graph-based reasoning.

Fifth, studies in query representations are needed for developing query graphs that can support deep learning-based
field compliance reasoning. Queries in most of the previous efforts were developed in a traditional way using some
particular query languages such as SPARQL and GQL. Reasoning using such queries relies heavily on external
databases and query engines, requires longer processing time, and can be dependent on the quality of knowledge
graphs, which can eventually impede the effectiveness of field compliance checking. There are a few research efforts
on developing query graphs to perform deep learning-based reasoning directly in the embedding space. However,
despite considering the conjunction and disjunction logic operators, these efforts paid less attention to hyper-relational
queries or nested relations (Alivanistos et al. 2021; Yu and Yang 2021), which are important for accurately
representing the extracted safety requirements.

4  Proposed Method for Relation Extraction

The proposed information extraction and information modeling method uses deep learning models to automatically
extract domain-specific relations and represent the extracted safety requirements in a semantically rich and structured
way. The proposed relation extraction method seeks to automatically identify semantic relations such as “Break” and
“Tip_Over” from unstructured text, and classify them into several predefined relation classes such as “Fail” for
normalizing different expressions that refer to the same relation, as illustrated in Fig. 1. A total of 56 relation classes
were first identified based on a thorough review of relevant documents and research efforts. After predefining the
relation classes and preprocessing the raw text, a deep learning-based model was developed to automatically recognize

and classify relations based on their syntactic and semantic features. In developing the relation extraction model, two
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alternative deep learning models were tested: CNN-based (Attention-based CNN) and RNN-based model (Entity-
aware Attention BILSTM). These two types of models were selected for testing because they are two mature types of
deep learning models that have achieved comparable performance in the computational linguistics domain (see Section
2.2) but that also have different focuses and merits (see Section 2.2), thus a comparison of the two can help provide
insights in terms of which structures, layers, or techniques are more effective in addressing complex domain-specific
text, which can ultimately lead to optimized model structures specifically for tasks in the construction safety domain.
Additional deep learning models, such as transformer-based models, can also be tested in future work, as discussed in
Section 6. Pre-trained features were used to leverage the rich semantics of these features, which were obtained using
a large amount of annotated data from the computational linguistics domain. Two state-of-the-art static word
embeddings were selected and incorporated into the proposed method for comparative evaluation: the continuous bag-
of-words (CBOW) embedding (Mikolov et al. 2013) and the global vector (GloVe) embedding (Pennington et al.
2014). After relation extraction, all the extracted requirements [including relations extracted in this study and named
entities extracted in (Wang and El-Gohary 2022)] were represented in the form of knowledge graph-based queries.
Fig. 2 summarizes the research methodology, which includes six primary tasks: relation identification, text
preprocessing, feature preparation, relation extraction, knowledge graph-based relation representation, and evaluation.

An example to further illustrate the application of the proposed relation extraction method is shown in Fig. 3.

Is(safety_net_component, defective)

I 1
<attribute>Defective</attribute> <equipment>safety net components</equipment>
shall be removed from <other entity>se|rvice<fother entity>. |

Keep_From(safety_net_component, service)

Fig. 1. Example relations extracted from an OSHA clause.

Relation Text Feature ,| Deep Learning-Based
Identification Preprocessing Preparation Relation Extraction

Knowledge Graph-Based Relation .
- Evaluation
Representation

Fig. 2. Research methodology.
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employee: PER (person)

roof: FAC (facility)

| 1 steep: ATT (other attribute)

—————————————————————— ’ | unprotected_side_and_edge: LOC (location)
T 1 6: QUA (quantity)

- | feet: UNI (unit)

lower_level: LOC

guardrail_system: EQU (equipment)
safety_net_system: EQU
personal_fall_arrest_system: EQU

‘ 1926.501(b)(11) Each employee on a steep roof with unprotected sides and ‘
| edges 6 feet (1.8 m) or more above lower levels shall be protected from falling by |

Named Entity Recognition Model*
Coreference Resolution Model®
Named Entity Normalization Method*
*(Wang and El-Gohary 2022)

Extracted
Named

Ve ™
{ [‘each”, “employee”, “on”, "a", “ L ", “with”

nprotected_side_and_edge”, “6_

Named Entity
Extraction Entities
“lower_level", “shall”, “be”, “protected”, “from”, “falling”, “by”",

/" “guardrail_system”, "safety_net_system”, “or”,

Text Preprocessing RN, _—
»| (e.g., tokenization, Proeg:_c();e‘rses;tad personal_fall_arrest_system”, *."]
sentence splitting)

Vs

{ Located_At(employee, roof) §
Is(roof, steep) ]

.
[ Has(roof, unprotected_side_and_edge)

Rropossd Deep Deep Learnl_ng- Entity-Relation + Greater_Or_Equal_To(unprotected_side_and_edge, 6_feet)
Learning-Based Relation —+ Based Relation . i
Triples i = Above(roof, lower_level)

Recognition Model Extraction Protect(guardrail_system, employee)

Protect(safety_net_system, employee)
I } Protect(personal_fall_arrest_system, employee)
Proposed Knowledge Knowledge Graph- Que
Graph-Based Relation ——» Based Relation Gra ?‘s m
Representation Method Representation P

{1 1p: ((employee, Located_At, roof))

{ | 1p: ((roof, Is, steep))

i 1p: ((roof, Has, unprotected_side_and_edge))

{ | 1p: ((roof, Above, lower_level, {(distance, >= 6_feet}}))
3u: ((guardrail_system, Protect, employee), (safety_net_system, Protect, employee),
'.\ (personal_fall_arrest_system, Protect, employee))

Fig. 3. Application of proposed relation extraction method, with example.

