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a b s t r a c t 

This paper considers the problem of compressive target detection with direct-path interference (DPI) and 

clutter in a single-frequency network (SFN) based multistatic passive radar system (MS-PRS). Specifically, 

a measurement matrix is designed to jointly obtain compressive observations and remove the DPI and 

clutter. We first analyze a compressive subspace detector which assumes the target support is known. 

When the target supports cannot be accurately obtained, an order-statistic (OS) based detector, referred 

to as the OSOMP, is proposed by using the orthogonal matching pursuit (OMP) algorithm to estimate 

the target support, and then projecting the compressive observations into the estimated subspace. Since 

OMP applies an iterative ranking process to select the components/atoms of the dictionary, the OSOMP 

test variable is an order statistic, which has a non-convergent distribution. To cope with this problem, a 

modified test statistic for the OSOMP detector is presented and an analytical expression for the proba- 

bility of false alarm is obtained. We further discuss the minimum number of iterations required by the 

OSOMP algorithm to achieve the desired probability of detection and false alarm. Numerical simulations 

are conducted to verify the theoretical analysis and illustrate the performance of the proposed detector 

relative to several benchmark detectors. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Passive radar (PR) exploiting non-cooperative illuminators of 

pportunity (IOs) has been an active topic of interest over the 

ast decades [1] . In contrast to a conventional active radar, the PR 

as the advantages of low cost, covertness, and availability of di- 

erse IO sources, such as frequency modulation (FM) radio, digi- 

al audio broadcasting (DAB), digital video broadcasting-terrestrial 

DVB-T), mobile communication networks, and others. There are 

wo broadly defined PR systems, namely bistatic PR system and 

ultistatic PR system (MS-PRS). In recent years, MS-PRS has been 

idely investigated for practical civilian and military applications, 

ecause it offers some unique sensing opportunities compared 

ith its bistatic counterpart [2–4] . Meanwhile, since the target 
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cho is sparse in the delay-Doppler domain, compressive sensing 

CS), an emerging technique which helps reduce the computational 

nd data-collection related burden, has attracted much attention 

n radar signal processing [5] . This paper considers the problem of 

arget detection by using a CS-based framework in MS-PRS com- 

rising multiple IOs and one receiver, where the IOs are from a 

ingle-frequency network (SFN) that transmits a common signal 

6] . 

The target detection problem is equivalent to determining the 

resence/absence of the target of interest [7,8] . However, a ma- 

or challenge associated with target detection in MS-PRS is the re- 

oval of the direct-path interference (DPI) and clutter [9–11] . A 

umber of methods have been introduced to address the prob- 

em, including an adaptive beamforming (AB) technique [9] , a least 

ean square (LMS) method [10] , and an extensive cancellation al- 

orithm (ECA) [11] , among others. The AB method has limited in- 

erference rejection ability when the size of array aperture is small, 

hile the LMS method converges slowly and has a high com- 

utational complexity [12] . The ECA, which projects the received 

urveillance signals into a subspace orthogonal to the DPI and clut- 

er subspace, is a popular choice for DPI/clutter rejection due to its 

exibility. 

https://doi.org/10.1016/j.sigpro.2022.108785
http://www.ScienceDirect.com
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For target detection, MS-PRS can be divided into two categories 

epending on whether reference channels (RCs) are present or not 

6,13–16] . In the absence of RCs, the generalized canonical corre- 

ation (GCC) detector, which assumes the noise variance is known, 

s proposed for target detection in MS-PRS with a single IO and 

ultiple receivers [13] . The case of unknown noise variance is 

ddressed in [14] . With the development of digital communica- 

ion technique, the IOs may be overlapping or occupy the same 

ransmit frequency band. Thus, SFN-based MS-PRS has been widely 

tudied for target detection, location, and tracking [6,15,17] . Specifi- 

ally, an SFN-based MS-PRS consisting of multiple IOs which trans- 

it a common signal and one receiver is studied in [6] , where the

CC detector is extended to this system for passive detection. On 

he other hand, in the presence of RCs, [15] considers target detec- 

ion for an SFN-based MS-PRS when the single receiver is equipped 

ith a large number of antennas. In the case of multiple IOs and 

ultiple receivers, a linear fusion based passive multistatic target 

etection method is proposed in [16] , where local test statistics are 

eighted by an optimized set of weights at the fusion center. All 

bove detection algorithms assume accurate knowledge of the po- 

itions of the receivers and the IOs. Due to the non-cooperative na- 

ure of IOs, the location information may be inaccurately obtained. 

lthough the energy detector (ED) [14] does not require the loca- 

ion information, it is sensitive to the noise level [18] . 

Recently, considering that the target echo is sparse in the delay- 

oppler domain, CS-based radar signal processing has attracted 

uch attention to overcome the resolution problems and relieve 

he burden of hardware cost [19–25] . While most of such effort s 

re devoted to reconstructing the compressive signal first and then 

sing the reconstructed signal for detection/estimation. It is worth 

oting that the purpose of target detection is to determine the 

resence/absence of the target of interest, there is no need to re- 

onstruct the original signal, which would result in additional com- 

utations. In addition, it is well-known that the reconstruction al- 

orithms are sensitive to noise and require high SNRs. It has been 

roved in [26] that the power loss is only caused by data com- 

ression, and there is almost no power loss when integrating sig- 

al in the compressed domain. Therefore, there is an interest in 

irect compressive detection of a sparse signal without reconstruc- 

ion, which can further reduce the complexity [26–30] . One piece 

f work that is closely related the current paper is [30] , which first

iscusses how to determine the minimum fraction of the target 

upport to achieve a desired detection performance when the sup- 

ort is known. Then, two distributed algorithms are presented for 

he case of unknown support by using the orthogonal matching 

ursuit (OMP) algorithm [31] to estimate the support. Assuming 

he support is correctly recovered, the above distributed detectors 

nd analytical results are applied with the OMP-based support es- 

imate. However, the OMP employs an iterative process to select 

he components/atoms of the dictionary that have the largest cross 

orrelation with the observed signal. The selection process leads 

o an order statistic that affects the distribution of the decision 

ariable, which is not considered in [30] . Besides, the methods of 

30] cannot be directly applied for detection in MS-PRS, since the 

eceived target echoes have strong DPI and clutter. 

