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Abstract—We consider state estimation for networked sys-
tems (NSs), where measurements from sensor nodes are con-
taminated by outliers. A new hierarchical measurement model
is formulated for outlier detection by integratingan outlier-free
measurement model with a binary indicator variable for each
sensor. The binary indicator variable, which is assigned a
beta-Bernoulli prior, is utilized to characterize if the sensor’s
measurement is nominal or an outlier. Based on the proposed
outlier-detection measurement model, both centralized and
decentralized information fusion filters are developed. Specif-
ically, in the centralized approach, all measurements are sent
to a fusion center where the state and outlier indicators
are jointly estimated by employing the mean-field variational
Bayesian (VB) inference in an iterative manner. In the decentralized approach, however, every node shares its information,
including the prior and likelihood, only with its neighbors based on a hybrid consensus strategy. Then each node
independently performs the estimation task based on its own and shared information. In addition, a distributed solution
with an approximation is proposed to reduce the local computationalcomplexity and communicationoverhead.Simulation
results reveal that the proposed algorithms are effective in dealing with outliers compared with several recent robust
solutions.

Index Terms— Centralizedand decentralized information fusion, consensus,measurement outliers, networked systems
(NSs), nonlinear information filter (IF), outlier detection, variational Bayesian (VB) inference.

I. INTRODUCTION

IN RECENT years, networked systems (NSs) have attracted
much attention with applications in various areas such as
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surveillance and patrolling, target tracking, intelligent trans-
portation systems, and others [1], [2], [3], [4]. The growing
interest in NSs has prompted intensive research on extending
conventional state estimation methods for signal-sensor sys-
tems, for example, Kalman filter (KF) [5] and its nonlinear
variants [6], to cases involving NSs.

State estimation over NSs, in general, can be carried out in
two main directions, that is, the centralized approach and the
decentralized one. In centralized solutions, all readings from
sensors within the NS are transmitted to a fusion center that is
responsible for processing the collected noisy measurements
and providing state estimates [7]. The KF-based solutions can
be directly applied at the fusion center via a measurement-
augmented approach. However, this incurs a high computa-
tional complexity due to the large dimension of the augmented
measurements. To mitigate the computational burden, a variant
of the KF, that is, the information filter (IF), is frequently
utilized. Several centralized state estimation solutions based
on the IF were reported in [8], [9], and [10].

In centralized solutions, data transmission may require
significant communication overhead, thus constraining the
scalability of NSs. Since the fusion center is the only signal
processing unit, the NS is critically dependent on the fusion
center and would collapse when the latter fails. Furthermore,
the fusion center must be provided with the knowledge of
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each sensor’s measurement model and associated parameters,
which creates additional challenges in estimation and com-
munication, especially for heterogeneous NSs. In contrast, for
the decentralized approach, each node within the NS has the
ability to estimate the state using the information from itself
and its neighbors via communication, either in multitime-scale
protocols [11], [12] or in single-time-scale protocols [13], [14].
This allows decentralized systems to achieve higher scalability
and reliability. In addition, each node does not require prior
knowledge of the global network topology, making the decen-
tralized approach suitable for time-variant NSs. Nonetheless,
centralized solutions jointly process all observations within the
network and thus offer more accurate estimation results than
decentralized ones.

The decentralized approach needs to employ a proper strat-
egy for information exchange among neighboring nodes in
order to approach the performance of centralized solutions
as much as possible. Consensus is a popular choice for this
purpose. Several consensus strategies have been exploited
for decentralized state estimation. A consensus on estimation
(CE) strategy was proposed in [15], where the consensus was
achieved by averaging local state estimates and predictions.
Although easy to implement, the CE approach focuses on
point estimation and ignores the error covariance that contains
valuable information. To address this issue, an improved
approach called consensus on measurement (CM) was pro-
posed in [16], which tries to make the local likelihood to
reach an agreement, that is, approximating the joint likelihood
function in a distributed way. The convergence properties of
the CM approach were examined in [17], which shows that
sufficient iterations are required to achieve the convergence of
the consensus procedure. Meanwhile, another approach, that
is, consensus on information (CI), was derived from the view-
point of consensus on the local probability density functions
(pdfs) in the Kullback–Leibler average sense [18]. The CI,
unlike the CM, guarantees to converge to the local posterior
pdfs with any number of consensus iterations (even only one
iteration [18]). However, the information from measurements
was overweighted as a result of its fusion rule. In [19]
and [20], a consensus strategy called the hybrid consensus
on information and consensus on measurement (HCICM)
was proposed, based on an idea to integrate complementary
features of the CI and CM, that is, the stability guarantee with
any number of consensus iterations of CI and the avoidance
of any conservative assumption on the correlation when fusing
the novel information of CM. The HCICM has been applied
for distributed state estimation by integrating with the extended
KF [20], unscented IF (UIF) [19], and cubature IF (CIF) [21].

The aforementioned state estimation methods, including
both centralized and decentralized, assume that measurement
noises are Gaussian. In real applications, this assumption may
not hold due to the presence of outliers. Several solutions have
been proposed to deal with outliers. In [22], the underlying
non-Gaussian measurement noise was approximated by a
Gaussian mixture model, and the CM strategy was utilized
to develop a distributed information fusion algorithm. The
interactive multiple model (IMM) approach was employed
to develop robust solutions [23], [24]. To cope with the

heavy-tailed measurement noise, a student’s t distribution that
can be interpreted as an infinity Gaussian mixture was used to
fit the outlier-distributed Gaussian measurement noise, leading
to a centralized state estimation algorithm in [25], and a
decentralized solution combined with the HCICM strategy
in [26].