4.1 Relation Identification

A review of 20 OSHA sections related to fall protection and of previous efforts on ontology-based modeling of
construction safety knowledge was conducted to identify the main semantic relations that are needed to represent fall
protection requirements (Zhong et al. 2020b; Xing et al. 2019; Lu et al. 2015; Zhang et al. 2015). A total of 56 relation
classes were identified, which aim to cover the main relations without redundant expressions. They were further
grouped into five main types: (1) comparative or spatial relations, which describe comparisons or spatial locations,
such as “Above” and “Below”; (2) interaction relations, which describe the interactions of the workers with their
environment, such as “Face”, “Access”, and “Change”; (3) constraint relations, which describe conditions or situations,
such as “Except” and “Conditioned On”; (4) descriptive relations, which describe the the properties, characteristics,
or components of the entities, such as “Is” (e.g., is steep) and “Has” (e.g., has unprotected side and edge); and (5)
logic relations such as “And” and “Or”. Most of the negated relations (e.g., “does not create a hazard”) were treated
as separate relations (e.g., “Not_Cause”) to minimize the number of negation operations for enhancing the efficiency
of the knowledge graph-based reasoning. Table 1 lists all the identified relation classes with examples and their
corresponding relation types. Most of these relations are bidirectional (except relations such as “And”, “Or”,
“Same_As”, “Whichever Greater”, and “Whichever Less”): either direction from head entity to tail entity or direction

from tail entity to head entity. For example, in the sentence “anticipated loads(1) caused by ice buildup(2) ...”, the
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318 relation is that tail entity (2) causes the head entity (1). In the sentence “ladder deflection(1) cause the ladder(2)to ...”,
319 the relation is that head entity (1) causes the tail entity (2).

320 Table 1. Identified Relation Classes with Examples

Relation Example(s) Relation type
Located At in, on the face of, at the edge of
Part Of steps of portable ladders, wells for fixed ladders
Less_Or_Equal To nor beyond, less than, nor more than, not to exceed
Greater Or_Equal_To more than, at least, not less than, exceed
Same As same as, i.e.
Whichever Greater whichever is greater, whichever is later
Whichever Less whichever is less
Related To related, about
Close_To is closer to, near
Above above Comparative or
Below below spatial relation
Over over the edge of ...
Not_Over would not go over, not overhang
Into into or through, falling through
Behind behind
Between within, at intervals
From from, between ... and ..., start at
To to, between ... and ..., to which
After after
Before until, before, prior to
Cause cause, so that, such that, because of
Not_Cause in no case ... be such that, it will not create a greater hazard to ...
Conform_To shall conform to, in conformance with, meet
Provide provide, to provide, shall be provided
Support supported, to support, shall be capable of supporting
Not_Support shall not be used to support, without supporting
Decide decide, shall determine
Protect shall be protected by, protect
Keep From keep from, prohibit from, be removed from, be withdrawn from
Allow shall permit, to allow
Use by the use of, by, through
Use For for, apply to, are used for, are designed for
Not_Use For not apply to, used ... not for Interaction relation
Use As as, is used as
Not Use As shall not be used as
Engage In engaged in, performing
Not_Engage In who is not engaged in, not in
Change change, affect
Match be compatible with, match
Fail break, tip over, fail, fall
Not_Reduce shall not reduce
Access to reach, access
Parallel that parallels, shall be parallel, along
Surround around, encircle
Face shall face, face
Conditioned On only when, if, provided that
Except unless, except, excluding . .
Because because, because of, for, as Constraint relation
Otherwise otherwise, or
Has shall have, to have, have, contain
Not_Has without, shall not have Descriptive
Is shall be, were, are relation
Is Not shall not be
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But but, however

Or or Logic relation
And and, in addition to, besides

4.2  Text Preprocessing

Text preprocessing aims to prepare the raw text in a format that would be ready for subsequent analysis. Preprocessing
consists of correcting misspelling, removing redundant punctuation, tokenization, and sentence splitting. Correcting
misspelling and removing redundant punctuation aims to reduce the noise in the text. Tokenization aims to divide
each sequence from the text into units of words. Sentence splitting aims to recognize the boundaries of sentences and
divides them into chunks.

43  Feature Preparation

Two types of features were used for relation extraction: word embedding and position embedding. For word
embedding, two state-of-the-art static word embeddings were selected for comparison: CBOW and GloVe embeddings.
The CBOW embedding is pre-trained on 100 billion words from Google News. However, it does not encode explicit
global information. The GloVe embedding, on the other hand, develops a global co-occurrence matrix to represent
probabilities that a given word will co-occur with others. It is pre-trained on Wikipedia and Web text of 6 billion
words. Both word embeddings can capture the semantics of each word, with its context, and represent them in the
form of continuous and dense feature vectors, so that words similar in meaning are closer to each other in their
embedding space. Compared to other static word embeddings (e.g., Skip Gram), CBOW and GloVe were selected for
testing because they typically show better performance in relation extraction (Irsoy et al. 2020; Lai et al. 2018).
Position embedding is used to differentiate the importance of each word due to its location in the sentence. This is
because usually words closer to the given entities are more informative. Position information is thus calculated with
reference to the head entity. For example, in the sentence “All <el>fall protection</el> required by
<e2>1926.501</e2> shall ...”, the relative distance from the word “required” to the head entity is 1, and the relative
distance from the tail entity “1926.501” to the head entity is 3, which are encoded in the position embedding.