In this paper, we consider the compressive target detection with 

PI and clutter in an SFN-based MS-PRS. This system consists of 

ultiple IOs transmitting a common signal and one receiver, where 

he receiver has an RC and a surveillance channel (SC). Different 

rom the above detectors [6,13–16] , we consider a case of where 

he locations of IOs are subject to positioning errors. Firstly, the 

ictionary matrix is built from the received reference signal, and 

 random measurement matrix is designed to jointly obtain com- 

ressive observations and remove the DPI and clutter in the re- 

eived surveillance signals. Secondly, a complex-valued based com- 

ressive subspace detector (CSD) is briefly discussed under the as- 
2 
umption that the support of the target is known. For the case 

f unknown target support, that is, the positions of the IOs are 

ot precisely known, an order-statistic based orthogonal matching 

ursuit (OSOMP) detector is proposed by integrating support es- 

imation with target detection. Similar to the CSD, the test statis- 

ic of the OSOMP detector is obtained by projecting the compres- 

ive measurements into the estimated subspace. However, the OMP 

eads to an order statistic that is not convergent in distribution. To 

ddress the problem, a modified test statistic for the OSOMP de- 

ector is proposed. Besides, we also discuss the extension of the 

SOMP detector for multi-target detection. A performance analy- 

is is presented, which results in an analytical expression for the 

robability of false alarm of the OSOMP detector. To further reduce 

he computational complexity, we discuss the minimum number 

f iterations required by the OSOMP algorithm to achieve the de- 

ired probability of detection and false alarm, which can also cope 

ith the case of an unknown number of IOs. Finally, numerical 

imulation results are presented to verify theoretical analysis and 

emonstrate the performance of the proposed detector. It is found 

hat the OSOMP detector outperforms the ED in low and moderate 

ignal-to-noise ratio (SNR) regions. 

The rest of this paper is organized as follows. In Section 2 , 

he signal model for the considered problem is introduced. 

ection 3 contains the derivation of the OSOMP detector. Perfor- 

ance analysis is given in Section 4 . Numerical results are pre- 

ented in Section 5 , followed by conclusions in Section 6 . 

Notation: Vectors/Matrices are denoted by boldface lower/upper 

ase letters. (·) T and (·) H represents the transpose and the com- 

lex conjugate transpose. The symbols ∼ and ∈ mean “is dis- 

ributed as” and “belongs to”, respectively. CN 

(
μ, σ 2 

)
represents 

 complex Gaussian distribution with mean μ and variance σ 2 , 

xp (β) denotes an exponential distribution with parameter β , 

( x ) is the Gamma function, χ2 
N represents the central Chi-squared 

istribution with N degrees of freedom, and χ2 
N 
(λ) represents the 

on-central Chi-squared distribution with non-centrality parame- 

er λ. I N is an N-dimensional identity matrix. | · | denotes the ab- 
olute value, ‖ ·‖ 2 denotes the Frobenius norm, and j = 

√ −1 . For 

 matrix A , P A = A (A 
H A ) −1 A 

H , rank (A ) denotes the rank of A , and

 ( μ) represents the columns of A indexed by μ. 

. Signal Model 

.1. Sparse Representation of Moving Target Echoes 

As shown in Fig. 1 , we consider an MS-PRS consisting of K non- 

ooperative IOs, which are a part of a single-frequency network 

ransmitting a common signal, and one receiver [6] . The receiver 

s equipped with a RC and a SC. The RC, which is used to receive a

opy of the IO source signal, can be formed by pointing an antenna 

o one of the K IOs. In the SC, the baseband-equivalent received 

ignal includes a mixture of the direct-path, multi-path clutter in- 

erference, and target echo can be expressed as 

 sc ( n ) = 

L ∑ 

l=1 

βl s ( n − c l ) + 

K ∑ 

k =1 

αk s ( n − τk ) e 
j	dk n + w ( n ) , 

 = 1 , . . . , N, 

(1) 

here s (n ) denotes the transmitted signal, βl denotes the com- 

lex amplitude of the direct path or clutter interference, c l de- 

otes the direct-path or multi-path time delay, αk denotes the 

omplex amplitude of the target echo, τk and 	dk denote the time 

elay and normalized Doppler shift of the target received by the 

 -th IO, respectively, and w ( n ) denotes the Gaussian noise follow- 

ng w ( n ) ∼ CN 

(
0 , σ 2 

)
. In this paper, we consider the case where 

he source signal s ( n ) has been obtained from the reference chan- 

el observations by using IO some signal reconstruction technique 

e.g., [32] ). 
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Fig. 1. A single-frequency network based multistatic passive radar system. 
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To facilitate discussion, the vector model of (1) can be written 

s 

 sc = s c + s e + w sc , (2) 

here y sc is the N × 1 SC observation vector, s c , s e , and w sc rep- 

esent the interferences, observations of the moving target echoes, 

nd the Gaussian noise, respectively, with 

 c = 

[ 

L ∑ 

l=1 

βl s ( 1 − c l ) , . . . , 
L ∑ 

l=1 

βl s ( N − c l ) 