In this article, we derive several robust state estimation
solutions based on an outlier-detection strategy, using both
centralized and decentralized approaches. Outlier detection has
been of interest for many applications, and a multitude of
solutions were developed in recent years, including, for exam-
ple, statistical solutions [27], distance-based solutions [28],
classification-based approaches [29], and artificial intelligence-
based approaches [30]. In our work, which aims to estimate
states for a dynamic system in both centralized and decentral-
ized manners, we utilize a Bayesian solution for outlier detec-
tion. Specifically, a hierarchical measurement model is first
introduced by integrating an outlier-free measurement model
with a binary indicator variable that has a beta-Bernoulli prior.
Based on the above model, a centralized information fusion
solution is proposed, where the state and outlier indicators
are jointly estimated by the mean-field variational Bayesian
(VB) inference method. In the decentralized solutions, the
VB method is utilized to estimate the state and indicator for
each node, while the HCICM strategy is utilized to achieve
consistency of all nodes. A target-tracking example is studied
to demonstrate the effectiveness of the proposed solutions.

The rest of this article is organized as follows. Section II
formulates the problem of interest. The centralized and decen-
tralized solutions are derived in Sections III and IV, respec-
tively. Section V presents the numerical results and analyses.
Conclusion are presented in Section VI.

II. PROBLEM FORMULATION

Consider an NS with a set of nodes including commu-
nication nodes and sensor nodes which are distributed in a
surveillance region. The topology of the network is modeled
by an undirected graph G = (E,D), where D = S ∪ C =
{1, . . . , N} is the vertex set and E ⊂ {{i, j}|i, j ∈ D, i �= j}
is the edge set. S = {1, . . . , S} is the set of sensors that
have the capability to make measurements. C = D\S is
the set of communication nodes that are used to improve
the connectivity of the NS. We assume that the network is
connected, that is, for any two vertices i, j ∈ D, there exist
a sequence of edges {i, a1}, {a1, a2}, . . . , {ak, j} in E . Let
Ns = { j ∈ V|{s, j} ∈ E} ∪ {s} denote a subset that includes
node s and its neighbors.

The nonlinear discrete-time stochastic process observed by
the NS is described by the following state-space model (SSM):

xt = f (xt−1) + vt (1)

yt,s = hs(xt ) + wt,s, s ∈ S (2)

where xt ∈ �n is the state vector; f (·) is a known state
evolution function; vt ∈ �n is the process noise, which is
assumed to be Gaussian, that is, N (0, Qt ); yt,s ∈ �ms is a
measurement made by the sth sensor with respect to xt at
time instant t ; hs(·) and wt,s ∈ �ms are, respectively, the
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measurement mapping and associated measurement noise of
the sth sensor; each measurement noise wt,s is assumed to
be Gaussian, that is, N (0, Rt,s). The initial value of the state
x0 is assumed to follow a Gaussian N (x̂0|0, P0|0). In addition,
the measurement noises of different sensor nodes are assumed
to be independent of each other, and also independent with
respect to the initial state and process noise.

The measurement model (2) is inadequate for some applica-
tions when the measurement may be contaminated by outliers.
To account for potential outliers, we employ a binary latent
variable zt,s as an indicator to characterize the state of the
measurement yt,s . In particular, zt,s = 1 when yt,s is a
nominal measurement, while zt,s = 0 if yt,s is an outlier.
For Bayesian learning of the indicator variable, we impose a
beta-Bernoulli prior [31] on the indicator zt,s . Therefore, the
hierarchical model for measurement yt,s in the presence of a
potential outlier can be formulated as follows:

p(yt,s |xt , zt,s) ∝ �N (yt,s; hs(xt ), Rt,s)
�zt,s (3)

p(zt,s |πt,s) = π
zt,s
t,s (1 − πt,s)

(1−zt,s) (4)

p(πt,s) ∝ π
e0,s−1
t,s (1 − πt,s)

f0,s−1 (5)

where πt,s is a random parameter with e0,s and f0,s as
its prior parameters to control the belief of yt,s to be a
nominal measurement or an outlier before the outlier detection
procedure. In the proposed hierarchical model, p(yt,s |xt , zt,s)
is a standard Gaussian distribution when zt,s = 1, where it is
a constant for the case where zt,s = 0. In the latter case, yt,s
can be effectively marked as an outlier since the likelihood is
a constant and independent of the state. In general, the larger
the value e0,s/(e0,s + f0,s), the higher the probability that yt,s
is a nominal measurement.

The objective of this work is to develop solutions to estimate
the states as well as to detect outliers for the NS. We first
present a solution based on centralized fusion. Although
centralized fusion offers a performance benchmark, it has rela-
tively low reliability and high communication overhead, as dis-
cussed in Section I. We, therefore, also develop decentralized
solutions, which perform state estimation in a decentralized
manner. In this article, we integrate consensus techniques with
outlier detection for decentralized fusion.

III. CENTRALIZED ROBUST CIF
For centralized processing, each sensor directly communi-

cates with the fusion center. Specifically, each sensor sends
its measurements to the fusion center where all the collected
measurements are utilized to estimate the state. Then the
fusion center feeds back the estimated state to each sensor
if needed (as in a mobile sensor network where the sensor
needs the state estimate to plan its trajectory). Since the
measurements are mutually independent, the likelihood func-
tion of the measurements conditioned on all latent variables
�t � {xt ,Zt ,π t } is given by

p(Yt |�t ) =
�
s∈S

p(yt,s |xt , zt,s)p(zt,s|πt,s)p(πt,s) (6)

where Yt � { yt,1, . . . , yt,S}, π t � {πt,1, . . . , πt,S} and Zt =
{zt,1, . . . , zt,S}. According to Bayes’ theorem, the posterior

distribution of all latent variables conditioned on Y1:t is

p(�t |Y1:t ) = p(�t ,Y1:t )
p(Y1:t )

