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This paper studies a classic maximum entropy sampling problem (MESP), which aims to select the

most informative principal submatrix of a prespecified size from a covariance matrix. By investigating its

Lagrangian dual and primal characterization, we derive a novel convex integer program for MESP and show

that its continuous relaxation yields a near-optimal solution. The results motivate us to develop a sampling

algorithm and derive its approximation bound for MESP, which improves the best-known bound in litera-

ture. We then provide an e�cient deterministic implementation of the sampling algorithm with the same

approximation bound. Besides, we investigate the widely-used local search algorithm and prove its first-

known approximation bound for MESP. The proof techniques further inspire us an e�cient implementation

of the local search algorithm. Our numerical experiments demonstrate that these approximation algorithms

can e�ciently solve medium-sized and large-scale instances to near-optimality. Finally, we extend the anal-

yses to the A-Optimal MESP (A-MESP), where the objective is to minimize the trace of the inverse of the

selected principal submatrix.

Key words : Maximum Entropy Sampling Problem; Convex Integer Program; Sampling Algorithm; Local

Search Algorithm; A-Optimality.
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1. Introduction

The maximum entropy sampling problem (MESP) is a classic problem in statistics and information

theory (Gilmore 1996, Jaynes 1957, Shewry andWynn 1987), which aims to select a small number of

random observations from a possibly large set of candidates to maximize the information obtained.

The MESP has been widely applied to healthcare (Alarifi et al. 2019), power system (Li et al.

2012), manufacturing (Wang et al. 2019), data science (Charikar et al. 2000, Song and Liò 2010,

Zilly et al. 2017), among others. Specifically, suppose that the n random variables follow a Gaussian

distribution and their covariance matrix C 2Rn⇥n has a rank d n. Then, the goal of MESP is to

seek a size-s (s d) principal submatrix of C with the largest logarithm of the determinant, i.e.,

MESP can be formulated as

(MESP) z
⇤ :=max

S
{log det(CS,S) : S ✓ [n], |S|= s} , (1)

where CS,S denotes an s ⇥ s principal submatrix of C with rows and columns from set S and

[n] := {1, · · · , n}. Note that (i) MESP (1) can be generalized to the case that the observations

follow multivariate elliptical distributions (see, e.g., Arellano-Valle et al. 2013); (ii) if s > d, then

the optimal value of MESP (1) is �1, which is not interesting. Thus, this paper focuses on the

non-trivial setting s d; (iii) when the true covariance matrix C was not known, one would use the

sample covariance matrix. We show that the theoretical absolute di↵erence between the optimal

value of the true MESP and that of the sample MESP is at most proportional to one over the

square root of sample size, which decays polynomially as the sample size increases (see detailed

derivations in Appendix B); and (iv) if we only know the mean and the covariance of the random

observations, then the formulation (1) is equivalent to the distributionally optimistic counterpart

of the MESP. That is, the joint Gaussian distribution achieves the largest entropy among all the

probability distributions with the same mean and covariance (Cover and Thomas 2012). Thus,

MESP (1) is indeed a very general model and covers many interesting cases.

1.1. Relevant Literature

We review the relevant literature on three aspects: applications, relaxation bounds of MESP, and

exact and approximation algorithms.

Applications: MESP dates back to Shewry and Wynn (1987) and has been applied to many

di↵erent areas. One typical application of MESP is the sensor placement (Christodoulou 2015,

Bueso et al. 1998). Due to a limited budget, it is desirable to place a small number of sensors to

e↵ectively monitor spatial and temporal phenomena, including temperature, humidity, air pollu-

tion, etc. Recently, it has been applied to water quality monitoring (O’Flynn et al. 2010). MESP
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has also played an important role in machine learning and data science, such as feature selection

(Charikar et al. 2000, Song and Liò 2010), compressive sensing (Hoch et al. 2014, Schmieder et al.

1993), and image sampling (Rigau et al. 2003, Zilly et al. 2017).

Relaxation Bounds of MESP: It has been proven in Ko et al. (1995) that solving MESP in

general is NP-hard. Hence, many e↵orts have been made to explore its strong relaxation bounds

(see, e.g., Anstreicher et al. 1996, 1999, Anstreicher and Lee 2004, Anstreicher 2020, 2018, Ko et al.

1995, Ho↵man et al. 2001, Lee 1998, Lee and Williams 2003, Anstreicher 2018). For example, Ko

et al. (1995) used the eigenvalue interlacing property of symmetric matrices to derive an upper

bound for MESP. Recent progress by Anstreicher (2020) proposed a new upper bound, referred to

as linx bound, and numerically showed that it dominated other bounds studied in the literature.

In this paper, we derive a Lagrangian dual bound for MESP and also numerically demonstrate

that this new upper bound can be stronger than the linx bound for some numerical cases (see our

numerical study in Section 5).

Exact and Approximation Algorithms: Besides providing stronger upper bounds, researchers

have also attempted to propose exact or approximation algorithms to solve MESP (1). Ko et al.

(1995) was one of the first works to develop a branch and bound (B&B) algorithm for solving

MESP to optimality. Similar works can be found in Anstreicher et al. (1999), Anstreicher (2020,

2018), Burer and Lee (2007) by integrating stronger upper bounds with the B&B algorithm. In this

paper, we provide an equivalent convex integer program for MESP, which is suitable for a branch

and cut (B&C) algorithm.

However, exact algorithms might not be able to solve very large-scale instances. It has been

shown in Anstreicher (2020) that solving MESP (1) on the instance of n= 90 to optimality can

take as long as several days. As alternative ones, approximation algorithms have also attracted

much attention. Many approximation algorithms such as greedy and exchange (i.e., local search)

heuristics have been used to generate high-quality solutions for MESP in literature (Ko et al.

1995, Sharma et al. 2015). However, theoretical performance guarantees of these approximation

algorithms are rarely known. Although the objective function of MESP (1) is submodular (Kelmans

and Kimelfeld 1983), it is neither monotonic nor always nonnegative. Thus, existing results on

maximizing the nondecreasing and nonnegative submodular function over a cardinality constraint

might not apply and thus require additional assumptions (Charikar et al. 2000, Sharma et al.

2015). Recently, Nikolov (2015) studied a sampling algorithm for the maximum s-subdeterminant

problem, which can be reduced to MESP (1), and developed its approximation guarantee. The

inapproximability of MESP (1) can be found in Civril and Magdon-Ismail (2013), Summa et al.

(2014), which shows that unless P=NP, it is impossible to approximate MESP within an additive

error s log(c) for some constant c > 1. This paper proposes a di↵erent sampling algorithm from the
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one in Nikolov (2015) and improves its approximation bound. We also analyze the well-known local

search algorithm and derive its first-known approximation guarantee. Both proposed algorithms

yield better approximation bound than the greedy algorithm studied in Çivril and Magdon-Ismail

(2009). Table 1 summarizes the existing approximation bounds in literature and our proposed ones

for MESP (1). Note that approximation Bound is defined as the di↵erence between the optimal

value and the output value returned by an algorithm.

Table 1 Summary of Approximation Algorithms for MESP

Approximation Algorithm Approximation Bound

Literature
Greedy (Çivril and Magdon-Ismail 2009) 2 log(s!)

Samping (Nikolov 2015) s log(s)� log(s!)

This paper
Sampling Algorithm 2 s log(s)+ log(

�
n
s

�
)� s log(n)

Local Search Algorithm 4 smin{log(s), log(n� s+2�n/s)}

1.2. Summary of Contributions

The objective of this paper is to develop a new convex integer program for MESP (1), analyze

approximation algorithms, and develop their e�cient implementations. Below is a summary of our

main contributions:

(i) Through the Lagrangian dual of MESP (1) and its primal characterization, we derive a convex

integer program for MESP (1) and show that its continuous relaxation solution is near-

optimal. In addition, we apply the e�cient Frank-Wolfe algorithm to solving the continuous

relaxation and derive its rate of convergence.

(ii) The continuous relaxation of the proposed convex integer program inspires us a sampling

algorithm and develop its approximation bound for MESP (1), which improves the best-

known bound in literature. We then provide an e�cient deterministic implementation of the

proposed sampling algorithm with the same approximation bound.

(iii) Using the weak duality between the proposed convex integer program and its Lagrangian

dual, we investigate the widely-used local search algorithm and prove its first-known approxi-

mation bound for MESP (1). The proof techniques further motivate us to develop an e�cient

implementation of the local search algorithm.

(iv) Our numerical experiments demonstrate that these approximation algorithms can e�ciently

solve medium-sized and large-scale instances to near-optimality.
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(v) Finally, we extend the analyses to the A-Optimal MESP (A-MESP), where its objective is

to minimize the trace of the inverse of the selected principal submatrix. We propose a new

convex integer program for A-MESP, study volume sampling and local search algorithms,

and prove their approximation ratios.

Organization: The remainder of the paper is organized as follows. Section 2 derives an equivalent

convex integer program for MESP. Section 3 develops the sampling algorithm and its deterministic

implementation and also explores their approximation guarantees for MESP. Section 4 investigates

the local search algorithm and proves its approximation guarantee for MESP. Section 5 conducts

a numerical study to demonstrate the e�ciency and the solution quality of our proposed approxi-

mation algorithms. Section 6 extends the analyses to A-MESP. Section 7 concludes the paper.

Notation: The following notation is used throughout this paper. We use bold lower-case letters

(e.g., x) and bold upper-case letters (e.g., X) to denote vectors and matrices, respectively, and use

corresponding non-bold letters (e.g., xi) to denote their components. We use 0 to denote the zero

vector. We let Rn
+ denote the set of all the n dimensional nonnegative vectors and let Rn

++ denote

the set of all the n dimensional positive vectors. Given an integer n, we let [n] := {1,2, · · · , n} and

let [s,n] := {s, s+1, · · · , n}. We let In denote the n⇥ n identity matrix and let ei denote its i-th

column. Given a set S and an integer k, we let |S| denote its cardinality and let
�
S
k

�
denote the

collection of all the size-k subsets out of S. Given an m⇥n matrix A and two sets S 2 [m], T 2 [n],

we let AS,T denote a submatrix of A with rows and columns indexed by sets S,T , respectively,

let AS denote a submatrix of A with columns from the set S, and let col(A) denote its column

space. Given a vector x 2Rn, we let Diag(x) denote the diagonal matrix with diagonal elements

x1, · · · , xn, and let supp(x) denote the support of x. Given a symmetric matrix A, let diag(A)

denote the vector of diagonal entries of A, let A† denote its pseudo inverse, let det(A) denote its

determinant, let tr(A) denote its trace, and let �min(A),�max(A) denote the smallest and largest

eigenvalues of A, respectively. Given a convex set D, we use relint(D) to denote its relative interior.

Additional notation will be introduced later as needed.

2. Convex Integer Programming Formulation

In this section, we derive the Lagrangian dual (LD) of MESP (1) and its primal characterization

(PC), where the latter inspires us a new convex integer programming formulation of MESP (1) by

enforcing its variables to be binary.

2.1. Mixed Integer Nonlinear Program of MESP

To begin with, we first observe that MESP (1) has an equivalent mixed integer nonlinear pro-

gramming formulation using the Cholesky factorization. To do so, for matrix C ⌫ 0, let C =V >V
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denote its Cholesky factorization, where V 2Rd⇥n and let vi 2Rd denote the i-th column vector

of matrix V for each i 2 [n]. Also, let us define the following two functions, which correspond to

the objective function of an alternative reformulation of MESP (1), and the objective function of

its Lagrangian dual.

Definition 1 For a d⇥ d matrix X ⌫ 0 of its eigenvalues �1 � · · ·� �d � 0, we define

(i)
s

det(X) :=
Q

i2[s] �i,

(ii) det
s
(X) :=

Q
i2[d�s+1,d] �i.

Note that for any matrix X,
s

det(X) denotes the product of the s largest eigenvalues and det
s
(X)

denotes the product of the s smallest eigenvalues. In fact, the following observation shows that the

objective function of MESP (1) can be represented by the function
s

det(·)

Observation 1 det (CS,S) =
s

det
�P

i2S viv>
i

�
.