] T 

, (3) 

 e = 

[
K ∑ 

k =1 

αk s ( 1 − τk ) e 
j	dk , . . . , 

K ∑ 

k =1 

αk s ( N − τk ) e 
j	dk N 

]T 

, (4) 

 sc = [ w ( 1 ) , . . . , w ( N ) ] 
T 
. (5) 

It is well-known that the moving target echo s e lies in the 

ange-Doppler domain and has a sparse representation (e.g., [24] ) 

 e = �α, (6) 

here α ∈ C 
N×1 is the sparse vector with K non-zero elements, 

nd � ∈ C 
N×N represents a dictionary matrix consisting of delay- 

nd-Doppler-shifted copies of the reference signal s ( n ) [11] , 

= B [ �−P S , · · · , �−1 S , S , �1 S , · · · , �P S ] , (7) 

here B ∈ { 0 , 1 } N ×(N + Q ) is a selection matrix which selects the last

rows of its successor and is given by 

 = { b u v } u =1 , ··· ,N, v =1 , ··· ,N+ Q , b u v = 

{
1 , u = v − Q, 

0 , otherwise , 
(8) 

ith Q representing the number of time delay cells. �p ∈ 

 
( N+ Q ) ×( N+ Q ) denotes a Doppler shift operator corresponding to 
he p-th Doppler bin, which is a diagonal matrix 

�p = 

⎡ 

⎢ ⎢ ⎣ 

1 0 · · · 0 

0 e j	p 2 · · · 0 

. 

. 

. 
. 
. 
. 

. . . 
. 
. 
. 

0 0 · · · e j	p ( N+ Q −1 ) 

⎤ 

⎥ ⎥ ⎦ 

, p = −P, · · · , 0 , 1 , · · · , P, 

(9) 
3 
here 	p is the normalized Doppler shift of the p-th Doppler bin 

atisfying 	p = 

2 π pB D 
(2 P+1) f s 

with B D representing the Doppler band- 

idth in Hz, and f s denoting the sampling frequency. S ∈ C 
( N+ Q ) ×Q 

s given by 

 = [ s , Ds , · · · , D 
( Q−1 ) s ] , (10) 

here s ∈ C 
( N+ Q ) ×1 , and 

 = [ s ( −Q + 1 ) , · · · , s ( 0 ) , · · · s ( N ) ] 
T 
. (11) 

o ensure the signal is fully integrated, N + Q samples of s ( n ) are 

ollected [11] . Besides, D ∈ R 
( N+ Q ) ×( N+ Q ) denotes a delay matrix 

hich is given by 

 = { d u v } u, v =1 , ··· ,N+ Q , d u v = 

{
1 , u = v + 1 , 
0 , otherwise . 

(12) 

ithout the loss of generality, assume that N = Q(2 P + 1) , and

hus we have � ∈ C 
N×N . 

.2. Compressive Detection with Interference Cancellation 

Based on the CS theory, a sparse signal can be recovered from 

ewer measurements with sub-Nyquist sampling to reduce the bur- 

en of computation and data collection. In this paper, the problem 

f interest is to consider a moving target detection problem by us- 

ng compressive observations: 

H 0 : ȳ = �̄s c + w̄ , 

H 1 : ȳ = �̄s c + �̄�α + w̄ , 
(13) 

here ȳ = �̄y sc , �̄ ∈ R 
M×N ( K � M � N ) satisfying the restricted 

sometry property (RIP) represents a compressive random mea- 

urement matrix, and w̄ = �̄w sc . 

In order to expose weak target, interference cancellation must 

e carried out prior to target detection. Suppose that the direct- 

ath or clutter interferences s c are considered backscattered from 

he first L range cells with zero Doppler shifts [11] , i.e., it can be

xpressed as 

 c = �c β, (14) 

here �c ∈ C 
N×L is a submatrix of � which spans the subspace of 

 c , and β ∈ C 
L ×1 denotes the subspace coefficients. Thus, the DPI 

nd clutter can be removed by using the ECA [11] . Inspired by the 

CA, we design the measurement matrix as 

= �̄P 
⊥ 
�c 

. (15) 

here 

 
⊥ 
�c 

= I N − �c 

(
�H 

c �c 

)−1 
�H 

c . (16) 

hen, replacing �̄ with � in (13) yields 

H 0 : y = w , 

H 1 : y = �α + w , 
(17) 

here � = �� denotes the sensing matrix and w = �w sc . It is 

lear w ∼ CN 

(
0 , σ 2 ��H 

)
. In practice, the dimension of clutter is 

sually far less than the measured samples, i.e., we can assume 

hat L � M � N and N − L > M. Then, rank 
(
��H 

)
= M, which is 

hown in Appendix A. 

. Target Detection 

In this section, we first briefly discuss the CSD that assumes the 

upport of the target is known. However, in a MS-PRS, the sup- 

ort of the target echo may not be exactly known due to the non- 

ooperative nature of the IOs. To address this problem, we propose 

n OSOMP detector which integrates support estimation in target 

etection. 
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Fig. 2. Compressive subspace detector with known locations on IOs. 
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.1. CSD with Known Target Support 

As shown in Fig. 2 , suppose that there are K IOs and one tar-

et in an SFN-based MSPR system. When the locations of these 

Os are exactly known, the support set indices u of the target 

an be obtained [6] , where u := { i ∈ { 1 , · · · , N}| α(i ) 	 = 0 } , and α(i )

epresents the i -th element of α. Then, the detection problem of 

17) can be rewritten as 

H 0 : y = w , 

H 1 : y = H ̃  α + w , 
(18) 

here H = �( u ) represents the target support matrix, which is an 

 × K submatrix of the sensing matrix � with columns indexed by 

 , and ˜ α ∈ C 
K×1 denotes the K nonzero elements of α. According 

o [30] , the test statistic of the complex-valued based CSD is given 

y 

 CSD = 

∥∥∥P H 

(
��H 

)− 1 
2 y 

∥∥∥2 

2 

σ 2 / 2 
, (19) 

here P H = H (H 
H H ) −1 H 

H , and 
(
��H 

)− 1 
2 denotes the whitening 

perator. Under the assumption that the support is known, the dis- 

ribution of T CSD is given by 

H 0 : T CSD ∼χ2 
2 K , 

H 1 : T CSD ∼χ2 
2 K ( λCSD ) , 

(20) 

here λCSD = 

∥∥∥∥P H ( ��H ) 
− 1 

2 H ̃ α

∥∥∥∥
2 

2 

σ 2 / 2 
. The performance of the CSD is de- 

ived in Appendix B. 

