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ABSTRACT

Automated safety compliance checking aims to detect field violations to construction safety
regulations. Recent research and system development efforts have made good progress on
automated tracking of labor and equipment towards improved violation detection and safety
compliance. However, extracting and modeling safety requirements for supporting automated
violation detection or safety alert systems remains highly manual. Towards addressing this gap,
information extraction provides an opportunity to automatically extract safety requirements from
regulatory documents for comparisons with field information to detect violations. However,
existing information extraction methods fall short in their scalability and/or accuracy. To address
this need, this paper proposes a deep learning-based information extraction method for extracting
entities that describe fall protection requirements from construction safety regulations for
supporting automated field compliance checking. The proposed method uses a hybrid bidirectional
long short-term memory (BiLSTM) and convolutional neural network (CNN) model for
recognizing the entities. The proposed method was implemented and tested on four selected
Occupational Safety and Health Administration (OSHA) sections related to fall protection. It has
achieved an average precision, recall, and F-1 measure of 81.5%, 80.3%, and 80.9%, respectively,
which indicates good named entity recognition performance. The paper discusses the proposed
method and experimental results, and outlines directions for further performance improvement.

INTRODUCTION

A large number of fall accidents happen on construction sites, with field non-compliance being a
major cause. Statistics shows that at least 60,000 fatalities occur yearly in the construction sector
worldwide (Biggs and Biggs 2013). Among all accident types, falling accounts for more than 30%
of all deaths (Jebelli et al. 2016). A review of the fatality reports reveals that most fall fatalities
were due to field non-compliance. For example, according to the Construction FACE Database,
54% of the fall fatalities occurred because personal fall arrest systems (PFAS) were not available
and 23% because the decedents were not using PFAS even when they had access to them (Dong
et al. 2017). Other common frequent field non-compliance cases related to fall fatalities include
damaged or no personal protective equipment (PPE), inoperative or inappropriate equipment, and
wrong poses or work sequence (Chi and Lin 2018; Teo et al. 2005; Huang and Hinze 2003).
Automated safety compliance checking aims to detect field violations to construction
safety regulations to prevent workers from potential safety incidents. Many research efforts have
been undertaken to propose solutions for this purpose. For example, computer vision techniques
have been used to collect site visual information for determining compliance. Such information
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includes the existence of PPE, the operations of the workers, and the trajectory of labors and
equipment (Fang et al. 2018; Fang et al. 2019; Nath et al. 2020; Tang et al. 2019; Roberts et al.
2020; Teizer 2015; Zhang et al. 2015b; Park and Brilakis 2016; Tang et al. 2020). However, despite
the importance of those previous efforts, three main knowledge gaps still exist. First, in many
efforts (e.g., Nath et al. 2020), violation decisions are usually made without considering different
situations as described in the construction safety regulations. Construction safety regulations, on
the other hand, provide a large amount of details about the existence or properties of fall protection
with respect to different equipment, facilities, and operations, which can be used as reliable
guidance for field compliance checking. Second, extracting and modeling safety requirements or
knowledge remains highly manual. For example, many efforts use manual ontology-based
approaches to model hazard or risk knowledge from fatality reports or industry safety best practice
reports (e.g., Xing et al. 2019; Lu et al. 2015; Zhang et al. 2015a; Zhong et al. 2020; Chi et al.
2014; Ding et al. 2016). Considering the amount of requirements to be extracted from regulations,
an automated approach is desired, in which case information extraction (IE) provides a solution.
Third, existing IE methods fall short in their scalability and/or accuracy. Rule-based IE methods
(Zhang and El-Gohary 2013; Zhou and El-Gohary 2017) require significant amount of human
effort to discover the text patterns and develop the corresponding IE rules. Traditional machine
learning (ML)-based methods do require less human involvement, but their performance depends
on the quality of the engineered features. Deep learning (DL) approaches are promising in terms
of reducing manual effort and improving performance.