Proof. Note that CS,S = V >
S VS. Suppose matrix V >

S VS has eigenvalues �1 � · · ·� �s � 0, which

correspond to the s largest eigenvalues of VSV >
S . Therefore, we must have

det (CS,S) = det
�
V >

S VS

�
=
Y

i2[s]

�i =
s

det
�
VSV

>
S

�
=

s

det

✓X

i2S

viv
>
i

◆
.

⇤
Let us introduce the binary variables x 2 {0,1}n where for each i 2 [n], xi = 1 if the i-th col-

umn vector vi is chosen, and 0 otherwise. Then according to Observation 1, MESP (1) can be

reformulated as

(MESP) z
⇤ :=max

x

(
log

s

det

✓X

i2[n]

xiviv
>
i

◆
:
X

i2[n]

xi = s,x2 {0,1}n
)
. (2)

Note that in this paper, we assume s d n. However, it is worth mentioning that when d

s n, MESP becomes the well-known D-Optimal design problem, a classic problem in statistics

(de Aguiar et al. 1995, Pukelsheim 2006).

The following proposition summarizes the properties of the objective function in MESP (2).

Proposition 1 The objective function of MESP (2) is (i) discrete-submodular, (ii) non-

monotonic, (iii) neither concave nor convex, and (iv) not always nonnegative.

Proof. See Appendix A.1. ⇤
The non-monotonicity and possible-negativity of the objective function in (2) imply that the

existing approximation results for maximizing monotonic or nonnegative submodular problems

(Charikar et al. 2000, Sharma et al. 2015) are not directly applicable to MESP. The non-concavity

motivates us to explore a new equivalent convex integer program of MESP.
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2.2. Lagrangian Dual (LD) of MESP

In this subsection, we develop the Lagrangian dual (LD) of MESP (2). First, let us introduce an

auxiliary matrix X 2Rd⇥d and reformulate MESP (2) as

(MESP) z
⇤ := max

x,X⌫0

(
log

s

det(X) :
X

i2[n]

xiviv
>
i ⌫X,

X

i2[n]

xi = s,x2 {0,1}n
)
. (3)

By dualizing the constraint
P

i2[n] xiviv>
i ⌫X, we can obtain the LD of MESP (3). Before deriving

the LD formulation, we would like to establish the convex conjugate of the objective function in

MESP (3).

Lemma 1 For a d⇥ d matrix ⇤� 0, we have

max
X⌫0

⇢
log

s

det(X)� tr(X⇤)

�
=� log det

s
(⇤)� s, (4)

where function det
s
(·) is defined in Definition 1.

Proof. See Appendix A.2. ⇤
Using the result in Lemma 1, we are able to show the Lagrangian dual formulation of MESP.

Theorem 1 The optimization problem below is the Lagrangian dual of MESP (3)

(LD) z
LD := min

⇤⌫0,⌫,µ2Rn
+

⇢
� log det

s
(⇤)+ s⌫+

X

i2[n]

µi � s : ⌫+µi � v>
i ⇤vi,8i2 [n]

�
, (5)

and its optimal value provides an upper bound of MESP, i.e., zLD
� z

⇤.

Proof. We let ⇤� 0 denote the Lagrange multiplier associated with the constraint
P

i2[n] xiviv>
i ⌫

X in MESP (3). Thus, the resulting dual problem is

z
LD :=min

⇤�0

(
max
x,X⌫0

⇢
log

s

det (X)� tr(X⇤)+
X

i2[n]

xiv
>
i ⇤vi :

X

i2[n]

xi = s,x2 {0,1}n
�)

. (6)

Note that the inner maximization problem above can be separated into two parts: (i) maximization

over X and (ii) maximization over x.

(i) For the maximization over X, applying the identity in Lemma 1, we have

max
X⌫0

⇢
log

s

det (X)� tr(X⇤)

�
=� log det

s
(⇤)� s.

(ii) For the maximization over x, it is known that optimizing a linear function over a cardinality

constraint is equivalent to its continuous relaxation, which leads to that

max
x

⇢X

i2[n]

xiv
>
i ⇤vi :

X

i2[n]

xi = s,x2 {0,1}n
�
= min

⌫,µ2Rn
+

⇢
s⌫+

X

i2[n]

µi : ⌫+µi � v>
i ⇤vi,8i2 [n]

�
,

where the right-hand side is the dual of the continuous relaxation of the left-hand side.
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Plugging the above results (i.e., Parts (i) and (ii)) into the dual problem (6) and combining the

minimization problems over (⇤,⌫,µ) together, we arrive at (5).

Further, the inequality z
⇤
 z

LD holds due to the weak duality. ⇤

2.3. Primal Characterization (PC) of LD and Convex Integer Program of MESP

In this subsection, we show the primal characterization (PC) of LD (5), which inspires us an

equivalent convex integer program of MESP (2).

According to the standard result (see, e.g., Bertsekas 1982, Lemaréchal and Renaud 2001) on a

primal characterization of the Lagrangian dual, we have

(PC) z
LD := max

w,x,X�0

(
w :
X

i2[n]

xiviv
>
i ⌫X,

(w,x,X)2 conv

⇢
(w,x,X) :w log

s

det(X),
X

i2[n]

xi = s,x2 {0,1}n
�)

.

In general, the convex hull is di�cult to obtain, and thus alternatively, we derive the primal

characterization through the dual formulation of LD (5).

The primal characterization relies on the following results. First, for any given � 2 Rd, let us

define a unique integer k based on its sorted elements as below.

Lemma 2 (lemma 14, Nikolov 2015) Given a vector � 2 Rd with its elements sorted by

�1 � · · · � �d and an integer s 2 [d], there exists a unique integer 0  k < s such that �k >

1
s�k

P
i2[k+1,d] �i � �k+1, where by convention �0 =1.

Throughout this paper, we use k to denote the unique integer in Lemma 2. Next, we define the

objective function of the primal characterization below, which can be also found in Nikolov (2015).

Definition 2 For a d⇥ d matrix X ⌫ 0 with its eigenvalues �1 � · · ·� �d � 0, let us denote

�s(X) := log

✓Y

i2[k]

�i

◆
+(s� k) log

✓
1

s� k

X

i2[k+1,d]

�i

◆
,

where the unique integer k is defined in Lemma 2.

We are now ready to derive the convex conjugate of the objective function in LD (5).

Lemma 3 Given a d⇥ d matrix X ⌫ 0 with rank r 2 [s, d], suppose that the eigenvalues of X are

�1 � · · ·� �r > �r+1 = · · ·= �d = 0 and X =QDiag(�)Q> with an orthonormal matrix Q. Then

(i)

min
⇤�0

n
� log det

s
(⇤)+ tr(X⇤)

o
= min

�2Rd
+,

0<�1···�d

(
�

X

i2[s]

log(�i)+
X

i2[d]

�i�i

)
, (7)
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(ii)

min
�2Rd

+,
0<�1···�d

(
�

X

i2[s]

log(�i)+
X

i2[d]

�i�i

)
= �s(X)+ s. (8)

Proof. See Appendix A.3. ⇤
With the convex conjugate of the objective function in LD (5), using the Lagrangian dual method,

we are able to derive its dual problem and also show the primal characterization below.

Theorem 2 LD (5) has the following primal characterization, i.e.,

(PC) z
LD :=max

x

(
�s

✓X

i2[n]

xiviv
>
i

◆
:
X

i2[n]

xi = s,x2 [0,1]n
)
, (9)

where function �s(·) can be found in Definition 2.

Proof. In LD (5), let us introduce Lagrangian multiplies x associated with the constraints. Since

z
LD

� z
⇤ and the constraint system of LD (5) satisfies the relaxed Slater condition, according to

theorem 3.2.2 in Ben-Tal and Nemirovski (2012), the strong duality holds, i.e.,

z
LD := max

x2Rn
+

(
min

⇤�0,⌫,µ2Rn
+

⇢
� log det

s
(⇤)+ s⌫+

X

i2[n]

µi � s+
X

i2[n]

xi(v
>
i ⇤vi � ⌫�µi)

�)
.

The inner minimization above can be separated into two parts: (i) minimization over ⇤ and (ii)

minimization over (⌫,µ), which are discussed below.

(i) Let X =
P

i2[n] xiviv>
i . For the minimization over ⇤, applying the identities (7) and (8) in

Lemma 3 and using the fact that
P

i2[n] xiv>
i ⇤vi = tr(X⇤), we have

min
⇤�0

n
� log det

s
(⇤)+ tr(X⇤)

o
� s= �s(X).

(ii) For the minimization over (⌫,µ), we have

min
⌫,µ2Rn

+

⇢
s⌫+

X

i2[n]

µi +
X

i2[n]

xi(�⌫�µi)

�
=

(
0, if

P
i2[n] xi = s,xi  1,8i2 [n];

�1, otherwise.
.

Putting the above two pieces together, we arrive at (9). ⇤
We remark that PC (9) has the same objective function as another convex relaxation proposed

by Nikolov (2015), but we distinguish our formulation from Nikolov (2015)’s in the following three

aspects: (i) We derive the primal characterization from a Lagrangian dual perspective, which is

also applicable to the A-Optimality (see Section 6) and enables us to derive supdi↵erentials of the

objective function; (ii) Our PC (9) can be stronger than the one in Nikolov (2015) due to the extra
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constraints xi  1 for each i2 [n]; and (iii) LD (5) and PC (9) together are critical to the analysis

of the local search algorithm in Section 4.

The PC (9) is a concave maximization problem and is e�ciently solvable. In the next subsec-

tion, we introduce the Frank-Wolfe algorithm to solve it. However, according to Definition 2, the

objective function �s(·) might not be di↵erentiable. Fortunately, the following result shows how to

derive its supdi↵erentials.

Proposition 2 Given a d⇥ d matrix X ⌫ 0 with rank r 2 [s, d], suppose that its eigenvalues are

�1 � · · · � �r > �r+1 = · · ·= �d = 0 and X =QDiag(�)Q> with an orthonormal matrix Q. Then

the supdi↵erential of the function �s(·) at X that is denoted by @�s(X) is

@�s(X) =

(
QDiag(�)Q> :X =QDiag(�)Q>

,Q is orthonormal,�1 � · · ·� �d,

� 2 conv

⇢
� : �i =

1

�i
,8i2 [k],�i =

s� kP
i2[k+1,d] �i

,8i2 [k+1, r],�i � �r,8i2 [r+1, d]

�)
,

where the unique integer k follows from Lemma 2. Note that the function �s(·) is di↵erentiable

whenever X is a positive-definite matrix and the unique supgradient becomes the gradient.

Proof. First, let us define a function �s(·) as below

�s(�) := min
�2Rd

+,
0<�1···�d

(
�

X

i2[s]

log(�i)+
X

i2[d]

�i�i

)
= �s(X)+ s, (10)

where the equation stems from the identity (8) in Lemma 3.

Since function �s(X) is invariant under all the permutations of its eigenvalues, according to

corollary 2.5 in Lewis (1995), we have that

@�s(X) =
�
QDiag(�)Q> :X =QDiag(�)Q>

,Q is orthonormal,� 2 @�s(�)
 
.

Further, by corollary 23.5.3 in Rockafellar (1970), the supdi↵erential of the concave function

�s(�) is the convex hull of all the optimal solutions �⇤ of the minimization problem in (10). From

the proof of Lemma 3, any optimal solution �⇤ satisfies

�
⇤
i =

1

�i
,8i2 [k],�⇤

i =
s� kP

i2[k+1,d] �i
,8i2 [k+1, r],�⇤

i � �
⇤
r ,8i2 [r+1, d].

Hence, the supdi↵erential of function �s(�) at � is

@�s(�) = conv

⇢
� : �i =

1

�i
,8i2 [k],�i =

s� kP
i2[k+1,d] �i

,8i2 [k+1, r],�i � �r,8i2 [r+1, d]

�
.

This completes the proof. ⇤
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As a side product of PC (9), we observe that if we enforce its variables x to be binary, we can

arrive at an equivalent convex integer program for MESP.

Theorem 3 MESP can be formulated as the following convex integer program

(MESP) z
⇤ :=max

x

(
�s

✓X

i2[n]

xiviv
>
i

◆
:
X

i2[n]

xi = s,x2 {0,1}n
)
. (11)

Proof. See Appendix A.4. ⇤
We close this subsection by showing that under three special cases, the optimal value of PC (9)

is equal to that of MESP, i.e., zLD = z
⇤.