Nevertheless, when the target support H is unknown, which 

ay occur in practical MS-PRS, the CSD becomes unusable. Next, 

e propose an OSOMP detector by jointly detecting and estimat- 

ng the target support H . 

.2. Proposed OSOMP Detector with Unknown Target Support 

In conventional MS-PRS detection, the geographical locations of 

he IOs and the receiver are often assumed known exactly, so that 
4 
he relative target delays τk and Doppler shifts f k , k = 1 , . . . , K,

mong the received target echoes can be compensated first, and 

hen the detectors in [6,13,14] are proposed for target detection. 

owever, the location of IOs may not be measured accurately in 

ractical PR scenario, i.e. the target support may not be precisely 

nown. Therefore, there is a need for an improved solution to cope 

ith such uncertainty by jointly estimating the subspace matrix H 

nd performing target detection. To facilitate discussion, we first 

onsider the situation where there is a single target in the surveil- 

ance area. 

Specifically, when the target subspace H is imprecisely known, 

e can obtain an estimate ˆ H by using a sparsity recovering tech- 

ique, such as the OMP algorithm [31] . Similar to the CSD, the test 

tatistic of the OSOMP detector can be expressed as 

 ̄OSOMP = 

K ∑ 

k =1 

∥∥∥P �( μk ) 

(
��H 

)− 1 
2 
y 

∥∥∥2 

2 

σ 2 / 2 
, (21) 

here �( μk ) ∈ C 
M×1 represents the μk -th column of �, 

 �( μk ) 
= �( μk ) 

(
�( μk ) 

H �( μk ) 
)−1 

�( μk ) 
H 
, μk denoting the in- 

ex of the k -th iteration is given by 

k = arg max 
i ∈{ 1 , ... ,N} | < r k −1 , �(i ) > | , k = 1 , . . . , K, (22) 

 k representing the residual vector at the k -th iteration of the OMP 

lgorithm is 

 k = 

(
I N − P �( μk ) 

)
y , (23) 

ith r 0 = y , and the support set is formed by 

k = μk −1 ∪ { μk } , (24) 

ith μ0 = ∅ . Eq. (22) shows that the index μk is obtained by find- 

ng the most correlated column between the sensing matrix � and 

he residual vector. 

Correspondingly, let 

 i = 

∥∥P �(i ) ( ��H ) −
1 
2 y 

∥∥2 

2 

σ 2 / 2 
, i = 1 , . . . , N, (25) 

hich are used to form a set 

 = { t 1 , · · · , t N } . (26) 

rom (21) - (25) , we can see ∥∥P �( μk ) 
( ��H ) −

1 
2 y 

∥∥2 

2 

σ 2 / 2 
∈ T , (27) 

r more precisely, 

∥∥∥∥∥P �( μk ) 

(
��H 

)− 1 
2 
y 

∥∥∥∥∥
2 

2 

σ 2 / 2 
represents the k -th largest 

lement of T . Then, we denote 

 ( N−k +1 ) = 

∥∥P �( μk ) 
( ��H ) −

1 
2 y 

∥∥2 

2 

σ 2 / 2 
, k = 1 , . . . , K, (28) 

here t ( i ) represents the order statistic of t i with 

 ( 1 ) ≤ · · · ≤ t ( i ) ≤ · · · ≤ t ( N ) . (29) 

ubstituting (28) into (21) , we can write the test statistic of the 

SOMP detector as 

 ̄OSOMP = 

K ∑ 

k =1 

t ( N−k +1 ) . (30) 
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Fig. 3. OSOMP detector for multiple targets, where �1 contains the possible sub- 

space of target 1, and �J contains the possible subspace of target J. 
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.3. An Equivalent Form of the OSOMP Detector 

It turns out the distribution of T̄ OSOMP is not convergent in the 

ollowing analysis, which necessitates an alternative form for im- 

lementation. 

Specifically, according to (20) , it can be easily shown that the 

istribution of t i in (25) under the H 0 hypothesis is 

 i ∼χ2 
2 , under H 0 . (31) 

ote that t i is also an exponential distribution with t i ∼ Exp 
(
1 
2 

)
nd its cumulative distribution function (CDF) is 

 t i (t) = 1 − e −
t 
2 . (32) 

t follows from (31) and (32) that T̄ OSOMP under H 0 is the trimmed 

ums of the first K largest values of the order statistic of the ex- 

onential distribution. However, the distribution of T̄ OSOMP is non- 

onvergent in the case of K ≥ 2 and large N [33] . To address this

roblem, a modified and alternative form T OSOMP that is equivalent 

o T̄ OSOMP but with a convergent CDF is given by 

 OSOMP = T̄ OSOMP − 2 K log (N) . (33) 

herefore, we can replace T̄ OSOMP with T OSOMP in the following 

erivation, and the OSOMP detector can be equivalently expressed 

s 

 OSOMP 

H 1 
≷ 

H 0 

η, (34) 

here η denotes the detection threshold. The implementation of 

he OSOMP detector is summarized in Algorithm 1. 

