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ABSTRACT 

 

Automated safety compliance checking aims to detect field violations to construction safety 

regulations. Recent research and system development efforts have made good progress on 

automated tracking of labor and equipment towards improved violation detection and safety 

compliance. However, extracting and modeling safety requirements for supporting automated 

violation detection or safety alert systems remains highly manual. Towards addressing this gap, 

information extraction provides an opportunity to automatically extract safety requirements from 

regulatory documents for comparisons with field information to detect violations. However, 

existing information extraction methods fall short in their scalability and/or accuracy. To address 

this need, this paper proposes a deep learning-based information extraction method for extracting 

entities that describe fall protection requirements from construction safety regulations for 

supporting automated field compliance checking. The proposed method uses a hybrid bidirectional 

long short-term memory (BiLSTM) and convolutional neural network (CNN) model for 

recognizing the entities. The proposed method was implemented and tested on four selected 

Occupational Safety and Health Administration (OSHA) sections related to fall protection. It has 

achieved an average precision, recall, and F-1 measure of 81.5%, 80.3%, and 80.9%, respectively, 

which indicates good named entity recognition performance. The paper discusses the proposed 

method and experimental results, and outlines directions for further performance improvement. 

 

INTRODUCTION 

 

A large number of fall accidents happen on construction sites, with field non-compliance being a 

major cause. Statistics shows that at least 60,000 fatalities occur yearly in the construction sector 

worldwide (Biggs and Biggs 2013). Among all accident types, falling accounts for more than 30% 

of all deaths (Jebelli et al. 2016). A review of the fatality reports reveals that most fall fatalities 

were due to field non-compliance. For example, according to the Construction FACE Database, 

54% of the fall fatalities occurred because personal fall arrest systems (PFAS) were not available 

and 23% because the decedents were not using PFAS even when they had access to them (Dong 

et al. 2017). Other common frequent field non-compliance cases related to fall fatalities include 

damaged or no personal protective equipment (PPE), inoperative or inappropriate equipment, and 

wrong poses or work sequence (Chi and Lin 2018; Teo et al. 2005; Huang and Hinze 2003). 

Automated safety compliance checking aims to detect field violations to construction 

safety regulations to prevent workers from potential safety incidents. Many research efforts have 

been undertaken to propose solutions for this purpose. For example, computer vision techniques 

have been used to collect site visual information for determining compliance. Such information 
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includes the existence of PPE, the operations of the workers, and the trajectory of labors and 

equipment (Fang et al. 2018; Fang et al. 2019; Nath et al. 2020; Tang et al. 2019; Roberts et al. 

2020; Teizer 2015; Zhang et al. 2015b; Park and Brilakis 2016; Tang et al. 2020). However, despite 

the importance of those previous efforts, three main knowledge gaps still exist. First, in many 

efforts (e.g., Nath et al. 2020), violation decisions are usually made without considering different 

situations as described in the construction safety regulations. Construction safety regulations, on 

the other hand, provide a large amount of details about the existence or properties of fall protection 

with respect to different equipment, facilities, and operations, which can be used as reliable 

guidance for field compliance checking. Second, extracting and modeling safety requirements or 

knowledge remains highly manual. For example, many efforts use manual ontology-based 

approaches to model hazard or risk knowledge from fatality reports or industry safety best practice 

reports (e.g., Xing et al. 2019; Lu et al. 2015; Zhang et al. 2015a; Zhong et al. 2020; Chi et al. 

2014; Ding et al. 2016). Considering the amount of requirements to be extracted from regulations, 

an automated approach is desired, in which case information extraction (IE) provides a solution. 

Third, existing IE methods fall short in their scalability and/or accuracy. Rule-based IE methods 

(Zhang and El-Gohary 2013; Zhou and El-Gohary 2017) require significant amount of human 

effort to discover the text patterns and develop the corresponding IE rules. Traditional machine 

learning (ML)-based methods do require less human involvement, but their performance depends 

on the quality of the engineered features. Deep learning (DL) approaches are promising in terms 

of reducing manual effort and improving performance.  

To address these gaps, this paper proposes a DL-based method to automatically extract 

entities that describe fall protection requirements from construction safety regulations for 

comparisons with field information to detect violations. To the best of the authors’ knowledge, it 

is the first attempt to automatically extract fall protection-related entities from construction safety 

regulations for field compliance checking purposes.  

