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This paper considers the problem of compressive target detection with direct-path interference (DPI) and
clutter in a single-frequency network (SFN) based multistatic passive radar system (MS-PRS). Specifically,
a measurement matrix is designed to jointly obtain compressive observations and remove the DPI and
clutter. We first analyze a compressive subspace detector which assumes the target support is known.
When the target supports cannot be accurately obtained, an order-statistic (OS) based detector, referred
to as the OSOMP, is proposed by using the orthogonal matching pursuit (OMP) algorithm to estimate
the target support, and then projecting the compressive observations into the estimated subspace. Since
OMP applies an iterative ranking process to select the components/atoms of the dictionary, the OSOMP
test variable is an order statistic, which has a non-convergent distribution. To cope with this problem, a
modified test statistic for the OSOMP detector is presented and an analytical expression for the proba-
bility of false alarm is obtained. We further discuss the minimum number of iterations required by the
OSOMP algorithm to achieve the desired probability of detection and false alarm. Numerical simulations
are conducted to verify the theoretical analysis and illustrate the performance of the proposed detector

Keywords:

Multistatic passive radar
Single-frequency network
Compressive target detection
Order-statistic

Orthogonal matching pursuit

relative to several benchmark detectors.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Passive radar (PR) exploiting non-cooperative illuminators of
opportunity (I0s) has been an active topic of interest over the
past decades [1]. In contrast to a conventional active radar, the PR
has the advantages of low cost, covertness, and availability of di-
verse 10 sources, such as frequency modulation (FM) radio, digi-
tal audio broadcasting (DAB), digital video broadcasting-terrestrial
(DVB-T), mobile communication networks, and others. There are
two broadly defined PR systems, namely bistatic PR system and
multistatic PR system (MS-PRS). In recent years, MS-PRS has been
widely investigated for practical civilian and military applications,
because it offers some unique sensing opportunities compared
with its bistatic counterpart [2-4]|. Meanwhile, since the target
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echo is sparse in the delay-Doppler domain, compressive sensing
(CS), an emerging technique which helps reduce the computational
and data-collection related burden, has attracted much attention
in radar signal processing [5]. This paper considers the problem of
target detection by using a CS-based framework in MS-PRS com-
prising multiple 10s and one receiver, where the I0s are from a
single-frequency network (SFN) that transmits a common signal
[6].

The target detection problem is equivalent to determining the
presence/absence of the target of interest [7,8]. However, a ma-
jor challenge associated with target detection in MS-PRS is the re-
moval of the direct-path interference (DPI) and clutter [9-11]. A
number of methods have been introduced to address the prob-
lem, including an adaptive beamforming (AB) technique [9], a least
mean square (LMS) method [10], and an extensive cancellation al-
gorithm (ECA) [11], among others. The AB method has limited in-
terference rejection ability when the size of array aperture is small,
while the LMS method converges slowly and has a high com-
putational complexity [12]. The ECA, which projects the received
surveillance signals into a subspace orthogonal to the DPI and clut-
ter subspace, is a popular choice for DPI/clutter rejection due to its
flexibility.
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For target detection, MS-PRS can be divided into two categories
depending on whether reference channels (RCs) are present or not
[6,13-16]. In the absence of RCs, the generalized canonical corre-
lation (GCC) detector, which assumes the noise variance is known,
is proposed for target detection in MS-PRS with a single 10 and
multiple receivers [13]. The case of unknown noise variance is
addressed in [14]. With the development of digital communica-
tion technique, the 10s may be overlapping or occupy the same
transmit frequency band. Thus, SFN-based MS-PRS has been widely
studied for target detection, location, and tracking|6,15,17]. Specifi-
cally, an SFN-based MS-PRS consisting of multiple I0s which trans-
mit a common signal and one receiver is studied in [6], where the
GCC detector is extended to this system for passive detection. On
the other hand, in the presence of RCs, [15] considers target detec-
tion for an SFN-based MS-PRS when the single receiver is equipped
with a large number of antennas. In the case of multiple 10s and
multiple receivers, a linear fusion based passive multistatic target
detection method is proposed in [16], where local test statistics are
weighted by an optimized set of weights at the fusion center. All
above detection algorithms assume accurate knowledge of the po-
sitions of the receivers and the 10s. Due to the non-cooperative na-
ture of 10s, the location information may be inaccurately obtained.
Although the energy detector (ED) [14] does not require the loca-
tion information, it is sensitive to the noise level [18].