Proposition 3 The optimal value of PC (9) is equal to z
⇤, i.e., zLD = z

⇤ provided the following

three special cases: (i) C is diagonal; (ii) s= 1; and (iii) s= n.

Proof. See Appendix A.5. ⇤
The results above demonstrate that the optimal value of the proposed PC (9) can be close to

that of MESP. We further numerically verify this property of PC (9) in Section 5.

3. Frank-Wolfe Algorithm, Sampling Algorithm, and its Deterministic

Implementation

In this section, we apply the Frank-Wolfe algorithm to solving PC (9) and derive its convergence

rate. We also study a randomized sampling algorithm for MESP and prove its approximation

bound, which admits a deterministic implementation with the same performance guarantee.

3.1. Solving PC (9) using Frank-Wolfe Algorithm

In this subsection, we investigate the Frank-Wolfe algorithm for solving PC (9). We define a feasible

solution bx to be an ↵-optimal solution to PC (9) if the inequality �s(
P

i2[n] bxiviv>
i )� z

LD
�↵ with

↵ 2 (0,1). Given a target accuracy ↵, our proposed Frank-Wolfe algorithm returns an ↵-optimal

solution to PC (9).

The proposed Frank-Wolfe algorithm proceeds as follows. We denote PC (9) to be the primal

problem and LD (5) to be the dual problem. At each iteration t, we set the step size ✏t :=
2

t+2
.

For the current feasible primal solution xt, we let Xt =
P

i2[n] x
t
iviv>

i and then compute the

eigendecomposition of matrix Xt with eigenvalues �1 � · · ·� �d and an orthonormal matrix Q such

that Xt =QDiag(�)Q>. Next, we compute the integer k according to Lemma 2 and construct a

new vector �t
2Rd

+ as

�
t
i =

1

�i
,8i2 [k],�t

i =
s� kP

i2[k+1,d] �i
,8i2 [k+1, d].
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Thus, let us denote the dual variable by ⇤
t =QDiag(�t)Q>, which is also a supgradient of function

�s(·) at Xt according to Proposition 2. Then we obtain the other two dual variables (⌫t
,µt) of LD

(5) by solving the following minimization problem with a closed-form optimal solution:

(⌫t
,µt) := argmin

⌫,µ2Rn
+

⇢
s⌫+

X

i2[n]

µi � s : ⌫+µi � v>
i ⇤

tvi,8i2 [n]

�
,

i.e., suppose that � is a permutation of [n] such that v>
�(1)⇤

tv�(1) � · · ·� v>
�(n)⇤

tv�(n), then

⌫
t = v>

�(s)⇤
tv�(s), µ

t
�(i) =

(
v>
�(i)⇤

tv�(i) �v>
�(s)⇤

tv�(s), 8i2 [s];

0, 8i2 [s+1, n].
.

According to Lemma 3, the construction of ⇤
t implies that �s(Xt) = � log det

s
(⇤t). Thus, the

duality gap at current iteration only relies on s⌫
t+
P

i2[n] µ
t
i�s.We check if the smallest duality gap

is less than the threshold ↵ or not. If “Yes”, then we terminate the algorithm. Otherwise, we keep on

running the algorithm by: (i) deriving the supgradient of PC (9) at the current solution xt, which

is gt := (v>
1 ⇤

tv1, · · · ,v>
n⇤

tvn)>; (ii) computing the incumbent solution bxt := argmaxx{(g
t)>x :

P
i2[n] xi = s,x2 [0,1]n}, i.e.,

bxt
�(i) =

(
1, 8i2 [s];

0, 8i2 [s+1, n].
;

and (iii) updating the solution xt+1 := ✏tbxt+(1� ✏t)xt. The detailed implementation can be found

in Algorithm 1.

Compared to the other first-order methods, the Frank-Wolfe Algorithm 1 is known to deliver a

sparse incumbent solution at each iteration (Freund and Grigas 2016), which allows us to study

the size of the support of its output. To begin with, let us introduce the following key lemma.

Lemma 4 Suppose that for any size-s subset S ✓ [n], the columns {vi}i2S are linearly independent.

Let D := {x2Rn :
P

i2[n] xi = s,x2 [0,1]n}. Then for any x2 relint(D), we have

r
2�s

✓X

i2[n]

xiviv
>
i

◆
⌫�

�
2
max(C)

�2
In, (12)

where the constant � :=minS✓[n],|S|=s �min(CS,S).

Proof. See Appendix A.6. ⇤
In Lemma 4, the constant � should be positive, which is a mild assumption and could be easily

satisfied due to the fact s  d. Besides, this assumption (i.e., � > 0) is only useful to prove the

convergence rate of Frank-Wolfe Algorithm 1. Therefore, even when � = 0, the proposed Frank-

Wolfe Algorithm 1 would still work and our analyses of the proposed approximation algorithms

would still follow. In practice, when running the Frank-Wolfe Algorithm 1, one may want to add
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Algorithm 1 Frank-Wolfe Algorithm

1: Input: n⇥n matrix C ⌫ 0 of rank d, integer s2 [d], and target accuracy ↵2 (0,1)

2: Let C =V >V denote its Cholesky factorization where V 2Rd⇥n

3: Let vi 2Rd denote the i-th column vector of V for each i2 [n]

4: Initialize a feasible solution x0 of PC (9), the number of steps t= 0, and the duality gap �=1

5: do

6: Let ✏t :=
2

t+2

7: Let Xt =
P

i2[n] x
t
iviv>

i with eigenvalues �1 � · · ·� �d and compute Xt =QDiag(�t)Q>

8: Compute k according to Lemma 2

9: Compute the new vector �: �t
i =

1
�i

for each i2 [k] and s�kP
i2[k+1,d] �i

, otherwise

10: Let ⇤t =QDiag(�)Q>

11: Let � be a permutation of [n] such that v>
�(1)⇤

tv�(1) � · · ·� v>
�(n)⇤

tv�(n)

12: Let ⌫t = v>
�(s)⇤

tv�(s), µ
t
�(i) = v>

�(i)⇤
tv�(i) � ⌫

t for each i2 [s] and 0, otherwise

13: Let bxt
�(i) = 1 for all i2 [s] and 0, otherwise

14: Update xt+1 := ✏tbxt +(1� ✏t)xt, � :=min{�, s⌫
t +
P

i2[n] µ
t
i � s} and t := t+1

15: while �� ↵

16: Output: xt

a small perturbation (e.g., ✏In with a small but positive ✏) to the covariance matrix C to remedy

the singularity. The inequality in Lemma 4 implies that the Hessian of the objective function �s(·)

of PC (9) is lower bounded. Based upon this result, we are able to derive the rate of convergence

of the proposed Frank-Wolfe Algorithm 1.

Theorem 4 Let bx denote the output of Frank-Wolfe Algorithm 1. Suppose that for any subset

S ✓ [n] with |S|= s, the columns {vi}i2S are linearly independent, and bx is an ↵-optimal solution

of PC (9) for some ↵2 (0,1). Then

(i) The number of iterations is bounded by t 4↵�1
Lmin{s,n� s}, where L := �

�2
�
2
max(C),

(ii) The size of support of bx satisfies | supp(bx)| 4↵�1
Lsmin{s,n� s}.

Proof. Part (i). Let D := {x :
P

i2[n] xi = s,x2 [0,1]n}. Since �s(·) is continuous in D, thus

z
LD :=max

x2D

(
�s

✓X

i2[n]

xiviv
>
i

◆)
:=� inf

x2relint(D)

(
��s

✓X

i2[n]

xiviv
>
i

◆)
.

Thus, it is equivalent to analyzing the Frank-Wolfe Algorithm 1 on solving the right-hand side

problem. The inequality (12) in Lemma 4 indicates that for any x 2 relint(D), the largest eigen-

value of the Hessian of the convex function ��s(
P

i2[n] xiviv>
i ) is bounded by L. Therefore, the
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smoothness coe�cient of ��s(
P

i2[n] xiviv>
i ) in relint(D) is at most L. Given the L-smoothness,

for Frank-Wolfe Algorithm 1, after iteration t, Pedregosa et al. (2018)[theorem 2] showed that the

duality gap is bounded by

2 supx,y2relint(D) kx�yk22L

t+1
=

4Lmin{s,n� s}

t+1
.

Given the target of the duality gap to be ↵, it follows that

t 4↵�1
Lmin{s,n� s}.

Part (ii). Since each iteration of Algorithm 1 increases at most s nonzero entries for the current

solution, the size of the support of the output solution bx is bounded by

| supp(bx)| st 4↵�1
Lsmin{s,n� s}.

⇤

3.2. Sampling Algorithm

In this subsection, we introduce and analyze a randomized sampling algorithm for MESP. Given

an ↵-optimal solution bx of PC (9) with ↵ 2 (0,1), our proposed sampling algorithm is to sample

a size-s subset S ✓ [n] with probability

P[S̃ = S] :=

Q
i2S bxiP

S̄2([n]
s )
Q

i2S̄ bxi
. (13)

The detailed implementation can be found in Algorithm 2. This sampling procedure is similar to

algorithm 1 in Singh and Xie (2018), which has been proved to be computationally e�cient with

running time complexity O(n logn). The following result helps establish a relationship between the

expected objective value using our sampling procedure and the optimal value of PC (9).

Lemma 5 Given an n⇥ n matrix X ⌫ 0 of rank d such that X = V >V with V 2 Rd⇥n and a

vector bx2Rn
+, then we have

X

S2([n]
s )

Y

i2S

bxi

s

det(VSV
>
S )� exp


�s

✓X

i2[n]

bxiviv
>
i

◆�
.

Proof. The proof follows from theorem 18 in Nikolov (2015) and is thus omitted here. ⇤
Now we are ready to show the approximation bound of the proposed sampling Algorithm 2.

Theorem 5 Given an ↵-optimal solution bx of PC (9) with ↵ 2 (0,1), the random set generated

by the sampling Algorithm 2 returns a (s log(s)+ log(
�
n
s

�
)� s log(n)+↵)-approximation bound for

MESP (2), i.e., suppose the output of Algorithm 2 is the random set S̃, then

logE


s

det

✓X

i2S̃

viv
>
i

◆�
� z

⇤
� s log(s)� log

✓✓
n

s

◆◆
+ s log(n)�↵.
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Algorithm 2 E�cient Implementation of Sampling Procedure (13)

1: Input: n⇥n matrix C ⌫ 0 of rank d and integer s2 [d]

2: Let bx be an ↵-optimal solution of PC (9) with ↵2 (0,1)

3: Initialize chosen set S̃ = ; and unchosen set T = ;

4: Two factors: A1 =
P

S2([n]
s )
Q

i2S bxi,A2 = 0

5: for j = 1, · · · , n do

6: Let A2 =
P

S2([n]\(S̃[T )

s�1�|S̃| )

Q
⌧2S bx⌧

7: Sample a (0,1) uniform random variable U

8: if bxjA2/A1 �U then

9: Add j to set S̃

10: A1 =A2

11: else

12: Add j to set T

13: A1 =A1 � bxjA2

14: end if

15: end for

16: Output: S̃

Proof. Given the random set S̃ and its sampling probability (13), the expected exponential of the

objective value of MESP (2) is equal to

E


s

det

✓X

i2S̃

viv
>
i

◆�
=
X

S2([n]
s )

P[S̃ = S]
s

det(VSV
>
S ) =

X

S2([n]
s )

Q
i2S bxiP

S̄2([n]
s )
Q

i2S̄ bxi

s

det(VSV
>
S )

�

exp


�s

✓P
i2[n] bxiviv>

i

◆�

P
S̄2([n]

s )
Q

i2S̄ bxi
�

✓⇣
s

n

⌘s
✓
n

s

◆◆�1

exp


�s

✓X

i2[n]

bxiviv
>
i

◆�

�

✓⇣
s

n

⌘s
✓
n

s

◆◆�1

exp (z⇤ �↵) ,

where the first inequality is due to Lemma 5, the second one is from Maclaurin’s inequality (Lin and

Trudinger 1994), and the last one is due to the ↵-optimality of the solution bx and the weak duality

z
LD

� z
⇤. The conclusion follows by taking logarithm on both sides of the above inequalities. ⇤

We make the following remarks about the result in Theorem 5.