 

BACKGROUND 

  

Depending on the semantic information elements to be extracted, IE from construction safety 

regulations can involve two tasks: (1) named entity recognition that aims to identify entities 

from unstructured text and classify them into pre-defined entity classes, and (2) relation extraction 

that aims to identify relations between entities and classify them into predefined relation types. To 

extract entities that describe fall protection requirements, this study focuses on the named entity 

recognition task.  

In recent years, DL-based methods have achieved significant improvement for tasks in 

many research domains, including construction. Various DL models and training techniques have 

been proposed. For example, Zhang and El-Gohary (2019) have proposed a long short-term 

memory (LSTM)-based method to extract building-code requirement hierarchies. Zhang and El-

Gohary (2020) proposed an LSTM-based method to generate semantically enriched building-code 

sentences. For named entity recognition tasks, DL-based methods use stacked neural networks to 

extract patterns from unstructured text, and output entity class predictions in an end-to-end manner, 

thus requiring less human effort. Recent research efforts have proposed various DL-based methods 

to improve named entity recognition performance. Those methods include: (1) proposing new DL 

architecture based on existing ones, (2) creating a hybrid model by combining existing ones, and 

(3) developing state-of-the-art word embeddings. Those word embeddings, such as embeddings 

from language models (ELMo) (Peters et al. 2018) and the global vectors (GloVe) embeddings 
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(Pennington et al. 2014), are pre-trained on large amount of general social media text and thus can 

represent the semantics of words in the form of dense and rich feature vectors.  

 

PROPOSED DEEP LEARNING-BASED METHOD 

 

Extracting the semantic information elements that describe fall protection requirements from 

construction safety regulations for supporting compliance checking is defined as a named entity 

recognition task. To recognize and classify named entities, fourteen entity classes were first 

defined, based on a thorough review of related OSHA sections, and research work on safety 

knowledge modeling.  The pre-defined entity classes are person, equipment, clause, hazard, facility, 

location, operation, material, property, date, other attribute, quantity value, quantity unit, and other 

entity. Examples of the most frequent entity names in each entity class are shown in Table 1. Then, 

a hybrid BiLSTM-CNNs model was used to capture the syntactic and semantic features from the 

noisy text and to produce entity class predictions. To further improve the named entity recognition 

performance, three types of features were used, including GloVe embedding, word-level features, 

and character-level features. The proposed method consists of four primary steps, as per Figure 1: 

data preprocessing, feature preparation, named entity recognition model training, and evaluation. 

 
Figure 1. Proposed deep learning-based method for extracting entities from construction 

safety regulations 

 

Table 1. Examples of the most frequent entity names in each pre-defined class. 
Class Examples 

Person Employer, employee, competent person, qualified person, engineer 

Equipment Scaffold, ladder, guardrail system, platform, rope 

Clause This section, paragraph (k) of 1926.502, other criteria 

Hazard Falling, damage, snag of clothing, tripping, failure 

Facility Beams, roof, passageway, metal decking, other structure 

Location Walking/working surface, work area, storage area 

Operation Hoisting operation, dropping, rigging, lifting 

Material Reinforcing steel, wood, mortar, debris 

Property Weight, modulus of elasticity, length, diameter, direction 

Date January 1, 1998 

Other attribute In use, center-to-center, under construction 

Quantity value 6, 3.3, half, one 

Quantity unit Feet, times, meters, inches 

Other entity Fall protection plan, requirements 

 

Data preprocessing 
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Four OSHA sections related to fall protection were selected to create the dataset for the named 

entity recognition task, which covers various topics such as general fall protection requirements, 

fall protection systems, scaffolds, and ladders. A total of 625 sentences were collected and 

annotated based on a BIO tagging scheme using Doccano (Nakayama et al. 2018). The BIO 

tagging scheme aims to distinguish adjacent entities that could have the same entity class tag. It 

uses “B” to denote the beginning of an entity, “I” to denote the inside of an entity, and “O” to 

denote the absence of an entity. Table 2 shows an example clause annotated using the BIO tagging 

scheme. To simplify the entity class tags, abbreviations were used, including person (PER), 

equipment (EQU), clause (CLA), hazard (HAZ), facility (FAC), location (LOC), operation (OPE), 

material (MAT), property (PRO), date (DAT), other attribute (ATT), quantity value (QUA), 

quantity unit (UNI), and other entity (ENT).  