44  Deep Learning-Based Relation Extraction

Two deep learning-based relation extraction models, a CNN-based model (Attention-based CNN) and an RNN-based
model (Entity-aware Attention BILSTM), were developed and tested for comparative evaluation. CNN and RNN were
selected for the reasons outlined at the beginning of Section 4. A fully supervised learning approach was adopted for

the reasons outlined in Section 2.2.
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44.1 Proposed Attention-Based CNN Model

The proposed Attention-based CNN model contains four main types of layers: embedding layers, convolution layer,
attention layer, and multi-layer perceptron layers. The embedding layers consist of three components: word embedding,
position embedding, and part-of-speech (POS) embedding. The word embedding layer starts from the pre-trained
embedding (CBOW or GloVe, as per Section 4.3), then adjusts itself to the semantics in the construction safety domain
during training. The position embedding layer provides the relative location information of each word, as described
previously. The POS embedding layer aims to encode the POS tag of each word, which indicates the lexical category
of that word, such as noun, verb, and adjective. A total of 15 POS categories were considered and obtained using the
Stanford CoreNLP Toolkit (Manning et al. 2014). With the lexical category of each word encoded, the model can
capture more relation classes than predicates. The outputs for each word from these three embeddings are then
concatenated before being fed into the CNN layer and the attention layer. The CNN layer, consisting of a convolution
layer and a max-pooling layer, is used to extract local character-level features. The convolution process in the
convolution layer aims to extract features by applying different filters. The max-pooling layer aims to keep the most
important features for sentences with variable lengths. The outputs from the CNN layer are represented as sentence
convolution vectors. For the attention layer, attention weights are calculated to quantitatively model the contextual
relevance of the words. Then attention-based context vectors are calculated as a weighted sum of the words based on
their attention weights. The outputs from both the CNN layer and the attention layer, namely sentence convolution
vectors and attention-based context vectors, are concatenated together for a full representation of an input sentence.
The multi-layer perceptron layers take in all the concatenated vectors and transform them into probabilities. Relation
class tags with the highest probabilities are then selected as predictions. The Attention-based CNN architecture is

illustrated in Fig. 4.
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Fig. 4. Architecture of proposed Attention-based CNN model.

4.4.2 Proposed Entity-Aware Attention BILSTM Model

The proposed Entity-aware Attention BILSTM model contains five main types of layers: embedding layers, self-
attention layer, bidirectional LSTM layer, entity-aware attention layer, and the multi-layer perceptron layers. The
embedding layers consist of two components that correspond to the aforementioned two features. The outputs from
the two embedding layers are concatenated before being fed into the self-attention layer, which is implemented using
the multi-head attention formulation. The self-attention layer is used to capture the distinctive information in a
sentence by measuring the correlation between words. Then the outputs from the self-attention layer are fed into the
bidirectional LSTM layer for computing the feature values and capturing the context information of each word. The
entity-aware attention layer is used afterwards to calculate the attention weights by considering three factors: (1) the
semantic and syntactic features of each given entity pair, (2) the relative positions of the surrounding words to the
target entity pair, and (3) the entity classes of the target entity pair. The multi-layer perceptron layers then transform
the outputs from the entity-aware attention layer into relation class predictions, in the same way as the proposed
Attention-based CNN model. To prevent overfitting, L2 (squared) regularization was added to the model. The Entity-

aware Attention BILSTM architecture is shown in Fig. 5.
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Fig. 5. Architecture of proposed Entity-aware Attention BiLSTM model.

4.5 Knowledge Graph-Based Relation Representation
4.5.1 Query Structure Development

The extracted safety requirements were represented as query graphs, using computation graphs, for supporting
subsequent field compliance reasoning using knowledge graphs, where nodes correspond to named entities and edges
correspond to relations, as illustrated in Fig. 6(a). Extracted entity-relation triples (i.e., output from relation extraction)
were treated as atomic components of query graphs, which were connected using a set of logic operators. Conjunction
and disjunction operators are handled using additional blank nodes and auxiliary edges, as illustrated in Fig. 6(b) and
Fig. 6(c). There are three types of edges: (1) projection, which uses the semantic relations predefined in Section 4.1
(except logic relations) to connect the nodes; (2) union, which indicates a disjunction operation at the additional blank
node it points to; and (3) intersection, which indicates a conjunction operation at the additional blank node it points
to. For example, in the sentence “employee ... shall be protected by guardrail systems or personal fall arrest systems”,
two nodes, “guardrail system” and “personal fall arrest system”, were first projected to their corresponding blank
nodes using the “Protect” relation, then connected to a single blank node (where the disjunction will be executed)
using union edges. Similarly, in the sentence “Articulating boom platforms ...shall have both upper and lower
controls”, the “articulating boom_platform” node is connected to a blank node for representing the conjunction
operation, which is further connected to two blank nodes using intersection edges and then further connected to the
two nodes “upper_control” and “lower_control”. Qualifiers were then added, to convert the triple-based queries into
hyper-relational queries, which can provide further fine-grained constraints for reasoning (Alivanistos et al. 2021; Yu

and Yang 2021). This is especially necessary in representing construction safety requirements because relations are
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sometimes nested. For example, in the phrase “employee on a walking/working surface 6 feet or more above a lower
level”, three triples were extracted using relation extraction methods that assume flat relations: “Located At(employee,
walking working_surface)”, “Above(walking working_surface, lower level)”, and
“Greater_ Or_Equal To(walking working surface, 6 feet)”. However, the relation “Greater Or Equal To” is in fact
constraining the relation “Above”, with a “distance” attribute and some particular value. Therefore, a qualifier of
distance was added to the relation of “Above”, with a qualifier value of “>=6 feet”, as follows: “Above distance: >= 6

feetyy(Walking working surface, lower level)”.