. (7)

Due to the fact that p(Y1:t ) is, in general, hard to cal-
culate, obtaining the exact posterior distribution p(�t |Y1:t )
is computationally intractable. Therefore, some approximate
methods should be employed. The VB approach [32] is one
such method, which uses a variational distribution q(�t ) to
approximate the posterior distribution p(�t |Y1:t ) by minimiz-
ing the Kullback–Leibler divergence (KLD) between q(�t )
and p(�t |Y1:t ), that is,

q(�t ) = arg min
q

KLD (q(�t )�p(�t |Y1:t )) . (8)

In this article, we apply the mean-field approximation [32],
whereby the variational distribution is factorized as follows:

q(�t ) = q(xt )q(Zt)q(π t ). (9)

Substituting (9) into (8) and minimizing the KLD with
respect to q(xt ), q(Zt ) and q(π t ) successively yield

q(xt ) ∝ exp
�	ln p(Yt ,�t |Y1:t−1)
q(Zt )q(π t )

�
(10)

q(Zt ) ∝ exp
�	ln p(Yt ,�t |Y1:t−1)
q(xt )q(π t )

�
(11)

q(π t ) ∝ exp
�	ln p(Yt ,�t |Y1:t−1)
q(xt )q(Zt )

�
(12)

where 	g(θ)
q(θ) represents the expectation of g(θ) over the
distribution of q(θ). It should be noted that p(Yt ,�t |Y1:t−1)
is the full distribution of the SSM at time instant t , given by

p(Yt ,�t |Y1:t−1)

= p(xt |Y1:t−1)p(Yt |xt ,Zt )p(Zt |π t )p(π t ) (13)

where p(xt |Y1:t−1) is the predictive density, which is approx-
imated by a Gaussian distribution N (x̂t |t−1, P t |t−1) given
by (I.4) and (I.5). Equations (10)−−(12) provide the update
rules for the variational distributions, which are coupled.
To address this issue, an alternating updating approach is
generally employed in the VB inference, that is, updating one
variational distribution while fixing the others.

Computing the expectation in (10) gives the following:

q(xt ) ∝ exp

�
−1

2
�xt − x̂t |t−1�2

P−1
t|t−1

−
�
s∈S

	zt,s

2

�yt,s − hs(xt )�2
R−1

t,s

�
(14)

where �x�2
A = xT Ax and 	zt,s
 is the mean of zt,s . It is

apparent that q(xt ) can be approximated by a Gaussian dis-
tribution N (x̂t |t , P t |t ) using the Kalman filtering framework,
especially in its information format, for the multisensor data
fusion problem. The parameters x̂t |t and P t |t are obtained by

I t,s = 	zt,s
H t,s R−1
t,s H t,s (15)

i t,s = 	zt,s
H t,s R−1
t,s ỹt,s (16)

�t |t = �t |t−1 +
�
s∈S

I t,s (17)

γ t |t = γ t |t−1 +
�
s∈S

i t,s (18)
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P t |t = �−1
t |t (19)

x̂t |t = P t |tγ t |t (20)

where �t |t−1 and γ t |t−1 are given by (I.6) and (I.7), respec-
tively, while H t,s and ỹt,s are calculated via (I.8) and (I.13)
based on the different measurement mapping hs(xt ) and
observation yt,s , respectively.

Since the components of Zt are mutually independent, that
is, p(Zt ) =�s∈S p(zt,s), we can update them separately. For
q(zt,s), from (11), we have

q(zt,s) ∝ exp
	
ln p(yt,s |xt , zt,s) + ln p(zt,s |πt,s)



q(xt )q(πt,s)

∝ exp
�
−0.5zt,str

�
Dt,s R−1

t,s



+ zt,sζ1

+ (1 − zt,s)ζ2

�
(21)

where

Dt,s =
� �

yt,s − hs(xt )
� �

yt,s − hs(xt )
�T

q(xt )d xt (22)

ζ1 � 	ln πt,s
q(πt,s ) = �(et,s) − �(et,s + ft,s) (23)

ζ2 � 	ln(1 − πt,s)
q(πt,s) = �( ft,s) − �(et,s + ft,s) (24)

with �(·) denoting the digamma function. We can see
from (21) that zt,s is a Bernoulli random variable with

P(zt,s = 1) = ceζ1−0.5tr
�

Dt,s R−1
t,s

�
(25)

P(zt,s = 0) = ceζ2 (26)

where c is the normalized constant to ensure that P(zt,s =
1)+ P(zt,s = 0) = 1. The expectation of zt,s is then given by

	zt,s
q(zt,s ) = eζ1−0.5tr
�

Dt,s R−1
t,s

�
eζ1−0.5tr

�
Dt,s R−1

t,s

�
+ eζ2

. (27)

Similarly, q(π t ) can be decomposed as
�

s∈S q(πt,s) due
to the independence. q(πt,s) can be updated as follows:

q(πt,s) ∝ exp
�
(et,s − 1) ln πt,s + ( ft,s − 1) ln(1 − πt,s)

�
(28)

with

et,s = e0
t,s + 	zt,s
q(zt,s ) (29)

ft,s = f 0
t,s + 1 − 	zt,s
q(zt,s ). (30)

Clearly, q(πt,s) is a Beta distribution Beta(et,s, ft,s).
For clarity, we summarize the centralized robust CIF

(cRCIF) involving K -step VB iterations in Algorithm 1.

