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ABSTRACT 

Determining whether different items provide the same information or mean the same thing is a central 

concern when determining whether different scales or constructs are overlapping or redundant. In the 

present study, we suggest that retest-adjusted correlations, 𝜌̂𝕏𝕐|𝑑|, provide a valuable means of adjusting 

for item-level unreliability. More exactly: we suggest dividing the estimated correlation between items 𝑋 

and 𝑌 measured over measurement interval |𝑑| by the average retest correlations of the items over the 

same interval. For instance: if we correlate scores from items 𝑋 and 𝑌 measured one week apart, their 

retest-adjusted correlation is estimated by using their one-week retest correlations. Using data from four 

inventories, we provide evidence that retest-adjusted correlations are significantly better predictors of 

whether two items are consensually regarded as “meaning the same thing” by judges than raw-score 

correlations. The results may provide the first empirical evidence that Spearman’s (1904, 1910) suggested 

reliability adjustment do – in certain (perhaps very constrained!) circumstances – improve upon raw-score 

correlations as indicators of the informational or semantic equivalence of different tests.  

 

Keywords: semantic similarity; test equivalence; reliability; nuances; item-level analysis  
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Using Retest-Adjusted Correlations as Indicators of the Semantic Similarity of Items 

It is often appreciated that large correlations between self-report measures can reflect tautological 

relationships or redundancies, where a non-trivial proportion of the items in the two measures quite 

literally ‘mean the same thing’. For instance, in the pithily titled “Some dangers of using personality 

questionnaires to study personality,” Nicholls and colleagues (1982) argued that the large positive 

associations observed between widely-used tests of masculinity and self-esteem was due in large part to 

the fact that commonly used tests of each construct include nearly identical items about the person’s level 

of assertiveness and confidence. As a more recent example, Credé and colleagues (2017) noted that the 

very high correlation between Conscientiousness scales and the widely-used Grit scale (Duckworth et al., 

2007) is due in part to the scales regularly containing very similar items – for instance, the Grit scale item 

“I am a hard worker” and the IPIP Conscientiousness item “I work hard.” More generally, the fact that 

scales of nominally distinct constructs regularly contain similar items represents a problem for the 

behavioral sciences, as it makes it more difficult to interpret whether the correlations between multi-item 

scales should be interpreted as indicating a functional relationship (e.g., X causes Y), a tautological 

relationship (X and Y measure the same thing), or some mixture of both (Mõttus, 2016; Wilt & Revelle, 

2015; Wood et al., 2015). This issue is considered under various labels, such as construct overlap, 

construct redundancy, construct identity fallacies, construct proliferation, jangle fallacies and 

tautological relationships across psychological scales (or TRAPS)(Bainbridge et al., 2022; Kelley, 1927; 

Larsen & Bong, 2016; Rosenbusch et al., 2020; Shaffer et al., 2016; Singh, 1991; Wood & Harms, 2016).  

 As these examples illustrate, determining whether two scales overlap often involves determining 

whether particular items are similar or even redundant in meaning. But questions regarding item similarity 

can also be important when there is no aspiration to create multi-item scales at all. For instance, Block 

(1961) noted that items were replaced through iterations of his Q-sort inventories when they were 

determined to be too similar to others in the inventory. This strategy continues to play a role in the 

development of inventories aiming to maximize breadth or comprehensiveness (e.g., Funder, 2016; Furr 

et al., 2010; Shedler & Westen, 2007; Wood et al., 2010). More generally, there is considerable current 
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interest in creating inventories which measure a greater number of important nuances of personality, 

which involves, in part, identifying items which contribute distinct information beyond others in the set 

(Condon et al., 2020; McCrae, 2015; Mõttus et al., 2020; Saucier et al., 2020).  

However, there remain considerable questions regarding how to establish whether two items are 

either informationally or semantically equivalent. Addressing these issues is in turn a fundamental step to 

better establishing when a correlation between measures of conceptually distinct constructs should be 

attributed to redundant content. In the current article, we present evidence that retest-adjusted 

correlations serve as particularly valuable indices of the level of information similarity of items. We also 

describe a straightforward method for operationalizing the semantic similarity of items through rater 

judgments. We then conduct empirical tests to explore whether retest-adjusted correlations outperform 

raw-score correlations as indicators of the rated semantic similarity of item-pairs.  

How are Levels of Item Similarity Estimated? 

The level of similarity between two items can be estimated through information similarity and 

semantic similarity approaches (Larsen & Bong, 2016; Le et al., 2010).1  Information similarity 

approaches involve estimating the degree to which items X and Y provide the same information within a 

population. In contrast, semantic similarity approaches concern the degree to which items are understood 

as ‘meaning the same thing’ within a population. We describe approaches to quantifying both below. 

Estimating Information Similarity  

To evaluate whether two items X and Y provide distinct information, we would ideally evaluate 

whether their scores correlate at a level near unity – i.e., evaluate the hypothesis 𝑟𝑋𝑌 = 1. Correlations less 

than 1 would indicate that the items provide unique information. However, the fact that respondents have 

some tendency to provide different scores even when rating the same item twice usually precludes this 

from being a meaningful test.  

 
1 These are sometimes referred to as quantitative/empirical versus qualitative/theoretical approaches, respectively 

(e.g., Le, Schmidt, Harter, & Lauver, 2010; Shaffer, DeGeest, & Li, 2016). We do not use these labels here, as the 

semantic similarity of item content can be estimated in a quantitative manner. Information similarity versus semantic 

similarity may also be termed score (or response) similarity versus content similarity, respectively. 
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The Logic of Reliability-Adjusted Correlations 

Over a century ago, Spearman (1904, 1910) suggested that the ability to evaluate the information 

similarity of two tests (or in his terms, their correspondence) via correlational indices can be restored by 

adjusting for score unreliability in the manner below: 

Equation 1. 𝜌𝕏𝕐 =  
𝜌𝑋𝑌

√𝜌𝑋𝑋𝜌𝑌𝑌
 

We use the ‘double-struck’ 𝕏 and 𝕐 in the present notation as a more compact means of indicating the 

expected values of X and Y, which are sometimes notated as 𝔼[𝑋] and 𝔼[𝑌]). The parameter resulting 

from this calculation, 𝜌𝕏𝕐, can be understood as an estimate of how the expected values of X and Y are 

correlated (Borsboom, 2005; Lazarsfeld, 1959; Lord & Novick, 1968). 

It is useful to note that Spearman’s equation operationalizes 𝜌𝕏𝕐 as a ratio of potentially 

estimable quantities. Specifically, it indexes the degree to which the raw-score correlation between two 

tests is smaller than the geometric mean of the raw-score correlations of the tests with themselves 

(Revelle & Condon, 2019). For instance: 𝜌𝕏𝕐 = .80 would indicate that the correlation between X and Y 

is 4/5th the size of the correlation that X and Y have with themselves. This fact is important as while an 

empirically-estimated raw-score correlation 𝑟𝑋𝑌 cannot fall outside the range of [−1,1], reliability-

adjusted correlations, 𝜌̂𝕏𝕐, can and occasionally do to fall outside this range, due to sample fluctuations in 

𝑟𝑋𝑌, 𝑟𝑋𝑋 and 𝑟𝑌𝑌 estimates (Charles, 2005). The range [−1,1] nonetheless serves as the expected limits of 

𝜌𝕏𝕐 values: the population-level correlation between two measures – if properly estimated – cannot 

exceed the population geometric-mean reliability of the measures (i.e., 𝜌𝑋𝑌 ≤ √𝜌𝑋𝑋𝜌𝑌𝑌). Consequently, 

an advantage of reliability-adjusted correlations is that they restore the expectation that we should observe 

values near the limits of the [−1,1] correlational range when tests are extremely similar.  

However, there continues to be considerable debate regarding how to correctly operationalize the 

reliabilities in the denominator of Spearman’s equation (e.g., Le et al., 2010; McCrae, 2015; Revelle & 

Condon, 2019). For instance, it is widely understood that the statistic most commonly provided by 

researchers as a reliability estimate, coefficient alpha (Cronbach, 1951), systematically underestimates a 
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measure’s reliability, i.e., 𝔼(𝛼𝑋) < 𝜌𝑋𝑋 (e.g., (John & Soto, 2007; McDonald, 1999; Osburn, 2000; 

Sijtsma, 2009). Furthermore, the specific degree to which 𝜌𝑋𝑋 is underestimated by any particular internal 

consistency statistic is difficult to establish, in turn making it difficult to compensate for this problem. 

Consequently, using coefficient alpha estimates as the reliability estimates within Spearman’s equation 

should produce 𝜌̂𝕏𝕐 estimates which are expected to exceed the correct value in magnitude; i.e., 

𝔼(𝜌̂𝕏𝕐) > 𝜌𝕏𝕐. This has considerable implications for meta-analysis, structural equation modeling, and 

other research areas were reliability adjustments are routinely conducted (LeBreton et al., 2014; Sackett et 

al., 2021). Among other things, this will result in overly liberal estimates that two or more scales 

‘measure the same thing’ when estimating their reliability-adjusted correlation. 

The problem becomes even more acute when evaluating the reliability of tests consisting of a 

single item: the prevailing strategy over the last several decades in behavioral research has been to 

estimate a measure’s reliability through internal consistency statistics, which utilize information about 

associations between items within the test (e.g., Nunnally & Bernstein, 1991). Single-item tests by 

definition have no inter-item correlations to utilize for this purpose. 

Using Retest Correlations to Adjust for Measurement Unreliability 

There has been increasing interest in using retest correlations to adjust for measurement 

unreliability (e.g., Dragostinov & Mõttus, 2021; Mueller et al., 2015; Wood et al., 2018; Wood & 

Wortman, 2012). This suggestion has been based in part on recent evidence that retest correlations over 

intervals such as a couple weeks or months outperform more commonly employed reliability estimates 

toward predicting validity-related criteria that should be attenuated by unreliability, such as correlational 

estimates of self-other agreement or heritability (Henry et al., 2022; Lowman et al., 2018; McCrae et al., 

2011; Mõttus et al., 2017). Further, it is possible to estimate the retest correlation for scales of any length, 

including single items.  

Problem: What retest interval to use?  Although investigators have suggested some 

applications of retest correlations for reliability adjustments (e.g., Green, 2003; Le et al., 2010; McCrae, 

2015; McCrae et al., 2011), there are not well-accepted guidelines for how best to do so. A question 
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researchers have raised regarding the use of retest correlations for reliability adjustments is: which retest 

correlation to use?  Retest correlations are typically expected to decrease as the retest interval increases – 

for instance, from one day, to one week, to one month, and so on (Fraley et al., 2011; Fraley & Roberts, 

2005; Gnambs, 2014; Lucas & Donnellan, 2007; Revelle & Condon, 2019). Consequently, there is no 

single ‘retest reliability’ value of a measure; rather there are at least as many retest reliability values as 

there are retest intervals (Cronbach, 1947).2 

To address this problem, we propose that the most conceptually appropriate reliability estimates 

for adjusting the raw-score correlation between 𝑋 and 𝑌 for measurement unreliability are the retest 

correlations of tests 𝑋 and 𝑌 over the same measurement interval. To understand how this idea can be 

operationalized, it is useful to appreciate that for each participant, the measurements of two items X and 

Y are made at particular moments in time, which we can denote as 𝑡𝑋𝑝
 and 𝑡𝑌𝑝

, respectively. We can take 

the absolute difference of these estimates for each participant, |𝑡𝑋𝑝
− 𝑡𝑌𝑝

| = |𝑑𝑋𝑌𝑝
|. The average of these 

estimates across participants, |𝑑𝑋𝑌|, provides the average time interval separating the measurements of 𝑋 

and 𝑌 forming the observed 𝑟𝑋𝑌 correlation.3 Similarly, |𝑑𝑋𝑋| and |𝑑𝑌𝑌| provide the average time 

intervals separating X and Y used to form the 𝑟𝑋𝑋 and 𝑟𝑌𝑌 retest correlations. Given that correlations have 

been clearly demonstrated to be a function of their associated measurement interval, we suggest it can be 

useful to note the measurement interval explicitly within the notation of the correlation, as 𝑟𝑋𝑌|𝑑𝑋𝑌|. 

When the measurement intervals associated with the correlations in Spearman’s formula can be 

constrained to a single common value |𝑑| – or more formally: when we cannot reject the hypothesis 

|𝑑𝑋𝑌| = |𝑑𝑋𝑋| = |𝑑𝑌𝑌| = |𝑑| – the equation can be re-represented in this form:  

 
2 The “at least” qualifier indicates that rater expected values (or ‘true scores’; Lord & Novick, 1968) – will also 

differ meaningfully across rating conditions (e.g., fatigue, cognitive load, frequency of prior testing). Reliability 

estimates will also differ across rater populations (Borsboom & Mellenbergh, 2002; Lazarsfeld, 1959). 
3 We can also operationalize 𝑡𝑋𝑝

 and 𝑡𝑌𝑝
 as providing the order items were presented to participants. For instance, 

𝑡𝑋𝑝
 = 3 and 𝑡𝑌𝑝

 = 40 indicates that X and Y were measured 𝑑𝑋𝑌𝑝
 = 37 items apart for participant p. This can be 

useful when X and Y are measured multiple times within a single survey (as with some of the present samples), as 

contemporary survey software (e.g., Qualtrics, SurveyMonkey) often does not readily provide records of the time in 

which every survey item was rated by the participant but can readily supply item order information. 
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Equation 2. 𝜌𝕏𝕐|𝑑| =
𝜌𝑋𝑌|𝑑|

√𝜌𝑋𝑋|𝑑|𝜌𝑌𝑌|𝑑|
 

We will refer to the resulting parameter, 𝜌𝕏𝕐|𝑑|, as a matched-retest-adjusted correlation, or more simply 

as a retest-adjusted correlation. The magnitude of 𝜌𝕏𝕐|𝑑| can be interpreted as a proportion indexing the 

extent to which the observed correlation between 𝑋 and 𝑌 over interval |𝑑| is lower than the geometric 

mean correlation we would have observed by simply retesting 𝑋 and retesting 𝑌 over that same interval. 