Projectio . Projection
~ Union -~a lnterseclion
. ~ - . - . .
Is safety_net Keep From . Projectio Union ™ Projection Projectiol Intersection Projection
defective < i ——— serice el A -
_component
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(a) (b) (c)

Fig. 6. Example of query structure development: (a) Components of query graphs; (b) Query graph with disjunction
operation; and (c) Query graph with conjunction operation.

4.5.2 Query Graph Coding

Query graph coding aims to represent query graphs with the structure described previously into a computer-
processable format. The atomic components of the query graphs are in the form of (4, r, ¢, gp), where h means head
entity, » means relation, ¢ means tail entity, and the optional gp = {(gai, ge:), ...} means the set of qualifiers, with
{qai, ga., ...} as qualifier attributes and {ge;, ge>, ...} as qualifier values. Query graph coding includes four main
steps. First, the entity-relation triples obtained from the relation extraction were converted to the correct form, i.e.,
directions corrected to be from head entity to tail entity, and relation corrected to be in the middle. For example, the
triple from the sentence “anticipated loads(1) caused by ice buildup(2) ...” was converted to (ice_buildup, Cause,
anticipated_ice), with head entity and tail entity switched. Second, entities and relations in the query graph were
assigned with an index, such that the developed query graphs can be more simplified and less repetitive for subsequent
compliance reasoning. For example, the triple “(employee, Above, dangerous_equipment)” was mapped to “(11, 11,
65)”. Third, qualifiers were added to the main triples for providing additional constraints. Especially, triples indicating
comparisons or spatial relations with values were checked for their validity as qualifiers. For example, as per Fig. 7(a),
“Above(walking working_surface, lower level)” and “Greater Or Equal To(walking working_ surface, 6 feet)”,

which were extracted from the sentence “each employee on a walking/working surface 6 feet (1.8 m) or more above
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a lower level”, are indicating a spatial relation with values and were thus merged into one triple with a qualifier
“(walking_working_surface, Above, lower level,{(distance,>=6_feet)})” for a more accurate representation. Fourth,
brackets were added to connect the atomic components in each clause, which include logic operators such as “And”
and “Or”, with a proper name to indicate the query types in terms of number of nodes and operators. For example,
“employee ... shall be protected from falling by the use of guardrail systems, safety net systems, or personal fall arrest
systems”, a name of “3u” was used to describe the query of “((guardrail system, Protect, employee),
(safety _net system, Protect, employee), (personal fall arrest system, Protect, employee))”, which involves a
disjunction operation among the three types of protection systems that are combined using brackets. Query graphs for

each clause were coded using Python 3 and were stored in separate files.

This query-graph representation helps decompose complex requirements into manageable units, while keeping these
units connected in a robust and scalable graph structure for supporting subsequent field compliance checking. The
graph structure can also help identify missing information in the original regulations, due to occasional omissions in
the natural language sentences. For example, for the sentence “employee on a walking/working surface with an
unprotected side or edge which is 6 feet (1.8 m) or more above a lower level” [as in Fig. 7(a)], there exists a triple
“Above(walking working surface, lower level)” with a certain value. It can be inferred that since the employee is
located on the “walking working surface”, they can be above the “lower level” as well. Thus, an edge from
“employee” to “lower_level” can be identified and added through traversing the links, such that the represented safety

requirements can be more complete and accurate in describing interconnections among the entities.
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1926.501(b)(1)

Each employee on a walking/working surface with an unprotected side or edge which is 6 feet (1.8 m) or more
above a lower level shall be protected from falling by the use of guardrail systems, safety net systems, or
personal fall arrest systems.
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1p: ((walking_working_surface, Has, unprotected_side_and_edge))
1p: ((walking_working_surface, Above, lower_level, {(distance, >= 6_feet)}))
3u: ((guardrail_system, Protect, employee), (safety net system, Protect, employee), (personal_fall_arrest_system,
Protect, employee))
(a)
1926.451(g)(1)(ii)
Each employee on a single-point or two-point adjustable suspension scaffold shall be protected by both a
personal fall arrest system and guardrail system.

Prolectlon o Protect
Ad \
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(employee, Located_At, two-point_adjustable_suspension_scaffold))
2i: ((personal_fall_arrest_system, Protect, employee), (guardrail_system, Protect, employee))

(b)
Fig. 7. Query graphs for representing safety requirements: (a) 1926.501(b)(1); and (b)1926.451(g)(1)(ii).