Recently, considering that the target echo is sparse in the delay-
Doppler domain, CS-based radar signal processing has attracted
much attention to overcome the resolution problems and relieve
the burden of hardware cost [19-25]. While most of such efforts
are devoted to reconstructing the compressive signal first and then
using the reconstructed signal for detection/estimation. It is worth
noting that the purpose of target detection is to determine the
presence/absence of the target of interest, there is no need to re-
construct the original signal, which would result in additional com-
putations. In addition, it is well-known that the reconstruction al-
gorithms are sensitive to noise and require high SNRs. It has been
proved in [26] that the power loss is only caused by data com-
pression, and there is almost no power loss when integrating sig-
nal in the compressed domain. Therefore, there is an interest in
direct compressive detection of a sparse signal without reconstruc-
tion, which can further reduce the complexity [26-30]. One piece
of work that is closely related the current paper is [30], which first
discusses how to determine the minimum fraction of the target
support to achieve a desired detection performance when the sup-
port is known. Then, two distributed algorithms are presented for
the case of unknown support by using the orthogonal matching
pursuit (OMP) algorithm [31] to estimate the support. Assuming
the support is correctly recovered, the above distributed detectors
and analytical results are applied with the OMP-based support es-
timate. However, the OMP employs an iterative process to select
the components/atoms of the dictionary that have the largest cross
correlation with the observed signal. The selection process leads
to an order statistic that affects the distribution of the decision
variable, which is not considered in [30]. Besides, the methods of
[30] cannot be directly applied for detection in MS-PRS, since the
received target echoes have strong DPI and clutter.

In this paper, we consider the compressive target detection with
DPI and clutter in an SFN-based MS-PRS. This system consists of
multiple IOs transmitting a common signal and one receiver, where
the receiver has an RC and a surveillance channel (SC). Different
from the above detectors [6,13-16], we consider a case of where
the locations of I0s are subject to positioning errors. Firstly, the
dictionary matrix is built from the received reference signal, and
a random measurement matrix is designed to jointly obtain com-
pressive observations and remove the DPI and clutter in the re-
ceived surveillance signals. Secondly, a complex-valued based com-
pressive subspace detector (CSD) is briefly discussed under the as-
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sumption that the support of the target is known. For the case
of unknown target support, that is, the positions of the IOs are
not precisely known, an order-statistic based orthogonal matching
pursuit (OSOMP) detector is proposed by integrating support es-
timation with target detection. Similar to the CSD, the test statis-
tic of the OSOMP detector is obtained by projecting the compres-
sive measurements into the estimated subspace. However, the OMP
leads to an order statistic that is not convergent in distribution. To
address the problem, a modified test statistic for the OSOMP de-
tector is proposed. Besides, we also discuss the extension of the
OSOMP detector for multi-target detection. A performance analy-
sis is presented, which results in an analytical expression for the
probability of false alarm of the OSOMP detector. To further reduce
the computational complexity, we discuss the minimum number
of iterations required by the OSOMP algorithm to achieve the de-
sired probability of detection and false alarm, which can also cope
with the case of an unknown number of I0s. Finally, numerical
simulation results are presented to verify theoretical analysis and
demonstrate the performance of the proposed detector. It is found
that the OSOMP detector outperforms the ED in low and moderate
signal-to-noise ratio (SNR) regions.

The rest of this paper is organized as follows. In Section 2,
the signal model for the considered problem is introduced.
Section 3 contains the derivation of the OSOMP detector. Perfor-
mance analysis is given in Section 4. Numerical results are pre-
sented in Section 5, followed by conclusions in Section 6.

Notation: Vectors/Matrices are denoted by boldface lower/upper
case letters. (-)T and (-)" represents the transpose and the com-
plex conjugate transpose. The symbols ~ and € mean “is dis-
tributed as” and “belongs to”, respectively. CN' (u,az) represents
a complex Gaussian distribution with mean p and variance o2,
Exp(B) denotes an exponential distribution with parameter J,
I' (x) is the Gamma function, Xﬁ, represents the central Chi-squared
distribution with N degrees of freedom, and x,?,(k) represents the
non-central Chi-squared distribution with non-centrality parame-
ter A. Iy is an N-dimensional identity matrix. |- | denotes the ab-
solute value, |-||, denotes the Frobenius norm, and j = +—1. For
a matrix A, Py = A(A"A)~1AH rank(A) denotes the rank of A, and
A(p) represents the columns of A indexed by u.