For instance, 𝜌𝕏𝕐|1𝑑𝑎𝑦| = .80 would indicate that the correlation between X and Y when measured one 

day apart is 80% the size of these tests’ retest correlations over that interval.  

Strategy: Repeated measures studies. It is much easier to form proper estimates of the 𝜌𝕏𝕐|𝑑| 

parameter shown in Equation 2 than it might initially seem. To ensure the measurements forming the 

numerators and denominators of the equation are formed over matching measurement intervals, we 

simply need to have 𝑋 and 𝑌 be items embedded within a broader inventory (or instrument, test battery, 

survey) which is administered at least twice. We can notate each administration of the broader inventory 

as 𝑚, and the score from the 𝑚’th administration of some item 𝑋 as 𝑋𝑚. For instance, 𝑋1 and 𝑌1 represent 

the scores from the first administrations of a pair of items, and 𝑋2 and 𝑌2 represent the scores from their 

second administration.  

In Table 1, we have provided hypothetical values for the estimated score correlations and 

measurement intervals of items X and Y which are contained within some broader inventory that has been 

administered to participants twice, an average of one week apart. When the inventory has been 

administered twice, this will result in the data structure represented in Table 1A, which will have four 

estimates of the correlation between 𝑋 and 𝑌. First, there are two correlations which concern how their 

scores correlate when measured within the same administration of the inventory, 𝑟𝑋1𝑌1
 and 𝑟𝑋2𝑌2

; these 

can be averaged to estimate the items’ same-administration correlation, or how highly the scores 

correlate when obtained in the same wave of a multi-wave study; 𝑟𝑋𝑌|𝑑0| = 𝑀(𝑟𝑋1𝑌1
, 𝑟𝑋2𝑌2

). Second, there 

are two correlations which concern how their scores correlate when X and Y are measured in different 

administrations of the inventory, 𝑟𝑋1𝑌2
 and 𝑟𝑋2𝑌1

; these can be averaged to estimate their different-
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administration correlation; 𝑟𝑋𝑌|𝑑1| = 𝑀(𝑟𝑋1𝑌2
, 𝑟𝑋2𝑌1

). The |𝑑0| and |𝑑1| notation indicates the same-

administration and different-administration measurement intervals are equivalent to a lag-0 and lag-1 

interval in a time-series analysis, respectively (Stadnitski, 2020). The values given in Table 1A indicate 

the general expectation that in a two-wave study, the different-administration (lag-1) correlations should 

be smaller in magnitude than the same-administration (lag-0) correlations: |𝑟𝑋𝑌|𝑑1|| < |𝑟𝑋𝑌|𝑑0||.  

Further, the values in Table 1B indicate the general expectation that in a two-wave study, 

measurement intervals associated with all ‘lag-1’ correlations should be nearly equivalent. For instance, 

in Table 1B, |𝑑𝑋1𝑌2
| = |𝑑𝑋2𝑌1

| = |𝑑𝑋1𝑋2
| = |𝑑𝑌1𝑌2

| = 1 week. Crucially: this is not true for the same-

administration correlations: whereas the 𝑟𝑋𝑌|𝑑0| values indicate how scores on X and Y will correlate 

when they are administered a couple items or minutes apart, we almost invariably have no idea how 

highly scores on X and Y would correlate with themselves if they had somehow been measured twice 

over the same interval. For instance, in Table 1B, the measurement interval separating ‘same-

administration’ measurements of X and Y is 5 minutes; however the diagonals of this matrix reveal there 

are no corresponding retest correlations for X and Y over the corresponding 5-minute interval.  

This indicates we cannot form appropriate estimates of Equation 2’s retest-adjusted correlation 

from estimates of the same-administration (lag-0) correlations of X and Y; i.e., parameter 𝜌̂𝕏𝕐|𝑑0| cannot 

be correctly formed.4  However, when we have two-wave data, we can correctly specify the parameter 

given in Equation 2 using solely the different-administration (lag-1) correlations. This is indicated below: 

Equation 3. 𝜌̂𝕏𝕐|𝑑1| =
𝑀(𝑟𝑋1𝑌2|𝑑𝑋1𝑌2|,𝑟𝑋2𝑌1|𝑑𝑋2𝑌1|)

√𝑟𝑋1𝑋2|𝑑𝑋1𝑋2|𝑟𝑌1𝑌2|𝑑𝑌1𝑌2|

=
𝑀(𝑟𝑋1𝑌2|𝑑1|,𝑟𝑋2𝑌1|𝑑1|)

√𝑟𝑋1𝑋2|𝑑1|𝑟𝑌1𝑌2|𝑑1|
=

𝑟𝑋𝑌|𝑑1|

√𝑟𝑋𝑋|𝑑1|𝑟𝑌𝑌|𝑑1|
 

 
4 It is actually possible to obtain appropriate estimates of the same-session diagonals for 𝑟𝑋𝑋|𝑑0| by administering X 

and Y twice within a broader inventory, with all items – including both repetitions of X and Y – presented in a 

randomized order to each participant. In such a design, some participants will occasionally rate item X immediately 

after rating the same item X. This design is expected to result in |𝑑0| = |𝑑𝑋1𝑋1
| = |𝑑𝑌1𝑌1

| = |𝑑𝑋1𝑌1
|, which would 

allow 𝜌̂𝕏𝕐|𝑑0| to be correctly formed. However we expect most researchers will view the design as too obnoxious for 

participants to complete, or otherwise an overly inefficient use of researcher and participant resources (Cronbach, 

1951). It will also certainly increase reactivity effects to an almost maximal degree – where responses are impacted 

by the fact that many participants remember or actually see their previous rating to an item they are rating. 
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This formula is actually very close to a form of the reliability-adjusted formula suggested in Spearman’s 

original 1904 article, in which all four of the XY correlations available when X and Y are measured twice 

are averaged to estimate 𝑟𝑋𝑌 in the numerator.5  However, to ensure that the measurement intervals are 

equivalent in the numerator and denominator as required to operationalize Equation 2, only the 

correlations linking scores of X and Y across different administrations of the inventory – i.e., the lag-1 or 

|𝑑1| interval – should be used within the computation. That is: the estimates of how X and Y correlate 

when measured in the same session (i.e., 𝑟𝑋𝑚𝑌𝑚
; or estimates 𝑟𝑋1𝑌1

 and 𝑟𝑋2𝑌2
 in a two-wave study) should 

be excluded.  

Table 1 shows the simplest case where two items X and Y are administered twice within some 

inventory. For instance, applying Equation 3 to the values in Table 1A, we would estimate the 𝜌̂𝕏𝕐|𝑑1| 

correlation between items X and Y to be 𝑀(. 45, .45)/√. 50 × .60  = .818. However, the calculations 

given in Equation 2 or 3 can be easily done for all item-pairs within an inventory. When this is done, it 

will create a retest-adjusted correlation matrix, which can be regarded as estimating the proportion that 

each inter-item correlation is smaller than the associated items’ retest correlations over the measurement 

internval |𝑑| for all pairs of items within the inventory. 

Estimating Semantic Similarity 

Judgments about the level of semantic similarity between verbal statements almost necessarily 

involve judgments from human judges (Nicholls et al., 1982).6  For instance, item-pairs of the sort given 

in the opening paragraph are often identified by researchers ‘eyeballing’ the items and listing item-pairs 

 
5 Specifically, Spearman provides this equation in his original 1904 article (see page 90). Note that we have altered 

his variables p and q to  match the present X and Y, and renotated what he referred to as the ‘true correlation’ 

between the variables to the present 𝜌̂𝕏𝕐: 

𝜌̂𝕏𝕐 =
(𝒓𝑿𝟏𝒀𝟏

+ 𝑟𝑋1𝑌2
+ 𝑟𝑋2𝑌1

+ 𝒓𝑿𝟐𝒀𝟐
)

4√𝑟𝑋1𝑋2
𝑟𝑌1𝑌2

 

Spearman’s equation only differs from the present Equation 3 by including the bolded “same administration” 

estimates of the X-Y correlation within the values averaged to form the numerator. 
6 At the very least: such judgments serve as a particularly valuable criterion for training and evaluating the 

performance of natural language processing (NLP) algorithms, which are quickly improving in their ability to 

approximate human judgments of the semantic similarity of verbal text (Arnulf & Larsen, 2021; Christensen & 

Kenett, 2021; Cutler & Condon, 2022; Rosenbusch et al., 2020). 
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they have determined to be semantically similar (e.g., Banks et al., 2016; Christensen et al., 2020; Mõttus, 

2016; Newman et al., 2016; Nicholls et al., 1982). However, there are problems with relying on a single 

person’s semantic similarity judgments. As Le and colleagues (2010) note, “the implicit assumption is 

often that if researchers can make a conceptual, theoretical, or logical distinction between constructs then 

this distinction will also exist in the minds of employees or survey respondents… This assumption may 

not hold” (p. 113). To which we add the reverse problem can also occur: researchers may judge different 

items or constructs to be redundant when others are able to make reliable distinctions between them.  

However, the tendencies for some people to overly “lump” or “split” different verbal statements 

does not in turn make the use of semantic similarity judgments an intractably subjective affair. The 

semantic similarity of two items can be operationalized by asking multiple raters the extent to which the 

items ‘mean the same thing,’ and then reporting the average of these judgments across raters. As in 

person perception research, the aggregation of multiple ratings helps to reduce the role of idiosyncratic 

biases (Hofstee, 1994; Paunonen, 1984). Semantic similarity ratings are rarely collected in personality and 

social psychological research (with scattered exceptions: e.g., Block et al., 1979; Shweder & D’Andrade, 

1979; Weidman et al., 2018), however they are collected with greater regularity in cognitive and 

linguistics research (e.g., Chaffin & Herrmann, 1984; Miller & Charles, 1991; Resnik, 1999; Rubenstein 

& Goodenough, 1965; Whitten et al., 1979).  

Do Retest-Adjusted Correlations Outperform Raw-Score Correlations as Indicators of Semantic 

Similarity? 

As we have detailed, it is possible to estimate the information similarity of items using raw-score 

correlations or retest-adjusted correlations, and to estimate the semantic similarity of items using 

aggregated rater judgments. Although the information similarity and semantic similarity of items can thus 

be operationalized independently, we should expect these estimates to track with one another. That is, it 

would be extremely surprising to find that estimates of the correlations between items had no association 

with judgments of their semantic similarity. However, we should also expect better indices of the 
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information similarity of items to better track their judged semantic similarity. This understanding 

underlies the hypotheses we will explore here. 

As noted above, score reliability should decrease as the time interval |𝑑| increases; this should 

result in raw-score correlations between items becoming worse predictors of their judged semantic 

similarity as the time interval |𝑑| separating the measurements of the items increases. This leads to the 

first hypothesis of the study:  

H1: As the time interval |𝑑| separating measurements of 𝑋 and 𝑌 increases, raw-score 𝑟𝑋𝑌|𝑑| 

correlation estimates will become worse predictors of their perceived semantic similarity.  

Restated in the terms of a two-wave study: same-administration (lag-0) inter-item 

correlations will be better predictors of the items’ perceived semantic similarity than 

corresponding different-administration (lag-1) correlations. 

Formally, H1: 𝑞(𝑟𝑋𝑌|𝑑0|, 𝑆𝑒𝑚𝑆𝑖𝑚𝑋𝑌) > 𝑞(𝑟𝑋𝑌|𝑑1|, 𝑆𝑒𝑚𝑆𝑖𝑚𝑋𝑌) 

Note also that throughout this manuscript, we will use 𝑞 to denote correlations estimated at the ‘between-

item-pair’ level of analysis, and will restrict 𝑟 to indicate between-person correlations (Cattell, 1952; 

Stephenson, 1953). The central study hypotheses can thus be understood as evaluating the ability of 

different between-person correlational indices of information similarity to predict variation in semantic 

similarity judgments across item-pairs. 

The remaining hypotheses concern whether adjusting for measurement unreliability actually 

results in better indicators of whether two items ‘measure the same thing’: 

H2: If sample sizes are sufficiently large, then retest-adjusted correlations (𝜌̂𝕏𝕐|𝑑|; Equations 

2 and 3) will outperform raw-score correlations over the same measurement interval |𝑑| as 

predictors of semantic similarity ratings. 

Formally, H2: 𝑞(𝜌̂𝕏𝕐|𝑑1|, 𝑆𝑒𝑚𝑆𝑖𝑚𝑋𝑌) > 𝑞(𝑟𝑋𝑌|𝑑1|, 𝑆𝑒𝑚𝑆𝑖𝑚𝑋𝑌) 

The qualifier that this is only expected ‘if sample sizes are sufficiently large’ is important, as it recognizes 

that empirically-estimated correlations can fluctuate dramatically in small samples (Carter et al., 2019; 
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Cohen, 1992), and consequently the three components involved in forming 𝜌̂𝕏𝕐|𝑑| estimates via (Equation 

2) may be so unstable in small samples that they infuse more unreliable variance than they remove.  

Note that this hypothesis most directly evaluates the conventional understanding that reliability 

adjustments should outperform raw-score correlations as indices of whether two tests ‘measure the same 

thing’ (Le et al., 2010; Spearman, 1910). Specifically: it evaluates whether dividing 𝑟𝑋𝑌|𝑑1| estimates by 

the associated tests’ retest reliabilities over that interval results in better indicators of semantic similarity 

than the 𝑟𝑋𝑌|𝑑1| estimates alone. Finally, we will explore a closely related variant of the last hypothesis: 

H3: If sample sizes are sufficiently large, then retest-adjusted correlations (𝜌̂𝕏𝕐|𝑑1|) will 

outperform ‘same-administration’ raw-score correlations (𝑟𝑋𝑌|𝑑0|) as predictors of semantic 

similarity ratings. 