(i) This approximation bound of sampling Algorithm 2 improves the one studied in Nikolov

(2015) using a di↵erent sampling scheme, where the existing approximation bound is

log (ss/s!) +↵ (see Figure 1 for illustrations). To show this fact, it su�ces to prove that
✓⇣

s

n

⌘s
✓
n

s

◆◆�1

�
s!

ss
,
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i.e.,

✓⇣
s

n

⌘s
✓
n

s

◆◆�1
s
s

s!
=

n
s

n · · · (n� s+1)
� 1,

where the inequality relies on the fact that n� n� j+1 for each j 2 [s].

(a) n=100 (b) n=1000

Figure 1 Approximation bounds comparison of our sampling Algorithm 2 and Nikolov (2015) with ↵= 0.

(ii) The approximation bound attains zero when s= 1 and s= n.

(iii) The proof in Theorem 5 indicates that the approximation bound depends on the sparsity of

the ↵-optimal solution bx to PC (9). Indeed, if we consider the sampling probability as

P[S̃ = S] =

Q
i2S bxiP

S̄2(supp(bx)
s )

Q
i2S̄ bxi

,

for any size-s subset S ✓ supp(bx). Then the approximation bound can be further improved

as (s log(s)+ log(
�bn
s

�
)� s log(bn)+↵), where bn= | supp(bx)|. This bound can be much smaller

than the one in Theorem 5 if bn⌧ n.

Another observation is that the optimal value of the continuous relaxation of MESP (11) (i.e., PC

(9)) is not too faraway from the optimal value z
⇤.

Corollary 1 The optimal value of PC (9) is bounded by z
⇤ + s log(s)+ log(

�
n
s

�
)� s log(n), i.e.

z
⇤
 z

LD
 z

⇤ + s log(s)+ log

✓✓
n

s

◆◆
� s log(n).

Proof. The proof follows from that in Theorem 5 by observing that z⇤ � logE[
s

det(
P

i2S̃ viv>
i )] and

↵ can be arbitrarily positive. ⇤
The following instance illustrates the tightness of our analysis for the sampling Algorithm 2.
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Proposition 4 Given the sampling probability in (13), there exists an instance such that

logE


s

det

✓X

i2S̃

viv
>
i

◆�
= z

⇤
� s log(s)� log

✓✓
n

s

◆◆
+ s log(n).

Proof. Let us consider the following example.

Example 1 Suppose that d = s,n = `s with some positive integer `, and vs⇥(t�1)+i = ei for all

(i, t)2 [s]⇥ [`].

Clearly, in Example 1, we have z
⇤ = z

LD = 0, and one optimal solution to PC (9) is bxi =
s
n
= 1

`
for

all i2 [n]. If we use bx as the input of the sampling Algorithm 2, then the expected exponential of

the output objective value is

E


s

det

✓X

i2S̃

viv
>
i

◆�
=
X

S2([n]
s )

Q
i2S bxiP

S̄2([n]
s )
Q

i2S̄ bxi

s

det

✓X

i2S

viv
>
i

◆
=

✓⇣
s

n

⌘s
✓
n

s

◆◆�1

exp(z⇤).

⇤

3.3. Deterministic Implementation

To overcome the issue of randomness from the sampling algorithms, it is common to derive their

corresponding polynomial-time deterministic implementation (Nikolov 2015, Singh and Xie 2020,

Nikolov et al. 2019). In this subsection, we also develop the deterministic implementation of the

proposed sampling Algorithm 2 with the same approximation bound, which is presented in Algo-

rithm 3. The key idea of derandomization is to apply the method of conditional expectation (Alon

and Spencer 2016), which requires an auxiliary function regarding the conditional expected value

of the function
s

det(·).

First, for notational convenience, let us introduce the elementary symmetric polynomials.

Definition 3 For any vector x2Rn and a positive integer `2 [n], we define the elementary sym-

metric polynomial of degree ` as

E`(x) :=
X

S2([n]
` )

Y

i2S

xi.

In the deterministic Algorithm 3, given an ↵-optimal solution to PC (9) and a subset T ✓ [n] such

that |T |= t s, according to the sampling probability (13), the conditional expected exponential

of the objective value of MESP is equal to

H(T ) =E


s

det

✓X

i2S̃

viv
>
i

◆
|T ✓ S̃

�
=
X

S2([n]
s )

P (S|T ✓ S)
s

det

✓X

i2S

viv
>
i

◆
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=
X

S2([n]
s )

I{T✓S}
Q

i2S\T bxiP

S̄2([n]
s )

I{T✓S̄}
Q

i2S̄\T bxi
det(CS,S) =

Es�|T |(�(T ))P

S̄2([n]
s )

I{T✓S̄}
Q

i2S̄\T bxi
det(CT,T ), (14)

where I(·) denotes the indicator function, �(T ) denotes the vector of eigenvalues of
�
C1/2V >(Id � (VTV >

T )†VTV >
T )V C1/2

�
[n]\T,[n]\T , and the last equality is according to theorem 19

in Nikolov (2015). Note that the denominator in (14) can be computed e�ciently according to

observation 1 in Singh and Xie (2020) with running time complexity O(n logn). The numerator

can be also computed e�ciently according to the remark after theorem 19 in Nikolov (2015), which

requires to compute the characteristic function of a matrix (e.g., Faddeev-LeVerrier algorithm in

Hou 1998) with time complexity O(n4).

Algorithm 3 proceeds as follows. We start with an empty subset S, then for each j /2 S, we

compute the the conditional expected exponential of the objective value of MESP, provided that the

j-th column vj will be chosen, i.e., H(S[{j}). We add j
⇤ to S, where j⇤ 2 argmaxj2[n]\S H(S[{j})

and then go to next iteration. This procedure terminates until |S|= s. Besides, Algorithm 3 requires

O(ns) evaluations of function H(·); hence, the corresponding time complexity is O(n5
s). Therefore,

we recommend Algorithm 2 due to its simplicity and shorter running time.

The performance guarantee for Algorithm 3 is identical to Theorem 5, as summarized below.

Algorithm 3 Deterministic Implementation

1: Input: n⇥n matrix C ⌫ 0 of rank d and integer s2 [d]

2: Let C =V >V denote its Cholesky factorization where V 2Rd⇥n

3: Let vi 2Rd denote the i-th column vector of matrix V for each i2 [n]

4: Let bx be an ↵-optimal solution bx of PC (9) with ↵2 (0,1)

5: Let set bS := ; denote the chosen set

6: for i= 1, · · · , s do

7: Let j⇤ 2 argmaxj2[n]\bS H(bS [ {j})

8: Add j
⇤ to the set bS

9: end for

10: Output: bS

Theorem 6 The deterministic Algorithm 3 yields the same approximation bound for MESP as

the sampling Algorithm 2 , i.e, suppose that the output of Algorithm 3 is bS, then

log
s

det

✓X

i2bS

viv
>
i

◆
� z

⇤
� s log(s)� log

✓✓
n

s

◆◆
+ s log(n)�↵.
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4. Local Search Algorithm and its Approximation Guarantees

In this section, we investigate the widely-used local search algorithm (see, e.g., Hazimeh and

Mazumder 2020, Madan et al. 2019) on solving MESP and prove its performance guarantee. The

local search algorithm runs as follows: (i) first, we initialize a size-s subset bS ✓ [n]; (ii) next, we

swap one element from the set bS with one from the unchosen set [n]\ bS, and we update the chosen

set if such a movement strictly increases the objective value; and (iii) the algorithm terminates

until no improvement can be found. The detailed implementation can be found in Algorithm 4.

Algorithm 4 Local Search Algorithm

1: Input: n⇥n matrix C ⌫ 0 of rank d and integer s2 [d]

2: Let C =V >V denote its Cholesky factorization where V 2Rd⇥n

3: Let vi 2Rd denote the i-th column vector of matrix V for each i2 [n]

4: Initial subset bS ✓ [n] of size s such that {vi}i2bS are linearly independent

5: do

6: for each pair (i, j)2 bS⇥ ([n] \ bS) do

7: if log
s

det
⇣P

`2bS[{j}\{i} v`v>
`

⌘
> log

s

det
�P

`2bS v`v>
`

�
then

8: Update bS := bS [ {j} \ {i}

9: end if

10: end for

11: while there is still an improvement

12: Output: bS

Let us first derive the following technical results on the rank-one update of singular matrices,

which are essential to the analysis of the local search Algorithm 4.

Lemma 6 Consider a size-⌧ subset bS ✓ [n] with ⌧ 2 [d] such that {vi}i2bS are linearly independent.

Let X =
P

i2bS viv>
i , and for each i 2 bS, let X�i =X � viv>

i . Then for each (i, j) 2 bS ⇥ ([n] \ bS),

we have the followings

(i)
⌧

det(X) =
⌧�1

det(X�i)v>
i (Id �X†

�iX�i)vi,

(ii)

8
<

:

⌧

det(X�i +vjv>
j ) =

⌧�1

det(X�i)v>
j (Id �X†

�iX�i)vj, if vj /2 col(X�i),
⌧�1

det(X�i +vjv>
j ) =

⌧�1

det(X�i)(1+v>
j X

†
�ivj), otherwise,

(iii) X† = X†
�i �

X†
�iviv

>
i (Id�X†

�iX�i)

k(Id�X†
�iX�i)vik22

�
(Id�X†

�iX�i)viv
>
i X†

�i

k(Id�X†
�iX�i)vik22

+

(1+v>
i X†

�ivi)(Id�X†
�iX�i)viv

>
i (Id�X†

�iX�i)

k(Id�X†
�iX�i)vik42

,

(iv) X†
�i =X†

�
X†viv

>
i X†X†

kX†vik22
�

X†X†viv
>
i X†

kX†vik22
+ v>

i (X†)3viX
†viv

>
i X†

kX†vik42
,
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(v) v>
i X

†vi = 1,

(vi) v>
i (Id �X†X) = 0,

(vii) v>
i (Id �X†

�iX�i)vi =
1

kX†vik22
,

(viii) v>
j (Id �X†

�iX�i)vj =

(
v>
j (Id �X†X)vj +

(v>
j X†vi)

2

kX†vik22
, if vj /2 col(X�i);

0, otherwise.
.

Proof. See Appendix A.7. ⇤
Lemma 6 helps establish the local optimality condition (i.e., stopping criterion) of the local

search Algorithm 4. That is, we first rewrite the local optimality condition as

log
s

det

✓ X

`2bS[{j}\{i}

v`v
>
`

◆
� log

s�1

det

✓ X

`2bS\{i}

v`v
>
`

◆
 log

s

det

✓X

`2bS

v`v
>
`

◆
� log

s�1

det

✓ X

`2bS\{i}

v`v
>
`

◆
,

for all i2 bS and j 2 [n] \ bS, and then use the results in Lemma 6 to simplify the both di↵erences.

Lemma 7 Let bS denote the output of the local search Algorithm 4 and let X =
P

i2bS viv>
i . Then

for each pair (i, j)2 bS⇥ ([n] \ bS), the following inequality holds

1�
�
v>
i X

†X†vi

�
v>
j (Id �X†X)vj +v>

j X
†viv

>
i X

†vj.

Proof. See Appendix A.8. ⇤

4.1. Analysis of Local Search Algorithm 4

Now we are ready to analyze the local search Algorithm 4. The main proof idea is two-fold: (i)

using the output of the local search Algorithm 4 and its local optimality condition in Lemma 7,

we construct a dual feasible solution to LD (5), and (ii) we show that the objective value of this

dual feasible solution can be bounded by z
⇤ with some extra constant.

Theorem 7 Let bS denote the output of the local search Algorithm 4, then the set bS yields a

smin{log(s), log(n� s�n/s+2)}-approximation bound for MESP (2), i.e.,

log
s

det

✓X

i2bS

viv
>
i

◆
� z

⇤
� smin

n
log(s), log

⇣
n� s�

n

s
+2
⌘o

.

Proof. See Appendix A.9. ⇤
We make the following remarks about Theorem 7.

(i) To the best of our knowledge, it is the first-known approximation bound of the local search

Algorithm 4 for MESP.

(ii) The approximation bound attains the maximum when s= n
2
and is equal to zero when s= 1

or s= n.
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(iii) The approximation bound is weaker than that of the sampling Algorithm 2 in Theorem 5 if

the continuous relaxation can be solved to optimality or very close to optimality. That is, if

↵! 0, then we have

s log(s)+ log

✓✓
n

s

◆◆
� s log(n) smin

n
log(s), log

⇣
n� s�

n

s
+2
⌘o

.