2. Signal Model
2.1. Sparse Representation of Moving Target Echoes

As shown in Fig. 1, we consider an MS-PRS consisting of K non-
cooperative 10s, which are a part of a single-frequency network
transmitting a common signal, and one receiver [6]. The receiver
is equipped with a RC and a SC. The RC, which is used to receive a
copy of the IO source signal, can be formed by pointing an antenna
to one of the K I0s. In the SC, the baseband-equivalent received
signal includes a mixture of the direct-path, multi-path clutter in-
terference, and target echo can be expressed as

L K )

Yse(n) = X2 Bis(n =) + 3 es(n — Tl + w(n), )
=1 k=1

n=1,...,N,

where s(n) denotes the transmitted signal, B, denotes the com-
plex amplitude of the direct path or clutter interference, ¢; de-
notes the direct-path or multi-path time delay, ¢, denotes the
complex amplitude of the target echo, 7, and 24, denote the time
delay and normalized Doppler shift of the target received by the
k-th 10, respectively, and w(n) denotes the Gaussian noise follow-
ing w(n) ~ C/\/(O, 02). In this paper, we consider the case where
the source signal s(n) has been obtained from the reference chan-
nel observations by using 10 some signal reconstruction technique
(e.g., [32]).
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Fig. 1. A single-frequency network based multistatic passive radar system.

To facilitate discussion, the vector model of (1) can be written
as

Vsc = Sc + Se + Wi, (2)

where ysc is the N x 1 SC observation vector, S¢, Se, and wgc rep-
resent the interferences, observations of the moving target echoes,
and the Gaussian noise, respectively, with

T
L L

Se=| D Bis(A—c), ... Y Bs(N-c) |, 3)
=1 1=1
K , K . !

Se = |:Z as(1 — e, .. Y ays(N — tk)efﬂdk"’:| , (4)
- k=1

W = [w(l), ..., w(N)]". (5)

It is well-known that the moving target echo s, lies in the
range-Doppler domain and has a sparse representation (e.g., [24])

Se = ‘I’“a (6)

where a € CNx1 is the sparse vector with K non-zero elements,
and W e CN*N represents a dictionary matrix consisting of delay-
and-Doppler-shifted copies of the reference signal s(n) [11],

W=B[AS. -, A4S, S, AiS. -, ApS], (7)

where B € {0, 1}V<N+Q) js 3 selection matrix which selects the last
N rows of its successor and is given by

1, u=v-Q,
B = {buwli-t..nv-1. g b= {0, otherwise, (8)
with Q representing the number of time delay cells. Ape
C(N+Q)x(N+Q) denotes a Doppler shift operator corresponding to
the p-th Doppler bin, which is a diagonal matrix

1 0 0
0 ejsz 0

Ap= . ,p=-P---,0,1,--- P,
0o 0 eI (N+Q-1)

(9)
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where , is the normalized Doppler shift of the p-th Doppler bin
satisfying 2, = % with Bp representing the Doppler band-
width in Hz, and f; denoting the sampling frequency. S € CN+Q)xQ

is given by

S=][s, Ds, ---, DQDg], (10)
where s ¢ CN+Qx1 3pd
s=[s(=Q+1), ---, s(0),---s(N)]". (11)

To ensure the signal is fully integrated, N + Q samples of s(n) are
collected [11]. Besides, D e RN+*Qx(N+Q) denotes a delay matrix
which is given by

1, u=v+1,
D={dw}y 1. nrq: duw= {0, otherwise.

Without the loss of generality, assume that N=Q(2P+ 1), and
thus we have W e CN*N,

(12)

2.2. Compressive Detection with Interference Cancellation

Based on the CS theory, a sparse signal can be recovered from
fewer measurements with sub-Nyquist sampling to reduce the bur-
den of computation and data collection. In this paper, the problem
of interest is to consider a moving target detection problem by us-
ing compressive observations:

{Ho Z)-IZ 655"“’-\’,

T . _ (13)
Hy :§=®s. + PVa + W,

where § = ®ys., ® ¢ RM*N (K « M « N) satisfying the restricted
isometry property (RIP) represents a compressive random mea-
surement matrix, and W = ®ws.

In order to expose weak target, interference cancellation must
be carried out prior to target detection. Suppose that the direct-
path or clutter interferences s are considered backscattered from
the first L range cells with zero Doppler shifts [11], i.e., it can be
expressed as

sc= VB, (14)

where W, € CN*L is a submatrix of ¥ which spans the subspace of
s¢, and B € C1*1 denotes the subspace coefficients. Thus, the DPI
and clutter can be removed by using the ECA [11]. Inspired by the
ECA, we design the measurement matrix as

® = Py . (15)
where

-1
Py =Iy— W (VW) W (16)

Then, replacing ® with ® in (13) yields
{Ho y=Ww,

(17)
Hi :y=0Oa+w,

where ® = ®W¥ denotes the sensing matrix and w = ®wyg. It is
clear w ~ CN(O,azthI)H). In practice, the dimension of clutter is
usually far less than the measured samples, i.e., we can assume
that L« M « N and N —L > M. Then, ranl<(<I><I>H) =M, which is
shown in Appendix A.