Formally, H3: 𝑞(𝜌̂𝕏𝕐|𝑑1|, 𝑆𝑒𝑚𝑆𝑖𝑚𝑋𝑌) > 𝑞(𝑟𝑋𝑌|𝑑0|, 𝑆𝑒𝑚𝑆𝑖𝑚𝑋𝑌) 

Whereas H2 serves as the most direct test of the relative value of retest-adjusted correlations over 

corresponding unadjusted correlations, H3 is likely the hypothesis with greater practical significance. 

Many researchers already use unadjusted same-administration inter-item correlations, 𝑟𝑋𝑌|𝑑0|, to support 

determinations of whether two or more items ‘mean the same thing’ (Block, 1961; Cattell & Tsujioka, 

1964; Weidman et al., 2018; Wiggins, 2003; Wood et al., 2010). However, as we have detailed, it is not 

possible to properly estimate 𝜌̂𝕏𝕐|𝑑0| from ordinary same-administration data. H3 concerns the more 

practical question of whether there is value in making the two administrations of the inventory necessary 

to form retest-adjusted correlations (Equation 3), given the greater expenditure of participant and 

researcher resources generally required to administer an inventory twice.  

 It is also useful to consider what it would mean for H1, H2, and H3 to all be supported – and 

perhaps H1 and H3 in particular. Support for H1 would mean that inter-item correlations formed by 

measuring X and Y over the longer interval |𝑑1| are inferior indicators of item similarity relative to their 

intercorrelation over the shorter interval |𝑑0|. We imagine most researchers would find this unsurprising. 

However, finding support for H3 would indicate a sort of leap-frogging: dividing the inferior different-
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administration indices of item similarity by their retest correlations over that interval creates indices 

which are superior to the same-administration correlations more typically employed index item similarity 

or redundancy. 

Study Overview 

Adjustments for unreliability were originally proposed as a means of improving correlations as 

indices of whether two variables ‘measure the same thing’ (Spearman, 1904, 1910), and continue to be 

used for this function (Le et al., 2010; Schmidt, 2010; Shaffer et al., 2016). Given the numerous concerns 

about how to appropriately estimate reliability, it is noteworthy that there appears to have never been an 

empirical demonstration – using real participant responses to real measures – that reliability adjustments 

actually improve the extent to which correlations track judgments of whether the two measures ‘mean the 

same thing’.  

To clarify this point: although there are certainly simulations and algebraic models indicating that 

a variety of reliability adjustments should result in better indices of test similarity or redundancy (e.g., 

Charles, 2005; Le et al., 2009; Schmidt et al., 2013), these demonstrations assume or specify conditions 

whereby the reliability parameter is the correct one. Many of these conditions or assumptions – such as 

unidimensionality, uncorrelated errors, and independence of measurements – are typically unrealistic in 

real data (e.g., Epskamp et al., 2017; Fried et al., 2016; McDonald, 1999). But in the 115+ years since 

Spearman first proposed reliability adjustments, we are aware of no empirical investigations that have 

shown that adjusting correlations by reliability estimates improves upon raw-score correlations toward 

indexing whether tests ‘measure the same thing.’ A major aim of this investigation is to show that this can 

and should be treated as an empirical question – particularly given the understanding that adjustments for 

unreliability frequently introduce as much systematic error into estimates of the associations between 

variables as they remove (LeBreton et al., 2014; Sackett, 2014; Sackett et al., 2021).  

To explore this question, we thus examine our hypotheses regarding the relative value of raw-

score correlations compare to retest-adjusted correlations as predictors of the rated semantic similarity of 

item-pairs of items in four different inventories: the Positive and Negative Affect Schedule – Extended 
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Form (PANAS-X; Watson & Clark, 1999), the Big-Five Inventory-2 (Soto & John, 2017), the Inventory 

of Individual Differences in the Lexicon (Wood et al., 2010), and a combined set of two short measures of 

the Dark Triad (Jonason & Webster, 2010; Jones & Paulhus, 2014).  

For each inventory, we conducted a common set of procedures and analyses to explore the critical 

hypotheses, which is summarized in Figure 1. First, we identified one or more datasets in which 

respondents had rated a particular inventory twice. In each case, we estimated the extent to which all 

items in the inventory correlated with one another when measured within the same testing session (i.e., a 

‘lag-0’ interval; 𝑟𝑋𝑌|𝑑0|), across two testing sessions (i.e., a ‘lag-1’ interval; 𝑟𝑋𝑌|𝑑1|), and as indexed by 

retest-adjusted correlations (𝜌̂𝕏𝕐|𝑑1|; Equation 3). Second, we then identified a set of item-pairs consisting 

of an equal number of item-pairs estimated to have the highest same-administration raw-score 

correlations (𝑟𝑋𝑌|𝑑0|) and the highest retest-adjusted correlation (𝜌̂𝕏𝕐|𝑑1|). Third, for each of the resulting 

item sets we then obtained ratings from about ten or more raters of the semantic similarity of each item-

pair. Fourth, to test the central study hypotheses (H1-3), we examined how each index of the association 

between variables fare in predicting the judged semantic similarity of the item-pairs, as rated by an 

independent sample of raters. 

Method 

We will describe how self-ratings and semantic similarity ratings of the items within the 

inventories were collected separately for each sample. This study was not preregistered, and was 

conducted under University of Alabama IRB study #8370. Note that the estimated correlations between 

all possible item-pairs within the inventory, the rated semantic similarity of selected item-pairs within the 

inventory, and code to replicate the present analyses, are available at https://osf.io/vp6kr/. 

 

Self-Rating Participants and Procedure 

Much of the data used for these analyses came from study designs in which participants 

completed the inventory twice within a single testing session, where the repeated administrations were 

https://osf.io/vp6kr/
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separated by the administration of additional measures (Lowman et al., 2018). Following screening 

procedures recommended by Wood, Harms, Lowman, and DeSimone (2017), participants in some of the 

samples were excluded by failing a speed screen, where they completed either administration of the 

inventory at a rate faster than 1 second-per-item, or a consistency screen, in which the profile correlation 

of their responses across the two administrations was estimated at a level below q < .25. The speed screen 

was only used in samples where response time data was available. The consistency screen was only used 

when respondents completed the inventory twice within a single testing session, as less consistent 

responding is expected to become a less valid indicator of careless responding over longer retest intervals 

(Henry et al., 2022). 

Positive and Negative Affect Schedule – Extended Form (PANAS-X; Watson & Clark, 1999) 

The PANAS-X is designed to measure 11 distinct types of emotion with subscales ranging 

between three and eight items each. The PANAS-X can be used flexibly to measure self-reports of 

momentary mood states or more general emotional tendencies. 

MTurk-1 Sample. We utilized a dataset originally described by Wood et al. (2017), in which 

participants were recruited from Mechanical Turk and were randomly assigned to complete either the 

PANAS-X, the BFI-2, or the IIDL twice, with administrations of the repeated inventory separated by 

administering 138 additional items related to personality and workplace attitudes and behaviors. These 

additional materials were completed in approximately 12 minutes for the average participant. Participants 

received $1.25 for completing this survey. We will refer to this as the MTurk-1 study. 

An initial 142 participants were assigned to complete the PANAS-X twice within the MTurk-1 

study. At both administrations, participants were instructed to “Indicate to what extent you are feeling like 

this in general” (1 = very slightly or not at all to 5=extremely). Speed and consistency screens resulted in 

a final sample size of 115 participants; M(SD)age = 35.6(10.2); 57 (49%) female. 

MTurk-2 Sample. 160 participants recruited from MTurk completed the PANAS-X twice over 

an interval of about 10 minutes for the average participant. The item order was not randomized. 

Participants rated the items under the instruction “Indicate to what extent you have felt this way during 
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the past few weeks.” Speed and consistency screens resulted in a final sample size of 154 participants; 

M(SD)age = 37.4(11.6); 81 (53%) female.  

 Student Sample. 88 undergraduate students provided rated the PANAS-X items twice over 

approximately a 20-25 minute retest interval, in which participants completed 206 other items. The item 

order was not randomized. Participants rated the items under the instruction “Indicate to what extent you 

have felt this way TODAY.”  Speed and inconsistency screens resulted in a final sample size of 83 

participants; M(SD)age = 22.7(4.5), 53 (64%) female.  

Big Five Inventory-2 (BFI-2; Soto & John, 2016) 

The BFI-2 is an inventory designed to measure three major facets of each of the Big Five 

personality dimensions with four items apiece, resulting in a 60-item inventory. In both samples, 

participants rated the BFI-2 items under the instruction “Please rate the extent to which you feel each 

characteristic describes how you see yourself” on a scale from “Very Uncharacteristic” (1) to “Very 

Characteristic” (5), with items presented in a randomized order for each participant and at each survey 

administration. 

MTurk-1 Sample. An initial 128 participants were randomly assigned to rate the BFI-2 twice 

with the larger MTurk-1 study. Speed and consistency exclusions resulted in a final sample consisting of 

110 participants, M(SD)age = 36.1(10.4), 46% female.  

BFI-2 Student Sample. 470 undergraduate students completed the BFI-2 twice for a class 

research participation credit over a retest interval of approximately eight weeks (Soto & John, 2017).  

Inventory of Individual Differences in the Lexicon (IIDL; Wood, Nye, & Saucier, 2010) 

 Each item within the IIDL consists of a pair of fairly synonymous person-descriptor adjective 

(e.g., “dependable, reliable”) reflecting larger clusters of highly correlated terms found within the English 

language. Participants in both samples utilized here completed a 84-item set of the IIDL consisting of the 

standard 61-item set plus an additional 23 items given in Appendix A of the original article (Wood et al., 

2010). However, analyses were limited to the 79 items that were administered in the same manner across 

both samples. 
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MTurk-1 sample. An initial 140 participants were randomly assigned to rate the IIDL twice 

within the larger MTurk-1 study. Speed and consistency exclusions resulted in a final sample consisting 

of 118 participants, M(SD)age = 35.2(10.7); 53% female. 

Student Sample: A sample of undergraduate students at a university in Singapore completed the 

IIDL twice for course credit. Between administrations, participants rated 110 other items related to 

emotion and well-being (Wood et al., 2018). Following the response inconsistency screen, this resulted in 

a final sample contained 78 participants; M(SD)age = 20.6(1.6);  77% female. The order of the IIDL items 

was randomized for each participant and for each administration of the inventory. 

The Short Dark Triad (SDT; Jones & Paulhus, 2014) and Dirty Dozen (DD; Jonason & Webster, 

2010) 

Both the SDT and DD inventories are designed to assess the ‘Dark Triad’ dimensions of 

narcissism, Machiavellianism, and psychopathy (Paulhus & Williams, 2002) through short scales. An 

initial 314 participants were recruited from MTurk and completed both the 27-item SDT and the 12-item 

DD measures. The 39 total items were rated together in a single set in which items were presented in a 

randomized order for each administration of the survey, and administrations were separated by a retest 

interval approximately 20 minutes apart (Wood et al., 2017). All items were rated on a scale from 

“Strongly Disagree” (1) to “Strongly Agree” (5) scale. Participants exclusions by speed and consistency 

screens resulted in a final sample of 242 participants, M(SD)age = 33.9(10.0); 51% female.  

Analyses 

Indices of Information Similarity of Item-Pairs 

In all samples, we estimated several different indices of the inter-item associations within the 

focal inventory. Note that when these coefficients are calculated for each unique pair of items in an 

inventory, the number of unique item-pairs equals (𝑁𝑗
2 − 𝑁𝑗)/2, where 𝑁𝑗 equals the number of items in 

the inventory. Consequently: the 60-item PANAS-X and BFI-2 inventories both have a total of 1770 

distinct item-pairs, whereas the 79 items of the IIDL set had 3081 total item-pairs, and the 39 items of the 
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combined SDT and DD inventories had 741 total item-pairs. Note that for all these parameters, the item 

that is assigned as “item X” versus “item Y” is arbitrary. 

Same-administration raw-score correlation; 𝒓𝑿𝒀|𝒅𝟎|. First, we estimated the same-

administration (or lag-0) correlation between items X and Y. As all samples consisted of participants who 

rated an inventory twice, the two estimates of the same-administration inter-item correlation were 

averaged; i.e., 𝑟𝑋𝑌|𝑑0| = (𝑟𝑋1𝑌1
+ 𝑟𝑋2𝑌2

)/2.  

Different-administration raw-score correlation; 𝑟𝑋𝑌|𝑑1|. Second, we estimated the different-

administration (or lag-1) correlation between item X and Y. The two estimates of the inter-item 

correlation over different administrations were averaged; i.e., 𝑟𝑋𝑌|𝑑1|  = (𝑟𝑋1𝑌2
+ 𝑟𝑋2𝑌1

)/2.  

 Average retest correlation. The average retest correlation of the item pairs was estimated as the 

geometric mean of the retest correlations of X and Y over the ‘lag-1’ interval; i.e., √𝑟𝑋𝑋|𝑑1|𝑟𝑌𝑌|𝑑1| or 

√𝑟𝑋1𝑋2
𝑟𝑌1𝑌2

.  

Retest-adjusted correlation. Finally, we estimated the retest-adjusted correlation over the lag-1 

interval, 𝜌̂𝕏𝕐|𝑑1|. Following Equations 2 and 3, this was done by dividing estimates of the different-

administration correlation between items X and Y by their average retest correlation over this interval; 

i.e., 𝑟𝑋𝑌|𝑑1|/√𝑟𝑋𝑋|𝑑1|𝑟𝑌𝑌|𝑑1|. 

Cross-sample weighted averages. As there were multiple samples used to estimate information-

similarity indices for three of the four inventories, we computed a cross-sample weighted average, where 

estimates of some index 𝑉𝑋𝑌 were weighted by their associated sample size, using an equation used in 

meta-analysis (Schmidt & Hunter, 2014, Equation 3.1): 

Equation 4. 𝑉𝑋𝑌 =
∑(𝑁𝑘×𝑉𝑋𝑌𝑘)

∑𝑁𝑘
 

Where Nk equals the number of participants within sample k, and 𝑉𝑋𝑌𝑘
 indicates the correlational index of 

similarity estimated for that sample. This equation was used separately for all of the parameters discussed 

above, except for cross-sample estimates of the retest-adjusted correlations, 𝜌̂𝕏𝕐|𝑑1|, which we computed 
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by dividing the cross-sample weighted averages of the different-administration correlation and average 

retest correlations. 