IV. CONSENSUS-BASED DRCIF
In this section, we derive two decentralized robust CIFs

(dRCIFs) by integrating the HCICM consensus strategy with
outlier detection. Note that in the decentralized solutions,
outlier detection (i.e., VB iterations) is implemented at each
sensor node, which is similar to the one in the centralized
solution (in fact, both are identical when only one sensor is
involved in the centralized solution). We, therefore, omit the
details of the outlier detection procedure. In the following,
we first briefly introduce the HCICM consensus strategy
and then explain how to integrate outlier detection with this

Algorithm 1 cRCIF

Input: Y1:T , x̂0|0, P0|0, Q1:T , R1:T .
Output: x̂t |t and P t |t for t = 1 : T .
for t = 1 : T do

Compute {x̂t |t−1, P t |t−1} via {(I.4),(I.5)};
Compute {γ t |t−1,�t |t−1} via {(I.6),(I.7)};
Initialize k = 0, ek

t,s , f k
t,s and 	zk

t,s
 = 1 for s ∈ S;
for k = 1 : K do

Calculate {Ik
t,s, i k

t,s} via {(15),(16)} with 	zk−1
t,s 
;

Update {�k
t |t , γ k

t |t } via {(17),(18)};

Update {Pk
t |t , x̂k

t |t } via {(19),(20)};
Update 	zk

t,s
 via (27) for s ∈ S;
Update ek

t,s and f k
t,s via (29) and (30) for s ∈ S;

end for
x̂t |t = x̂K

t |t , P t |t = P K
t |t .

end for

consensus strategy to arrive at the first dRCIF-1. To fur-
ther reduce both computational and communication burdens,
we also propose an approximate implementation, referred to
as the dRCIF-2. Some analyses of the proposed solutions are
finally presented.

A. HCICM Consensus Strategy
In this section, we provide a brief review of the HCICM

consensus strategy. To facilitate description, we use the fol-
lowing operators:�

i

(ηi � pi (x)) �
�

i (pi (x))ηi� �
i (pi(x))ηi dx

(31)

pi (x) ⊕ p j (x) � pi(x)p j (x)�
pi (x)p j (x)dx

(32)

where pi(x) and p j (x) are some pdfs, and ηi > 0 is a scalar.
The consensus posterior density at the sth node in the HCICM
is given by [19], [23]

pt,s(xt ) = pL
t |t−1,s(xt ) ⊕

�
δt,s � r L

t,s(xt )



(33)

where pL
t |t−1,s(xt ) is the result of consensus on prior, r L

t,s(xt )
is the result of consensus on likelihood, and δt,s is a weight-
ing parameter to avoid overweighting on novel information.
Clearly, obtaining pt,s(xt ) requires three steps, that is, con-
sensus on prior, consensus on likelihoods, and fusing the con-
sensus results of the priors and likelihoods (or the correction
step in the Kalman filtering framework). In the following,
we provide details to illustrate how to combine these three
steps with the outlier detection procedure to obtain dRCIFs.

B. Proposed dRCIF
Since the local prior distribution is independent of the

outlier detection procedure, the consensus on the prior step
can be carried out in the same approach as the conventional
ones (e.g., [19], [23]). Specifically, it can be obtained by the
following L iterations of the following averaging, that is,

pl
t |t−1,s(xt ) =

�
j∈D

�
κs, j � pl−1

t |t−1, j(xt )



(34)
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where l = 1, . . . , L is the consensus step index and κs, j

is the consensus weight. In (34), p0
t |t−1,s(xt ) is initialized

by pt,s(xt |Y1:t−1). Since pt,s(xt |Y1:t−1) is assumed to be
Gaussian, the consensus on prior (34) has a closed form, with
the precision and information vector updated by [18]

�l
t |t−1,s =

�
j∈D

κs, j�
l−1
t |t−1, j (35)

γ l
t |t−1,s =

�
j∈D

κs, jγ
l−1
t |t−1, j . (36)

The initialization parameters for (35) and (36) are
γ 0

t |t−1, j = γ t |t−1, j and �0
t |t−1, j = �t |t−1, j . The con-

sensus weight κs, j is designed to satisfy κs, j ≥ 0 and�
j∈N j

κs, j = 1. In this work, we employ the metropolis

weights which are frequently used for consensus averag-
ing [18]

κs, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

max{|Ns |, |N j |} , s ∈ S, j ∈ Ns , j �= s

1 −
�

j∈Ns ,n �= j

κn, j , j = s

0, others.

(37)

Similarly, consensus on likelihood is performed by L-step
iterations of the following:

r l
t,s(xt ) =

�
j∈D

�
κs, j � ll−1

t, j (xt )



(38)

where r0
t,s(xt ) is initialized as follows:

r0
t,s(xt ) =

�
p(yt,s |xt ), s ∈ S
constant, s ∈ C.

(39)

Due to the presence of the indicator variable zt,s , the
initializing likelihood density p(yt,s |xt ) is no longer Gaussian.
As a result, the consensus on likelihood (38) has no closed-
form solution. Fortunately, the likelihood function conditioned
on both xt and zt,s is Gaussian, that is, p(yt,s |xt , zt,s) is
a Gaussian distribution. Since the indicator variable zt,s is
closely related to the VB iteration, the consensus on the
likelihood step is dependent on the VB iteration.

Given zk
t,s at the kth VB iteration, the local likelihood of

sensor node s (i.e., s ∈ S) can be approximated by

p
�

yt,s

���xt , zk
t,s



∝ exp

�
−1

2

�
xT

t I k
t,s xt − 2xT

t i k
t,s


�
(40)

where I t,s and i t,s are, respectively, given by

Ik
t,s =

�
zk

t,s

�
H t,s R−1

t,s H t,s (41)

i k
t,s =

�
zk

t,s

�
H t,s R−1

t,s ỹt,s (42)

in which H t,s and ỹt,s can be found in (I.8) and (I.13),
respectively. For communication nodes (i.e., s ∈ C), since the
local likelihood is a constant, the information terms at the kth
VB iteration are

Ik
t,s = 0, i k

t,s = 0. (43)

Once the information terms related to the local likelihoods
are obtained by (41)–(43), consensus on likelihood can be
carried out by L iterations of the following steps:

Ik,l
t,s =

�
j∈Ns

κs, j I k,l−1
t, j (44)

ik,l
t,s =

�
j∈Ns

κs, j i k,l−1
t, j (45)

with the following initialization:
Ik,0

t,s = Ik
t,s, ik,0

t,s = ik
t,s .