3. Target Detection

In this section, we first briefly discuss the CSD that assumes the
support of the target is known. However, in a MS-PRS, the sup-
port of the target echo may not be exactly known due to the non-
cooperative nature of the 10s. To address this problem, we propose
an OSOMP detector which integrates support estimation in target
detection.
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Fig. 2. Compressive subspace detector with known locations on IOs.

3.1. CSD with Known Target Support

As shown in Fig. 2, suppose that there are K I0s and one tar-
get in an SFN-based MSPR system. When the locations of these
I0s are exactly known, the support set indices u of the target
can be obtained [6], where u := {i € {1, ---, N}|a(i) # 0}, and o (i)
represents the i-th element of «. Then, the detection problem of
(17) can be rewritten as

{Ho:yzw,

- (18)
H; :y=Ha+w,

where H = O (u) represents the target support matrix, which is an
M x K submatrix of the sensing matrix @ with columns indexed by
u, and & € CK*1 denotes the K nonzero elements of c. According
to [30], the test statistic of the complex-valued based CSD is given
by

_1 2
[Pa(es”) "y,

02/2 ' (19)

Tesp =

1

where Py = HHFH)-'H, and (<I><I>H)_2 denotes the whitening
operator. Under the assumption that the support is known, the dis-
tribution of Tcsp is given by

Ho : Tesp ~ X%
20
{Hl : Tesp ~ X (Acsp). (20)

2
Py (@0 )*%H&
2. The performance of the CSD is de-

where Acsp =

rived in Appendix B.
Nevertheless, when the target support H is unknown, which

may occur in practical MS-PRS, the CSD becomes unusable. Next,

we propose an OSOMP detector by jointly detecting and estimat-

ing the target support H.

02/2

3.2. Proposed OSOMP Detector with Unknown Target Support

In conventional MS-PRS detection, the geographical locations of
the 10s and the receiver are often assumed known exactly, so that
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the relative target delays 7, and Doppler shifts f,, k=1,...,K,
among the received target echoes can be compensated first, and
then the detectors in [6,13,14] are proposed for target detection.
However, the location of I0s may not be measured accurately in
practical PR scenario, i.e. the target support may not be precisely
known. Therefore, there is a need for an improved solution to cope
with such uncertainty by jointly estimating the subspace matrix H
and performing target detection. To facilitate discussion, we first
consider the situation where there is a single target in the surveil-
lance area.

Specifically, when the target subspace H is imprecisely known,
we can obtain an estimate H by using a sparsity recovering tech-
nique, such as the OMP algorithm [31]. Similar to the CSD, the test
statistic of the OSOMP detector can be expressed as

K _1 2
> Hl’ewo(‘l"l’H) ZY‘
Tosomp = = : (21)
a2/2 ’
where @ () € CM*1 represents the puy-th column of O,

-1
Po ) = @(uk)(ewk)’*ewk)) © ()", py denoting the in-
dex of the k-th iteration is given by

Ug=arg max |<r._,00) >], k=1,... K (22)
1€

{1....N}

1), representing the residual vector at the k-th iteration of the OMP
algorithm is

r.= (v —Po, V. (23)

with ry =y, and the support set is formed by

My = My U, (24)

with ug = 0. Eq. (22) shows that the index p, is obtained by find-
ing the most correlated column between the sensing matrix ® and
the residual vector.

Correspondingly, let

ti= [Powy (@") v,
N 02/2 ,

=1,...,N, (25)

which are used to form a set
T={t1, -, tn}. (26)
From (21)-(25), we can see

[Po, (@@")-ty| T

02/2 ' (27)

1 2
H\ 2

‘ Pe(uk)<<l><l> ) y
or more precisely, 02—/22 represents the k-th largest

element of 7. Then, we denote

||P®<uk)(‘1"1’H>7%Y||z
022 ’

k=1,....K, (28)

EN—ks1) =

where t;, represents the order statistic of t; with
Ly = =tp = =l (29)
Substituting (28) into (21), we can write the test statistic of the

OSOMP detector as

K

Tosomp = Y _ tn—ks1)- (30)
k=1
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Fig. 3. OSOMP detector for multiple targets, where ®; contains the possible sub-
space of target 1, and @; contains the possible subspace of target J.

3.3. An Equivalent Form of the OSOMP Detector

It turns out the distribution of Tosopmp is NOt convergent in the
following analysis, which necessitates an alternative form for im-
plementation.