Indexing the Semantic Similarity of Item-Pairs 

For each inventory, only a small subset of all possible item-pairs contained within the inventory 

were rated for their semantic similarity. We were particularly interested in the relative ability of very high 

raw-score and retest-adjusted correlations to indicate the semantic redundancy of items. Consequently, for 

each inventory exampled we identified an equal number of item-pairs estimated to have the highest (1) 

same-administration raw-score correlations (𝑟𝑋𝑌|𝑑0|) and (2) retest-adjusted correlations (𝜌̂𝕏𝕐|𝑑1|). To do 

this, we ranked each item-pair by the size of its same-administration raw-score correlation, and separately 

by the size of its retest-adjusted correlation; minimum ranks of 1 were given to the item-pairs with the 

maximum 𝑟𝑋𝑌|𝑑0| and 𝜌̂𝕏𝕐|𝑑1| values. An equal number of the minimum ranking item-pairs were taken 

from each list to form a set of 100 or 101 item-pairs to be rated for semantic similarity.7   

The item-pairs identified from each inventory were then rated for their perceived semantic 

similarity. For the PANAS-X, raters were first presented with these instructions: 

In the following section you will be presented two words or phrases. You will be asked to 

use the scale below to indicate how much you see the words or phrases as having the same 

vs. different meanings. 

 

Instructions: To what degree are these two words or phrases similar in what they 

mean when used to describe how someone feels? 

 

0 – Have completely different meanings 

1 – Have slightly similar meanings 

2 – Have fairly similar meanings 

3 – Have very similar meanings 

4 – Have essentially the same meaning  

 

 
7 If the number of item-pairs found in both lists was odd, 101 item-pairs were rated to ensure an equal number of 

pairs were drawn from each list. For instance, 100 item-pairs would be selected if there were 50 common to both 

lists and 25 unique to each, whereas 101 item-pairs would be selected if there were 51 common to both lists and 25 

unique to each. 
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For the BFI-2, IIDL, SDT/DT inventories, participants read the same passage except the “Instructions” 

sentence shown above was modified to read “Instructions: To what degree are the words or phrase on the 

left similar in what they mean to the words or phrase on the right when used to describe someone?” 

The item-pairs were presented to each participant in a randomized order. Additionally, the order 

in which participants saw the two items within the pair was also randomized (e.g., whether participants 

saw the item pair as “cheerful : happy” or “happy : cheerful”). 

Raters were selected through a convenience sample of research assistants and acquaintances. We 

excluded raters whose scores loaded below .30 on the first principal axis factor (equivalent to showing 

less than 𝑞 = .09 average agreement with other raters). This exclusion was done as it indicated careless 

responding which would otherwise inhibit the ability for mean semantic similarity ratings to approach the 

scale maximum (indicating that items within a pair were consensually judged to “mean the same thing”). 

For the PANAS-X set, 22 raters were surveyed, and none were excluded. The average inter-rater 

agreement was 𝑞𝑝𝑝′ = .52. Using coefficient alpha, the estimated internal consistency of average scores 

across 22 raters was 𝛼 = .96, which can be interpreted as the expected correlation of the resulting average 

scores with averages formed from sampling a new 22 raters. 

For the BFI-2 set: 10 raters were initially surveyed, and one was excluded. The average inter-rater 

agreement was 𝑞𝑝𝑝′ = .45; the estimated internal consistency of the 9-rater average scores was α = .88. 

For the IIDL set: 11 raters were initially surveyed, and two were excluded. The average inter-rater 

agreement was 𝑞𝑝𝑝′ = .45; the estimated internal consistency of the 9-rater average scores was α = .87. 

For the SDT/DD set: 13 raters were initially surveyed, and one was excluded. The average inter-rater 

agreement was 𝑞𝑝𝑝′ = .42; the estimated internal consistency of the 12-rater average scores was α = .89. 

Results 

 Table 2 includes a listing of which five item-pairs were estimated to have (1) the highest same-

administration correlations (𝑟𝑋𝑌|𝑑0|), (2) the highest retest-adjusted correlations (𝜌̂𝕏𝕐|𝑑1|), and (3) the 

highest judged semantic similarity, separately for each inventory. We also report the different-
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administration (𝑟𝑋𝑌|𝑑1|) and average retest (√𝑟𝑋𝑋𝑟𝑌𝑌|𝑑1| ) for these item-pairs. Tables 3.1-4 provides 

means, standard deviations, and inter-correlations across the 100 or 101 item-pair subsets for these five 

indices separately for each inventory. 

We have additionally provided scatterplots detailing how the same-administration, different 

administration, and retest-adjusted correlations are associated with semantic similarity judgments 

separately for each of the four inventories (Figure 2). Note that in these figures, we have added a vertical 

line at 𝑋 = .90, as this is a threshold sometimes used to support arguments that tests X and Y are 

informationally redundant (e.g., John & Benet-Martínez, 2000; Judge & Bono, 2001; Le et al., 2009). 

And we have added a horizontal line at 𝑌 = 3.5 – a threshold that could only be obtained by at least half 

of raters judging the two items to “have essentially the same meaning” via the scale used here. In other 

words, values of 𝑋 ≥ .90 and 𝑌 ≥ 3.5 can be regarded as indicating that the items within the pair passed 

thresholds for being regarded as informationally redundant or semantically redundant, respectively.  

We continue by briefly describing tests of the central hypotheses (H1-3) separately for each of the 

four inventories. We then conducted a mega-analysis (Beck & Jackson, 2022; Burke et al., 2017; Curran 

& Hussong, 2009) in which data for the separate inventories were combined into a single dataset to 

examine the hypotheses more generally. Finally, we discuss more specific additional themes suggested 

from the analysis. 

Inventory-Specific Relations between Correlational Indices with Perceived Semantic Similarity 

For each inventory, the associations between the (1) same-administration, (2) different-

administration, and (3) retest-adjusted correlations of item-pairs with their judged semantic similarity 

were tested for statistical significance using Steiger's (1980) test of dependent correlations.  

PANAS-X, BFI-2, and IIDL Results 

Tables 3.1 through 3.3 indicate that the PANAS-X, BFI-2, and IIDL results showed identical 

patterns of support for the H1, H2, and H3 hypotheses. For each of these inventories, we found: 
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Significant support for H1. The different-administration inter-item correlations (𝑟𝑋𝑌|𝑑1|) were 

significantly worse predictors of the rated semantic similarity of the item-pair ratings than same-

administration inter-item correlations, 𝑟𝑋𝑌|𝑑0|.  

Significant support for H2. We found that retest-adjusted correlations (𝜌̂𝕏𝕐|𝑑1|) were 

significantly more highly associated with the judged semantic similarity of item pairs than were raw-score 

different-administration correlations (𝑟𝑋𝑌|𝑑1|).  

Insufficient support for H3. Although retest-adjusted correlations (𝜌̂𝕏𝕐|𝑑1|) were more highly 

associated with the judged semantic similarity of item-pairs than were raw-score same-administration 

correlations (𝑟𝑋𝑌|𝑑0|) in all three of these inventories, none of these differences reached statistical 

significance. 

SDT/DD Results 

 As shown in Table 3.4, we observed a slightly different pattern for the set formed from short 

Dark Triad measures than the pattern found for the PANAS-X, BFI-2, and IIDL instruments. 

Surprisingly, the different-administration correlations, 𝑟𝑋𝑌|𝑑1|, were slightly more predictive of semantic 

similarity judgments than were same-administration correlations, 𝑟𝑋𝑌|𝑑0| (𝑞 =.627 vs. .583; Z = 1.34, p = 

.18), but were slightly less predictive than retest-adjusted correlations, 𝜌̂𝕏𝕐|𝑑1| (𝑞 = .627 vs. .659; Z = 

1.09, p = .28), although neither of these differences reached statistical significance. However, retest-

adjusted correlations were significantly better predictors of judged semantic similarity than same-

administration raw-score correlations (𝑞 = .659 vs. .583; Z = 2.06, p < .05). 

Mega-Analytic Relations between Correlational Indices and Perceived Semantic Similarity 

We combined the data from the four inventories into a single dataset to increase the statistical 

power to explore the central hypotheses. This resulted in a dataset with 402 item-pairs with both 

information and semantic similarity indices. For the focal analyses, we examined how these indices were 

associated with one another while controlling for the inventory through dummy-code variables, resulting 

in df = 397 item-pairs associated with the reported correlations, which are given in Table 3.5. 
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As shown in the final row of Table 3.5, all study hypotheses were supported. Supporting H1: an 

item-pair’s same-administration correlation (𝑟𝑋𝑌|𝑑0|) was a significantly better predictor than its different-

administration correlation (𝑟𝑋𝑌|𝑑1|) of the items’ judged semantic similarity (𝑞 = .52 vs. .46; Z = 3.70, p < 

.05). Supporting H2: an item-pair’s retest-adjusted correlation (𝜌̂𝕏𝕐|𝑑1|) was a significantly better 

predictor than its raw-score correlation over the different-administration interval (𝑟𝑋𝑌|𝑑1|) of the items’ 

judged semantic similarity (𝑞 = .58 vs. 46; Z = 5.75, p < .05). And supporting H3: an item-pair’s retest-

adjusted correlation (𝜌̂𝕏𝕐|𝑑1|) was a significantly better predictor than its raw-score same-administration 

correlation (𝑟𝑋𝑌|𝑑0|) of the items’ judged semantic similarity (𝑞 = .58 vs. 52; Z = 2.83, p < .05). 

Additional Themes 

No Retest-Adjusted Correlations Exceeded 1.0 

 Somewhat incredibly, across the combined 7362 distinct item-pairs examined in the present 

analyses across four inventories, estimates of the retest-adjusted correlation 𝜌̂𝕏𝕐|𝑑1| for the item-pair 

never fell outside the range of [−1,1] – as sometimes occurs when adjusting correlations by reliability 

estimates (LeBreton et al., 2014; Sackett, 2014; Sackett et al., 2021). Nonetheless, numerous item-pairs 

approached this value. As shown in Table 2, the highest value was estimated for the BFI-2 item-pair 

“Often feels sad : Tends to feel depressed, blue” 𝜌̂𝕏𝕐|𝑑1| = .995.  

 The absence of 𝜌̂𝕏𝕐|𝑑1| estimates exceeding 1.0 was certainly due somewhat to luck – for 

instance, this BFI-2 item-pair was indeed indexed to have an 𝜌̂𝕏𝕐|𝑑1| estimate above 1.0 in one of the two 

subsamples prior to computing cross-sample averages. Nonetheless, this suggests retest-adjusted 

correlations may be more resistant to forming ‘out-of-boundary’ correlations than other common 

reliability estimators. 

Indications of ‘Necessity’ Relationships between Information and Semantic Similarity   

As detailed by Dul (2016), the signature that some threshold level of variable X is necessary for 

high levels of another variable Y is indicated by a scatterplot of the X-Y relationship in which some area 

of the upper-left quadrant is devoid of observations. As seen in Figures 2.1C-2.4C, there were indications 
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that some parts of the upper-left quadrants of the scatterplots linking retest-adjusted correlations to 

semantic similarity judgments were indeed empty in this manner. For instance, across the four 

inventories, the lowest 𝜌̂𝕏𝕐|𝑑1| value for any item-pair consensually judged to be “very similar in 

meaning” (𝑀𝑆𝑒𝑚𝑆𝑖𝑚 ≥ 3 on the present scale) was found for the SDT/DD item-pair “It’s not wise to tell 

your secrets : There are things you should hide from other people to preserve your reputation” which 

showed a retest-adjusted correlation of 𝜌̂𝕏𝕐|𝑑1| = .69 (Row #38 in Table 2). Although 230 of the 402 of 

the item-pairs included in this analysis were estimated to have 𝜌̂𝕏𝕐[𝐷1] values below .68, none of these 

pairs (0%) were consensually judged to be even “very similar in meaning” by the average rater whereas 

18 of the remaining 172 items exceeding a 𝜌̂𝕏𝕐|𝑑1| > .68 magnitude (10.5%) crossed this level of judged 

semantic similarity. Similarly, of the 387 items estimated to have 𝜌̂𝕏𝕐[𝐷1] values below .95, none of these 

pairs (0%) achieved a mean semantic similarity judgment reaching 3.5 – which we have suggested as 

sufficient evidence that the items within the pair were consensually judged to “mean the same thing” by 

raters on the present scale. In contrast 2 of the 15 items estimated to have values exceeding a 𝜌̂𝕏𝕐|𝑑1| > .95 

(13.3%) reached this threshold (specifically, the PANAS-X item-pairs frightened:scared and 

afraid:scared). 

This indicates that certain levels of information similarity may be necessary to expect high levels 

of semantic similarity. We propose that researchers may test the hypotheses that 𝜌𝕏𝕐|𝑑1| values exceeding 

.70 may be necessary for two terms to be consensually judged to be “very similar in meaning” (i.e., 𝑀 ≥ 

3.0 by the present scale) whereas 𝜌𝕏𝕐|𝑑1| values exceeding .90 may be necessary for two terms to be 

consensually judged as “meaning the same thing” (i.e., 𝑀 ≥ 3.5 by the present scale). 

Indications of ‘Sufficiency’ Relationships between Information and Semantic Similarity   

As detailed by Dul (2016), a signature that some threshold level of X is sufficient to expect 

certain levels of Y is a scatterplot of the X-Y relationship in which some area of the lower-right quadrant 

is devoid of observations. As seen in Figures 2.1C-2.4C, there were also indications that some parts of the 

lower-right quadrants of the scatterplots linking retest-adjusted correlations to semantic similarity 
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judgments were largely devoid of observations in this manner. For instance, whereas 315 of the 387 item-

pairs estimated to have 𝜌̂𝕏𝕐|𝑑1| values below .90 (81%) failed to reach a mean semantic similarity rating 

of 2.0 – i.e., they were judged to not be even “fairly similar in meaning” – only 2 of the 15 items with 

values exceeding 𝜌̂𝕏𝕐|𝑑1| > .90 (13%) failed to cross this threshold (specifically, the PANAS-X item-pairs 

alone:lonely and enthusiastic:lively). 