4.6 Evaluation Metrics

Precision (P), recall (R), and F-1 measure were used to evaluate the relation extraction performance. The three metrics
were calculated by comparing the recognized relations with the annotated gold standard, as shown in Egs. (1)-(3).
Precision is defined as the number of correctly recognized relations divided by the total number of all recognized
relations. Recall is defined as the number of correctly recognized relations divided by the total number of all relations
that should be recognized. F-1 measure is the weighted harmonic mean of precision and recall. A precision-recall
curve was also plotted to illustrate the tradeoff between precision and recall across different probabilities, and the area
under the curve (AUC) was calculated. A higher AUC indicates that misclassification is less likely to happen. The
margins of error at 95% confidence level were also calculated for the precision, recall, and F-1 measure to evaluate

the sensitivity of the performance results.
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5  Experimental Results and Discussion

The proposed relation extraction method was tested using OSHA sections related to fall protection. A set of
experiments were conducted to evaluate the proposed method, including: (1) comparing the performance of the two
deep learning models in relation extraction (see Section 4.4), and (2) evaluating the impact of different word
embeddings (see Section 4.3). The experiments were implemented using tensorflow and PyTorch on NVIDIA
GeForce RTX 2070 SUPER.

5.1  Data Preparation and Gold Standard Development

Twenty (20) OSHA sections related to fall protection were used for developing the dataset. The selected sections cover
a variety of fall-related topics such as general fall protection, fall protection systems, guardrail systems, and
positioning device systems, as listed in Table 2. The dataset was annotated, following the tagging scheme of the
SemEval-2010 dataset from the computational linguistics domain, to create the gold standard for training and testing
the relation extraction model. During the annotation, special situations were considered for the “And” relation: (1)
most requirements containing “And” were extracted as separate entity-relation triples according to algebraic properties.
For example, in the sentence “Dee-rings and snaphooks shall have a minimum tensile strength of 5,000 pounds (22.2
kN)”, triples of “Has(dee-ring, tensile_strength)” and “Has(snaphook, tensile strength)” were annotated, instead of
annotating a triple of “And(dee-ring, tensile_strength)” which does not accurately reflect the semantics in the original
text. This can also help minimize the number of conjunction operations to simplify subsequent compliance reasoning;
and (2) depending on the context in the sentence, the word “and” can sometimes indicate an “Or” relation, which was
corrected during annotation. For example, in the sentence “Guardrail systems used on ramps and runways shall be
erected along each unprotected side or edge”, the requirement actually applies to guardrail systems at any of the two
locations (i.e., ramps or runways), thus was corrected to “Or”. The annotation process was conducted by three
annotators who have background in both civil engineering and natural language processing. An inter-annotator
agreement of 91.3% in F-1 measure was achieved, which indicates the reliability of the gold standard (Artstein 2017).

Due to the complexity of OSHA clauses, one clause can contain multiple entity-relation triples. The resulting dataset,
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thus, included a total number of 7,927 entity-relation triples after the annotation (represented as 1,147 query graphs),
which were split into training and testing datasets at a ratio of 85:15. The relation extraction performance was
evaluated by comparing the extracted results with the developed gold standard, using the aforementioned evaluation
metrics (Section 4.6). An example of the annotation is shown in Table 3, and the distribution of relation classes is

illustrated in Fig. 8.

A normality test was then conducted to determine whether the dataset follows a normal distribution to further
understand its characteristics. Two metrics for measuring the shape of the distribution were calculated for a statistical
test: skewness and kurtosis (Jones 1969). Skewness is used to describe if the distribution is symmetrical. A
symmetrical distribution will have a skewness of 0. A highly skewed distribution will have a skewness of less than 1
or greater than 1. The annotated dataset resulted in a skewness of 0.5107, which means that it is moderately skewed.
Kurtosis is used to describe the height and sharpness of the central peak, compared to a standard bell curve. A normal
distribution will have a kurtosis of 0 (Fisher 1992). The annotated dataset resulted in a kurtosis of -0.9994, which
means that the distribution has thinner tails and fewer classes with extremely low frequency than a normal distribution.
Therefore, the relation classes are not normally distributed. This matches with Zipf’s law in the computational
linguistics domain (Manning and Schutze 1999), which points out that the distribution of words is highly imbalanced,
with some occurring very frequently and others occurring rarely.

Table 2. Selected OSHA Sections Related to Fall Protection

Topic Section(s)
General requirements 1926.451, 1926.501, 1926.1051
Fall protection systems 1926.502, 1926.760, 1926.1423, 1926 Subpart R App G
Guardrail systems 1926 Subpart M App B
Personal fall arrest systems 1926 Subpart M App C
Positioning device systems 1926.104, 1926.105, 1926 Subpart M App D
Personal protective equipment 1926.95, 1926.96, 1926.100
Scaffolds 1926.452, 1926 Subpart L App A
Ladders 1926.1053
Aerial lifts 1926.453
Housekeeping 1926.25

Table 3. Examples of Annotated Entity-Relation Triples

Original sentence Annotated sentence' Relation class Relation index?
Each employee on a walking/working Each <el>employee</el>on a
surface shall be protected from objects | <e2>walking working surface</e2> shall Located At 1
falling through holes (including be protected from objects falling through -
skylights) by covers. holes (including skylights) by covers.
No employee shall be allowed in an No employee shall be allowed in an area
area where an employee is being where an <el>employee</el> is being Protect 48
protected by a safety monitoring protected by a <e2>safety monitoring
system. system</e2>.

el = head tag; €2 = tail tag.
2 odd number = relation direction is head to tail; even number = relation direction is tail to head.
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Fig. 8. Distribution of relation classes.