Specifically, according to (20), it can be easily shown that the
distribution of ¢; in (25) under the Hy hypothesis is

ti~x#,  under Hy. (31)

Note that t; is also an exponential distribution with t; ~ Exp(%})
and its cumulative distribution function (CDF) is

E(t)=1—¢5. (32)

It follows from (31) and (32) that Tosomp under Hy is the trimmed
sums of the first K largest values of the order statistic of the ex-
ponential distribution. However, the distribution of Tosopmp is non-
convergent in the case of K > 2 and large N [33]. To address this
problem, a modified and alternative form Togoyp that is equivalent
to Tosomp but with a convergent CDF is given by

Tosomp = Tosomp — 2K1og(N). (33)

Therefore, we can replace Tosomp With Tosomp in the following
derivation, and the OSOMP detector can be equivalently expressed
as

Hy
Tosomp 2 7, (34)
Ho

where 7 denotes the detection threshold. The implementation of
the OSOMP detector is summarized in Algorithm 1.

3.4. OSOMP for Multiple Targets

In this subsection, we discuss the extension of the OSOMP de-
tector for multi-target detection. As shown in Fig. 3, which depicts
a case with J targets in the surveillance area, where the number of
targets J is unknown. In an MS-PRS, K I0s jointly monitor targets
that may exist in the surveillance area. When detecting the target
of interest, it is standard to divide the surveillance area into dif-
ferent detection cells in the delay-Doppler domain, and the super
dictionary matrix ¥ consisting of delay-and-Doppler-shifted copies
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of the reference signal covers all detection cells. Suppose that the
possible signal subspaces of target 1 corresponding to 10 1 to 10
K are Aqq,---,Aqk, respectively. Therefore, the sensing matrix of
target 1 is denoted as @1 =[Aqq,---,Aqk]. Correspondingly, the
sensing matrix of target ] is given by @) =[Ay, - .Ax], where
Ay represents the possible signal subspace of target ] correspond-
ing to 10 k. For well separated targets, it is reasonable to assume
that the dictionaries are non-overlapping, i.e., ;N ©; = ¢, where
i#j,i,je{l,---,]J}. This is equivalent to the assumption that, in
conventional radar systems, different targets located in different
resolution cells are associated with different ranges and Doppler
frequencies. As illustrated in Fig. 3, the super sensing matrix ©
subsumes individual sensing matrices for all J targets. Therefore,
the multi-target detection problem can be solved by Algorithm 1
by using the super sensing matrix @. In this case, the indices re-
covered by the OMP provide the support for all ] targets. Finally,
the passive radar will not be able to resolve closely spaced targets
which, similarly as in conventional radar, will be treated as a single
composite target that can be detected by our method.

4. Performance Analysis

In this section, we examine the performance of the proposed
OSOMP detector. Due to the inherent sorting incurred by OMP, the
OSOMP decision variable is an order statistic. We derive an expres-
sion of the order static under the Hy hypothesis, which can be used
to set the detection threshold and determine the false alarm prob-
ability Pry for OSOMP. Under the H; hypothesis, since the support
estimate obtained by OMP may consist of true target support and
wrong support (from the noise subspace), especially at low SNR, an
order-statistic based analysis becomes intractable. Hence, we resort
to numerical approaches to determine the probability of detection
for OSOMP detector in Section 5.

4.1. Probability of False alarm of OSOMP Detector

To derive the probability of false alarm of the proposed OSOMP
detector, we consider the distribution of Tosomp (under the Hy hy-
pothesis) for two different cases with K =1 and K > 2. Specifically,
when K = 1, we have

Tosomp = tavy — 210g(N). (35)
From (31) and (32), the CDF F;

0osomP
FTOSOMP (t) = P(TOSOMP < t)
= P(t) <t +2log(N))
= P(max (t;) <t + 2log(N)) (36)
= [, (t + 2log(N))]"
_ (1 _ e—%t—log(N))N.

(t) in (35) can be expressed as

When K > 2, the CDF of Tysopmp is summarized in Theorem 1.

Theorem 1. In the case of K > 2, the CDF of Tosomp iS given by

K-1 (&) oo
e \x t

Frogoue (1) = @k Y T /0 q(y, §>r(y, kyy*-2dy. (37)

k=0 )
where

KK-1

K= K= (38)
r(y’ k) — e—y(K—k), (39)
an5) =" (40)
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Proof. See Appendix C. O

Combining (36) and (37), we have (41) at the top of the follow-
ing page.