 

Table 2. Example clause annotated using the BIO tagging scheme and entity classes. 
Original sentence Annotated sentence 

Each employee on a 

walking/working surface 

shall be protected from 

objects falling through 

holes by covers. 

<O>Each</O> <B-PER>employee</B-PER> <O>on</O> <O>a</O> <B-

LOC>walking/working</B-LOC> <I-LOC>surface</I-LOC> <O>shall</O> 

<O>be</O> <O>protected</O> <O>from</O> <B-ENT>objects</B-ENT> 

<O>falling</O> <O>through</O> <B-ENT>holes</B-ENT>  <O>by</O> <B-

EQU>covers</B-EQU> <O>.</O>   

 

Feature preparation 

 

To further improve the named entity recognition performance, three types of features were used: 

GloVe embedding, word-level features, and character-level features. The GloVe embedding is one 

of the state-of-the-art word embeddings pre-trained on 6 billion words of Wikipedia text. Since the 

GloVe embedding does not contain capitalization information, which is important in preserving 

the original meaning, additional word-level and character-level features were used in this study. 

The following word-level features were used: (1) if the word is all lower-cased, (2) if the word is 

all upper-cased, (3) if the word contains numbers, and (4) if the word contains capital letters. The 

used character-level features included: (1) if the character is punctuation, (2) if the character is a 

digit, (3) if the character is uppercase, and (4) if the character is lowercase. 

 

Named entity recognition model training 

 

The hybrid BiLSTM-CNNs model was used to capture the syntactic and semantic features from 

unstructured construction safety regulations and to produce entity class predictions in an end-to-

end manner. The hybrid model was chosen for better performance, because it is expected to 

combine the benefits of both types of models that are designed with different strengths. BiLSTM 

is better at capturing context and long dependency, while CNN is better at capturing character-

level information, both which are important for making correct predictions. This hybrid model 

consists of three main types of layers: embedding layers, BiLSTM layer, and multi-layer 

perceptron (MLP) layer. The embedding layers have three components: GloVe embedding layer, 

word-level and character-level feature embedding layer, and a CNN-extracted feature embedding 

layer. The outputs from the embedding layers are concatenated before being fed into the BiLSTM 

layer. The BiLSTM layer then computes the feature values for each word by considering its context. 

The MLP layer predicts entity class tags as the final output by transforming the feature values from 

the BiLSTM layer into tag scores. To optimize the hybrid model, cross-entropy loss was used. The 
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model was implemented using Keras in Python 3. The architecture of the BiLSTM-CNNs model 

is shown in Figure 2. 

 
Figure 2. Architecture of the BiLSTM-CNNs model for recognizing named entities 

 

Evaluation 

 

The evaluation of the named entity recognition performance was conducted by comparing the 

predicted results from the hybrid BiLSTM-CNNs model with the annotated gold standard. Three 

metrics were used for the evaluation, as per Eqs. 1-3: precision, recall, and F-1 measure. For a 

specific entity class, the precision was calculated as the number of correctly recognized entities 

divided by the total number of all recognized entities for that entity class. The recall was calculated 

as the number of correctly recognized entities divided by the total number of entities in the 

document for that entity class. Macro average of precision and recall over all entity classes were 

used for the evaluation because of data imbalance. Macro average, rather than micro average, 

computes the metrics independently for each entity class, and takes the average without 

considering the frequency of each entity class. Therefore, macro average can be a better metric in 

our case. F-1 measure is the harmonic mean of both precision and recall.  

 

𝑃𝑖 =  
number of correctly recognized entities for class i

total number of all recognized entities for class i
                                         (1) 

𝑅𝑖 =  
number of correctly recognized entities for class i

total number of entities in the document for class i
                                     (2) 

    𝐹 =  
2×P×R

𝑃+𝑅
                                                                    (3) 
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The proposed method achieved an average precision, recall, and F-1 measure of 81.5%, 80.3%, 

and 80.9%, respectively. These results indicate good named entity recognition performance. The 

difference in the performance between general social media text (e.g., 91.6% of F-1 on CoNLL-

2003 dataset) and construction safety regulatory documents can result from three main factors. 