However, as we can see from the numerical study, the local search Algorithm 4 in practice is

more capable to find high-quality solutions than the sampling Theorem 5.

(iv) The proof also relies on the sparsity of the optimal solution to PC (9). In fact, if there exists a

sparse optimal solution x⇤ to PC (9) (i.e., | supp(x⇤)|⌧ n), then according to KKT conditions,

we can drop the redundant dual constraints v>
i ⇤vi  ⌫ + µi for each i 2 [n] \ supp(x⇤) in

LD (5). Therefore, following the same proof in Theorem 7, the approximation bound can be

further improved as smin{log(s), log(bn� s� bn/s+2)}, where bn= | supp(x⇤)|.

The following instance shows that the proof of Theorem 7 is tight. That is, the approximation

bound cannot be improved if we construct a feasible ⇤ to LD (5) as

⇤=
1

t

⇥
tr(X†)(Id �X†X)+X†⇤

, (15)

where for the output bS of the local search Algorithm 4, we let X =
P

i2bS viv>
i and let t > 0 be a

positive scaling factor.

Proposition 5 If one follows the construction of a feasible solution ⇤ in (15) to LD (5), then

even with the best choice of (⌫,µ), there exists an instance such that

� log det
s
(⇤)+ s⌫+

X

i2[n]

µi � s= z
⇤ + smin{log(s), log (n� s�n/s+2)} .

Proof. See Appendix A.10. ⇤
The above proposition shows the tightness of the analysis of Theorem 7. Thus, to improve the

analysis of the local search Algorithm 4, one might need di↵erent ways to construct dual feasible

solutions to LD (5). In fact, we show that under a certain assumption, the approximation bound

of the local search Algorithm 4 can be improved.

Proposition 6 Let bS denote the output of the local search Algorithm 4. Suppose that v>
i vj = 0 for

each pair (i, j)2 bS⇥ ([n] \ bS), then we have

log
s

det

✓X

i2bS

viv
>
i

◆
� z

⇤
� smin

⇢
log

✓
�max(C)

�

◆
, log

✓
�max(C)

s�
(n� s)�

n

s
+2

◆�
,

where the constant � is defined in Lemma 4.

Proof. See Appendix A.11. ⇤
Compared with the bound O(s log s) in Theorem 7, the approximation bound in Proposition 6

is O(s), which matches the order of the bound derived for the sampling Algorithm 2.
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4.2. E�cient Implementation of the Local Search Algorithm

In this subsection, we discuss how to e�ciently implement the local search Algorithm 4 using the

results in Lemma 6 and develop its corresponding time complexity.

Similar to many improving heuristics, the performance of the local search Algorithm 4 highly

depends on the choice of the initial subset. In practice, we employ the greedy approach to find

an initial solution. The greedy approach begins with an empty set bS = ;, then at each iteration,

we select one element from the unchosen set [n] \ bS that maximizes the marginal increment of the

objective value until |bS|= s. That is, at current iteration `2 [s], suppose that X =
P

i2bS viv>
i and

|bS|= `< s. Then by Part (ii) in Lemma 6, the next element that will be chosen is computed by

j
⇤
2 arg max

j2[n]\bS

✓
log

`+1

det(X +vjv
>
j )� log

`

det(X)

◆
= arg max

j2[n]\bS
v>
j (Id �XX†)vj.

The detailed implementation of the greedy approach can be found in Algorithm 5 at Steps 4-10.

Using the equation above and Part (iii) in Lemma 6, the greedy approach has a running time

complexity of O(s(n� s)d2). Furthermore, we show that the rank-one update techniques for the

singular matrices in Lemma 6 can also improve the implementation of the local search Algorithm 4.

One key component of the local search Algorithm 4 is the swapping procedure (i.e., Steps 6-9),

which might cause the running time to be exponential in the size of the input. To avoid this, we can

restrict the number of swapping iterations by simply introducing a small positive constant ✓ > 0

and replacing the condition at Step 8 of Algorithm 4 by

s

det

✓ X

`2bS[{j}\{i}

v`v
>
`

◆
> (1+ ✓)

s

det

✓X

`2bS

v`v
>
`

◆
.

Then, following from the similar arguments in Madan et al. (2019), the number of swapping iter-

ations is at most O(Ld3✓�1 log(s)), where L is the encoding length of the matrix V . Note that by

doing so, the approximation bound in Theorem 7 becomes smin{log(s(1+ ✓)), log((n� s)(1+ ✓)�

n/s+2)}.

On the other hand, we can use Parts (ii) and (iv) in Lemma 6 to complete the swapping and

use Part (iii) in Lemma 6 to update matrix X†. Hence, it takes O(s(n� s)d2) for each swapping.

Thus, the local search Algorithm 5 has a polynomial-time complexity of O(Ld3✓�1 log(s)s(n�s)d2).

These results are summarized below.

Corollary 2 The running time complexity of the local search Algorithm 5 is O(Ld3✓�1 log(s)s(n�

s)d2), where L denotes the encoding length of the matrix V . In addition, the local search Algorithm

5 yields a smin{log(s(1+ ✓)), log((n� s)(1+ ✓)�n/s+2)}-approximation bound for MESP.
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Algorithm 5 E�cient Implementation of Local Search Algorithm 4 Initialized by Greedy Solution

1: Input: n⇥n matrix C ⌫ 0 of rank d and integer s2 [d]

2: Let C =V >V denote its Cholesky factorization where V 2Rd⇥n

3: Let vi 2Rd denote the i-th column vector of matrix V for each i2 [n]

(a) Greedy Selection

4: Let set bS := ; denote the chosen set, X := ; and X† := ;

5: for `= 1, · · · , s do

6: Let j⇤ 2 argmaxj2[n]\bS v
>
j (Id �XX†)vj

7: Add j
⇤ to the set bS

8: UpdateX† :=X†
�

X†vj⇤v
>
j⇤ (Id�X†X)

k(Id�X†X)vj⇤k22
�

(Id�X†X)vj⇤v
>
j⇤X

†

k(Id�X†X)vj⇤k22
+

(1+v>
j⇤X

†vi)(Id�X†X)vj⇤v
>
j⇤ (Id�X†X)

k(Id�X†X)vj⇤k42
9: Update X :=X +vj⇤v>

j⇤

10: end for

(b) Swapping Procedure

11: Let ✓ denote a positive constant

12: do

13: for each i2 bS do

14: Compute X�i =X �viv>
i , X

†
�i =X†

�
X†viv

>
i X†X†

kX†vik22
�

X†X†viv
>
i X†

kX†vik22
+ v>

i (X†)3viX
†viv

>
i X†

kX†vik42
15: Let j⇤ 2 argmaxj2[n]\bS v

>
j (Id �X�iX

†
�i)vj

16: if v>
j⇤(Id �X�iX

†
�i)vj⇤ > (1+ ✓)v>

i (Id �X�iX
†
�i)vi then

17: Update bS := bS[{j}\{i},X :=X�i+vj⇤v>
j⇤ andX† :=X†

�i�
X†

�ivj⇤v
>
j⇤ (Id�X†

�iX�i)

k(Id�X†
�iX�i)vj⇤k22

�

(Id�X†
�iX�i)vj⇤v

>
j⇤X

†
�i

k(Id�X†
�iX�i)vj⇤k22

+
(1+v>

j⇤X
†
�ivj⇤ )(Id�X†

�iX�i)vj⇤v
>
j⇤ (Id�X†

�iX�i)

k(Id�X†
�iX�i)vj⇤k42

;

18: end if

19: end for

20: while there is still an update

21: Output: bS

5. Numerical Illustrations

In this section, we present numerical experiments on two medium-sized instances in Ho↵man et al.

(2001) and Anstreicher (2020), which were provided by Prof. Anstreicher, and one large-scale

instance in Dey et al. (2022) to demonstrate the solution quality and computational e�ciency of

our proposed Frank-Wolfe Algorithm 1, sampling Algorithm 2, and local search Algorithm 4 for

solving MESP. All the algorithms are coded in Python 3.6 with calls to Gurobi 7.5 on a PC with 2.3

GHz Intel Core i5 processor and 8G of memory. The codes for these three algorithms are available

at https://github.com/yongchunli-13/Approximation-Algorithms-for-MESP.

https://github.com/yongchunli-13/Approximation-Algorithms-for-MESP
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5.1. Numerical Experiments on Two Medium-sized Instances

In this subsection, we test the proposed algorithms on two commonly-used benchmark instances of

MESP in literature and present their computational performance. In particular, the first instance

has a covariance matrix of size 90 ⇥ 90 built on a temperature monitoring problem introduced

in Anstreicher (2020), denoted by n = 90 instance, and the second one is based on a covariance

matrix of size 124⇥ 124 introduced by Ho↵man et al. (2001), denoted by n= 124 instance. Please

note that these two covariance matrices are non-singular, i.e., n = d. For the n = 90 instance,

we test 8 cases with s 2 {10,20, . . . ,80}, while for the n = 124 instance, we test 9 cases with

s2 {20,30, . . . ,100}. The computational results are displayed in Table 2 and Table 3, where we let

B&B, Frank-Wolfe, Sampling, Local Search, and Samp+LS denote the Branch and Bound

algorithm used in Anstreicher (2020), the Frank-Wolfe Algorithm 1, the sampling Algorithm 2, the

local search Algorithm 4, and the combination of sampling Algorithm 2 and local search Algorithm

4, respectively. We also use S-FW to denote the size of the support of the continuous relaxation

solution from the Frank-Wolfe Algorithm 1, use time to denote the total time in seconds of an

algorithm spent on a case, and use gap to denote the absolute optimality gaps of algorithms,

computed as the absolute di↵erence between the output value of an algorithm and the optimal

value or the best upper bound of MESP, where only if the optimal value is not available, we use the

upper bound to calculate the gap instead. Note that due to the randomness, we repeat the sampling

Algorithm 2 one thousand times for each case and choose the best output, and its running time

includes the time spent on the repetitions as well as that on running the Frank-Wolfe Algorithm

1. The column “Samp + LS” in Table 2 and Table 3, denotes the integrated sampling Algorithm 2

and local search Algorithm 4. Particularly, in the integrated algorithm, we consider one hundred

random solutions of sampling Algorithm 2 as the initial solutions of local search Algorithm 4 and

then output the best solution for each testing case.

Table 2 and Table 3 present the numerical results. From Table 2 and Table 3, we can see that it

can take more than two days to solve some cases to optimality using the B&B algorithm, indicating

that the optimal value of MESP is in general di�cult to obtain. Note that in the n= 124 instance,

the optimal value z
⇤ decreases when s increases from 80 to 100, which demonstrates that the

objective of MESP may not be monotonic with s. For both instances, the local search Algorithm 4

works quite well, where its absolute optimality gap is always within 0.096, and its running time

is less than a second. The sampling Algorithm 2 is often worse than the local search Algorithm 4

in terms of optimality gap and computational time. The proposed integrated algorithm is able to

find an optimal solution for each testing case, however, takes a longer time. It is seen that the

Frank-Wolfe Algorithm 1 is quite e↵ective, and its output can be indeed very sparse, especially

when s is small.
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Next, we compare two solution algorithms with the heuristic used in Anstreicher (2020) and

the results are illustrated in Figures 2(a) and 2(b). Clearly, the proposed local search Algorithm 4

performs the best among these methods. Finally, Figure 3 compares our Lagrangian dual bound

z
LD with the best linx bound found in Anstreicher (2020), where the latter has been shown to

be superior to the other existing upper bounds of MESP on these two instances. In general, these

two bounds are not comparable. We see that our dual bound outperforms the linx bound in some

cases, especially when s is small.