.4. OSOMP for Multiple Targets 

In this subsection, we discuss the extension of the OSOMP de- 

ector for multi-target detection. As shown in Fig. 3 , which depicts 

 case with J targets in the surveillance area, where the number of 

argets J is unknown. In an MS-PRS, K IOs jointly monitor targets 

hat may exist in the surveillance area. When detecting the target 

f interest, it is standard to divide the surveillance area into dif- 

erent detection cells in the delay-Doppler domain, and the super 

ictionary matrix � consisting of delay-and-Doppler-shifted copies 
5 
f the reference signal covers all detection cells. Suppose that the 

ossible signal subspaces of target 1 corresponding to IO 1 to IO 

are A 11 , · · · , A 1 K , respectively. Therefore, the sensing matrix of 

arget 1 is denoted as �1 = [ A 11 , · · · , A 1 K ] . Correspondingly, the 

ensing matrix of target J is given by �J = 

[
A J1 , · · · , A JK 

]
, where 

 Jk represents the possible signal subspace of target J correspond- 

ng to IO k . For well separated targets, it is reasonable to assume 

hat the dictionaries are non-overlapping, i.e., �i ∩ � j = ∅ , where 

 	 = j, i, j ∈ { 1 , · · · , J} . This is equivalent to the assumption that, in

onventional radar systems, different targets located in different 

esolution cells are associated with different ranges and Doppler 

requencies. As illustrated in Fig. 3 , the super sensing matrix �
ubsumes individual sensing matrices for all J targets. Therefore, 

he multi-target detection problem can be solved by Algorithm 1 

y using the super sensing matrix �. In this case, the indices re- 

overed by the OMP provide the support for all J targets. Finally, 

he passive radar will not be able to resolve closely spaced targets 

hich, similarly as in conventional radar, will be treated as a single 

omposite target that can be detected by our method. 

. Performance Analysis 

In this section, we examine the performance of the proposed 

SOMP detector. Due to the inherent sorting incurred by OMP, the 

SOMP decision variable is an order statistic. We derive an expres- 

ion of the order static under the H 0 hypothesis, which can be used 

o set the detection threshold and determine the false alarm prob- 

bility P FA for OSOMP. Under the H 1 hypothesis, since the support 

stimate obtained by OMP may consist of true target support and 

rong support (from the noise subspace), especially at low SNR, an 

rder-statistic based analysis becomes intractable. Hence, we resort 

o numerical approaches to determine the probability of detection 

or OSOMP detector in Section 5 . 

.1. Probability of False alarm of OSOMP Detector 

To derive the probability of false alarm of the proposed OSOMP 

etector, we consider the distribution of T OSOMP (under the H 0 hy- 

othesis) for two different cases with K = 1 and K ≥ 2 . Specifically,

hen K = 1 , we have 

 OSOMP = t ( N ) − 2 log ( N ) . (35) 

rom (31) and (32) , the CDF F T OSOMP 
( t ) in (35) can be expressed as 

 T OSOMP 
( t ) = P ( T OSOMP ≤ t ) 

= P 
(
t ( N ) ≤ t + 2 log ( N ) 

)
= P ( max ( t i ) ≤ t + 2 log ( N ) ) 

= [ F t i ( t + 2 log ( N ) ) ] 
N 

= 

(
1 − e −

1 
2 t−log ( N ) 

)N 
. 

(36) 

When K ≥ 2 , the CDF of T OSOMP is summarized in Theorem 1 . 

heorem 1. In the case of K ≥ 2 , the CDF of T OSOMP is given by 

 T OSOMP 
( t ) = ω K 

K−1 ∑ 

k =0 

e −( kt 2 K ) 

k ! 

∫ ∞ 

0 

q 

(
y, 

t 

2 

)
r ( y, k ) y K−2 dy , (37) 

here 

 K = 

K K−1 

( K − 2 ) ! 
, (38) 

 ( y, k ) = e −y ( K−k ) , (39) 

 

(
y, 

t 

2 

)
= e −e ( y −

t 
2 K ) 

. (40) 
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roof. See Appendix C. �

Combining (36) and (37) , we have (41) at the top of the follow-

ng page. 

 T OSOMP 
( t ) = ⎧ ⎨ 

⎩ 

(
1 − e −( t 2 + log (N) ) 

)N 
, K = 1 , 

ω K 

K−1 ∑ 

i =0 

e ( −
t 
2 K ) 
i ! 

∫ ∞ 

0 q 
(
y, t 

2 

)
r ( y, i ) y K−2 dy , K ≥ 2 , 

Under H 0 . 

(41) 

It follows (41) that the P FA is given by 

P FA = P ( T OSOMP > γ | H 0 ) 
= 1 − F T OSOMP 

( γ ) , 
(42) 

here γ represents the detection threshold. Based on the Neyman- 

earson criterion, γ can be calculated from (42) with a given P FA = 

. 