This indicates that certain levels of information similarity may be sufficient to expect at least 

threshold levels of perceived semantic similarity. We propose that future researchers may attempt to 

formally test the hypotheses that 𝜌𝕏𝕐|𝑑1| values exceeding .90 may be sufficient for the associated items to 

be consensually judged to be at least “fairly similar in meaning” (i.e., 𝑀 ≥ 2.0 using the present scale). 

General Discussion 

Using data from four inventories, we demonstrate how the information similarity of items can be 

indexed by retest-adjusted correlations, 𝜌̂𝕏𝕐|𝑑|, in which the estimated correlation between two items 𝑋 

and 𝑌 over a particular measurement interval |𝑑| is divided by the average retest correlation of those 

items over that interval (Equations 2 and 3). Most crucially, we found that retest-adjusted correlations 

outperform raw-score correlations as predictors of the consensually judged semantic similarity of the 

associated items. 

The Information and Semantic Similarity of Item-Pairs is Conceptually and Empirically Distinct 

The bivariate relationships we observed between information and semantic similarity estimates, 

shown in Figure 2, indicate there is considerable room for two items to be indexed as providing highly 

similar information – i.e., as having high 𝜌̂𝕏𝕐|𝑑| estimates, or as having fairly negligible reliable specific 

variance – while being understood as semantically distinct. This has important implications for how 

reliability adjustments should be used to help adjudicate questions of construct proliferation or 

redundancy.  

First, it is commonly suggested that reliability-adjusted correlations exceeding .90 – and 

sometimes even exceeding lower thresholds – can be interpreted as indicating that the two tests “measure 
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the same thing” (John & Benet-Martínez, 2000; Le et al., 2010; Shaffer et al., 2016). However, as 

illustrated in Figure 2, we only found 2 of the 15 item-pairs with retest-adjusted correlations exceeding 

.90 to be consensually judged to “mean the same thing” by judges. It may be that many of the remaining 

relationships are understood by people as having strong functional relationships – where X is a strong and 

regular cause of Y or vice versa – rather than as representing a tautology. As one example: the SDT/DD 

items “I like to use clever manipulation to get my way,” and “I tend to manipulate others to get my way” 

were estimated to have a retest-adjusted correlation of 𝜌̂𝕏𝕐|𝑑1| = .91 but a semantic similarity level (3.3) 

falling under our threshold for regarding them as being consensually judged to “mean the same thing” 

(i.e., 𝑀(𝑆𝑒𝑚𝑆𝑖𝑚𝑋𝑌) ≥ 3.5). For this particular item-pair, a range of psychological models readily suggest 

that liking an activity can very strongly affect one’s tendency to do that activity, while liking and the 

tendency to do that activity are nonetheless conceptually distinct (e.g., Ajzen, 1991; Bandura, 1999; 

Dweck, 2017; Feather, 1982; Mischel & Shoda, 1995; Wilt & Revelle, 2015; Wood et al., 2015).  

Second, retest correlations are likely to produce systematically higher estimates of the reliability 

of test scores than the internal consistency estimates typically used for this purpose (Henry et al., 2022; 

Lowman et al., 2018; McCrae et al., 2011; Wood et al., 2018). This is important as Equation 1 shows that 

dividing by higher reliability estimates will tend to produce lower estimates of reliability-adjusted 

correlations. If even very high levels of a more conservative index of how tests correlate after adjusting 

for unreliability is insufficient for establishing that two tests “measure the same thing,” this would 

indicate that the many investigations which have considered reliability-adjusted correlations exceeding 

.80 or .90 to provide sufficient evidence of scale or construct redundancy (Banks et al., 2016; Credé et al., 

2017; Harrison et al., 2006; Judge & Bono, 2001; Newman et al., 2010; Shaffer et al., 2016) are 

premature and need to be reevaluated. More generally, the low frequency with which item-pairs were 

estimated to cross reasonable thresholds of being either informationally redundant (𝜌̂𝕏𝕐|𝑑1| ≥ .90) or 

semantically redundant (𝑀𝑆𝑒𝑚𝑆𝑖𝑚 ≥ 3.0 or 3.5) is consistent with the understanding that there is a vast 
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space of fine distinctions or ‘nuances’ in how people vary from one another which can be better measured 

by researchers (Condon et al., 2020; Mõttus et al., 2017, 2019, 2020). 

Finally, it is important to note that empirical estimates of the associations between raw-score 

correlations, retest-adjusted correlations, and perceived semantic similarity ratings (Table 3) of item-pairs 

are likely substantially underestimated by the present method. The selection of item-pairs indexed as 

having high raw-score or retest-adjusted correlations resulted in clear range restriction, which can be seen 

by the fact that no item-pairs indexed as having zero-order correlations below about 𝑟𝑋𝑌|𝑑0| = .20 were 

selected to be rated for their perceived semantic similarity (Figure 2). This indicates that the 

approximately 𝑞 ≈ .50 association between the estimated informational and semantic similarity of item-

pairs would likely be considerably higher if larger ranges of inter-item correlations were included.  

Limitations, Remaining Questions, and Future Directions 

How Much Does the Measurement Interval Matter?  

As we have noted, when reliability is operationalized as a test’s retest correlation, there are as 

many reliability coefficients as there are retest intervals (Cronbach, 1947). As the measurement interval 

|𝑑| increases, 𝑟𝑋𝑌|𝑑| correlations will typically become less reflective of transient or circumstantial 

factors influencing scores – such as the mood at the time of testing (Chmielewski & Watson, 2009; 

McCrae, 2015; van Bork et al., 2022). In turn, 𝜌̂𝕏𝕐|𝑑| values can be expected to vary over differing 

intervals of |𝑑|, as more transient factors influencing X and Y may covary in a different manner than 

more stable factors.  

However, we suggest that for the specific purpose of evaluating whether a pair of items is 

redundant, the interval |𝑑| used to form the 𝜌̂|𝑑| matrix should not generally matter. This is because if two 

items are perfectly redundant, this can be understood as meaning that the function of factors determining 

scores on item X and item Y is essentially equivalent. We can illustrate this idea with the item-pair 

indexed with the highest estimated retest-adjusted correlation in the present study: the BFI-2 items [I am 

someone who] “Often feels sad” versus “Tends to feel depressed, blue,” 𝜌̂𝕏𝕐|𝑑| = .995 (Table 2, row #10). 



INDEXING ITEM SIMILARITY 29 

 

Any factor which tends to cause people to provide high scores on one of these items – such as (a) a fairly 

objective record of low levels of positive affectivity over time (a trait factor), (b) having a recent bad or 

stressful interaction (a state factor), or (c) having already settled into mindlessly answering ‘5’ to every 

question to get through the survey (use of a response set; Cronbach, 1946) – may tend to influence scores 

on the other, and to the same degree. If this is true, then the near-perfect 𝜌̂𝕏𝕐|𝑑| correlation between these 

two items may be expected to be preserved over intervals resulting in differing ratios of ‘state’ versus 

‘trait’ variance, or even of ‘valid’ versus ‘invalid’ variance. Indeed, effective equivalence of the functions 

people are using to respond to the two items may serve as a good conceptual definition of what it means 

for those items to be redundant within the surveyed population. For truly redundant items, the 𝑟𝑋𝑌|𝑑|, 

𝑟𝑋𝑋|𝑑|, and 𝑟𝑌𝑌|𝑑| values within Equation 2 may all be expected to change in concert to preserve the 

𝜌̂𝕏𝕐|𝑑| of 1 as the measurement interval |𝑑| is specified at any arbitrarily short or long interval.  

It is worth noting that this idea represents an important change in how reliability is treated within 

the literature. Traditionally, researchers have argued that the reliability estimates that should be used for 

reliability adjustments are those in which the expected levels of test scores for respondents remain nearly 

stationary – i.e., where change in ‘true-scores’ is negligible (Cattell & Tsujioka, 1964; Chmielewski & 

Watson, 2009; Gnambs, 2014; Watson, 2004). However, we argue that the goal should be instead to 

equate the measurement intervals used in the numerator and denominator of Spearman’s equation, so that 

the level of systematic change in the factors affecting scores is matched.  

If this interpretation of how to conceptualize the role of unreliability on correlations is 

appropriate, and especially if differences in retest-adjusted correlations 𝜌̂𝕏𝕐|𝑑|  across different 

measurement intervals |𝑑| are relatively negligible, this would represent an enormous opportunity to 

explore questions of item or test equivalence across previously collected datasets. Essentially, it would 

indicate that any time a researcher has administered the tests of interest twice within a larger inventory 

or survey, the reliability adjustment detailed in Equations 2 and 3 can be used to explore questions of 

item similarity. This means that every longitudinal study in which participants have rated the same 
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inventory two or more times over the course of the study – whether over a span of days or years – 

becomes a source of data which may be usefully reanalyzed for such purposes. 

Possible problems at very short retest intervals. The only interval |𝑑| we think might present 

problems for indexing the informational similarity via these indices are exceptionally short retest 

correlations – where items might be retested at spans as short as, say, 30 items apart or less (e.g., by using 

the design described in Footnote #4). There are reasons to suspect that if participants rate an item (such as 

“Often feels sad”) and then are asked to rate the same item a few items later, many participants may feel 

compelled to provide the same rating they can still remember – or perhaps even can still see – as having 

given the item previously. However, seeing a very-semantically-similar-and-yet-different item (such as 

“Tends to feel depressed, blue”) over the same measurement interval may resulting in many of the same 

participants reacting by providing a more distinct answer, perhaps due to generously assuming the 

researcher was ‘trying to get at something different’ with the second question. Such a pattern of reactivity 

effects would represent a problem as it would cause 𝑟𝑋𝑌|𝑑| and 𝑟𝑋𝑋|𝑑| estimates to move in opposite 

directions. However, we suspect this should only become a sizable problem for exceptionally short retest 

intervals. The present results indicate that even retest intervals as short as 15 minutes produce 𝜌̂𝕏𝕐|𝑑| 

estimates serving as valuable indices of item redundancy. 

Possible problems at long retest intervals. An important limitation of estimating 𝜌̂𝕏𝕐|𝑑| over 

much longer measurement intervals than used in the present study – such as a year or more – is that all of 

the components going into the estimation of this parameter (i.e., 𝑟𝑋𝑌|𝑑|, 𝑟𝑋𝑋|𝑑| and 𝑟𝑌𝑌|𝑑|; Equation 3) will 

be expected to decrease in magnitude toward 0 as the measurement interval |𝑑| increases (Fraley & 

Roberts, 2005; Kenny & Zautra, 1995; Lucas & Donnellan, 2007), making the resulting 𝜌̂𝕏𝕐|𝑑| estimates 

noisier. But as long as these components do not drift to nearly zero (e.g., as might happen when 

correlating ratings of momentary moods collected years apart), this limitation may in principle be 

counteracted by estimating correlations through samples which are sufficiently large (e.g., 𝑁 > 1000) to 

make the confidence intervals of the resulting 𝜌̂𝕏𝕐|𝑑| estimates reasonably small. 
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How Best to Rate the Semantic Similarity of Items?  

The findings presented here also indicate the value of having laypersons rate the semantic 

similarity of item-pairs. Although the current findings demonstrate the utility of such judgments, they 

may also indicate ways in which these judgments could be improved. For instance, if raters providing 

semantic similarity ratings interpreted the items in different ways than the participants providing the self-

ratings used in reliability adjustments, it should decrease the extent to which semantic similarity and 

information similarity indices will track one another. As an example, the items alone and lonely were 

rated as quite semantically distinct (as only ‘slightly to fairly similar in meaning’; M = 1.68) despite being 

estimated as having a very high retest-adjusted correlation (𝜌̂𝕏𝕐|𝑑1|=.95; Row #3 in Table 2). Respondents 

rating the semantic similarity of these items may have been indicating that ‘being alone’ is easily 

distinguishable from ‘being lonely.’ (Indeed, a quick web search reveals a large number of articles, blog 

posts, songs, and other media roughly titled “Alone But Not Lonely.”) In contrast, as detailed in the 

Method, participants who completed the self-ratings used to form retest-adjusted correlations were asked 

to describe the extent to which they ‘felt alone’ and ‘felt lonely’, which we suspect would also have 

tended to be judged as more semantically similar. 

This indicates a way in which the observed relationships between inter-item correlations and 

semantic similarity judgments should probably be interpreted as lower-bound estimates. It is worth 

exploring how modifications to the instructions used to collect semantic similarity judgments could 

improve their ability to track information similarity estimates.  

Exploring Other Uses of Retest-Adjusted Correlation Matrices 

The identification of informationally or semantically redundant item-pairs has been discussed as 

being valuable for reducing scale length (Cattell & Tsujioka, 1964; Cortina et al., 2020; DeVellis, 2017), 

and for understanding whether correlations between conceptually distinct variables may be due scales 

operationalizing the variables containing redundant content (Mõttus, 2016; Nicholls et al., 1982; Wood & 

Harms, 2016). However, as we have noted, it is straightforward to adjust all correlations between items 

within an inventory by their retest reliability to form a complete retest-adjusted correlation matrix. We 
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expect that researchers will find working with these matrices useful for a wide range of purposes, even if 

they have little interest in identifying item-pairs with direct one-to-one redundancy.  