Table 2 Computational results of MESP on the n= 90 instance

n=90 B&B1 Frank-Wolfe Sampling Local Search Samp + LS

s z
⇤ time2 gap S-FW time gap time gap time gap time

10 58.532 2088 0.382 23 <1 0.011 18 0.000 <13 0.000 4

20 111.482 95976 0.645 42 <1 0.275 20 0.000 <1 0.000 9

30 161.539 167796 0.853 60 <1 0.655 20 0.000 <1 0.000 19

40 209.969 187344 0.961 80 <1 1.212 19 0.011 <1 0.000 44

50 257.160 87912 0.955 84 <1 1.424 19 0.006 <1 0.000 68

60 303.019 12420 0.893 87 <1 1.545 19 0.011 <1 0.000 88

70 347.471 1044 0.721 89 <1 1.610 19 0.018 <1 0.000 86

80 389.997 36 0.385 89 <1 0.995 19 0.000 <1 0.000 92
1 The optimal value and running time of B&B algorithm are from Anstreicher (2020)
2 Time is in seconds
3 The running time is less than a second

Table 3 Computational results of MESP on the n= 124 instance

n=124 B&B1 Frank-Wolfe Sampling Local Search Samp + LS

s z
⇤ time2 gap S-FW time gap time gap time gap time

20 77.827 756 0.510 40 1 0.101 35 0.001 <13 0.000 11

30 106.700 1692 1.285 60 2 0.857 37 0.000 <1 0.000 15

40 131.055 8712 2.246 80 3 2.067 39 0.000 <1 0.000 26

50 149.498 186516 3.857 98 5 3.667 44 0.000 <1 0.000 37

60 164.012 241236 4.910 106 6 6.057 41 0.096 <1 0.000 57

70 172.528 136548 5.493 115 5 6.712 41 0.000 <1 0.000 52

80 175.091 45756 5.529 122 4 7.193 40 0.000 <1 0.000 69

90 171.262 17352 5.790 124 3 10.837 43 0.000 <1 0.000 77

100 162.865 4140 4.891 124 3 7.273 39 0.000 <1 0.000 74
1 The optimal value and running time of B&B algorithm are from Anstreicher (2020)
2 Time is in seconds
3 The running time is less than a second
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(a) n=90 (b) n=124

Figure 2 Absolute optimality gap comparison of the sampling Algorithm 2, the local search Algorithm 4, and the

best heuristic in Anstreicher (2020).

(a) n=90 (b) n=124

Figure 3 Absolute optimality gap comparison of zLD
and the linx bound in Anstreicher (2020).

5.2. Numerical Experiments on a Large-scale Instance

In this subsection, we test the proposed algorithms on a large-scale instance with a 2000⇥ 2000

covariance matrix C based upon Reddit data from Dey et al. (2022). Note that for this instance,

the matrix C is singular, and its rank is equal to 949, i.e., d= 949<n= 2000. The computational

results are displayed in Table 3, where we use B&C to denote the branch and cut algorithm, use

UB to denote the best upper bound output from B&C algorithm, and use UB to compute the

absolute optimality gaps for the sampling Algorithm 2, the local search Algorithm 4, and their

combination. The lower bound of the B&C algorithm is always inferior to the one found by the

local search Algorithm 4 and is thus not reported.
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We make the following remarks of the implementation of B&C: (i) we use the warm start, i.e.,

we solve the continuous relaxation of MESP (11) using the cutting-plane method (i.e., at each

iteration, we add a supgradient inequality) and add all the cuts into the root node, (ii) if we

encounter a solution bx with support bS such that its corresponding columns {vi}i2bS are not linearly

independent, then the supgradient according to Proposition 2 is not well-defined, and thus we add

no-good cut to cut it o↵, which is in the form of 1
P

i2bS(1�xi)+
P

i2[n]\bS xi, and (iii) we set the

time limit to be 3,600 seconds.

In Table 4, it is expected that the B&C algorithm has di�culty in solving MESP to optimality;

however, it produces a better upper bound than z
LD. Note that in the sampling algorithm, we

only sample from the support of the output solution from the Frank-Wolfe Algorithm 1 for the

sake of computational e�ciency. For the proposed integrated “Samp + LS” algorithm in Table 4,

the running time is limited to be 3,600 seconds for each case. Since we use UB to compute the

optimality gaps of the approximation algorithms, their true optimality gaps can be even smaller.

We also observe that the solution output from the Frank-Wolfe Algorithm 1 is very sparse. The

computational time of the Frank-Wolfe Algorithm 1 is longer because at each iteration, one has to

compute the eigendecomposition in order to obtain the supgradient, which can be time-consuming.

It is seen that the local search Algorithm 4 outperforms the sampling Algorithm 2 and the inte-

grated algorithm in both time and solution quality. In particular, “-” in the last row of “Samp +

LS” column means infeasible output, i.e., the selected vectors by the integrated algorithm are lin-

early dependent with the output objective value being �1, which is possibly because the original

matrix is rank-deficient and the Frank-Wolfe Algorithm 1 selects many linearly dependent vectors.

Thus, we recommend using the vanilla local search Algorithm 4 to solve large-scale problems, with

more stable output and lower computational cost.

Table 4 Computational results of MESP on the n= 2000 instance

n=2000 B&C Frank-Wolfe Sampling Local Search Samp + LS

s UB time1 z
LD S-FW time gap time gap time gap time

20 102.939 3600 103.007 30 119 0.331 232 0.037 21 0.037 1506

40 185.327 3600 185.332 61 257 0.915 359 0.233 23 0.233 2852

60 256.584 3600 256.589 93 321 2.415 463 0.303 33 0.303 3600

80 320.812 3600 320.817 160 833 4.384 950 0.612 41 0.612 3600

100 380.298 3600 380.307 214 1466 9.570 1333 1.217 52 1.217 3600

120 436.336 3600 436.350 268 1935 18.478 1973 1.850 72 - 3600
1 Time is in seconds



Yongchun Li and Weijun Xie: Approximation Algorithms for the Maximum Entropy Sampling Problem
28

5.3. Stability of MESP

The MESP (1), selecting optimal s random observations out of n candidates, depends on the

knowledge of the covariance matrix C. When the true covariance matrix is not known, we propose

to use the sample covariance matrix whose accuracy is highly influenced by the sample size and noise

level. In this subsection, we test the stability of the MESP (1) using the sample covariance matrix

instead of the true one for the same benchmark instance as that in Table 3. Particularly, given the

true covariance matrix C (i.e., the one used in Table 3), we generate N i.i.d. samples following the

Gaussian distribution with the corrupted covariance matrix, i.e., N (0,C + !⌃), where ⌃ ⌫ 0 is

the corruption part of the covariance matrix and !� 0 is the corruption scalar. For the notational

convenience, let us denote the sample covariance matrix built on N i.i.d. samples as bC(N,!). Let

S
⇤
, bS(N,!) denote the optimal solutions of MESP (1) using C and bC(N,!), respectively. Let us

compute the false alarm rate of the optimal solution using the sample covariance as s�1
|S

⇤
\ bS(N,!)|

and its absolute gap of the optimal value as | log det (CS⇤,S⇤)� log det(( bC(N,!))bS(N,!),bS(N,!))|.

Figure 4 presents the 95% confidence intervals of false alarm rate and absolute gap for the case

with n= 124, s= 50, which are computed by repeating the sampling procedure one hundred times.

We see that as expected, the false alarm rate and absolute gap reduce to zero as sample size N

grows when there is no corruption (i.e., ! = 0), implying that the optimal solution and optimal

value of MESP (1) using the sample covariance are closer to the true optimal ones as sample size

increases. However, when there is a corruption (i.e., !> 0), the sample covariance matrix converges

to the corrupted covariance matrix, i.e., C + !⌃. Hence, its corresponding optimal solution and

optimal value are close to the corrupted ones instead of true optimality. Therefore, in Figure 4, it

is expected that the false alarm rate or absolute gap does not vanish to zero as the sample size

increases. Nevertheless, the obtained solutions based on the corrupted covariance matrix are still

quite close to the optimal one of the true MESP (1) as shown in Figure 4(a).

6. Extension to the A-Optimal MESP (A-MESP)

In the section, we extend the analyses to the A-Optimal MESP (A-MESP), which instead, mini-

mizes the trace of the inverse of matrix CS,S. The A-Optimality, as an alternative measurement of

information, has been widely used in the fields of experimental design (Madan et al. 2019, Nikolov

et al. 2019), subdata selection (Yao and Wang 2019), and sensor placement (Moreno-Salinas et al.

2013, Xu and Dogançay 2017). Formally, A-MESP is formulated as

(A-MESP) z
⇤
A :=min

S

�
tr
�
C�1

S,S

�
: S ✓ [n], |S|= s

 
. (16)

By default, if CS,S is singular, then tr
�
C�1

S,S

�
=1.
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(a) False alarm rate (b) Absolute gap of objective values

Figure 4 95% confidence intervals of false alarm rate and absolute gap for s= 50 case on n= 124 instance

6.1. Convex Integer Programming Formulation

This subsection derives an equivalent convex integer program for A-MESP (16).

First, we introduce the following three functions, corresponding to the objective function of

another exact formulation for A-MESP (16), the objective function of the Lagrangian dual, and

the objective function of the primal characterization, respectively.

Definition 4 For a d⇥ d matrix X ⌫ 0 of its eigenvalues �1 � · · ·� �d � 0, let us denote

(i)
s
tr(X†) :=

P
i2[s]

1
�i
,

(ii) tr
s
(X) :=

P
i2[d�s+1,d] �i,

(iii) �s(X) :=
P

i2[k]
1
�i
+(s� k) s�kP

i2[k+1,d] �i
, where the unique integer k is defined in Lemma 2.

Similar to Observation 1, it is straightforward to show that tr
�
C�1

S,S

�
=

s
tr[(
P

i2S viv>
i )

†]. Thus,

A-MESP (16) can be reformulated as

(A-MESP) z
⇤
A :=min

x

(
s
tr

✓X

i2[n]

xiviv
>
i

◆†�
:
X

i2[n]

xi = s,x2 {0,1}n
)
, (17)

which reduces to the conventional A-Optimal design problem (Madan et al. 2019, Nikolov et al.

2019) if d s n. The following proposition summarizes the properties of the objective function

of A-MESP (17).

Proposition 7 The objective function of A-MESP (17) is (i) monotonic non-decreasing, (ii) nei-

ther discrete-supermodular nor discrete-submodular, and (iii) neither convex nor concave.

Proof. See Appendix A.12. ⇤
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To derive an equivalent convex integer program, we introduce a matrix variable X 2Rd⇥d and

reformulate A-MESP (17) as

(A-MESP) z
⇤
A := min

x,X⌫0

(
s
tr(X†) :

X

i2[n]

xiviv
>
i ⌫X,

X

i2[n]

xi = s,x2 {0,1}n
)
. (18)

The key idea of deriving the convex integer program is summarized as follows: (i) obtain Lagrangian

dual of A-MESP (18) by dualizing the constraint
P

i2[n] xiviv>
i ⌫X; (ii) characterize the primal

formulation of the Lagrangian dual; and (iii) enforce the continuous variables in the primal char-

acterization to be binary. To begin with, we introduce the following lemma, which is essential to

derive the Lagrangian dual of A-MESP.

Lemma 8 For a d⇥ d matrix ⇤⌫ 0, we have

min
X⌫0

n s
tr(X†)+ tr(X⇤)

o
= 2tr

s

⇣
⇤

1
2

⌘
. (19)

Proof. See Appendix A.13. ⇤
Next, we are going to show the Lagrangian dual of A-MESP (18), denoted by A-LD.

Theorem 8 The Lagrangian dual of A-MESP (17) is

(A-LD) z
LD
A := max

⇤⌫0,⌫,µ2Rn
+

⇢
2tr

s

⇣
⇤

1
2

⌘
� s⌫�

X

i2[n]

µi : ⌫+µi � v>
i ⇤vi, i2 [n]

�
, (20)

and its optimal value is a lower bound of A-MESP, i.e., zLD
A  z

⇤
A.

Proof. By dualizing the first constraint of A-MESP (18), we can formulate the dual problem as

z
LD
A :=max

⇤⌫0

(
min

x,X⌫0

⇢
s
tr
�
X†�+tr(X⇤)�

X

i2[n]

xiv
>
i ⇤vi :

X

i2[n]

xi = s,x2 {0,1}n
�)

.

Applying Lemma 8 to the inner minimization problem over X, the dual problem becomes

z
LD
A :=max

⇤⌫0

(
min
x

⇢
2tr

s

⇣
⇤

1
2

⌘
�

X

i2[n]

xiv
>
i ⇤vi :

X

i2[n]

xi = s,x2 {0,1}n
�)

.