To address these gaps, this paper proposes a DL-based method to automatically extract
entities that describe fall protection requirements from construction safety regulations for
comparisons with field information to detect violations. To the best of the authors’ knowledge, it
is the first attempt to automatically extract fall protection-related entities from construction safety
regulations for field compliance checking purposes.

BACKGROUND

Depending on the semantic information elements to be extracted, IE from construction safety
regulations can involve two tasks: (1) named entity recognition that aims to identify entities
from unstructured text and classify them into pre-defined entity classes, and (2) relation extraction
that aims to identify relations between entities and classify them into predefined relation types. To
extract entities that describe fall protection requirements, this study focuses on the named entity
recognition task.

In recent years, DL-based methods have achieved significant improvement for tasks in
many research domains, including construction. Various DL models and training techniques have
been proposed. For example, Zhang and El-Gohary (2019) have proposed a long short-term
memory (LSTM)-based method to extract building-code requirement hierarchies. Zhang and El-
Gohary (2020) proposed an LSTM-based method to generate semantically enriched building-code
sentences. For named entity recognition tasks, DL-based methods use stacked neural networks to
extract patterns from unstructured text, and output entity class predictions in an end-to-end manner,
thus requiring less human effort. Recent research efforts have proposed various DL-based methods
to improve named entity recognition performance. Those methods include: (1) proposing new DL
architecture based on existing ones, (2) creating a hybrid model by combining existing ones, and
(3) developing state-of-the-art word embeddings. Those word embeddings, such as embeddings
from language models (ELMo) (Peters et al. 2018) and the global vectors (GloVe) embeddings



(Pennington et al. 2014), are pre-trained on large amount of general social media text and thus can
represent the semantics of words in the form of dense and rich feature vectors.

PROPOSED DEEP LEARNING-BASED METHOD

Extracting the semantic information elements that describe fall protection requirements from
construction safety regulations for supporting compliance checking is defined as a named entity
recognition task. To recognize and classify named entities, fourteen entity classes were first
defined, based on a thorough review of related OSHA sections, and research work on safety
knowledge modeling. The pre-defined entity classes are person, equipment, clause, hazard, facility,
location, operation, material, property, date, other attribute, quantity value, quantity unit, and other
entity. Examples of the most frequent entity names in each entity class are shown in Table 1. Then,
a hybrid BiLSTM-CNNs model was used to capture the syntactic and semantic features from the
noisy text and to produce entity class predictions. To further improve the named entity recognition
performance, three types of features were used, including GloVe embedding, word-level features,
and character-level features. The proposed method consists of four primary steps, as per Figure 1:
data preprocessing, feature preparation, named entity recognition model training, and evaluation.
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Figure 1. Proposed deep learning-based method for extracting entities from construction
safety regulations

Table 1. Examples of the most frequent entity names in each pre-defined class.

Class Examples
Person Employer, employee, competent person, qualified person, engineer
Equipment Scaffold, ladder, guardrail system, platform, rope
Clause This section, paragraph (k) of 1926.502, other criteria
Hazard Falling, damage, snag of clothing, tripping, failure
Facility Beams, roof, passageway, metal decking, other structure
Location Walking/working surface, work area, storage area
Operation Hoisting operation, dropping, rigging, lifting
Material Reinforcing steel, wood, mortar, debris
Property Weight, modulus of elasticity, length, diameter, direction
Date January 1, 1998
Other attribute In use, center-to-center, under construction
Quantity value 6, 3.3, half, one
Quantity unit Feet, times, meters, inches
Other entity Fall protection plan, requirements

Data preprocessing



Four OSHA sections related to fall protection were selected to create the dataset for the named
entity recognition task, which covers various topics such as general fall protection requirements,
fall protection systems, scaffolds, and ladders. A total of 625 sentences were collected and
annotated based on a BIO tagging scheme using Doccano (Nakayama et al. 2018). The BIO
tagging scheme aims to distinguish adjacent entities that could have the same entity class tag. It
uses “B” to denote the beginning of an entity, “I” to denote the inside of an entity, and “O” to
denote the absence of an entity. Table 2 shows an example clause annotated using the BIO tagging
scheme. To simplify the entity class tags, abbreviations were used, including person (PER),
equipment (EQU), clause (CLA), hazard (HAZ), facility (FAC), location (LOC), operation (OPE),
material (MAT), property (PRO), date (DAT), other attribute (ATT), quantity value (QUA),
quantity unit (UNI), and other entity (ENT).