FTOSOMP (t) =
(1 — e Gosm)™, K=1,
K1 (f) o ) Under H,.
w2 "’(#fo a(y. §)r@. y<2dy, K =2,
i=
(41)

It follows (41) that the Pra is given by

Pea = P(Tosomp > ¥ |Ho)
42
=1 _FTOSOMP(V)v ( )
where y represents the detection threshold. Based on the Neyman-

Pearson criterion, y can be calculated from (42) with a given Pea =
o.

4.2. OSOMP Detector with Minimum Number of Iterations

As shown in Algoritm 1, the number of iterations is K. In prac-
tice, it is possible to use the first k (k < K) iterations to make a de-
cision on whether the signal exists. To further reduce the amount
of calculation, in this subsection, we discuss the minimum num-
ber of iterations k to achieve the desired detection probability and
false alarm probability.

Algorithm 1 The Proposed OSOMP Detector
Input: y, ¥, W, &, K, o Output: Detection decision H;/Hy

1. Initialize index set py=#, sensing matrix © = @P‘ﬁc\ll, and
residual vector rg =y;
2. Fork=1to k=K
. Find the index uy as uy = arg maxicpy,  nyl< tx_1, O() >[;
. Update the support set p;, = ;1 U {it,}, and obtain the sub-
space H = @ (jy);

. Calculate the projection operator Py = H (I?HI-AI>*1I-AIH;

W

. Update the residual vector ry = (I—Pg)y;

. End For

. Compute the
< e oof *%y
& 9(“"32( . s 2KlogN;

9. Obtain the detection threshold y from (42) with a given prob-

ability of false alarm Pga;

10. If TOSOMP >Y,

11. Output the decision Hy,

12. else

13. Output the decision Hy.

14. End If

Oy O U

equivalent test statistic

Tosomp =

2
2

Suppose that the desired Py = 74, Psa = 7y, then, the minimum
k is given by
min k
Pea < 75,
B > 1y,
1<k<K
In radar detection, P, is an important parameter. According to the

receiver operating characteristic, Py decreases with Pga [34]. Then,
(43) can be rewritten as

(43)

min k
P = 14,

44
Tk = Yk ( )
1<k<K
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where

k
> [Poguy €ty
a2/2

Based on the above analysis, the OSOMP detector with the min-
imum k is summarized in Algorithm 2. It is worth noting that
(44) can also cope with the case of an unknown number of 10s.

T, = — 2klogN. (45)

Algorithm 2 OSOMP Detector with Minimum Number of Itera-
tions k

Input: y, ¥, W., &, K, o Output: Detection decision H;/H,

1. Initialize index set py =@, sensing matrix @ = @Pé,c\ll, and
residual vector rop =y, k=1;

2. Find the index uy as py = arg maxe,  nyl< Tx_1, O) >[;

3. Update the support set p, = p;_1 U {1}, and obtain the sub-
space H = O (py);

4. Calculate the projection operator Py = I-AI(I-AIHI-AI)*FIH;

5. Update the residual vector r = (I—Pg)y;
6. Compute the equivalent test

'P@)(Mi)<¢¢H> y
ey — 2klogN;
7. Obtain the detection threshold y, from (42) with a given prob-
ability of false alarm Pgp = 7y}

8. If Tk > Vi

9. Output the decision Hy,

10. break

11. else
12. k=k+ 1, go to step 2;
13. If k> K
14. Output the decision Hy.
15. End If
16. End If

statistic T, =

N—=

k
2
X 3

i=1

5. Simulations

In this section, numerical simulations are conducted to verify
the performance of the proposed detector. We assume that the
transmitted signal s is a deterministic waveform while the noise
W is sampled from independent identically distributed complex
Gaussian distribution with CA (0, 021). Suppose the noise variance

02 = 1. From [14], the SNR is given by
2 2
X0 (ol S Is(m )

o2

We compare the proposed OSOMP detector with the CSD,
which assumes full knowledge of the support, the cross correla-
tion (CC) detector and the energy detector (ED) [14]. For consis-
tency, we consider a compressive version of the CC detector, which
is given by

SNR = 10log;,

: (46)

K 1

2 Wi () yP

= 2 §ce, (47)
Ho

Tec =
o2

where H" (k) represents the k-th column of H, and ¢ denotes the
detection threshold. Correspondingly, a compressive version of the
ED is denoted as

@3y

2
M
g%/2

Tep H% SED: (48)

0
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Fig. 5. Pra versus the detection threshold with different compression ratios.

where ¢p is the detection threshold. The probability of false alarm
Pra and probability of detection P, of the ED are given in Ap-
pendix D.