.2. OSOMP Detector with Minimum Number of Iterations 

As shown in Algoritm 1 , the number of iterations is K. In prac-

ice, it is possible to use the first k ( k ≤ K) iterations to make a de-

ision on whether the signal exists. To further reduce the amount 

f calculation, in this subsection, we discuss the minimum num- 

er of iterations k to achieve the desired detection probability and 

alse alarm probability. 

lgorithm 1 The Proposed OSOMP Detector 

nput : y , �, �c , �̄, K, σOutput : Detection decision H 1 /H 0 

1. Initialize index set μ0 = ∅ , sensing matrix � = �̄P ⊥ 
�c 

�, and 

residual vector r 0 = y ; 

2. F or k = 1 to k = K 

3. Find the index μk as μk = arg max i ∈{ 1 , ... ,N} | < r k −1 , �(i ) > | ; 
4. Update the support set μk = μk −1 ∪ { μk } , and obtain the sub- 

space ˆ H = �( μk ) ; 

5. Calculate the projection operator P ˆ H = ˆ H 

(
ˆ H 

H 
ˆ H 

)
−1 ̂  H 

H 
; 

6. Update the residual vector r k = 

(
I − P ˆ H 

)
y ; 

7. End For 

8. Compute the equivalent test statistic T OSOMP = 

K ∑ 

k =1 

∥∥∥∥P �( μk ) 

(
��H 

)− 1 
2 y 

∥∥∥∥2 
2 

σ 2 / 2 
− 2 K log N; 

9. Obtain the detection threshold γ from (42) with a given prob- 

ability of false alarm P FA ; 

0. If T OSOMP > γ , 

1. Output the decision H 1 , 

2. else 

3. Output the decision H 0 . 

4. End If 

Suppose that the desired P D = τd , P FA = τ f , then, the minimum 

 is given by 

in k 
 FA ≤ τ f , 

 D ≥ τd , 
 ≤ k ≤ K. 

(43) 

n radar detection, P FA is an important parameter. According to the 

eceiver operating characteristic, P D decreases with P FA [34] . Then, 

43) can be rewritten as 

in k 
 FA = τ f , 

 k ≥ γk , 

 ≤ k ≤ K. 

(44) 
6 
here 

 k = 

k ∑ 

i =1 

∥∥P �( μi ) C 
− 1 

2 y 
∥∥2 

2 

σ 2 / 2 
− 2 k log N. (45) 

ased on the above analysis, the OSOMP detector with the min- 

mum k is summarized in Algorithm 2 . It is worth noting that 

44) can also cope with the case of an unknown number of IOs. 

lgorithm 2 OSOMP Detector with Minimum Number of Itera- 

ions k 

nput : y , �, �c , �̄, K, σOutput : Detection decision H 1 /H 0 

1. Initialize index set μ0 = ∅ , sensing matrix � = �̄P ⊥ 
�c 

�, and 

residual vector r 0 = y , k = 1 ; 

2. Find the index μk as μk = arg max i ∈{ 1 , ... ,N} | < r k −1 , �(i ) > | ; 
3. Update the support set μk = μk −1 ∪ { μk } , and obtain the sub- 

space ˆ H = �( μk ) ; 

4. Calculate the projection operator P ˆ H = ˆ H 

(
ˆ H 

H 
ˆ H 

)
−1 ̂  H 

H 
; 

5. Update the residual vector r k = 

(
I − P ˆ H 

)
y ; 

6. Compute the equivalent test statistic T k = 

k ∑ 

i =1 

∥∥∥∥∥P �( μi ) 

(
��H 

)− 1 
2 
y 

∥∥∥∥∥2 
2 

σ 2 / 2 
− 2 k log N; 

7. Obtain the detection threshold γk from (42) with a given prob- 

ability of false alarm P FA = τ f ; 

8. If T k > γk , 

9. Output the decision H 1 , 

0. break 

1. else 

2. k = k + 1 , go to step 2; 

3. If k > K 

4. Output the decision H 0 . 

5. End If 

6. End If 

. Simulations 

In this section, numerical simulations are conducted to verify 

he performance of the proposed detector. We assume that the 

ransmitted signal s is a deterministic waveform while the noise 

 sc is sampled from independent identically distributed complex 

aussian distribution with CN 

(
0 , σ 2 I 

)
. Suppose the noise variance 

2 = 1 . From [14] , the SNR is given by 

NR = 10 log 10 

1 
KN 

∑ K 
k =1 

(| αk | 2 ∑ N 
n =1 | s ( n ) | 2 

)
σ 2 

. (46) 

We compare the proposed OSOMP detector with the CSD, 

hich assumes full knowledge of the support, the cross correla- 

ion (CC) detector and the energy detector (ED) [14] . For consis- 

ency, we consider a compressive version of the CC detector, which 

s given by 

 CC = 

K ∑ 

k =1 

| H 
H ( k ) 

(
��H 

)−1 
y | 2 

σ 2 

H 1 
≷ 

H 0 

ς CC , (47) 

here H 
H ( k ) represents the k -th column of H , and ς CC denotes the

etection threshold. Correspondingly, a compressive version of the 

D is denoted as 

 ED = 

∥∥∥(
��H 

)− 1 
2 
y 

∥∥∥2 

2 

σ 2 / 2 

H 1 
≷ 

H 0 

ς ED , (48) 
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Fig. 4. P FA of the OSOMP detector versus the detection threshold with different 

thresholds. 

Fig. 5. P FA versus the detection threshold with different compression ratios. 

w

P

p

5

t

(

I  

�
�
d

c  

c

s

m  

{  

t

b  

K

Fig. 6. Detection performance comparisons with N = 10 0 0 for different SNRs . (a) 

K = 3 ; (b) K = 7 . 
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here ς ED is the detection threshold. The probability of false alarm 

 FA and probability of detection P D of the ED are given in Ap- 

endix D. 

.1. False Alarm of OSOMP 

In the first experiment, we use Monte Carlo (MC) simulations 

o verify the expression of P FA for the proposed OSOMP detector in 

42) by varying the detection threshold with different numbers of 

Os K. Specifically, we set N = 10 0 0 , M = 60 0 , L = 10 , K ∈ { 3 , 5 , 7 } ,
¯ is a Gaussian measurement matrix, and the dictionary matrix 

is obtained from (7) - (12) . The number of MC simulations un- 

er each threshold is 100 divided by the probability of false alarm 

orresponding to the y −axis. As can be seen from Fig. 4 , the MC

urves match the theoretical ones well. 