Table 2. Example clause annotated using the BIO tagging scheme and entity classes.
Original sentence Annotated sentence
Each employee on a | <O>Each</O> <B-PER>employee</B-PER> <O0>on</0> <0>a</0> <B-
walking/working surface | LOC>walking/working</B-LOC>  <I-LOC>surface</I-LOC>  <O>shall</O>
shall be protected from | <O>be</O> <O>protected</O> <O>from</O> <B-ENT>objects</B-ENT>
objects falling through | <O>falling</O> <O>through</O> <B-ENT>holes</B-ENT> <O>by</O> <B-
holes by covers. EQU>covers</B-EQU> <O> </0>

Feature preparation

To further improve the named entity recognition performance, three types of features were used:
GloVe embedding, word-level features, and character-level features. The GloVe embedding is one
of the state-of-the-art word embeddings pre-trained on 6 billion words of Wikipedia text. Since the
GloVe embedding does not contain capitalization information, which is important in preserving
the original meaning, additional word-level and character-level features were used in this study.
The following word-level features were used: (1) if the word is all lower-cased, (2) if the word is
all upper-cased, (3) if the word contains numbers, and (4) if the word contains capital letters. The
used character-level features included: (1) if the character is punctuation, (2) if the character is a
digit, (3) if the character is uppercase, and (4) if the character is lowercase.

Named entity recognition model training

The hybrid BILSTM-CNNs model was used to capture the syntactic and semantic features from
unstructured construction safety regulations and to produce entity class predictions in an end-to-
end manner. The hybrid model was chosen for better performance, because it is expected to
combine the benefits of both types of models that are designed with different strengths. BILSTM
is better at capturing context and long dependency, while CNN is better at capturing character-
level information, both which are important for making correct predictions. This hybrid model
consists of three main types of layers: embedding layers, BiLSTM layer, and multi-layer
perceptron (MLP) layer. The embedding layers have three components: GloVe embedding layer,
word-level and character-level feature embedding layer, and a CNN-extracted feature embedding
layer. The outputs from the embedding layers are concatenated before being fed into the BILSTM
layer. The BiILSTM layer then computes the feature values for each word by considering its context.
The MLP layer predicts entity class tags as the final output by transforming the feature values from
the BILSTM layer into tag scores. To optimize the hybrid model, cross-entropy loss was used. The



model was implemented using Keras in Python 3. The architecture of the BILSTM-CNNs model
is shown in Figure 2.
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Figure 2. Architecture of the BILSTM-CNNs model for recognizing named entities
Evaluation

The evaluation of the named entity recognition performance was conducted by comparing the
predicted results from the hybrid BILSTM-CNNs model with the annotated gold standard. Three
metrics were used for the evaluation, as per Egs. 1-3: precision, recall, and F-1 measure. For a
specific entity class, the precision was calculated as the number of correctly recognized entities
divided by the total number of all recognized entities for that entity class. The recall was calculated
as the number of correctly recognized entities divided by the total number of entities in the
document for that entity class. Macro average of precision and recall over all entity classes were
used for the evaluation because of data imbalance. Macro average, rather than micro average,
computes the metrics independently for each entity class, and takes the average without
considering the frequency of each entity class. Therefore, macro average can be a better metric in
our case. F-1 measure is the harmonic mean of both precision and recall.
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EXPERIMENTAL RESULTS AND DISCUSSION