5.1. False Alarm of OSOMP

In the first experiment, we use Monte Carlo (MC) simulations
to verify the expression of P, for the proposed OSOMP detector in
(42) by varying the detection threshold with different numbers of
10s K. Specifically, we set N = 1000, M = 600, L = 10, K € {3,5, 7},
& is a Gaussian measurement matrix, and the dictionary matrix
WV is obtained from (7)-(12). The number of MC simulations un-
der each threshold is 100 divided by the probability of false alarm
corresponding to the y—axis. As can be seen from Fig. 4, the MC
curves match the theoretical ones well.

Fig. 5 shows that the Pry of the OSOMP detector ver-
sus the detection threshold under different numbers of
measurements, where we set K=3, N=1000, and M ¢
{1000, 600, 500, 300, 200}. It can be observed that when M >> K,
the probability of false alarm has no difference with M, which can
be observed from (41) that the Pz, only relates to K in the case of
K> 2.

1 * ,&__—0’
0‘9/ s
' 'a'
0.8 K
/

0.7 F 7

Il
0.6F /

Lost B
/

041 / CC,MC g
/ CSD, theory
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Fig. 6. Detection performance comparisons with N = 1000 for different SNRs. (a)
K=3;(b)K=7.

5.2. Detection Performance

We first compare the detection performance of the OSOMP de-
tector (33) with the CSD (19), the CC detector (47) and the ED
(48) under different SNRs. For this experiment, we select K € {3, 7},
N = 1000, M =600, time delay bins Q =40, Doppler shift bins
2P+ 1 = 25, the range of Doppler 2, € {—0.487 : 0.04x : 0.487},
p=1,---,2P+1, the number of interference L =10, the dictio-
nary basis matrix W is built based on (7)-(12) and Py = 10~4. The
detection probability curves of these detectors are plotted in Fig. 6.
The detection probability of the CSD and the ED are obtained by
both theory and MC simulations, while the detection probability of
OSOMP and CC detector are verified by MC simulations. The num-
ber of MC simulations under each SNR is 10%. From Figs. 5 and 5,
it can be observed that the CC detector as a banchmark performs
the best, and CSD performs better than the OSOMP detector ow-
ing to that it requires the knowledge of the target support. When
the support set is unknown, the proposed OSOMP detector outper-
forms the ED.

To offer details on the impact of the number of 10s, Fig. 7 de-
picts the probability of detection of the various detectors as a func-
tion of K, where we set N = 1000, M = 600, SNR € {18, —16}dB,
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Fig. 7. Detection performance comparisons with N = 1000 for different K. (a)
SNR=—18dB; (b) SNR=—16dB.
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Fig. 9. OSOMP detector with different number of iterations. (a)K = 6; (b) K = 10.

and P, = 1074, It is seen that the detection performance improves
with the increase of number of K, and the OSOMP detector always
performs much better than the ED.

Fig. 8 illustrates that the OSOMP detector can be applied for
multi-target detection. In this experiment, we set M/N = 0.6, N =
1000, K = 3, and we consider that there are a single target and
two targets in the surveillance area, respectively. It is seen that
compared with single target detection, multiple targets will reduce
the performance of the OSOMP detector, because the target echoes
outside the detection area are considered noise to increase the de-
tection threshold setting.

Fig. 9 depicts the effect of detection performance of the OS-
OMP detector with the number of iterations. Here, we set N =
1000, M/N € {0.4,0.5,0.6}, SNR= —16dB, K € {6, 10}, the desired
Tp = 1074, and 74 = 0.975. Fig. 9 (a) shows that when K =6 and
M/N = 0.6, two times of iterations can meet the desired conditions.
Fig. 9 (b) shows that when K = 10 and M/N = 0.4, two times of it-
erations are enough to make a decision.

Fig. 10 shows the effect of the compression ratio on the de-
tection performance of the various detectors under different SNRs,
where N = 1000, K =3, M/N € {0.2, 0.25, 0.3, 0.4, 0.6, 1}, SNR =
—13dB and P, = 1074 We see that the detection performance
increases as the compression ratio increases. Specifically, when
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Fig. 10. Detection performance comparisons with N = 1000, K =3 for different
compression ratios.

M/N = 0.3, the probability of detection P, of the OSOMP detec-
tor is 0.99, which matches that of the CC detector and CSD. On
the other hand, the ED performs the worst in all compression
ratios.