For instance, some researchers have prescribed replacing items from a set if they have negligible 

unique variance beyond other items within the set (Block, 1961; Condon et al., 2020; Furr et al., 2010; 

Yarkoni, 2010) to increase the breadth or comprehensiveness of the total inventory.  This can be done by 

regressing scores on a particular item on scores from other items within the inventory (e.g., Mõttus et al., 

2017, 2019), and replacing items predicted at levels with 𝑅2 values near 1.00. At a more theoretical level, 

many researchers have argued that the certain traits can be adequately regarded as combinations of other 

traits. For instance, Hough and Ones (2002) suggested a wide range of ways in which specific traits could 

be regarded as ‘compounds’ of Big Five dimensions, for instance: Warmth ≈ Agreeableness + 

Extraversion; and Traditionalism ≈ Conscientiousness – Openness (see also Credé et al., 2016; Hofstee et 

al., 1992; McCrae & Costa, 1989). And conversely, many researchers have suggested how more domain-

general constructs may be usefully regarded as weighted sums of domain-contextualized constructs (e.g., 

General Life Satisfaction ≈ Work Satisfaction + Relationship Satisfaction; Rohrer & Schmukle, 2018; 

Wood & Roberts, 2006; Academic Efficacy ≈ Verbal Efficacy + Math Efficacy; Bong, 1997). For these 

and other purposes, the use of retest-adjusted correlation matrices would afford the ability to explore these 

questions with greater confidence that 𝑅2 values very close to 1.00 are attainable (with appropriate 

measures taken to prevent overprediction through use of multiple predictors, Mõttus et al., 2020; Yarkoni 

& Westfall, 2017).  

More generally, we suspect that the fact unreliability can be removed in a straightforward manner 

for all items in a set that has been rated twice will strike many researchers as surprising. This challenges 

the understanding that the creation of multi-item scales may almost be necessary to handle the 

unreliability of single item-measures, and consequently could help shift and sharpen discussions of how 

and when it is appropriate to adjust for ‘internal consistency’ versus temporal stability when estimating 

the reliable associations between variables (e.g. Le et al., 2010; McCrae, 2015). 

Conclusion 
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Researchers are increasingly concerned that large correlations between scales might be driven by 

item overlap, resulting in problems of construct proliferation, overlap, and redundancy across the 

behavioral sciences (Larsen & Bong, 2016; O’Boyle et al., 2015; Rosenbusch et al., 2020; Shaffer et al., 

2016; Singh, 1991). As we have noted, these problems often ultimately involve the presence of redundant 

items, but procedures for indexing item similarity are not well-developed. We illustrate here how it is 

possible to make more systematic quantitative estimates of both the level of information similarity and 

semantic similarity of items within an inventory. Ultimately, we showed that these methods are mutually 

validating: across four different inventories, the relationship between retest-adjusted correlations and 

consensually judged semantic similarity consistently exceeded a 𝑞 = .50 magnitude. This indicates that 

both methods should be valuable toward addressing questions of construct or scale overlap. 

But perhaps the largest contribution of the study concerns addressing more fundamental questions 

of how to appropriately adjust for measurement unreliability. Namely, an assumption underlying the 

common practice of adjusting correlations by reliability coefficients, as is regularly done within 

contemporary meta-analysis and structural equation modeling, is that this improves upon raw-score 

correlations as indices of the degree of overlap between measures (Banks et al., 2016; Credé & Harms, 

2015; Le et al., 2009, 2009; McGrath et al., 2017; O’Boyle et al., 2015; Schmidt & Hunter, 2014). 

However, we understand that the current study provides the first empirical evidence that reliability 

adjustments can improve the extent to which correlations indicate the semantic similarity of tests. We 

believe the key to empirically evaluating this assumption comes from understanding that the information 

similarity and semantic similarity of test pairs can be operationalized independently and correlated. 

Importantly, the current findings only indicate that retest-adjusted correlations, 𝜌̂𝕏𝕐|𝑑|, formed by 

dividing the correlation between test scores with their average retest correlation over the same 

measurement interval (Equations 2 and 3), improve upon raw-score correlations as indicators of the 

semantic similarity of tests. We have noted that this parameter can be understood as addressing the 

question: how much lower is the observed correlation between X and Y over measurement interval |𝑑| 

from the average correlation we would have observed by just retesting X and Y over the same interval? 
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As we have noted, this conceptual quantity can be estimated whenever X and Y are tests within an 

inventory or survey that has been administered twice.  

The current findings do not speak to the much more common practice of adjusting correlations 

for unreliability using internal consistency estimates or other means (Le et al., 2009; Schmidt & Hunter, 

2014). Unfortunately, due to the fact that conventional internal consistency statistics appear to track 

validity-related criteria considerably worse than do retest correlations (Henry et al., 2022; Lowman et al., 

2018; McCrae et al., 2011) and are systematically affected by factors such as item breadth (John & Soto, 

2007), we suspect that many commonly used procedures for adjusting for measurement unreliability 

likely infuse as much unwanted variance into estimates of the information similarity of tests as they 

remove (LeBreton et al., 2014; Sackett, 2014; Sackett et al., 2021). This in turn has implications for any 

place adjustments for measurement unreliability are used – such as structural equation modeling and 

meta-analysis. However, the present research makes clearer that such concerns about how best to adjust 

for measurement unreliability can and should be regarded as open questions that can be evaluated 

empirically. 

  



INDEXING ITEM SIMILARITY 35 

 

References 

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision 

Processes, 50, 179–211. 

Arnulf, J. K., & Larsen, K. R. (2021). Semantic and ontological structures of psychological attributes. In 

D. Wood, S. J. Read, P. D. Harms, & A. Slaughter (Eds.), Measuring and modeling persons and 

situations (pp. 69–101). Academic Press. 

Bainbridge, T. F., Ludeke, S. G., & Smillie, L. D. (2022). Evaluating the Big Five as an organizing 

framework for commonly used psychological trait scales. Journal of Personality and Social 

Psychology. https://doi.org/10.1037/pspp0000395 

Bandura, A. (1999). Social cognitive theory of personality. In L. A. Pervin & O. P. John (Eds.), 

Handbook of personality: Theory and research (2nd ed.). (pp. 154–196). Guilford. 

Banks, G. C., McCauley, K. D., Gardner, W. L., & Guler, C. E. (2016). A meta-analytic review of 

authentic and transformational leadership: A test for redundancy. The Leadership Quarterly, 27, 

634–652. 

Beck, E. D., & Jackson, J. J. (2022). A mega-analysis of personality prediction: Robustness and boundary 

conditions. Journal of Personality and Social Psychology, 122, 523–553. 

https://doi.org/10.1037/pspp0000386 

Block, J. (1961). The Q-sort method in personality assessment and psychiatric research. Charles C 

Thomas. 

Block, J., Weiss, D. S., & Thorne, A. (1979). How relevant is a semantic similarity interpretation of 

personality ratings? Journal of Personality and Social Psychology, 37, 1055–1074. 

https://doi.org/10.1037/0022-3514.37.6.1055 

Bong, M. (1997). Generality of academic self-efficacy judgments: Evidence of hierarchical relations. 

Journal of Educational Psychology, 89, 696–709. 

Borsboom, D. (2005). Measuring the mind: Conceptual issues in contemporary psychometrics. 

Cambridge University Press. 



INDEXING ITEM SIMILARITY 36 

 

Borsboom, D., & Mellenbergh, G. J. (2002). True scores, latent variables, and constructs: A comment on 

Schmidt and Hunter. Intelligence, 30, 505–514. 

Burke, D. L., Ensor, J., & Riley, R. D. (2017). Meta‐analysis using individual participant data: One‐stage 

and two‐stage approaches, and why they may differ. Statistics in Medicine, 36, 855–875. 

Carter, E. C., Schönbrodt, F. D., Gervais, W. M., & Hilgard, J. (2019). Correcting for bias in psychology: 

A comparison of meta-analytic methods. Advances in Methods and Practices in Psychological 

Science, 2, 115–144. 

Cattell, R. B. (1952). The three basic factor-analytic research designs—Their interrelations and 

derivatives. Psychological Bulletin, 49, 499–520. 

Cattell, R. B., & Tsujioka, B. (1964). The importance of factor-trueness and validity, versus homogeneity 

and orthogonality, in test scales1. Educational and Psychological Measurement, 24, 3–30. 

Chaffin, R., & Herrmann, D. J. (1984). The similarity and diversity of semantic relations. Memory & 

Cognition, 12, 134–141. 

Charles, E. P. (2005). The correction for attenuation due to measurement error: Clarifying concepts and 

creating confidence sets. Psychological Methods, 10, 206–226. 

Chmielewski, M., & Watson, D. (2009). What is being assessed and why it matters: The impact of 

transient error on trait research. Journal of Personality and Social Psychology, 97, 186–202. 

Christensen, A. P., Garrido, L. E., & Golino, H. (2020). Unique variable analysis: A novel approach for 

detecting redundant variables in multivariate data.  

Christensen, A. P., & Kenett, Y. N. (2021). Semantic network analysis (SemNA): A tutorial on 

preprocessing, estimating, and analyzing semantic networks. Psychological Methods. 

https://doi.org/10.1037/met0000463 

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159. 

Condon, D. M., Wood, D., Möttus, R., Booth, T., Costantini, G., Greiff, S., Johnson, W., Lukaszweski, 

A., Murray, A., & Revelle, W. (2020). Bottom-up construction of a personality taxonomy. 

European Journal of Psychological Assessment, 36, 923–934. 



INDEXING ITEM SIMILARITY 37 

 

Cortina, J. M., Sheng, Z., Keener, S. K., Keeler, K. R., Grubb, L. K., Schmitt, N., Tonidandel, S., 

Summerville, K. M., Heggestad, E. D., & Banks, G. C. (2020). From alpha to omega and beyond! 

A look at the past, present, and (possible) future of psychometric soundness in the Journal of 

Applied Psychology. Journal of Applied Psychology, 105, 1351–1381. 

https://doi.org/10.1037/apl0000815 

Credé, M., & Harms, P. D. (2015). 25 years of higher‐order confirmatory factor analysis in the 

organizational sciences: A critical review and development of reporting recommendations. 

Journal of Organizational Behavior, 36, 845–872. 

Credé, M., Harms, P. D., Blacksmith, N., & Wood, D. (2016). Assessing the utility of compound trait 

estimates of narrow personality traits. Journal of Personality Assessment, 98, 503–513. 

https://doi.org/10.1080/00223891.2016.1170023 

Credé, M., Tynan, M. C., & Harms, P. D. (2017). Much ado about grit: A meta-analytic synthesis of the 

grit literature. Journal of Personality and Social Psychology, 113, 492–511. 

https://doi.org/10.1037/pspp0000102 

Cronbach, L. J. (1946). Response sets and test validity. Educational and Psychological Measurement, 

6(4), 475–494. 

Cronbach, L. J. (1947). Test “reliability”: Its meaning and determination. Psychometrika, 12, 1–16. 

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334. 

https://doi.org/10.1007/BF02310555 

Curran, P. J., & Hussong, A. M. (2009). Integrative data analysis: The Simultaneous analysis of multiple 

data sets. Psychological Methods, 14, 81–100. 

Cutler, A., & Condon, D. M. (2022). Deep lexical hypothesis: Identifying personality structure in natural 

language [Unpublished manuscript]. Department of Psychology, Boston University. 

DeVellis, R. F. (2017). Scale development: Theory and applications. Sage. 



INDEXING ITEM SIMILARITY 38 

 

Dragostinov, Y., & Mõttus, R. (2021). Test-retest reliability and construct validity of the brief Dark Triad 

measurements [Unpublished manuscript]. PsyArXiv; Department of Psychology, Boston 

University. 

Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and passion 

for long-term goals. Journal of Personality and Social Psychology, 92, 1087–1101. 

Dul, J. (2016). Necessary Condition Analysis (NCA) logic and methodology of “necessary but not 

sufficient” causality. Organizational Research Methods, 19, 10–52. 

Dweck, C. S. (2017). From needs to goals and representations: Foundations for a unified theory of 

motivation, personality, and development. Psychological Review, 124, 689–719. 

Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Combining 

network and latent variable models. Psychometrika, 82, 904–927.  

Feather, N. T. (1982). Expectations and actions: Expectancy-value models in psychology. Erlbaum. 

Fraley, R. C., & Roberts, B. W. (2005). Patterns of continuity: A dynamic model for conceptualizing the 

stability of individual differences in psychological constructs across the life course. Psychological 

Review, 112, 60. 

Fraley, R. C., Vicary, A. M., Brumbaugh, C. C., & Roisman, G. I. (2011). Patterns of stability in adult 

attachment: An empirical test of two models of continuity and change. Journal of Personality and 

Social Psychology, 101, 974–992. 

Fried, E., van Borkulo, C., Epskamp, S., Schoevers, R., Tuerlinckx, F., & Borsboom, D. (2016). 

Measuring depression over time... Or not? Lack of unidimensionality and longitudinal 

measurement invariance in four common rating scales of depression. Psychological Assessment, 

28, 1354–1367. 

Funder, D. C. (2016). Taking situations seriously: The situation construal model and the Riverside 

Situational Q-Sort. Current Directions in Psychological Science, 25, 203–208. 

Furr, R. M., Wagerman, S. A., & Funder, D. C. (2010). Personality as manifest in behavior: Direct 

behavioral observation using the Revised Riverside Behavioral Q-Sort (RBQ-3.0). In C. R. 



INDEXING ITEM SIMILARITY 39 

 

Agnew, D. E. Carlston, W. G. Graziano, & J. R. Kelly (Eds.), Then a miracle occurs: Focusing 

on behavior in social psychological theory and research. (pp. 186–204). Oxford University Press. 

Gnambs, T. (2014). A meta-analysis of dependability coefficients (test–retest reliabilities) for measures of 

the Big Five. Journal of Research in Personality, 52, 20–28. 

Green, S. B. (2003). A coefficient alpha for test-retest data. Psychological Methods, 8, 88–101. 

https://doi.org/10.1037/1082-989X.8.1.88 

Harrison, D. A., Newman, D. A., & Roth, P. L. (2006). How important are job attitudes? Meta-analytic 

comparisons of integrative behavioral outcomes and time sequences. Academy of Management 

Journal, 49, 305–325. 

Henry, S., Thielmann, I., Booth, T., & Mõttus, R. (2022). Test-retest reliability of the HEXACO-100—

And the value of multiple measurements for assessing reliability. PLOS ONE, 17, e0262465. 

https://doi.org/10.1371/journal.pone.0262465 

Hofstee, W. K. (1994). Who should own the definition of personality? European Journal of Personality, 

8, 149–162. 