After obtaining the consensus on prior and likelihoods,
we then proceed to the correction step by fusing as follows:

�k
t |t,s = �

k,L
t |t−1,s + δt,s Ik,L

t,s (46)

γ k
t |t,s = γ

k,L
t |t−1,s + δt,s i k,L

t,s (47)

where δt,s is a scale parameter used to avoid overweighting the
novel information. In principle, a reasonable selection of δt,s

is |N | since the consensus weight κ L
t,s = 1/|N | when L →

∞, and such a choice makes the distributed filter converge
to a centralized one when the consensus iteration tends to
infinity [23]. In practice, however, the number of consensus
iterations is small due to the constraint of the power supply of
each node, creating some problems with the choice of δt,s =
|N |, as shown in [23]. An alternative is to compute δt,s in a
distributed approach, that is,

δt,s =
�

1, θ L
t,s = 0

1
�
θ L

t,s, else
(48)

where θ L
t,s is iteratively determined via

θ l
t,s =

�
j∈Ns

κs, jθ
l−1
t, j (49)

with θ0
t,s = 1 if s ∈ S and θ0

t,s = 0 if s ∈ C.
The state and the associated covariance are then given by

Pk
t |t,s =

�
�k

t |t,s

−1

(50)

xk
t |t,s = Pk

t |t,sγ k
t |t,s. (51)

With the updated state, the (k + 1)th VB iteration can be
carried out. The loop continues until when the number of VB
iterations approaches K . For clarity, the resulting decentralized
robust cubature IF, labeled as dRCIF-1, is summarized in
Algorithm 2.

C. Reduced-Complexity Solution
In this section, we propose a variant of the dRCIF-1,

referred to as dRCIF-2 with reduced computational complexity
and communication overhead.

In the dRCIF-1, consensus on likelihood is carried out
in each VB iteration. Although this helps each sensor node
use the information over the network (at least when L is
sufficiently large) to detect whether its local measurement is
an outlier, the associated computational and communication
costs may be excessive for applications involving, for exam-
ple, wireless sensor networks. In some cases, however, it is
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Algorithm 2 Decentralized Robust CIF (dRCIF-1)

Input: Y1:T , x̂0|0, P0|0, Q1:T , R1:T .
Output: x̂t |t and P t |t for t = 1 : T .
for t = 1 : T do

For each node s ∈ D, compute {x̂t |t−1,s, P t |t−1,s} and {γ t |t−1,s,�t |t−1,s} via {(I.4)–(I.7)}.
For each node s ∈ S, compute the pseudo-measurement matrix H t,s via (I.8).
for l = 1 : L do

For each node s ∈ D, consensus on prior information γ l
t |t−1,s and �l

t |t−1,s (35) and (36);
end for
For each node s ∈ S, initialize k = 0, ek

t,s , f k
t,s and 	zk

t,s
 = 1.
for k = 1 : K do

For each node s ∈ S, calculate the local correction terms I k
t,s and ik

t,s via (15) and (16) with 	zk−1
t,s 
;

For each node s ∈ C, set the local correction terms as Ik
t,s = 0 and ik

t,s = 0;
for l = 1 : L do

For each node s ∈ D, consensus on the novel information I k,l
t,s and i k,l

t,s as (44) and (45);
end for
For each node s ∈ D, obtain the parameter κs

t and update the total information �k
t |t,s and γ k

t |t,s via (46) and (47);
For each node s ∈ S, calculate Pk

t |t,s = (�k
t |t,s)−1 and xk

t |t,s = Pk
t |t,sγ k

t |t,s , then update 	zk
t,s
 via (27);

For each node s ∈ S, update ek
t,s and f k

t,s via (29) and (30);
end for
For each node s ∈ D, P t |t,s = (�K

t |t,s)−1, x̂t |t,s = P t |t,sγ K
t |t,s

end for

possible to reliably detect outliers by using only each sensor’s
own measurements [31]. Hence, one possible way to reduce
the computational and communication burden of the dRCIF-1
is to first perform VB iterations at each sensor node and then
apply consensus on local likelihoods over the entire network.
In this case, the local likelihood of each sensor node can be
approximated by

p
�

yt,s

���xt , zK
t,s



∝ exp

�
−1

2

�
xT

t I K
t,s xt − 2xT

t i K
t,s


�
(52)

where I K
t,s and i K

t,s are similarly defined as in (15) and (16),
that is,

I K
t,s =

�
zK

t,s

�
H t,s R−1

t,s H t,s (53)

i K
t,s =

�
zK

t,s

�
H t,s R−1

t,s ỹt,s . (54)

Similarly, for communication nodes, we have

I K
t,s = 0 (55)

i K
t,s = 0. (56)

Then, consensus on likelihood with L iterations gives

I K ,l
t,s =

�
j∈Ns

κs, j I K ,l−1
t, j (57)

i K ,l
t,s =

�
j∈Ns

κs, j i K ,l−1
t, j (58)

which are initialized by

I K ,0
t,s = I K

t,s, i K ,0
t,s = i K

t,s .