Fig. 5 shows that the P FA of the OSOMP detector ver- 

us the detection threshold under different numbers of 

easurements, where we set K = 3 , N = 10 0 0 , and M ∈
 10 0 0 , 60 0 , 50 0 , 30 0 , 20 0 } . It can be observed that when M >> K,

he probability of false alarm has no difference with M, which can 

e observed from (41) that the P FA only relates to K in the case of

 ≥ 2 . 
7 
.2. Detection Performance 

We first compare the detection performance of the OSOMP de- 

ector (33) with the CSD (19) , the CC detector (47) and the ED 

48) under different SNRs. For this experiment, we select K ∈ { 3 , 7 } ,
 = 10 0 0 , M = 60 0 , time delay bins Q = 40 , Doppler shift bins

 P + 1 = 25 , the range of Doppler 	p ∈ {−0 . 48 π : 0 . 04 π : 0 . 48 π} ,
p = 1 , · · · , 2 P + 1 , the number of interference L = 10 , the dictio-

ary basis matrix � is built based on (7) - (12) and P FA = 10 −4 . The

etection probability curves of these detectors are plotted in Fig. 6 . 

he detection probability of the CSD and the ED are obtained by 

oth theory and MC simulations, while the detection probability of 

SOMP and CC detector are verified by MC simulations. The num- 

er of MC simulations under each SNR is 10 4 . From Figs. 5 and 5 ,

t can be observed that the CC detector as a banchmark performs 

he best, and CSD performs better than the OSOMP detector ow- 

ng to that it requires the knowledge of the target support. When 

he support set is unknown, the proposed OSOMP detector outper- 

orms the ED. 

To offer details on the impact of the number of IOs, Fig. 7 de-

icts the probability of detection of the various detectors as a func- 

ion of K, where we set N = 10 0 0 , M = 60 0 , SNR ∈ {−18 , −16 } dB,
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Fig. 7. Detection performance comparisons with N = 10 0 0 for different K. (a) 

SNR = −18 dB; (b) SNR = −16 dB. 

Fig. 8. OSOMP detector for multi-target detection. 

Fig. 9. OSOMP detector with different number of iterations. (a) K = 6 ; (b) K = 10 . 
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8 
nd P FA = 10 −4 . It is seen that the detection performance improves 

ith the increase of number of K, and the OSOMP detector always 

erforms much better than the ED. 

Fig. 8 illustrates that the OSOMP detector can be applied for 

ulti-target detection. In this experiment, we set M/N = 0 . 6 , N =
0 0 0 , K = 3 , and we consider that there are a single target and

wo targets in the surveillance area, respectively. It is seen that 

ompared with single target detection, multiple targets will reduce 

he performance of the OSOMP detector, because the target echoes 

utside the detection area are considered noise to increase the de- 

ection threshold setting. 

Fig. 9 depicts the effect of detection performance of the OS- 

MP detector with the number of iterations. Here, we set N = 

0 0 0 , M/N ∈ { 0 . 4 , 0 . 5 , 0 . 6 } , SNR = −16 dB, K ∈ { 6 , 10 } , the desired
f = 10 −4 , and τd = 0 . 975 . Fig. 9 (a) shows that when K = 6 and

/N = 0 . 6 , two times of iterations can meet the desired conditions.

ig. 9 (b) shows that when K = 10 and M/N = 0 . 4 , two times of it-

rations are enough to make a decision. 

Fig. 10 shows the effect of the compression ratio on the de- 

ection performance of the various detectors under different SNRs, 

here N = 10 0 0 , K = 3 , M/N ∈ { 0 . 2 , 0 . 25 , 0 . 3 , 0 . 4 , 0 . 6 , 1 } , SNR =
13 dB and P FA = 10 −4 . We see that the detection performance 

ncreases as the compression ratio increases. Specifically, when 
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Fig. 10. Detection performance comparisons with N = 10 0 0 , K = 3 for different 

compression ratios. 
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/N = 0 . 3 , the probability of detection P D of the OSOMP detec-

or is 0.99, which matches that of the CC detector and CSD. On 

he other hand, the ED performs the worst in all compression 

atios. 

. Conclusion 

We studied the problem of target detection with DPI and clut- 

er by using compressive observations in an SFN-based MS-PRS 

onsisting of multiple IOs and one receiver. Due to the non- 

ooperative nature of the IOs, the position of the IOs may be in- 

ccurately known in practical deployment. To address this prob- 

em, we first analyzed the CSD when the target support is known. 

or the case of unknown target support, an OSOMP detector was 

roposed by using OMP to estimate target support and projecting 

he compressive observations into the estimated subspace. As the 

MP-induced order statistic is non-convergent in distribution, we 

roposed a modified and convergent test statistic for the OSOMP 

etector and provided an analytical expression for the probability 

f false alarm. To further reduce the amount of computation, we 

iscussed how to determine the minimum number of iterations 

equired to achieve the desired detection probability. Numerical 

imulations results demonstrate that the theoretical analysis of the 

robability of false alarm P FA matches numerical simulations, and 

he performance of the OSOMP detector increases as the number 

f IOs increases. Besides, we also compared the detection perfor- 

ance under different number of targets and compression ratios. 

ll MC simulation results show that in the case of unknown target 

upport, the OSOMP detector outperforms the ED in low to mod- 

rate SNR regions. 
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ppendix A. Rank of ��H 

It is observed from (13) that 

ank 
(
�̄

)
= M, (A.1) 

nd 

ank 
(
P 

⊥ 
�c 

)
= N − L. (A.2) 

ssume that the basis of N dimensional � is denoted as 

= span ( κ1 , . . . , κN ) , (A.3) 

here vector κn ∈ C 
N×1 represents the n -th column of �, and κm , 

n are independent each other for the case of m 	 = n . The subspace

f s c can be denoted as 

c = span ( κ1 , . . . , κL ) , (A.4) 

nd, we have 

 
⊥ 
�c 

= span ( κL +1 , . . . , κN ) . (A.5) 

herefore, the rank of ��H is given by 

ank 
(
��H 

)
= rank 

(
�̄P 

⊥ 
�c 

)
 rank 

(
�̄span ( κL +1 , . . . , κN ) 

)
 min ( M, N − L ) . 