5.2 Relation Extraction Performance

A total number of 1,190 entity-relation triples were extracted from the testing dataset, resulting in 671 query graphs
after query graph coding. Example computation graphs and coded queries for each query graph are illustrated in Fig.
7. The hyperparameters of the two models were finetuned for achieving optimized performance. The selected
hyperparameters are listed in Table 4. The performance results and precision-recall curves for the two models are
shown in Figs. 9 and 10, respectively, which show that both models achieved good relation extraction performance.
The proposed Attention-based CNN model, with GloVe embedding, achieved the best results, 87.5% precision, 83.4%

recall, and 85.4% F-1 measure (as per Fig. 9), and was hence selected. Comparatively, it also showed a slightly lower
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margin of error. In comparison, the proposed (RNN-based) Entity-aware Attention BiLSTM model achieved 83.7%,
81.9%, and 82.8%, respectively, as shown in Fig. 9. The superior performance of the proposed CNN-based model is
likely because CNN better captures local features with small translations, while RNN better captures context with
sequential features. In the construction safety regulations, informative words indicating relations are usually in the
vicinity of the given entity pairs, which can be more useful than the dependency structure and sequential features

captured by an RNN-based model.

Despite the performance difference, both models were effective in capturing the distinctive semantics between or
outside the given entity pairs using the attention mechanism. Example results for the attention mechanism are shown
in Table 5. In each example sentence, words with the highest attention weight(s) from both models are marked in bold.
For example, in the sentence “1926.501 sets forth requirements for employers(1) to provide fall protection systems(2)”,
the word “provide” between the given entity pair was assigned with the highest attention weight. In the sentence “Each
employee who is constructing a leading edge(1) 6 feet(2) (1.8 m) or more”, the words “or more” outside the given

entity pair were assigned with the highest attention weights.

Fig. 9 illustrates the results of testing the two word embeddings, CBOW and GloVe. The results showed a small
difference in the performance of the CBOW and GloVe embeddings. For example, an average precision, recall, and
F-1 measure of 87.5%, 83.4%, and 85.4%, respectively, were obtained for the proposed Attention-based CNN model
with GloVe embedding, compared to 86.4%, 83.1%, and 84.7% with CBOW embedding. Similarly, comparing the
GloVe and CBOW embeddings, in Fig. 10(a) and (b), also shows that both achieved comparable performance (slightly
better for the GloVe). These results may indicate that different types of static word embeddings might show similar
performance levels for this domain-specific application, and hence it might be beneficial to further explore dynamic
word embeddings such as ELMO (Embeddings from Language Models) and BERT (Bidirectional Encoder

Representations from Transformers) embeddings in future work.
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Fig. 9. Relation extraction performance results using CNN-based and RNN-based models with different word
embeddings.
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Fig. 10. Precision-recall curve: (a) Curve for proposed Attention-based CNN model; and (b) Curve for proposed
Entity-aware Attention BiLSTM model.

Table 4. Hyperparameters of the Models

Hyperparameter Attention-based CNN model | Entity-aware Attention BILSTM model
Dropout rate 0.5 0.7

Word-embedding dimension 300 300
Position-embedding dimension 50 50

POS-embedding dimension 15 N/A

Max-sentence length 150 150

L2 weight N/A 0.00001

Epoch 40 40

Optimizer Stochastic gradient descent Adadelta
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Table 5. Example Results for Attention Mechanism

Relation Example results of attention weights

1926.501 sets forth requirements for <el>employers</e1> to provide <e2>fall protection

Provide systems</e2> .

<el>Employees</el> shall be allowed to work on walking working surfaces only when

Conditioned On <e2>walking working surfaces</e2> have the strength .

Greater Or_Equal To Each employee who is constructing a <el>leading edge</e1> <e2>6 feet</e2> ( 1.8 m ) or more ,
Less Or Equal To <el>length of climb</e1> is less than <e2>24 feet</e2>
Not Has The <.e1>'cantilevered portion</el> of the platform is able to support employees without

— <e2>tipping</e2> .

Except Except when <el>portable ladders</e1> are used to gain access to fixed ladders, the <e2>

portable ladders</e2> shall be offset with a platform .

53  Error Analysis

An error analysis was conducted to identify the sources of errors. Ambiguity is a major error source for both models,
especially when the relations are indicated using prepositions only. For example, in the phrase “the ability(1) of a
ladder(2) to sustain”, the actual relation class is “Has”, with a direction from (2) to (1), since (1) is one attribute (2)
possesses. However, in the phrase “steps(1) of portable ladders(2)”, the actual relation class is “Part Of”, with a
direction from (1) to (2), since (1) is a component of (2). In both cases, there is only one preposition “of” that can
provide relevant information for predictions, hence the difficulty to distinguish such cases. Similar situations can be

9 o490 el
1

found with other prepositions such as “for”, “at”, “in”, “by”, and “to”. Therefore, extracting relations from the text

with such ambiguities can be difficult.

Frequent omission is another source of error, in which case there is no sufficient information for the model to make
the correct predictions. For example, in the phrase “leaving both hands(1) free(2)”, the actual relation class is “Is”,
with a direction from (1) to (2), since (2) is an attribute of (1). However, there are no other words near the given
entities supporting such prediction due to omission. Similarly, in the phrase “one-eighth(1) the working length(2)”,
words for indicating relations between the given entities are omitted, which makes it difficult to predict the correct

relations.