First, domain-specific data are more complex than general social media text. For construction 

safety regulations, such complexity includes different descriptions of the same semantic 

information element, various patterns and arrangement of clauses, nested conditions for describing 

a scenario, and ambiguities in the text meaning itself. Second, the pre-trained word embedding 

may not align well with the semantics of domain-specific data. The GloVe embedding used in the 

embedding layer was pre-trained on general social media text, and is expected to adjust itself to 

domain-specific semantics during training. However, considering our domain-specific dataset size 

versus the Wikipedia text size, the embeddings may not be able to learn enough semantic patterns 

in the domain-specific data. Third, not enough domain-specific information is provided in the text 

for the model to make accurate predictions. A review of the results reveals that domain-specific 

compound nouns are often misclassified. For example, the model predicts the phrase “adjustable 

suspension scaffold” as an ATT (other attribute) plus an EQU (equipment) based on the syntactic 

and semantic features. However, in our domain, “adjustable suspension scaffold” is a specific kind 

of equipment. To make an accurate prediction, the model needs to consider various sources of 

information, including syntactic and semantic features, context and discourse, etc. However, since 

each clause from the OSHA regulations is addressing one specific scenario, not much context, 

background information, or term explanations can be utilized for the model to learn to make the 

predictions. 

The most frequent misclassification occurred for the EQU (equipment) entity class. For 

example, 9 FAC (facility) entities were recognized as EQU, with a total of only 49 extracted FAC 

entities. 7 ATT (other attribute) entities were recognized as EQU, with a total of 77 extracted ATT 

entities. This misclassification is mostly due to the imbalance of the dataset. Since EQU is the most 

frequent class in the dataset, the DL model learns to predicts an entity more often as EQU to 

achieve minimal error. 

Misclassifications were seen for other entity classes such as LOC (location), PRO 

(property), ATT (other attribute), and ENT (other entity). A major cause for those 

misclassifications can be word-sense ambiguities, where the same word has different meanings in 

different contexts. For example, the word “level” can be regarded as LOC in the phrase “above 

lower levels”, since it means some surface or position, but can be regarded as ATT in the sentence 

“footings should be level, sound and rigid”, since it means that the footings should have no slopes 

or bumps. Similarly, the word “direction” can be regarded as PRO in the phrase “in an upward 

direction”, since it means a path for movement, but can be regarded as ENT in the phrase “under 

the supervision and direction of a competent person”, since it means guidance or management. 

However, it is rather difficult for the model to determine which meaning applies for which case, 

when there are limited training samples and when there is no sufficient context for each clause. 

 

CONCLUSION AND FUTURE WORK 

 

In this paper, the authors proposed a deep learning-based information extraction method for 

extracting entities that describe fall protection requirements from construction safety regulations 

for supporting automated field compliance checking. The proposed method uses a hybrid 

BiLSTM-CNNs model with three types of features: GloVe embedding, word-level features, and 
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character-level features. The proposed method was tested on four selected OSHA sections related 

to fall protection. The results indicate that the proposed method can automatically recognize fall 

protection-related entities from construction safety regulations with good performance.  

Two main limitations of this work are acknowledged. First, due to the variability in 

expressing the same entity in the text, the extracted requirements included redundant expressions 

and referential ambiguity. For example, “two-point adjustable suspension scaffold” and “two-point 

scaffold” were recognized as two different entities. However, since they appear in the same clause 

consecutively, they are actually referring to the same equipment. Such way of expression happens 

frequently in the document where the second mention of the same entity can have the detailed 

information omitted for simplicity. Second, omission can happen in the document, which can lead 

to missing information in the extracted requirements. For example, in the sentence “12 inch nylon, 

or equivalent, with a maximum length...”, the compliance checking subject after the word 

“equivalent” was omitted. Since missing information does not happen frequently in the documents, 

the authors did not conduct a separate DL-based ellipsis resolution task to complete the omitted 

information. Instead, the authors plan to solve this problem in future research. 

In future work, the authors plan to address the issues of redundant expressions and 

referential ambiguity by conducting coreference resolution. The authors also plan to further extract 

the relations from construction safety regulations to add the needed interlinks to the isolated 

entities extracted in this work.  
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