Similarly, we derive the dual of minimization problem over x and combine the dual with the

maximization over ⇤, which obtains A-LD problem. Apparently, zLD
A  z

⇤
A by weak duality. ⇤

In addition, A-LD (20) has an equivalent primal characterization.

Theorem 9 The primal characterization of A-LD (20), referred to as (A-PC), is

(A-PC) z
LD
A :=min

x

(
�s

✓X

i2[n]

xiviv
>
i

◆
:
X

i2[n]

xi = s,x2 [0,1]n
)
. (21)
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Proof. See Appendix A.14. ⇤
As a side product of Theorem 9, we can obtain the subdi↵erentials of the convex but non-smooth

objective function �s(·) for A-PC (21).

Proposition 8 Given a d⇥ d matrix X ⌫ 0 with rank r� s, suppose the vector of eigenvalues of

X is � such that �1 � · · ·� �r > �r+1 = · · ·= �d = 0 and X =QDiag(�)Q> with an orthonormal

matrix Q. Then the subdi↵erential of function �s(·) at X that is denoted by @�s(X) is

@�s(X) =

(
QDiag(�)Q> :X =QDiag(�)Q>

,Q is orthonormal,

� 2 conv

⇢
� : �i =

1

�i
,8i2 [k],�i =

s� kP
i2[k+1,d] �i

,8i2 [k+1, r],�i � �r,8i2 [r+1, d]

�)
.

Note that the subdi↵erential of �s(·) above is unique and becomes the gradient when X � 0 is

non-singular.

Proof. The proof is similar to that of Proposition 2 and is thus omitted here. ⇤
Another side product is that we obtain an equivalent convex integer program of A-MESP by

enforcing the variables x in A-PC (21) to be binary.

Theorem 10 The A-MESP is equivalent to the following convex integer program

(A-MESP) z
⇤
A :=min

x

(
�s

✓X

i2[n]

xiviv
>
i

◆
:
X

i2[n]

xi = s,x2 {0,1}n
)
. (22)

Proof. The proof is similar to that of Theorem 3 and is thus omitted. ⇤

6.2. Volume Sampling Algorithm

In this subsection, we present a polynomial-time volume sampling algorithm for A-MESP, which

has been applied to the generalized A-Optimal design (Derezinski and Warmuth 2017, Nikolov

et al. 2019). A size-s subset S ✓ [n] is sampled with the probability

P[S̃ = S] :=

Q
i2S bxi

s

det(
P

i2S viv>
i )

P
S̄2([n]

s )
Q

i2S̄ bxi

s

det(
P

i2S̄ viv>
i )

.

Di↵erent from the sampling Algorithm 2, this probability formula, known as volume sampling,

delivers the proportional volume spanned by the selected vectors. Algorithm 6 describes an e�cient

implementation of this volume sampling algorithm, with running time complexity O(n5).

Next, we analyze the approximation ratio of the volume sampling Algorithm 6. We start with

the following observation.
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Algorithm 6 E�cient Implementation of Volume Sampling Procedure

1: Input: n⇥n matrix C ⌫ 0 of rank d and integer s2 [d]

2: Let bx is an optimal solution of A-PC

3: Initialize chosen set S̃ = ; and unchosen set T = ;

4: Two factors: A1 =
P

S2([n]
s )
�Q

i2S bxi

�
det (V >

S VS) ,A2 = 0

5: for j = 1, · · · , n do

6: Let A2 =
P

S2([n]
s ),S̃✓S,T\S=;

�Q
i2S bxi

�
det (V >

S VS)

7: Sample a (0,1) uniform random variable U

8: if A2/A1 �U then

9: Add j to set S̃

10: A1 =A2

11: else

12: Add j to set T

13: A1 =A1 �A2

14: end if

15: end for

16: Output S̃

Lemma 9 For any feasible solution x to A-PC (21), let � 2Rd
+ denote the vector of eigenvalues

of matrix
P

i2[n] xiviv>
i , then we have

�s

✓X

i2[n]

xiviv
>
i

◆
�

Es�1(�)

Es(�)
, (23)

where function Es(·) is introduced in Definition 3.

Proof. See Appendix A.15. ⇤
Observe that the right-hand side of the inequality (23) is equivalent to the relaxation bound

of A-MESP proposed by Nikolov et al. (2019). Hence, Lemma 9 also indicates that our proposed

bound is stronger than the existing one. The following theorem shows that we further improve the

approximation ratio of the volume sampling Algorithm 6.

Theorem 11 Given an optimal solution bx to A-PC, the volume sampling Algorithm 6 yields a

min(s,n� s+1)-approximation ratio of A-MESP, i.e.,

E


s
tr

✓X

i2S̃

viv
>
i

◆†��
min(s,n� s+1)z⇤A.

Proof. See Appendix A.16. ⇤
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Note that this approximation ratio improves the one stated in theorem A.3 (Nikolov et al. 2019),

in particular, if s� n+1
2
, our approximation ratio is strictly better. Since we use the same volume

sampling procedure, its deterministic implementation follows exactly from appendix B in Nikolov

et al. (2019) and is thus omitted here.

6.3. Local Search Algorithm for A-MESP

This subsection analyzes the local search algorithm to solve A-MESP, which is presented in Algo-

rithm 7. The e�cient implementation straightforwardly follows from the local search Algorithm 5

in Section 4 and is thus omitted. Therefore, we mainly focus on deriving the approximation ratio

of the local search Algorithm 7.

Algorithm 7 Local Search Algorithm

1: Input: n⇥n matrix C ⌫ 0 of rank d and integer s2 [d]

2: Let C =V >V denote its Cholesky factorization where V 2Rd⇥n

3: Let vi 2Rd denote the i-th column vector of matrix V for each i2 [n]

4: Initial subset bS ✓ [n] of size s such that {vi}i2bS are linearly independent

5: do

6: for each pair (i, j)2 bS⇥ ([n] \ bS) do

7: if
s
tr
⇣P

i2bS[{j}\{i} viv>
i

⌘
<

s
tr
�P

i2bS viv>
i

�
then

8: Update bS := bS [ {j} \ {i}

9: end if

10: end for

11: while there is still an improvement

12: Output: bS

Let us begin with the following local optimality condition for the Algorithm 7.

Lemma 10 Suppose that bS is the output of the local search Algorithm 7 and X =
P

i2bS viv>
i , for

each pair (i, j)2 bS⇥ ([n] \ bS), the following inequality always holds

v>
i (X

†)3viv
>
j (In �X†X)vj  v>

i (X
†)2vi +v>

i (X
†)2viv

>
j X

†vj � 2v>
i (X

†)2vjv
>
i X

†vj.

Proof. See Appendix A.17. ⇤
The local optimality condition inspires us a construction of a feasible solution to A-LD (20), which

allows the weak duality to bound the output value from the local search Algorithm 7.
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Theorem 12 The local search Algorithm 7 yields a s/2+�
�1min{�max(C), n�+(n� s)�max(C)}-

approximation ratio for A-MESP, i.e,

s
tr

✓X

i2bS

viv
>
i

◆
min

⇢
s

2

✓
1+

�max(C)

�

◆
,
1

2

✓
n+ s+

(n� s)�max(C)

�

◆�
z
⇤
A,

where bS is the set produced by Algorithm 7, and � is defined in Lemma 4.

Proof. See Appendix A.18. ⇤
We remark that the result in Theorem 12 is the first-known approximation ratio of the local

search Algorithm 7 for A-MESP. Finally, Table 5 summarizes the existing and our developed

approximation ratios for A-MESP.

Table 5 Summary of Approximation Algorithms for A-MESP

Algorithm Approximation Ratio

Literature Volume Sampling (Nikolov et al. 2019) s

This paper
Volume Sampling Algorithm 6 min{s,n� s+1}

Local Search Algorithm 7 s/2+ �
�1min{�max(C), n�+(n� s)�max(C)}

7. Conclusion

This paper studies the maximum entropy sampling problem (MESP) and develops two approxi-

mation algorithms with provable performance guarantees. Observing that the objective function of

MESP is neither convex nor concave, we derive a new convex integer program for MESP through

the Lagrangian dual relaxation and its primal characterization. Using the optimal solution of the

primal characterization, we develop an e�cient sampling algorithm and prove its approximation

bound, which improves the best-known bound in literature. By developing new mathematical tools

for the singular matrices and analyzing the Lagrangian dual of the proposed convex integer pro-

gram, we further analyze the local search algorithm and prove its first-known approximation bound

for MESP. The proof techniques that we developed inspire us an e�cient implementation of the

local search algorithm. Our numerical study shows that both algorithms work very well, and the

local search algorithm performs the best and consistently yields near-optimal solutions. Finally,

we extend all analyses to the A-Optimal MESP (A-MESP), develop a new convex integer program

and study the volume sampling and local search algorithms with their approximation ratios. Our

proposed algorithms are coded and released as open-source software. One possible future direction

is to study MESP with general distributions.
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Appendix A. Proofs

A.1 Proof of Proposition 1

Proposition 1 The objective function of MESP (2) is (i) discrete-submodular, (ii) non-

monotonic, (iii) neither concave nor convex, and (iv) not always nonnegative.

Proof. Part (i). The discrete-submodularity has been proved by Kelmans and Kimelfeld (1983).

We show the other three properties using the following example.

Example 2 For MESP (2), let n= d= 2, v1 = (
p
a,0)> and v2 = (0,

p

b)>.

Part (ii) & Part (iv). In Example 2, when a= 2 and b= 1/4, we have

log
1

det
�
v1v

>
1

�
= log 2� log

2

det
�
v1v

>
1 +v2v

>
2

�
= log

1

2
< 0,

which proves that the objective function of MESP is not monotonic and is not always nonnegative.

Part (iii). In Example 2, let us consider two feasible solutions x1 = (1,0)> and x2 = (0,1)> with

s= 1. If a= 1 and b= 1, then we have

1

2
log

1

det
�
v1v

>
1

�
+

1

2
log

1

det
�
v2v

>
2

�
= 0� log

1

det

✓X

i2[n]

x
1
i +x

2
i

2
viv

>
i

◆
= log

1

2
,

which disproves the concavity.

If a= 16 and b= 1, then we have

1

2
log

1

det
�
v1v

>
1

�
+

1

2
log

1

det
�
v2v

>
2

�
= log 4 log

1

det

✓X

i2[n]

x
1
i +x

2
i

2
viv

>
i

◆
= log 8,

which disproves the convexity. ⇤

A.2 Proof of Lemma 1

Before proving Lemma 1, we first show the following technical lemma.

Lemma 11 Given �1 � · · ·� �d � 0 and 0 �1  · · · �d, we have

(i)

� := argmin
✓2Rd

+,
✓1�···�✓d

(
X

i2[d]

✓i�i :
X

i2[t]

✓i 

X

i2[t]

�i,8t2 [d� 1],
X

i2[d]

✓i =
X

i2[d]

�i

)
, (24)

(ii)

� := argmin
✓2Rd

+,
✓1···✓d

(
X

i2[d]

✓i�i :
X

i2[t+1,d]

✓i 

X

i2[t+1,d]

�i,8t2 [d� 1],
X

i2[d]

✓i =
X

i2[d]

�i

)
. (25)
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Proof. To prove Part(i), it needs to show that the vector � 2 Rd
+ is an optimal solution to the

minimization problem in the right-hand size of (24). We use the induction to prove this result.

(a) When d= 1, clearly, there is only one optimal solution, which is ✓⇤1 = �1.

(b) Suppose that the result holds for any d < bd where bd � 1. Now let us consider the case that

d= bd. Since the feasible region of the minimization problem in the right-hand size of (24) does

not contain a ray, one of its optimal solutions must be an extreme point, which is denoted by

b✓. Then b✓, as an extreme point, must satisfy at least d binding constraints. There are two cases

to be discussed:

• If there exists an integer bt 2 [d� 1] such that
P

i2[bt]
b✓i =

P
i2[bt] �i, then problem (24) can

be lower bounded by the sum of the following two minimization problems:

min
✓

8
<

:
X

i2[bt]

✓i�i :
X

i2[t]

✓i 

X

i2[t]

�i,8t2 [bt� 1],
X

i2[bt]

✓i =
X

i2[bt]

�i,✓1 � · · ·� ✓bt

9
=

; ,

min
✓

8
<

:
X

i2[bt+1,d]

✓i�i :
X

i2[bt+1,t]

✓i 

X

i2[bt+1,t]

�i,8t2 [bt+1, d],
X

i2[bt+1,d]

✓i =
X

i2[bt+1,d]

�i,✓bt+1 � · · ·� ✓d

9
=

; .