Finally, similar to the dRCIF-1, the correction step is
implemented as follows:

�K
t |t,s = �

K ,L
t |t−1,s + δt,s I K ,L

t,s (59)

γ K
t |t,s = γ

K ,L
t |t−1,s + δt,s i K ,L

t,s (60)

where δt,s is the same scale parameter as defined in (48). The
state and the associated covariance are given by

P t |t,s =
�
�K

t |t,s

−1

(61)

x̂t |t,s = P K
t |t,sγ K

t |t,s. (62)

The dRCIF-2 method is summarized in Algorithm 3.
Remark 1: It is apparent that the consensus on the prior step

of both the dRCIF-1 and dRCIF-2 are the same. In this step,
the quantities �t |t−1 and γ t |t−1 of each node are shared with
its neighbors. �t |t−1 is a symmetric matrix with dimension
n × n, while γ t |t−1 is a vector with dimension n × 1. There-
fore, for the j th node, it transmits (n2 + 3n)/2 and receives
N j (n2 + 3n)/2 real numbers in each consensus step.

Remark 2: The main difference between the dRCIF-1 and
dRCIF-2 is the way to implement the consensus on likelihood,
which is carried out within the VB iterations in the dRCIF-1
while after the VB iterations in the dRCIF-2. In this step,
the quantities I t and i t are shared, which have the same
dimensions as these quantities in consensus on the prior step.
Therefore, there are (n2 + 3n)/2 real numbers that are sent
from the j th node to its neighbors in the dRCIF-2, while
K (n2 + 3n)/2 (K is the number of the VB iterations) real
numbers in the dRCIF-1.

Remark 3: It is noted that while δt in (48) is calculated in
a distributed approach, it is only dependent on the consensus
weights (related to the structure of the network) and the
consensus numbers. Therefore, for a static network (which is
typical in many applications) it can be calculated offline, and
incurs no communication overhead.

Remark 4: The computational complexity of the VB iter-
ations and the consensus on likelihood are, respectively,

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 03,2023 at 02:18:46 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: OUTLIER-DETECTION-BASED ROBUST INFORMATION FUSION FOR NETWORKED SYSTEMS 22297

Algorithm 3 Reduced-Complexity Decentralized Robust CIF (dRCIF-2)

Input: Y1:T , x̂0|0, P0|0, Q1:T , R1:T .
Output: x̂t |t,s and P t |t,s for t = 1 : T and s ∈ D.
for t = 1 : T do

For each node s ∈ D, compute {x̂t |t−1,s, P t |t−1,s} and {γ t |t−1,s,�t |t−1,s} via {(I.4)–(I.7)}.
For each node s ∈ S, compute the pseudo-measurement matrix H t,s via (I.8).
for l = 1 : L do

For each node s ∈ D, consensus on prior information γ l
t |t−1,s and �l

t |t−1,s via (35) and (36);
end for
For each node s ∈ S, initialize k = 0, ek

t,s , f k
t,s and 	zk

t,s
 = 1.
for k = 1 : K do

Calculate the local correction terms I k
t,s and i k

t,s via (15) and (16)with 	zk−1
t,s 
;

Update the total information of the filtered state as �k
t |t,s and γ k

t |t,s;

Update the filtered state as Pk
t |t,s and x̂k

t |t,s ;
Update 	zk

t,s
 via (27) for s ∈ S;
Update ek

t,s and f k
t,s via (29) and (30) for s ∈ S;

end for
For each node s ∈ S, set the local correction terms as I K ,0

t,s = I K
t,s and i K ,0

t,s = i K
t,s ;

For each node s ∈ C, set the local correction terms as I K ,0
t,s = 0 and i K ,0

t,s = 0;
for l = 1 : L do

For each node s ∈ D, consensus on the local correction information I K ,l
t,s and i K ,l

t,s via (57) and (58);
end for
For each node s ∈ D, obtain the parameter κs

t and update the total information �t |t,s and γ t |t,s via (59) and (60);
P t |t,s = (�t |t,s)−1, x̂t |t,s = P t |t,sγ t |t,s;

end for

O(g1(K )) and O(g2(L)), where g1(·) and g2(·) are some func-
tions with respect to their arguments. The computational com-
plexity of the dRCIF-1 is approximately O(g1(K ))O(g2(L)),
while that of the dRCIF-2 is about O(g1(K )) + O(g2(L)).

V. APPLICATION TO MANEUVERING TARGET TRACKING

In this section, we consider a target-tracking problem to
illustrate the performance of the proposed methods. A target
maneuvers in an area that is surveilled by a networked sensing
system. The NS, as shown in Fig. 1, is equipped with 80 nodes
that include five active sensors, nine passive sensors, and
66 communication nodes. The presence of communication
nodes is to enhance the connectivity of the networked sur-
veillance system.

The dynamics of the moving target is described by a
coordinated turning model with an unknown turning rate, that
is,

xt+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
sin(ωt
t)

ωt
0

cos(ωt
t) − 1

ωt
0

0 cos(ωt
t) 0 − sin(ωt
t) 0

0
1 − cos(ωt
t)

ωt
1

sin(ωt
t)

ωt
0

0 sin(ωt
t) 0 cos(ωt
t) 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

xt +vt

(63)

where the state xt is defined as [at , ȧt , bt , ḃt , ωt ]T , containing
the 2-D location (at , bt ), the corresponding velocities (ȧt , ḃt ),
and the turning rate ωt ; 
t = 1s is the sampling time, and

Fig. 1. Graphical representation of the simulated network system.

vt is a zero-mean Gaussian noise with covariance Qt

Qt =
⎛
⎝ q1 M 0 0

0 q1 M 0
0 0 q2

⎞
⎠ , M =

�

t3/3 
t2/2

t2/2 
t

�

(64)

where q1 = 0.1 and q2 = 1.75 × 10−4. The
trajectory of the moving target is randomly generated
by (63) with the initial state x0 given by x0 =
[1000 m, 50 m/s, 2000 m,−50 m/s, 0.053 rad/s]T . The initial

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 03,2023 at 02:18:46 UTC from IEEE Xplore.  Restrictions apply. 