6. Conclusion

We studied the problem of target detection with DPI and clut-
ter by using compressive observations in an SFN-based MS-PRS
consisting of multiple 10s and one receiver. Due to the non-
cooperative nature of the I0s, the position of the I0s may be in-
accurately known in practical deployment. To address this prob-
lem, we first analyzed the CSD when the target support is known.
For the case of unknown target support, an OSOMP detector was
proposed by using OMP to estimate target support and projecting
the compressive observations into the estimated subspace. As the
OMP-induced order statistic is non-convergent in distribution, we
proposed a modified and convergent test statistic for the OSOMP
detector and provided an analytical expression for the probability
of false alarm. To further reduce the amount of computation, we
discussed how to determine the minimum number of iterations
required to achieve the desired detection probability. Numerical
simulations results demonstrate that the theoretical analysis of the
probability of false alarm Pry, matches numerical simulations, and
the performance of the OSOMP detector increases as the number
of I0s increases. Besides, we also compared the detection perfor-
mance under different number of targets and compression ratios.
All MC simulation results show that in the case of unknown target
support, the OSOMP detector outperforms the ED in low to mod-
erate SNR regions.
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Appendix A. Rank of ®®H

It is observed from (13) that

rank(®) = M, (A1)
and

rank(Pg ) =N - L. (A2)
Assume that the basis of N dimensional ¥ is denoted as

V¥ = span(kq, ..., Ky), (A.3)

where vector k, € CN*1 represents the n-th column of ¥, and &,
kn are independent each other for the case of m # n. The subspace
of s. can be denoted as

W, = span(ky,...,KL), (A4)
and, we have

Pé,c =span(ki;1, ..., KN). (A.5)

Therefore, the rank of ®®" is given by

rank(®®") = rank(®Py, )
= rank(®span (k1. ..., ky)) (A.6)
=min(M,N —L).
Due to L« M« N and N — L > M, we have
rank(®®") = M.

Appendix B. Analysis of the Complex-Valued CSD

Based on the distribution of Tcsp, the probability of false alarm
Pra of the CSD is

v (K. %)

Pia = P(Tesp > &s|Ho) = TE

(B1)

where Vr(élk’;) is the regularized Gamma function, I"(-) denotes the

Gamma function, y (a, x) is the lower Gamma function given by

X
y(a,x):/ t~letdt,
0

and ¢ represents the detection threshold. The probability of detec-
tion (Pp) is given by

Pp = P(Tesp > &sIHp) = QK(\/ Acsp, \/E)

where Qy(a, b) representing the Marcum Q function is expressed
as

& X k=1 x24a?
Qk (a, b):/ X(E) e~ 2 Ix_q(ax)dt,
b

with Ix_; denoting the modified Bessel function of first kind of or-
der K —1 [34].

(B.2)

(B.3)

(B.4)

Appendix C. Proof of Theorem 1

Consider a standard exponential distribution given by
i=1,...,N. (C1)

The order statistic of f; is denoted as f; satisfying

t: ~Exp(1) = e,

f(l)S"‘Sf(i)S"‘S (N)»

(C2)
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and the trimmed sums of f(,-) [33] is denoted as

N

Tc= Y f4 —Klog(N).
i=N—-K+1

Lemma 1. When K > 2, and N is sufficiently large, the CDF FTK )
of Ty converges to

E (t) = P(FfK (t) <t)

(C3)

K-1 t 0 _ (C4)
—oc T e Jo aw, Or(y, ky*2dy,
where
4, t) = e (C5)
wg and r(y, k) are defined in (38) and (39), respectively.
Proof: See [33,35].
Combining (33) and (C.3), we have
Tosomp = 2Tk. (C.6)
Based on Lemma 1, the CDF Fr . . (t) is given by
Frosome (£) = P(Tosomp < t)
_ T tY _ K (t
= P(Tgf i)k_ FTK(T) (C.7)
=ox 2 £ (,f) JoSa(y, 5)r@. ky<2dy,
_t
where wg = %, q(y, %) — e—e(y 21(), and r(y.k) = e YKk

which closes the proof.
Appendix D. Performance of the ED

From (15) and (17), we have

y~ CN(O, 2P, (i>H), under Hy,
. (D.1)
y~ CN(G)oc, 02<I>P¢,C <I>H), under H;.
Then, the distribution of Tgp is
_1 |
(é%ﬁ”) 2y
_ )
TED = 02/2 1 2 XZM’ Urldel‘ Ho, (DZ)
(dpy,8") *y
Tp = 5732 ~ X3u(Aep), under Hy,

_1
-H) 2

represents the whitening operator, and
2

AEp = 2, Based on (B.1) and (B.3), the probability

022
of false alarm P4 of the ED is given by
y (M. %)
PBa = T (D.3)

where ¢gp denotes the detection threshold. The probability of de-
tection Py of the ED is expressed as

PD=QM(JE, @)

where the expression of the Marcum Q function is expressed in
(B.4).

(D.4)
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