Hofstee, W. K., de Raad, B., & Goldberg, L. R. (1992). Integration of the Big Five and circumplex 

approaches to trait structure. Journal of Personality and Social Psychology, 63, 146–163. 

Hough, L. M., & Ones, D. S. (2002). The structure, measurement, validity, and use of personality 

variables in industrial, work, and organizational psychology. In N. Anderson, D. S. Ones, H. K. 

Sinangil, C. Viswesvaran, N. Anderson (Ed), D. S. Ones (Ed), H. K. Sinangil (Ed), & C. 

Viswesvaran (Ed) (Eds.), Handbook of industrial, work and organizational psychology, Volume 

1: Personnel psychology. (pp. 233–277). Sage Publications Ltd. 

John, O. P., & Benet-Martínez, V. (2000). Measurement: Reliability, construct validation, and scale 

construction. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and 

personality psychology. (pp. 339–369). Cambridge University Press. 



INDEXING ITEM SIMILARITY 40 

 

John, O. P., & Soto, C. J. (2007). The importance of being valid: Reliability and the process of construct 

validation. In R. W. Robins, R. C. Fraley, & R. F. Krueger (Eds.), Handbook of research methods 

in personality psychology. (pp. 461–494). Guilford. 

Jonason, P. K., & Webster, G. D. (2010). The Dirty Dozen: A concise measure of the Dark Triad. 

Psychological Assessment, 22, 420–432. https://doi.org/10.1037/a0019265 

Jones, D. N., & Paulhus, D. L. (2014). Introducing the Short Dark Triad (SD3) a brief measure of dark 

personality traits. Assessment, 21, 28–41. 

Judge, T. A., & Bono, J. E. (2001). Relationship of core self-evaluations traits—Self-esteem, generalized 

self-efficacy, locus of control, and emotional stability—With job satisfaction and job 

performance: A meta-analysis. Journal of Applied Psychology, 86, 80–92. 

https://doi.org/10.1037/0021-9010.86.1.80 

Kelley, T. L. (1927). Interpretation of educational measurements. World Book Company. 

Kenny, D. A., & Zautra, A. (1995). The trait-state-error model for multiwave data. Journal of Consulting 

and Clinical Psychology, 63, 52–59. https://doi.org/10.1037/0022-006X.63.1.52 

Larsen, K. R., & Bong, C. H. (2016). A tool for addressing construct identity in literature reviews and 

meta-analyses. MIS Quarterly, 40, 1–23. 

Lazarsfeld, P. F. (1959). Latent structure analysis. In S. Koch (Ed.), Psychology: A study of a science. 

(Vol. 3, pp. 476–543). McGraw-Hill. 

Le, H., Schmidt, F. L., Harter, J. K., & Lauver, K. J. (2010). The problem of empirical redundancy of 

constructs in organizational research: An empirical investigation. Organizational Behavior and 

Human Decision Processes, 112, 112–125. 

Le, H., Schmidt, F. L., & Putka, D. J. (2009). The multifaceted nature of measurement artifacts and its 

implications for estimating construct-level relationships. Organizational Research Methods, 12, 

165–200. https://doi.org/10.1177/1094428107302900 



INDEXING ITEM SIMILARITY 41 

 

LeBreton, J. M., Scherer, K. T., & James, L. R. (2014). Corrections for criterion reliability in validity 

generalization: A false prophet in a land of suspended judgment. Industrial and Organizational 

Psychology, 7, 478–500. 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Addison-Wesley. 

Lowman, G., Wood, D., Armstrong, B., Harms, P., & Watson, D. (2018). Estimating the reliability of 

emotion measures over very short intervals: The utility of within-session retest correlations. 

Emotion, 18, 896–901. 

Lucas, R. E., & Donnellan, M. B. (2007). How stable is happiness? Using the STARTS model to estimate 

the stability of life satisfaction. Journal of Research in Personality, 41, 1091–1098. 

https://doi.org/10.1016/j.jrp.2006.11.005 

McCrae, R. R. (2015). A more nuanced view of reliability: Specificity in the trait hierarchy. Personality 

and Social Psychology Review, 19, 97–112. 

McCrae, R. R., & Costa, P. T. Jr. (1989). The structure of interpersonal traits: Wiggins’s circumplex and 

the five-factor model. Journal of Personality and Social Psychology, 56, 586–595. 

McCrae, R. R., Kurtz, J. E., Yamagata, S., & Terracciano, A. (2011). Internal consistency, retest 

reliability, and their implications for personality scale validity. Personality and Social Psychology 

Review, 15, 28–50. 

McDonald, R. P. (1999). Test theory: A unified treatment. Erlbaum. 

McGrath, R. E., Hall-Simmonds, A., & Goldberg, L. R. (2020). Are measures of character and personality 

distinct? Evidence from observed-score and true-score analyses. Assessment, 27, 117–135.  

Miller, G. A., & Charles, W. G. (1991). Contextual correlates of semantic similarity. Language and 

Cognitive Processes, 6, 1–28. 

Mischel, W., & Shoda, Y. (1995). A cognitive-affective system theory of personality: Reconceptualizing 

situations, dispositions, dynamics, and invariance in personality structure. Psychological Review, 

102, 246–268. 



INDEXING ITEM SIMILARITY 42 

 

Mõttus, R. (2016). Towards more rigorous personality trait-outcome research. European Journal of 

Personality, 30, 292–303. 

Mõttus, R., Kandler, C., Bleidorn, W., Riemann, R., & McCrae, R. R. (2017). Personality traits below 

facets: The consensual validity, longitudinal stability, heritability, and utility of personality 

nuances. Journal of Personality and Social Psychology, 112, 474–490. 

https://doi.org/10.1037/pspp0000100 

Mõttus, R., Sinick, J., Terracciano, A., Hřebíčková, M., Kandler, C., Ando, J., Mortensen, E. L., Colodro-

Conde, L., & Jang, K. L. (2019). Personality characteristics below facets: A replication and meta-

analysis of cross-rater agreement, rank-order stability, heritability, and utility of personality 

nuances. Journal of Personality and Social Psychology, 117, e35–e50. 

https://doi.org/10.1037/pspp0000202 

Mõttus, R., Wood, D., Condon, D. M., Back, M. D., Baumert, A., Costantini, G., Epskamp, S., Greiff, S., 

Johnson, W., Lukaszewski, A., Murray, A., Revelle, W., Wright, A. G. C., Yarkoni, T., Ziegler, 

M., & Zimmermann, J. (2020). Descriptive, predictive and explanatory personality research: 

Different goals, different approaches, but a shared need to move beyond the Big Few traits. 

European Journal of Personality, 34, 1175–1201. https://doi.org/10.1002/per.2311 

Mueller, S., Wang, D., Fox, M. D., Pan, R., Lu, J., Li, K., Sun, W., Buckner, R. L., & Liu, H. (2015). 

Reliability correction for functional connectivity: Theory and implementation. Human Brain 

Mapping, 36, 4664–4680. 

Newman, D. A., Harrison, D. A., Carpenter, N. C., & Rariden, S. M. (2016). Construct mixology: 

Forming new management constructs by combining old ones. Academy of Management Annals, 

10, 943–995. 

Newman, D. A., Joseph, D. L., & Hulin, C. L. (2010). Job attitudes and employee engagement: 

Considering the attitude “A-factor.” In S. L. Albrecht (Ed.), The handbook of employee 

engagement: Perspectives, issues, research, and practice (pp. 43–61). Edward Elgar Publishing. 



INDEXING ITEM SIMILARITY 43 

 

Nicholls, J. G., Licht, B. G., & Pearl, R. A. (1982). Some dangers of using personality questionnaires to 

study personality. Psychological Bulletin, 92, 572–580. 

Nunnally, J. C., & Bernstein, I. H. (1991). Psychometric theory. McGraw. 

O’Boyle, E. H., Forsyth, D. R., Banks, G. C., Story, P. A., & White, C. D. (2015). A meta‐analytic test of 

redundancy and relative importance of the dark triad and five‐factor model of personality. 

Journal of Personality, 83, 644–664. https://doi.org/10.1111/jopy.12126 

Osburn, H. G. (2000). Coefficient alpha and related internal consistency reliability coefficients. 

Psychological Methods, 5, 343–355. https://doi.org/10.1037/1082-989X.5.3.343 

Paulhus, D. L., & Williams, K. M. (2002). The dark triad of personality: Narcissism, Machiavellianism, 

and psychopathy. Journal of Research in Personality, 36, 556–563. 

Paunonen, S. V. (1984). Optimizing the validity of personality assessments: The importance of 

aggregation and item content. Journal of Research in Personality, 18, 411–431. 

Resnik, P. (1999). Semantic similarity in a taxonomy: An information-based measure and its application 

to problems of ambiguity in natural language. Journal of Artificial Intelligence Research, 11, 95–

130. 

Revelle, W., & Condon, D. M. (2019). Reliability from α to ω: A tutorial. Psychological Assessment, 31, 

1395–1411. 

Rohrer, J. M., & Schmukle, S. C. (2018). Individual importance weighting of domain satisfaction ratings 

does not increase validity. Collabra: Psychology, 4, 6. https://doi.org/10.1525/collabra.116 

Rosenbusch, H., Wanders, F., & Pit, I. L. (2020). The Semantic Scale Network: An online tool to detect 

semantic overlap of psychological scales and prevent scale redundancies. Psychological Methods, 

25, 380–392. https://doi.org/10.1037/met0000244 

Rubenstein, H., & Goodenough, J. B. (1965). Contextual correlates of synonymy. Communications of the 

ACM, 8, 627–633. 

Sackett, P. R. (2014). When and why correcting validity coefficients for interrater reliability makes sense. 

Industrial and Organizational Psychology, 7, 501–506. 



INDEXING ITEM SIMILARITY 44 

 

Sackett, P. R., Zhang, C., Berry, C. M., & Lievens, F. (2021). Revisiting meta-analytic estimates of 

validity in personnel selection: Addressing systematic overcorrection for restriction of range. 

Journal of Applied Psychology. 

Saucier, G., Iurino, K., & Thalmayer, A. G. (2020). Comparing predictive validity in a community 

sample: High-dimensionality and traditional domain-and-facet structures of personality variation. 

European Journal of Personality, 34, 1120–1137. 

Schmidt, F. L. (2010). Detecting and correcting the lies that data tell. Perspectives on Psychological 

Science, 5, 233–242. 

Schmidt, F. L., & Hunter, J. E. (2014). Methods of meta-analysis: Correcting error and bias in research 

findings. Sage. 

Schmidt, F. L., Le, H., & Oh, I. (2013). Are true scores and construct scores the same? A critical 

examination of their substitutability and the implications for research results. International 

Journal of Selection and Assessment, 21, 339–354. 

Shaffer, J. A., DeGeest, D., & Li, A. (2016). Tackling the problem of construct proliferation: A guide to 

assessing the discriminant validity of conceptually related constructs. Organizational Research 

Methods, 19, 80–110. 

Shedler, J., & Westen, D. (2007). The Shedler–Westen assessment procedure (SWAP): Making 

personality diagnosis clinically meaningful. Journal of Personality Assessment, 89, 41–55. 

Shweder, R. A., & D’Andrade, R. G. (1979). Accurate reflection or systematic distortion? A reply to 

Block, Weiss, and Thorne. Journal of Personality and Social Psychology, 37, 1075–1084. 

https://doi.org/10.1037/0022-3514.37.6.1075 

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. 

Psychometrika, 74, 107–120. 

Singh, J. (1991). Redundancy in constructs: Problem, assessment, and an illustrative example. Journal of 

Business Research, 22, 255–280. 



INDEXING ITEM SIMILARITY 45 

 

Soto, C. J., & John, O. P. (2017). The next Big Five Inventory (BFI-2): Developing and assessing a 

hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. Journal 

of Personality and Social Psychology, 113, 117–143. https://doi.org/10.1037/pspp0000096 

Spearman, C. (1904). The proof and measurement of association between two things. The American 

Journal of Psychology, 15, 72–101. 

Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 3, 271–295. 

Stadnitski, T. (2020). Time series analyses with psychometric data. PLOS ONE, 15, e0231785. 

https://doi.org/10.1371/journal.pone.0231785 

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 

245–251. https://doi.org/10.1037/0033-2909.87.2.245 

Stephenson, W. (1953). The study of behavior; Q-technique and its methodology. University of Chicago 

Press. 

van Bork, R., Rhemtulla, M., Sijtsma, K., & Borsboom, D. (2022). A causal theory of error scores. 

Psychological Methods. APA PsycInfo. https://doi.org/10.1037/met0000521 

Watson, D. (2004). Stability versus change, dependability versus error: Issues in the assessment of 

personality over time. Journal of Research in Personality, 38, 319–350. 

Watson, D., & Clark, L. A. (1999). The PANAS-X: Manual for the Positive and Negative Affect Schedule-

Expanded Form. 

Weidman, A. C., Cheng, J. T., & Tracy, J. L. (2018). The psychological structure of humility. Journal of 

Personality and Social Psychology, 114, 153–178. 

Whitten, W. B., Suter, W. N., & Frank, M. L. (1979). Bidirectional synonym ratings of 464 noun pairs. 

Journal of Verbal Learning and Verbal Behavior, 18, 109–127. 

Wiggins, J. S. (2003). Paradigms of personality assessment. Guilford. 

Wilt, J., & Revelle, W. (2015). Affect, behaviour, cognition and desire in the Big Five: An analysis of 

item content and structure. European Journal of Personality, 29, 478–497. 



INDEXING ITEM SIMILARITY 46 

 

Wood, D., Gardner, M. H., & Harms, P. D. (2015). How functionalist and process approaches to behavior 

can explain trait covariation. Psychological Review, 122, 84–111. 

Wood, D., & Harms, P. D. (2016). On the TRAPs that make it dangerous to study personality with 

personality questionnaires. European Journal of Personality, 30, 327–328. 

Wood, D., Harms, P., Lowman, G. H., & DeSimone, J. A. (2017). Response speed and response 

consistency as mutually validating indicators of data quality in online samples. Social 

Psychological and Personality Science, 8, 454–464. 