A lack of domain knowledge can also lead to incorrect predictions. For example, in the sentence “When the
employee(1) is ascending or descending a ladder(2)...”, the actual relation is “Use”, with a direction from (1) to (2),
since both ascending and descending are the actions for (1) to use (2). Similarly, in the phrase “If the slope(1) is steeper
than one vertical in eight horizontal(2)...”, the actual relation class is “Greater Or_Equal _To”, with a direction from
(1) to (2), since a steeper slope has a higher ratio. However, there is no sufficient context, background information, or

term explanations for each OSHA clause. It is, therefore, difficult for the model to make the desired predictions.
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Depending on the context, keywords that occur in certain relation classes sometimes do not indicate that relation,
which makes it difficult for both models to produce correct predictions, even when the attention mechanism can
effectively capture the most distinctive words. For example, the word “or” can indicate an “Otherwise” relation
between “perpendicular” and “opposing_angle tieback”, rather than an “Or” relation in the sentence “tiebacks shall
be installed perpendicular to ..., or opposing angle ticbacks shall be installed”, because it refers to the situation that
the first condition is not met. The word “and” can indicate a “To” relation in the phrase “distance between the bottom
horizontal band and the next higher band”, because it indicates the end of that distance. Another example is related to
word “but” in the sentence “safety nets shall be installed ..., but in no case more than 30 feet below the
walking/working surface”, which does not indicate a “but” relation between “safety net” and “30_feet”. However, it
is combined with its subsequent phrase of “in no case” to be a negation for phrase of “more than”, which eventually

indicates a “Less Or Equal To” relation for describing the distance between the two levels.

There are two other sources of error for domain-specific relation extraction. First, there are significantly more relation
classes in this study, with fewer training samples within each relation class. For example, the SemEval-2010 dataset
using general-domain text considers nine relation classes, while in our application, a total of 56 relation classes were
considered. Considering that our dataset size is smaller, it may not contain sufficient training samples for certain
relation classes. Second, sentences in construction safety regulations are more complex, which makes relation
extraction difficult. Such complexity includes longer sentences with a high density of information to be extracted,
clauses with nested conditions to describe a particular scenario, and different text patterns across sections.

6 Limitations

Four main limitations of the work are acknowledged, which point to four directions of future work. First, the identified
relations are not necessarily complete or exhaustive, especially if additional safety topics or contexts are considered.
This is expected because relations in domain-specific applications can vary in semantics and detail from one
subdomain/topic to another. Additional testing on different OSHA topics is needed to assess if the identified relations
are sufficient, or if additional adaptation or extension effort is needed. Second, in developing the relation extraction
model only two alternative deep learning models were tested, a CNN-based model (Attention-based CNN) and an
RNN-based model (Entity-aware Attention BILSTM). In future work, the authors plan to test additional types of deep
learning-based models, especially transformer-based models, including different transformer variants and model

architectures. Third, only two different static word embeddings were tested and compared in this study. Additional
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existing word embeddings could be tested in future work, including dynamic word embeddings (e.g., ELMO) or
existing domain-specific word embeddings (e.g., Zhang and El-Gohary 2021a). In addition, in future work, the authors
also plan to train a domain-specific word embedding using large quantities of construction regulatory documents or
dictionaries from multiple construction subdomains, which can be more effective in further improving the relation
extraction performance (and performance of other NLP applications in the construction domain). Fourth, the proposed
query graph representation may be limited in representing cardinality (e.g., “both” is treated as an attribute not
cardinality). The use of additional operators such as cardinality and aggregation can be considered and tested in future
work. Fifth, the dataset size used in this study is limited. Given there are 56 relations classes in total, the developed
dataset in this study may not contain sufficient training samples for certain relation classes. To further improve the
relation extraction performance and generalizability, more text (including clauses from other sources of construction
safety regulations) needs to be added to the current dataset.

7  Contributions to the Body of Knowledge

This research offers a new method for automatically extracting relations that describe fall protection requirements
from construction safety regulations and representing the extracted information in the form of knowledge graph-based
queries. From an intellectual perspective, the proposed method improves the information extraction methodology and
application in the construction safety domain in four primary ways. First, it is the first effort to use a deep learning-
based method with a combination of word and position embeddings to improve the domain-specific relation extraction
performance. The proposed deep learning-based method can reduce the amount of human assistance required in the
relation extraction process. The adopted two embeddings can bring rich semantics from the computational linguistics
domain and distinguish informative words in a sentence for a deeper understanding of the text and better capturing of
the domain-specific features. Second, this study considered non-verbal predicate relations, redundant relations, and
the directions of the relations in the relation extraction, which helps accurately describe complex situations considered
in the safety regulations without redundancy. The set of relation classes it identified was effective in describing fall-
related requirements from OSHA. The relations could also be utilized — as is or with adaptation — for analyzing other
construction safety documents such as the fall-related standards from the American National Standards Institute
(ANSI), safety reports, etc. Third, the proposed method can directly generate a structured representation for the
requirements extracted from construction-domain text. The query-graph representation helps decompose complex

requirements into smaller manageable units that are connected in a robust and scalable graph structure. The graph
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structure can also facilitate the discovery of implicit information through edge traversal to allow for more complete
and accurate representation of the safety requirements. Deep learning-based automated reasoning methods can also
be developed based on such query graphs. Deep learning-based reasoning methods do not rely on external databases
or query languages and can conduct reasoning in a dense and compact embedding space, which would allow for better
reasoning performance, generalizability, flexibility, and speed than traditional query language-based compliance
checking methods. The query graphs developed in this study can also be integrated with existing query graphs from
other domains [e.g., the WD50K-Q (Alivanistos et al. 2021) and FB15k (Ren et al. 2020)] to support future potential
efforts that may leverage out-of-domain large-scale graph structures with techniques like transfer learning for
improved knowledge graph-based question answering and reasoning. Fourth, the proposed deep learning-based
relation extraction method with the two types of features, as well as the method for developing query graphs, are
adaptable to more safety topics and more accident types. Adapting and using the proposed method for multiple safety
subdomains could help address different types, scenarios, and contexts of accidents — and possibly interdependencies

and/or interactions among them — for improved field compliance checking.