22298 IEEE SENSORS JOURNAL, VOL. 22, NO. 22, 15 NOVEMBER 2022

condition of the state x̂0|0 for each algorithm is
chosen from a Gaussian N (x0, P0) with P0 =
diag([10000, 100, 10000, 100, 3.04 × 10−6]).

An active sensor provides the range and bearing measure-
ments, given by

ys
t =

⎡
⎢⎣
&�

at − ps
x

�2 +
�

bt − ps
y


2

atan2
�

bt − ps
y, at − ps

x



⎤
⎥⎦+ ws

t (65)

where (ps
x , ps

y) is the location of the active sensor; atan2
is the four-quadrant inverse tangent function, and ωs

t is the
measurement noise. Meanwhile, a passive sensor measures the
bearing of the target

ys
t = atan2

�
bt − ps

y, at − ps
x



+ ws

t . (66)

We assume that the covariance of the nominal noise for
the active sensor and passive sensor are, respectively, Rt =
diag[102, 1.22 × 10−5] and Rt = 1.22 × 10−5. In the sim-
ulation, the measurement noise is contaminated by an outlier
according to the following model:

ws
t ∼

�
N �

0, Rs
t

�
, with probability 1 − λ

N �
0, αRs

t

�
, with probability λ

(67)

where λ and α are parameters to control the probability
and power, respectively, of the outliers. This measurement
model is a Gaussian mixture model and has been widely
used to evaluate the robustness of filtering in the presence
of heavy-tailed measurement noises.

In the simulation, M = 100 independent Monte Carlo runs
are implemented and in each run the simulation length T = 50.
The root-mean-square error (RMSE) of the target position,
as well as the time-averaged RMSE (TRMSE), is employed
as the performance metrics. For the centralized algorithms, the
RMSE of position is defined as follows:

RMSEt =
*

1

M

M�
m=1

+++ p(m)
t − p̂(m)

t

+++2
�1/2

(68)

where p(m)
t � (a(m)

t , b(m)
t )T and p̂(m)

t � (â(m)
t , b̂(m)

t )T are,
respectively, the true and estimated position of the target at
the mth Monte Carlo run. For the decentralized methods,
we employ the averaged RMSE, that is,

RMSEt =
*

1

N M

M�
m=1

N�
s=1

+++ p(m)
t − p̂(m)

t,s

+++2

2

�1/2

(69)

where p̂(m)
t,s � (â(m)

t,s , b̂(m)
t,s )T is the estimated target position of

the sth sensor. With the definition of the RMSE, the TRMSE
of the position is given by

TRMSE = 1

T

T�
t=1

RMSEt . (70)

For comparison, we consider four existing filters: 1) the
clairvoyant centralized CIF which has the exact knowledge
of the measurement noise model (67), denoted by cCIF-t;
2) the clairvoyant decentralized CIF with the exact knowledge

Fig. 2. TRMSE of the position of different algorithms when λ = 0.4 and
α = 100.

of the measurement noise model (67), denoted by dCIF-t;
3) the robust decentralized CIF based on a student’s t distrib-
ution [26], denoted by dTCIF; and 4) the interaction multiple
model-based robust decentralized CIF [20], called dIMMCIF.
In the dTCIF, we set the parameters as recommended in [26].
In the dIMMCIF, two models are employed based on (67),
that is,

ws
t ∼ N �

0, Rs
t

�
, for the first model

ws
t ∼ N �

0, αRs
t

�
, for the second model.

The probability transition matrix for these two models is
[0.9, 0.1; 0.9, 0.1] and the initial weights of these two models
are 0.9 and 0.1, respectively.

First, we evaluate how the iteration numbers of the VB
and the initial parameters of the hierarchical model affect our
proposed methods. Fig. 2 shows the position TRMSEs of the
proposed fusion algorithms versus the number of VB iterations
when the initial parameters e0

t,s = 0.9 and f 0
t,s = 0.1 in the

scenario that λ = 0.4 and α = 100. It is seen from the
results that our methods achieve a stable estimate after two
or three iterations. In the following, the default value of the
VB iteration number of our methods is set to three. In Fig. 3,
we show the logarithm TRMSEs of position when λ = 0.1,
while α = 100, e0

t,s varies from 0.95 to 0.6, and f 0
t,s equals

1 − e0
t,s . It can be seen that both the cRCIF and dRCIF-1

are less sensitive to the initial value of e0
t,s and f 0

t,s , while the
dRCIF-2 has a reasonable performance when e0

t,s is larger than
0.7. This is because both the cRCIF and dRCIF-1 utilize entire
information for outlier detection, while the dRCIF-2 only uses
its own measurement. Due to the lack of adequate information,
the prior probability of outlier occurrence plays an important
role in outlier detection. In the following, the beta-Bernoulli
parameters are set as e0

t,s = 0.9 and f 0
t,s = 0.1 so that

e0
t,s/(e

0
t,s + f 0

t,s) is close to 1. Although this setting treats the
measurement as a nominal one with a high probability, the
VB outlier detection procedure, as illustrated in the following
simulations, is able to distinguish between the outlier and the
nominal measurement.

Table I provides the averaged position TRMSE of five
decentralized solutions with different consensus steps. Since
the dIMMCIF is based on the CM strategy, more consensus
steps are implemented to obtain a reasonable estimate. It can
be seen that the performance of the decentralized solutions,
as expected, improves as the consensus step increases. Among
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Fig. 3. Logarithm of TRMSE of the position of different algorithms when
λ = 0.1 and α = 100.