Wood, D., Nye, C. D., & Saucier, G. (2010). Identification and measurement of a more comprehensive set 

of person-descriptive trait markers from the English lexicon. Journal of Research in Personality, 

44, 258–272. 

Wood, D., Qiu, L., Lu, J., Lin, H., & Tov, W. (2018). Adjusting bilingual ratings by retest reliability 

Improves estimation of translation quality. Journal of Cross-Cultural Psychology, 49, 1325–

1339. 

Wood, D., & Roberts, B. W. (2006). Cross-sectional and longitudinal tests of the Personality and Role 

Identity Structural Model (PRISM). Journal of Personality, 74, 779–809. 

Wood, D., & Wortman, J. (2012). Trait means and desirabilities as artifactual and real sources of 

differential stability of personality traits. Journal of Personality, 80, 665–701. 

Yarkoni, T. (2010). The abbreviation of personality, or how to measure 200 personality scales with 200 

items. Journal of Research in Personality, 44, 180–198. 

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from 

machine learning. Perspectives on Psychological Science, 12, 1100–1122. 

 

  



INDEXING ITEM SIMILARITY 47 

 

 
 

Figure 1. Analysis strategy for current study. Code for replicating the analyses relevant to Step #4 is 

available at https://osf.io/vp6kr/. 
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Figure 2. Scatter-plots illustrating estimated associations between estimated informational similarity (X-axis) and semantic similarity judgments 

(Y-axis). For each figure, lines have been added at 𝑋 = .9 to indicate a proposed lower-bound for considering items “informational redundant” and 

at 𝑌 = 3.5  to indicate a proposed lower-bound for considering item-pairs as being “semantically redundant.”  Numbers for item-pairs within the 

scatterplot correspond to the rank of their retest-adjusted correlation (e.g., #1 indicates the item-pair with this highest 𝜌̂𝕏𝕐|𝑑1| correlation. 
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Table 1. Structure of hypothetical score correlations and measurement intervals for associations between 

two items X and Y when administered inside an inventory administered twice over a one-week retest 

interval.  

 

 

(1A) Matrix of score 

correlations, 𝑟𝑋𝑚𝑌𝑚
, in a two-

wave repeated measures study   

(1B) Matrix of measurement 

intervals, |𝑑𝑋𝑚𝑌𝑚
|, in a two-wave 

repeated measures study 

 𝑋1 𝑌1 𝑋2 𝑌2   𝑋1 𝑌1 𝑋2 𝑌2 

𝑋1 1     𝑋1 0 seconds    

𝑌1 .60 1    𝑌1 5 minutes 0 seconds   

𝑋2 .60 .45 1   𝑋2 1 week 1 week 0 seconds  
𝑌2 .45 .50 .60 1  𝑌2 1 week 1 week 5 minutes 0 seconds 

  
Note. In both matrices 1A and 1B, higher values are shown in darker cells, whereas values close to zero 

are shown in lighter values. The values forming the ‘lag-1’ or the ‘different administration,’ |𝑑1|, 
submatrix are additionally outlined by a black box.  
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Table 2. Subset of Item-Pairs with Top Five Highest Estimated Retest-Adjusted Correlations (𝜌̂𝕏𝕐[𝐷1]), Same-administration Correlations 𝑟𝑋𝑌[𝐷0], 

and Judged Semantic Similarity 

# Item X Item Y 𝒓𝑿𝒀|𝒅𝟎| 𝒓𝑿𝒀|𝒅𝟏| 𝝆̂𝕏𝕐|𝒅𝟏| √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| SemSimilarity 

Positive and Negative Affect Schedule – Extended Form (PANAS-X) 

1 sleepy tired .814 (2) .768 (2) .972 (1) .789 (25) 3.273 (4) 

2 frightened scared .744 (12) .684 (14) .952 (2) .718 (82) 3.727 (1) 

3 alone lonely .866 (1) .819 (1) .946 (3) .866 (1) 1.682 (44) 

4 afraid frightened .721 (21) .641 (37) .937 (4) .685 (90) 3.182 (5) 

5 energetic lively .753 (10) .685 (13) .926 (5) .740 (69) 2.818 (15) 

6 blue sad .801 (3) .724 (4) .924 (6) .784 (29) 3.364 (3) 

7 afraid scared .760 (8) .625 (45) .911 (9) .686 (89) 3.545 (2) 

8 cheerful happy .779 (4) .729 (3) .896 (11) .813 (4) 2.818 (15) 

9 drowsy sleepy .772 (5) .678 (16) .852 (28) .796 (15) 3.182 (5) 

Big Five Inventory – 2 (BFI-2) 

10 Often feels sad. Tends to feel depressed, blue. .815 (1) .737 (1) .995 (1) .745 (22) 3.222 (1) 

11 Is polite, courteous to others. Is respectful, treats others with respect. .631 (6) .581 (10) .958 (2) .604 (89) 2.333 (8) 

12 Is fascinated by art, music, or literature. Values art and beauty. .743 (2) .632 (5) .934 (3) .669 (69) 2.778 (5) 

13 Is inventive, finds clever ways to do things. Is original, comes up with new ideas. .616 (9) .613 (8) .931 (4) .660 (74) 3.000 (3) 

14 Is dependable, steady. Is reliable, can always be counted on. .571 (15) .527 (24) .892 (5) .583 (94) 3.000 (3) 

15 Tends to be quiet. Is sometimes shy, introverted. .698 (3) .717 (2) .883 (6) .808 (1) 1.889 (17) 

16 Is outgoing, sociable. Is talkative. .680 (5) .671 (3) .871 (7) .775 (6) 2.111 (13) 

17 Is full of energy. Shows a lot of enthusiasm. .696 (4) .643 (4) .858 (9) .753 (19) 2.000 (14) 

18 Is moody, has up and down mood swings. Is temperamental, gets emotional easily. .591 (12) .542 (19) .748 (24) .700 (55) 3.111 (2) 

19 Is systematic, likes to keep things in order. Keeps things neat and tidy. .571 (14) .520 (27) .736 (27) .684 (62) 2.778 (5) 

Inventory of Individual Differences in the Lexicon (IIDL) 

20 excited, enthusiastic lively, playful .653 (1) .640 (2) .829 (1) .766 (48) 1.889 (16) 

21 kind-hearted, caring polite, courteous .543 (16) .535 (15) .779 (2) .680 (94) 1.333 (35) 

22 efficient, thorough hard-working, productive .584 (8) .581 (7) .760 (3) .755 (58) 2.000 (13) 

23 happy, joyful likeable, well-liked .626 (3) .645 (1) .758 (4) .843 (8) .444 (63) 

24 dependable, reliable efficient, thorough .536 (18) .554 (11) .755 (5) .706 (85) 2.333 (7) 

25 afraid, scared tense, anxious .620 (4) .603 (4) .754 (7) .793 (28) 2.222 (9) 

26 excited, enthusiastic happy, joyful .637 (2) .613 (3) .751 (8) .809 (20) 1.778 (17) 

27 determined, persistent hard-working, productive .592 (6) .545 (12) .729 (10) .740 (70) 2.444 (4) 

28 happy, joyful lively, playful .601 (5) .593 (5) .716 (13) .821 (14) 1.556 (26) 

29 angry, hostile hot-tempered, short-tempered .563 (12) .531 (16) .684 (19) .779 (41) 2.556 (2) 

30 dependable, reliable faithful, loyal .475 (54) .491 (34) .679 (21) .705 (88) 2.556 (2) 

31 competent, capable skilled, skillful .484 (50) .481 (38) .662 (27) .740 (71) 2.778 (1) 

32 assertive, bold direct, straight-forward .479 (51) .432 (70) .567 (71) .760 (52) 2.444 (4) 

32 dependable, reliable prompt, punctual .407 (95) .400 (92) .525 (91) .763 (51) 2.444 (4) 

Short Dark Triad and Dirty Dozen (SDT/DD) 

33 I tend to manipulate others to get my way. I like to use clever manipulation to get my way. .731 (2) .704 (1) .912 (1) .772 (30) 3.333 (1) 

34 I tend to manipulate others to get my way. I'll say anything to get what I want. .741 (1) .680 (2) .885 (2) .769 (31) 2.917 (4) 

35 I tend to manipulate others to get my way. I tend to exploit others toward my own end. .711 (3) .623 (3) .880 (3) .712 (81) 3.000 (2) 

36 I tend to exploit others toward my own end. I'll say anything to get what I want. .687 (4) .593 (7) .856 (4) .695 (90) 2.583 (10) 

37 I like to use clever manipulation to get my way. I'll say anything to get what I want. .676 (5) .622 (4) .824 (5) .755 (45) 2.417 (15) 

38 It's not wise to tell your secrets There are things you should hide from other people to 

preserve your reputation. 

.498 (34) .512 (20) .689 (14) .746 (55) 3.000 (2) 

39 I have used deceit or lied to get my way. I'll say anything to get what I want. .461 (64) .465 (39) .588 (51) .793 (13) 2.750 (5) 

 

Note. Cell values are shown in bold if estimated to be within the five highest values for the column variable for that inventory; the rank of the item-pair for the 

column property is then given in parentheses. The item labeled “Item X” versus “Item Y” in a given row is arbitrary. A complete list of all item-pairs within the 

inventory, including item-pairs not rated for semantic similarity, is available at https://osf.io/vp6kr/.   

https://osf.io/vp6kr/
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Table 3. Estimated Relationships (q-correlations) between Different Inter-Item Similarity Estimates.  

 

(3.1) PANAS-X; 𝑵𝒑𝒂𝒊𝒓𝒔 = 101 M (SD) 𝒓𝑿𝒀|𝒅𝟎| 𝒓𝑿𝒀|𝒅𝟏| 𝝆̂𝕏𝕐|𝒅𝟏| √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| 

Same-administration correlation; 𝒓𝑿𝒀|𝒅𝟎| .664 (.066)     

Different-administration correlation; 𝒓𝑿𝒀|𝒅𝟏| .615 (.064) .932    

Retest-adjusted correlation; 𝝆̂𝕏𝕐|𝒅𝟏| .815 (.062) .869 .837   

Average retest correlation; √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| .754 (.044) .557 .718 .223  

Perceived Semantic Similarity (SemSim) 1.685 (.897) .4331 .28312 .5072 -.152ns 

       

(3.2) BFI-2; 𝑵𝒑𝒂𝒊𝒓𝒔 = 101 M (SD) 𝒓𝑿𝒀|𝒅𝟎| 𝒓𝑿𝒀|𝒅𝟏| 𝝆̂𝕏𝕐|𝒅𝟏| √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| 

Same-administration correlation; 𝒓𝑿𝒀|𝒅𝟎| .459 (.110)     

Different-administration correlation; 𝒓𝑿𝒀|𝒅𝟏| .461 (.096) .938    

Retest-adjusted correlation; 𝝆̂𝕏𝕐|𝒅𝟏| .664 (.120) .878 .875   

Average retest correlation; √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| .689 (.072) .400 .540 .084ns  

Perceived Semantic Similarity (SemSim) 1.115 (.811) .6491 .58012 .6932 -.040ns 

       

(3.3) IIDL; 𝑵𝒑𝒂𝒊𝒓𝒔 = 100 M (SD) 𝒓𝑿𝒀|𝒅𝟎| 𝒓𝑿𝒀|𝒅𝟏| 𝝆̂𝕏𝕐|𝒅𝟏| √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| 

Same-administration correlation; 𝒓𝑿𝒀|𝒅𝟎| .483 (.059)     

Different-administration correlation; 𝒓𝑿𝒀|𝒅𝟏| .471 (.060) .926    

Retest-adjusted correlation; 𝝆̂𝕏𝕐|𝒅𝟏| .615 (.076) .837 .865   

Average retest correlation; √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| .763 (.053) .173ns .273 -.229  

Perceived Semantic Similarity (SemSim) .997 (.784) .4021 .31812 .4592 -.263 

       

(3.4) SDT & DD; 𝑵𝒑𝒂𝒊𝒓𝒔 = 100 M (SD) 𝒓𝑿𝒀|𝒅𝟎| 𝒓𝑿𝒀|𝒅𝟏| 𝝆̂𝕏𝕐|𝒅𝟏| √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| 

Same-administration correlation; 𝒓𝑿𝒀|𝒅𝟎| .491 (.076)     

Different-administration correlation; 𝒓𝑿𝒀|𝒅𝟏| .454 (.073) .915    

Retest-adjusted correlation; 𝝆̂𝕏𝕐|𝒅𝟏| .610 (.093) .886 .926   

Average retest correlation; √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| .746 (.045) .212 .334 -.043ns  

Perceived Semantic Similarity (SemSim) 1.268 (.787) .5833 .627 .6593 .035ns 

       

(3.5) Across all four inventories; 𝑵𝒑𝒂𝒊𝒓𝒔 = 402 M (SD) 𝒓𝑿𝒀|𝒅𝟎| 𝒓𝑿𝒀|𝒅𝟏| 𝝆̂𝕏𝕐|𝒅𝟏| √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| 

Same-administration correlation; 𝒓𝑿𝒀|𝒅𝟎| -- --     

Different-administration correlation; 𝒓𝑿𝒀|𝒅𝟏| -- -- .928    

Retest-adjusted correlation; 𝝆̂𝕏𝕐|𝒅𝟏| -- -- .868 .876   

Average retest correlation; √𝒓𝑿𝑿𝒓𝒀𝒀|𝒅𝟏| -- -- .346 .474 .011  

Perceived Semantic Similarity (SemSim) -- -- .52013 .45912 .57723,ns -.100 

 

Note. Subscript ns indicates that correlations are not statistically significantly different from zero (p < 

.05). Shared subscripts 1, 2, and 3 on a row indicate significant support for H1, H2, and H3, respectively 

– that the associated column variables showed evidence of significantly different (p < .05) associations 

with semantic similarity judgments by Steiger's (1980) test of dependent correlations. For cross-sample 

analyses (3.5), partial correlations are reported after controlling for the inventory containing the item-pair 

via dummy-codes. 