The proposed method achieved an average precision, recall, and F-1 measure of 81.5%, 80.3%,
and 80.9%, respectively. These results indicate good named entity recognition performance. The
difference in the performance between general social media text (e.g., 91.6% of F-1 on CoNLL-
2003 dataset) and construction safety regulatory documents can result from three main factors.
First, domain-specific data are more complex than general social media text. For construction
safety regulations, such complexity includes different descriptions of the same semantic
information element, various patterns and arrangement of clauses, nested conditions for describing
a scenario, and ambiguities in the text meaning itself. Second, the pre-trained word embedding
may not align well with the semantics of domain-specific data. The GloVe embedding used in the
embedding layer was pre-trained on general social media text, and is expected to adjust itself to
domain-specific semantics during training. However, considering our domain-specific dataset size
versus the Wikipedia text size, the embeddings may not be able to learn enough semantic patterns
in the domain-specific data. Third, not enough domain-specific information is provided in the text
for the model to make accurate predictions. A review of the results reveals that domain-specific
compound nouns are often misclassified. For example, the model predicts the phrase “adjustable
suspension scaffold” as an ATT (other attribute) plus an EQU (equipment) based on the syntactic
and semantic features. However, in our domain, “adjustable suspension scaffold” is a specific kind
of equipment. To make an accurate prediction, the model needs to consider various sources of
information, including syntactic and semantic features, context and discourse, etc. However, since
each clause from the OSHA regulations is addressing one specific scenario, not much context,
background information, or term explanations can be utilized for the model to learn to make the
predictions.

The most frequent misclassification occurred for the EQU (equipment) entity class. For
example, 9 FAC (facility) entities were recognized as EQU, with a total of only 49 extracted FAC
entities. 7 ATT (other attribute) entities were recognized as EQU, with a total of 77 extracted ATT
entities. This misclassification is mostly due to the imbalance of the dataset. Since EQU is the most
frequent class in the dataset, the DL model learns to predicts an entity more often as EQU to
achieve minimal error.

Misclassifications were seen for other entity classes such as LOC (location), PRO
(property), ATT (other attribute), and ENT (other entity). A major cause for those
misclassifications can be word-sense ambiguities, where the same word has different meanings in
different contexts. For example, the word “level” can be regarded as LOC in the phrase “above
lower levels”, since it means some surface or position, but can be regarded as ATT in the sentence
“footings should be level, sound and rigid”, since it means that the footings should have no slopes
or bumps. Similarly, the word “direction” can be regarded as PRO in the phrase “in an upward
direction”, since it means a path for movement, but can be regarded as ENT in the phrase “under
the supervision and direction of a competent person”, since it means guidance or management.
However, it is rather difficult for the model to determine which meaning applies for which case,
when there are limited training samples and when there is no sufficient context for each clause.

CONCLUSION AND FUTURE WORK

In this paper, the authors proposed a deep learning-based information extraction method for
extracting entities that describe fall protection requirements from construction safety regulations
for supporting automated field compliance checking. The proposed method uses a hybrid
BiLSTM-CNNs model with three types of features: GloVe embedding, word-level features, and



character-level features. The proposed method was tested on four selected OSHA sections related
to fall protection. The results indicate that the proposed method can automatically recognize fall
protection-related entities from construction safety regulations with good performance.

Two main limitations of this work are acknowledged. First, due to the variability in
expressing the same entity in the text, the extracted requirements included redundant expressions
and referential ambiguity. For example, “two-point adjustable suspension scaffold” and “two-point
scaffold” were recognized as two different entities. However, since they appear in the same clause
consecutively, they are actually referring to the same equipment. Such way of expression happens
frequently in the document where the second mention of the same entity can have the detailed
information omitted for simplicity. Second, omission can happen in the document, which can lead
to missing information in the extracted requirements. For example, in the sentence “12 inch nylon,
or equivalent, with a maximum length...”, the compliance checking subject after the word
“equivalent” was omitted. Since missing information does not happen frequently in the documents,
the authors did not conduct a separate DL-based ellipsis resolution task to complete the omitted
information. Instead, the authors plan to solve this problem in future research.

In future work, the authors plan to address the issues of redundant expressions and
referential ambiguity by conducting coreference resolution. The authors also plan to further extract
the relations from construction safety regulations to add the needed interlinks to the isolated
entities extracted in this work.
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