From a practical perspective, this paper contributes to the practice of field compliance checking in three ways. First,
the paper offers a relation extraction method to automatically extract safety requirements from construction safety
regulations, which could be integrated into existing or future software applications for field compliance checking. The
use of the proposed method could help eliminate (or reduce) the manual effort that would be needed to hardcode the
extracted requirements into computable rules (which is the status-quo if using existing software). Second, the proposed
method can extract and represent requirements that cover a variety of safety-related operation scenarios in the field,
which could help in checking compliance for different situations onsite. The use of the proposed method could, thus,
help improve the application, scope, and generalizability of existing field compliance checking systems and practices.
Third, the resulting knowledge graph-represented safety requirements can be easily integrated with other
data/information/knowledge or within other existing software systems. For example, safety checking software could
easily add a module to represent the construction safety requirements in the form of knowledge queries, such that
when real-time field information is collected, it could be checked for compliance with these requirements.

8 Conclusions and Future Work

This paper proposed a method to automatically extract domain-specific relations that describe fall protection

requirements from construction safety regulations, as well as represent the extracted requirements as query graphs for
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supporting subsequent knowledge graph-based field compliance checking. The proposed relation extraction method
uses a deep learning model to automatically identify relations from unstructured text and classify them into predefined
relation classes. Two types of features were used to leverage the rich semantics from the computational linguistics
domain and to help distinguish informative words in a sentence: pre-trained word embedding and position embedding.
Two alternative deep learning models, a CNN-based model (Attention-based CNN) and an RNN-based model (Entity-
aware Attention BiLSTM), were developed and comparatively evaluated. An attention mechanism was added to both
models to better capture distinctive words. A query-graph representation was proposed to represent the extracted safety
requirements with explicit semantics in a structured way that represents requirements in the form of smaller
manageable units that are connected in a robust and scalable graph structure. The proposed method was tested on 20

OSHA sections related to fall protection.

The proposed Attention-based CNN model with GloVe embedding achieved an average precision, recall, and F-1
measure of 87.5%, 83.4%, and 85.4%, respectively, which showed higher performance than the Entity-aware
Attention BILSTM model with GloVe embedding (83.7%, 81.9%, and 82.8% in precision, recall, and F-1 measure,
respectively). A small difference in the relation extraction performance was shown across the two word embeddings.
For example, the Attention-based CNN model with CBOW embedding showed insignificantly lower results (86.4%,
83.1%, and 84.7%) than with GloVe embedding (87.5%, 83.4%, and 85.4%, respectively). Five conclusions can, thus,
be drawn from the experimental results. First, the proposed relation extraction method was effective in automatically
recognizing and classifying domain-specific relations from unstructured text with good performance and minimized
human assistance. Second, the proposed CNN-based model (Attention-based CNN) showed better performance than
the proposed RNN-based model (Entity-aware Attention BiLSTM), due to its ability to better capture local features
with small translations. Third, the attention mechanism used in both models was able to capture the distinctive
information located either between or outside the given entity pairs, which helps enhance the extraction performance.
Fourth, the models using GloVe embedding achieved comparable performance in extracting the domain-specific
relations compared with those using the CBOW embedding. Fifth, the developed query graphs were able to

successfully represent the extracted safety requirements and logic operators.

In their future work, the authors plan to explore four main directions. First, the authors will conduct additional research,

implementation, and testing efforts to address the aforementioned limitations, as discussed in Section 6. Second, the
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authors will explore the integration of ontologies with knowledge graphs to enhance the representation and reasoning
capabilities of the proposed query-graph representation. Integrating ontologies with knowledge graphs provides
knowledge graphs with enhanced schema(s), enriched semantics, and improved reasoning capabilities. Third, the
authors will also explore the use of the proposed graph-based representation to support further document and safety
analytics. For example, we could leverage the graph analytics to uncover hidden links to discover the underlying
reasons leading to noncompliances or common factors contributing to multiple violations. We will also focus on using
the query graphs to discover missing requirements, which were hidden due to the implicitness in the natural language
sentences, to improve the accuracy and completeness of the represented safety requirements and hence improved
compliance assessment. Such analysis could also help bring new insights on how to further improve/refine the writing
of the safety regulations to prevent/reduce requirements from being vulnerable to subjective (incorrect) interpretations
that could compromise safety and lead to accidents. This is essential because current safety practices are in many cases
noncompliant, because workers heavily depend on their own understanding/interpretation of the OSHA requirements
and/or the direct guidance they receive from the safety manager — both which may not be fully compliant with OSHA.
Fourth, beyond information extraction, the authors will devote their efforts to developing computer vision-based
methods to detect site information from images or videos and using graph-based automated reasoning for supporting
field compliance checking. Special attention will be paid to how to align these two sets of information properly and
how to interpret compliance checking scenarios correctly. These factors are crucial in identifying noncompliances,
sending feedback to relevant workers promptly, and improving overall field compliance. Our ultimate goal is to
leverage deep learning as well as other artificial intelligence techniques, including natural language processing and
computer vision, to automate the process of detecting violations to construction safety regulations promptly and
consistently with minimized human assistance.
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