TABLE I
TRMSE OF POSITION FOR DIFFERENT ALGORITHMS

WITH DIFFERENT CONSENSUS STEPS

Fig. 4. RMSE of the position of different algorithms when λ = 0.5 and
α = 100.

all decentralized fusion algorithms, our proposed dRCIF-1
has the smallest gap compared with the benchmark solu-
tion dCIF-t, followed by the dRCIF-2 and dTCIF, which
are similar. Even though the dIMMCIF has more consensus
steps, its performance is still the worst. As mentioned before,
the consensus step is closely related to the computational
complexity and communication overhead, in the following we
set L = 10 for the dIMMCIF, while L = 5 for the other
four.

Fig. 4 shows the RMSEs of the position when λ = 0.5 and
α = 100. Among all decentralized solutions, the performance
of the proposed dRCIF-1 is closest to that of the benchmark
dCIF-t. The computationally simpler dRCIF-2 shares a similar
performance as that of the dTCIF, and both are better than the
dIMMCIF. The centralized benchmark solution cCIF-t pro-
vides an overall smallest RMSE, and the proposed centralized
solution cRCIF performs somewhat better than the decentral-
ized benchmark, that is, the dCIF-t. Fig. 5 illustrates the outlier
identification ability of the proposed algorithms under different
λ when α is set to 500. There is no doubt that the centralized

Fig. 5. Probability of outlier detection of the proposed method when λ
varies and α = 500.

Fig. 6. TRMSEs of position for the different algorithms with varying λ
when α = 100.

Fig. 7. TRMSEs of position for the different algorithms with varying α
when λ = 0.2.

method is superior to the other two decentralized solutions.
The dRCIF-1 outperforms the dRCIF-2, and the major reason
is that the outlier-detection procedure in the dRCIF-1 is within
the consensus iterations.

Finally, we examine how the contamination ratio and the
power of the contaminating noise influence the proposed
solutions. Fig. 6 plots the position TRMSEs of the various
information fusion algorithms when α = 100 and λ varies
from 0.05 to 0.5, while in Fig. 7 we show the similar results
with varying α and λ fixed at 0.2. From these two figures,
we can see that the TRMSEs of all algorithms increase along
with λ, while all except the dIMMCIF (due to the fact that
two models are involved) are nearly unaffected by the growth
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of α. This shows that these algorithms are sensitive to the
contamination ratio while less sensitive to the power of the
contaminating noise.

VI. CONCLUSION

In this article, we considered the information fusion prob-
lem of NSs where measurements may be disturbed by
outliers. We introduced a hierarchical measurement model
to take potential outliers into consideration. Specifically,
we utilized a binary variable, which has a beta-Bernoulli
prior, for each measurement to indicate whether it is a
nominal observation or an outlier. Based on the proposed
outlier-detection measurement model, we first developed a
centralized robust information fusion algorithm, which jointly
infers the state and indicator variable via a VB method.
Furthermore, we proposed two decentralized robust solutions
by integrating the HCICM consensus strategy with outlier
detection and inference. Simulation results illustrated that
the proposed approaches can achieve better performances
compared to the existing ones with outlier contaminated
measurements.

APPENDIX

CUBATURE IF
Considering the SSM model described in (1) and (2) with

only one sensor, the conventional CIF is briefly summarized
as follows for easy reference.

1) Initialization: We initialize the CIF with x0 ∼

N (x̂0|0, P0|0) and generate the basic weighted cubature point
set, that is, {ηi , ωi } for i = 1, . . . , 2n, where ωi = 1/(2n)
and ηi = √

n[�]i . Here, [�]i denotes the i th column of
� ∈ �n×(2n) which is a block matrix given by � = [I − I],
with I being the identity matrix.

2) Prediction: Assume that at the time instant (t − 1),
the posterior distribution of state xt−1 is approximated by
N (x̂t−1|t−1, P t−1|t−1). The transformed sigma-points and
their associated weights related to N (x̂t−1|t−1, P t−1|t−1) are
generated as follows:

P t−1|t−1 = St−1|t−1ST
t−1|t−1 (I.1)

ηi,t−1 = St−1|t−1ηi + x̂t−1|t−1. (I.2)

And then the predicted state and its associated covariance
are updated by

χ i,t−1 = f (ηi,t−1) (I.3)

x̂t |t−1 =
2n�

i=1

ωiχ i,t−1 (I.4)

P t |t−1 =
2n�

i=1

ωi (χ i,t−1 − x̂t |t−1)

× (χ i,t−1 − x̂t |t−1)
T + Qt−1. (I.5)

The prior information of the state is then written as
follows:

�t |t−1 = P−1
t |t−1 (I.6)

γ t |t−1 = �t |t−1 x̂t |t−1. (I.7)

3) Filtering: Using the statistical linear error propagation
methodology [8], the pseudo-measurement matrix is defined
as follows:

H t = �t |t−1 Pxy (I.8)

where Pxy is the cross-covariance calculated by

P t |t−1 = St |t−1ST
t |t−1 (I.9)


i,t = St |t−1ηi + x̂t |t−1 (I.10)

ŷt =
2n�

i=1

ωi h(
i,t ) (I.11)

Pxy =
2n�

i=1

ωi
�

i,t − x̂t |t−1

� �
ζ i,t − ŷt

�T
. (I.12)

With H t , the correction information terms are given by

ỹt = �
yt − ŷt + H t x̂t |t−1

�
(I.13)

I t = H t R−1
t HT

t (I.14)

i t = H t R−1
t ỹt . (I.15)

Finally, the information format of the filtered state is given
by

�t |t = �t |t−1 + I t (I.16)

γ t |t = γ t |t−1 + i t (I.17)

and the filtered state is recovered as follows:
P t |t = �−1

t |t (I.18)

x̂t |t = P t |tγ t |t . (I.19)
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