(A.6) 

ue to L � M � N and N − L > M, we have 

ank 
(
��H 

)
= M. (A.7) 

ppendix B. Analysis of the Complex-Valued CSD 

Based on the distribution of T CSD , the probability of false alarm 

 FA of the CSD is 

 FA = P ( T CSD > ζs | H 0 ) = 

γ
(
K, 

ζs 
2 

)
�(K) 

, (B.1) 

here 
γ ( a,x ) 
�(K) 

is the regularized Gamma function, �(·) denotes the 
amma function, γ ( a, x ) is the lower Gamma function given by 

( a, x ) = 

∫ x 
0 

t a −1 e −t dt, (B.2) 

nd ζs represents the detection threshold. The probability of detec- 
ion ( P D ) is given by 

 D = P ( T CSD > ζs | H 1 ) = Q K 

(√ 

λCSD , 
√ 

ζs 

)
, (B.3) 

here Q M 
(a, b) representing the Marcum Q function is expressed 

s 

 K ( a, b ) = 

∫ ∞ 

b 

x 

(
x 

a 

)K−1 

e −
x 2 + a 2 

2 I K−1 ( ax ) dt, (B.4) 

ith I K−1 denoting the modified Bessel function of first kind of or- 

er K − 1 [34] . 

ppendix C. Proof of Theorem 1 

Consider a standard exponential distribution given by 

 ̄i ∼ Exp ( 1 ) = e −t , i = 1 , . . . , N. (C.1) 

he order statistic of t̄ i is denoted as t̄ ( i ) satisfying 

 ̄( 1 ) ≤ · · · ≤ t̄ ( i ) ≤ · · · ≤ t̄ ( N ) , (C.2) 
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[

[

[

nd the trimmed sums of t̄ ( i ) [33] is denoted as 

 ̄K = 

N ∑ 

i = N−K+1 

t̄ ( i ) − K log ( N ) . (C.3) 

Lemma 1. When K ≥ 2 , and N is sufficiently large, the CDF F T̄ K 
( t )

f T̄ K converges to 

 ̄T K 
( t ) = P 

(
F ̄T K ( t ) ≤ t 

)
 ω K 

K−1 ∑ 

k =0 

e ( −( kt/K ) ) 

k ! 

∫ ∞ 

0 q ( y, t ) r ( y, k ) y K−2 dy , 
(C.4) 

here 

 ( y, t ) = e −e ( y −
t 
K ) 

, (C.5) 

 K and r ( y, k ) are defined in (38) and (39) , respectively. 

Proof: See [33,35] . 

Combining (33) and (C.3) , we have 

 OSOMP = 2 ̄T K . (C.6) 

ased on Lemma 1, the CDF F T OSOMP 
( t ) is given by 

 T OSOMP 
( t ) = P ( T OSOMP ≤ t ) 

 P 
(
T̄ K ≤ t 

2 

)
= F ̄T K 

(
t 
2 

)
 ω K 

K−1 ∑ 

k =0 

e 
−( kt 2 K ) 
k ! 

∫ ∞ 

0 q 
(
y, t 

2 

)
r ( y, k ) y K−2 dy , 

(C.7) 

here ω K = 
K K−1 

( K−2 ) ! 
, q 

(
y, t 2 

)
= e −e ( y −

t 
2 K ) , and r ( y, k ) = e −y ( K−k ) , 

hich closes the proof. 

ppendix D. Performance of the ED 

From (15) and (17) , we have 
 

 

 

y ∼ CN 

(
0 , σ 2 �̄P 

⊥ 
�c 

�̄
H 
)
, under H 0 , 

y ∼ CN 

(
�α, σ 2 �̄P 

⊥ 
�c 

�̄
H 
)
, under H 1 . 

(D.1) 

hen, the distribution of T ED is 
 

 
 
 
 
 

 
 
 
 
 

T ED = 

∥∥∥∥∥
(
�̄P ⊥ �c 

�̄
H 
)− 1 

2 
y 

∥∥∥∥∥
2 

2 

σ 2 / 2 
∼ χ2 

2 M 
, under H 0 , 

T ED = 

∥∥∥∥∥
(
�̄P ⊥ �c 

�̄
H 
)− 1 

2 
y 

∥∥∥∥∥
2 

2 

σ 2 / 2 
∼ χ2 

2 M 
(λED ) , under H 1 , 

(D.2) 

here 

(
�̄P ⊥ 

�c 
�̄

H 
)− 1 

2 
represents the whitening operator, and 

ED = 

∥∥∥∥∥
(
�̄P ⊥ 

�c 
�̄

H 
)− 1 

2 
�α

∥∥∥∥∥
2 

2 

σ 2 / 2 
. Based on (B.1) and (B.3) , the probability 

f false alarm P FA of the ED is given by 

 FA = 

γ
(
M, 

ς ED 
2 

)
�(M) 

, (D.3) 

here ς ED denotes the detection threshold. The probability of de- 

ection P D of the ED is expressed as 

 D = Q M 

(√ 

λED , 
√ 

ς ED 

)
, (D.4) 

here the expression of the Marcum Q function is expressed in 

B.4) . 
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