According to the induction, there exists an optimal solution of each minimization problem such

that ✓⇤i = �i for any i2 [d], which is feasible to the original problem (24) and thus is optimal.

• If there does not exist an integer bt2 [d�1] such that
P

i2[bt]
b✓i =

P
i2[bt] �i, then the extreme

point b✓ must satisfy b✓1 = · · ·= b✓d =
P

i2[d] �i

d
. Given 0 �1  · · · �d, we have

X

i2[d]

�i�i 

P
i2[d] �i

d

X

i2[d]

�i.

Therefore, when d= bd, ✓⇤ =� is also an optimal solution.

The proof of Part (ii) directly follows from the above if we consider � = (�d,�d�1, · · · ,�1)>, �=

(�d,�d�1, · · · ,�1)> and ✓= (✓d,✓d�1, · · · ,✓1)> in Part (i). ⇤
Now let us prove Lemma 1.

Lemma 1 For a d⇥ d matrix ⇤� 0, we have

max
X⌫0

⇢
log

s

det(X)� tr(X⇤)

�
=� log det

s
(⇤)� s, (4)

where function det
s
(·) is defined in Definition 1.

Proof. For any d⇥ d matrix X ⌫ 0, suppose that � is the vector of its eigenvalues satisfying �1 �

· · · � �d � 0, and according to the eigendecomposition (Abdi 2007), there exists an orthonormal
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matrix Q such that X =QDiag(�)Q>. Then the objective function in the left-hand side of (4) is

equivalent to

log
s

det(X)� tr(X⇤) = log

✓Y

i2[s]

�i

◆
� tr(Diag(�)Q>

⇤Q) = log

✓Y

i2[s]

�i

◆
�

X

i2[d]

✓i�i,

where let ✓=diag(Q>
⇤Q). Thus, the left-hand side of (4) becomes

max
�2Rd

+,
�1�···��d�0

(
log

✓Y

i2[s]

�i

◆
� min

Q,✓2Rd
+

⇢X

i2[d]

✓i�i : ✓=diag(Q>
⇤Q),Q is orthonormal

�)
.

Since any permutation matrix is orthonormal, for any fixed �1 � · · · � �d, to maximize

�
P

i2[d] ✓i�i, we must have ✓1  · · · ✓d based on the rearrangement inequality (Hardy et al. 1952).

Thus, the left-hand side of (4) is further reduced to

max
�2Rd

+,
�1�···��d�0

(
log

✓Y

i2[s]

�i

◆
� min

Q,✓2Rd
+

✓1···✓d

⇢X

i2[d]

✓i�i : ✓=diag(Q>
⇤Q),Q is orthonormal

�)
. (26a)

Let � denote the vector of eigenvalues of ⇤ such that �1  · · · �d and let ⇤= P Diag(�)P>

with an orthonormal matrix P . Since Q is orthonormal, the eigenvalues of Q>
⇤Q are also equal

to �. According to the well-known majorization inequalities between eigenvalues � and diagonal

entries ✓ (see, e.g., Horn 1954, Thompson 1977), the inner minimization problem in (26a) can be

lower bounded by

min
✓2Rd

+,
✓1···✓d

(
X

i2[d]

✓i�i :
X

i2[t+1,d]

✓i 

X

i2[t+1,d]

�i,8t2 [d� 1],
X

i2[d]

✓i =
X

i2[d]

�i

)

Applying Part (i) in Lemma 11, an optimal solution to the minimization problem is ✓⇤ =�. Thus,

the optimal value of the relaxed minimization problem is
P

i2[d] �i�i, which is achieved by letting

Q⇤ =P and ✓⇤ =� for the inner optimization problem in (26a) and is thus optimal.

Plugging this optimal solution into the inner maximization problem in (26a), we can obtain

max
�2Rd

+,
�1�···��d�0

⇢
log

✓Y

i2[s]

�i

◆
�

X

i2[d]

�i�i

�
, (26b)

which can be solved by �
⇤
i =

1
�i

for all i2 [s] and 0 otherwise. Therefore, we have

max
X⌫0

⇢
log

s

det(X)� tr(X⇤)

�
=� log det

s
(⇤)� s.

This completes the proof. ⇤
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A.3 Proof of Lemma 3

Lemma 3 Given a d⇥ d matrix X ⌫ 0 with rank r 2 [s, d], suppose that the eigenvalues of X are

�1 � · · ·� �r > �r+1 = · · ·= �d = 0 and X =QDiag(�)Q> with an orthonormal matrix Q. Then

(i)

min
⇤�0

n
� log det

s
(⇤)+ tr(X⇤)

o
= min

�2Rd
+,

0<�1···�d

(
�

X

i2[s]

log(�i)+
X

i2[d]

�i�i

)
, (7)

(ii)

min
�2Rd

+,
0<�1···�d

(
�

X

i2[s]

log(�i)+
X

i2[d]

�i�i

)
= �s(X)+ s. (8)

Proof. Part (i). Suppose ⇤ has eigenvalues 0 < �1  · · ·  �d and ⇤ = P Diag(�)P> with an

orthonormal matrix P . Then the objective function in the left-hand side of (7) is equal to

� log det
s
(⇤)+ tr(X⇤) =� log

✓Y

i2[s]

�i

◆
+tr

�
P>XP Diag(�)

�
=� log

✓Y

i2[s]

�i

◆
+
X

i2[d]

✓i�i,

where ✓=diag(P>XP ).

For any fixed �1  · · ·  �d, according to the rearrangement inequality (Hardy et al. 1952), to

minimize
P

i2[d] ✓i�i, we must have ✓1 � · · ·� ✓d. Thus, the left-hand side of (7) becomes

min
�2Rd

+,
0<�1···�d

(
� log

✓Y

i2[s]

�i

◆
+ min

P ,✓2Rd
+

✓1�···�✓d

⇢X

i2[d]

✓i�i : ✓=diag(P>XP ),P is orthonormal

�)
. (27a)

As P is orthonormal, thus the eigenvalues of P>XP are also equal to �. Then the inner mini-

mization problem in (27a) can be lower bounded by

min
✓

(
X

i2[d]

✓i�i :
X

i2[t]

✓i 

X

i2[t]

�i,8t2 [d� 1],
X

i2[d]

✓i =
X

i2[d]

�i,✓1 � · · ·� ✓d

)
.

According to Part (ii) in Lemma 11, the optimal value of the inner minimization problem in (27a)

is
P

i2[d] �i�i, which is achieved by letting P ⇤ =Q and ✓⇤ =�. This proves the identity (7).

Part (ii). Let us introduce an additional variable ⌧ to di↵erentiate the first s smallest � elements

and simplify the order constraint in the left-hand problem (8) as

min
�2Rd

+,⌧

8
<

:�

X

i2[s]

log(�i)+
X

i2[d]

�i�i : �i  ⌧,8i2 [s],�i � ⌧,8i2 [s+1, d]

9
=

; . (27b)

Let µ2Rd denote the Lagrangian multipliers and the Lagrangian function is

L(µ,�, ⌧) =�

X

i2[s]

log(�i)+
X

i2[d]

�i�i +
X

i2[s]

µi(�i � ⌧)+
X

i2[s+1,d]

µi(⌧ ��i).
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Clearly, as the constraints in the convex program (27b) are linear, the relaxed Slater condition holds.

Let (µ⇤
,�⇤

, ⌧
⇤) denote the pair of optimal primal and dual solutions. Then the KKT conditions of

the convex program (27b) are

@L

@�i
(µ⇤

,�⇤
, ⌧

⇤) =�
1

�⇤
i

+�i +µ
⇤
i = 0,8i2 [s],

@L

@�i
(µ⇤

,�⇤
, ⌧

⇤) = �i �µ
⇤
i = 0,8i2 [s+1, d],

@L

@⌧
(µ⇤

,�⇤
, ⌧

⇤) =
X

i2[s]

µ
⇤
i �

X

i2[s+1,d]

µ
⇤
i = 0, µ⇤

i (�
⇤
i � ⌧

⇤) = 0,8i2 [s], µ⇤
i (⌧

⇤
��

⇤
i ) = 0,8i2 [s+1, d],

�
⇤
i  ⌧

⇤
,8i2 [s],�⇤

i � ⌧
⇤
,8i2 [s+1, d], µ⇤

i � 0,8i2 [d],

which are necessary and su�cient optimality conditions (see theorem 3.2.4 in Ben-Tal and

Nemirovski 2012). Recall that matrix X has rank r and its eigenvalues are sorted such that

�1 � · · ·� �s � · · ·� �r > �r+1 = · · ·= �d = 0. Additionally, according to the KKT conditions, the

optimal solution {�i}i2[s] must be sorted in an ascending order, i.e., �1  · · · �s. Thus, let integer

k 2 [0, s] denote the largest index such that �
⇤
i < ⌧

⇤ (by convention, we let �
⇤
0 = 0,�0 =1). Then

the above KKT conditions can be simplified as

�
⇤
i =

1

�i
, µ

⇤
i = 0,8i2 [k];�⇤

i = ⌧
⇤
, µ

⇤
i =

1

⌧ ⇤ ��i � 0,8i2 [k+1, s];

µ
⇤
i = �i > 0,�⇤

i = ⌧
⇤
,8i2 [s+1, r];µ⇤

i = �i = 0,�⇤
i � ⌧

⇤
,8i2 [r+1, d];

X

i2[s]

µ
⇤
i �

X

i2[s+1,d]

µ
⇤
i = 0.

This implies that all pairs of the optimal primal and dual solutions are characterized by the

following set

⌦=

(
(µ,�, ⌧) : ⌧ =

s� kP
i2[k+1,d] �i

,�i =
1

�i
,8i2 [k],�i = ⌧,8i= [k+1, r],�i � �r,8i2 [r+1, d],

µi = 0,8i= [k], µi =
1

⌧
��i,8i= [k+1, r], µi = 0,8i= [r+1, d]

)
.

Consequently, any optimal solution for problem (27b) satisfies

�
⇤
i =

1

�i
,8i2 [k],�⇤

i =
s� kP

i2[k+1,d] �i
,8i2 [k+1, r],�⇤

i �
s� kP

i2[k+1,d] �i
,8i2 [r+1, d],

which is feasible to the minimization problem in (8) and thus is optimal.

Then the optimal value of the minimization problem in (8) is equal to

�

X

i2[s]

log(�⇤
i )+

X

i2[d]

�i�
⇤
i =

X

i2[k]

log(�i)+ (s� k) log

✓P
i2[k+1,d] �i

s� k

◆
+ s= �s(X)+ s,

where the second equality is due to Definition 2 of �s(X). This completes the proof. ⇤
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A.4 Proof of Theorem 3

Theorem 3 MESP can be formulated as the following convex integer program

(MESP) z
⇤ :=max

x

(
�s

✓X

i2[n]

xiviv
>
i

◆
:
X

i2[n]

xi = s,x2 {0,1}n
)
. (11)

Proof. It is su�cient to prove that for any feasible solution x to MESP (11), we must have

log
s

det

✓X

i2[n]

xiviv
>
i

◆
= �s

✓X

i2[n]

xiviv
>
i

◆
.

Given a solution x, we let X =
P

i2[n] xiviv>
i with rank r and let � denote its eigenvalues such

that �1 � · · ·� �d � 0. Since the rank of matrix X satisfies r s, there are two cases to be discussed

regarding whether r= s holds or not.

(i) If r < s, then clearly, we have log
s

det (X) = �1. On the other hand, by the choice of k in

Lemma 2, it is evident that k = r such that 1
s�k

P
i2[k+1,d] �i = 0. It follows that �s (X) =

�1= log
s

det (X).

(ii) If r= s, there must exist an integer ` such that �1 � · · ·� �` > �`+1 = · · ·= �s > �s+1 = · · ·=

�d = 0. By the uniqueness of k, we must have k = `. Thus, from Definition 2, the objective

value is equal to

�s (X) = log

✓Y

i2[k]

�i

◆
+(s� k) log

✓
1

s� k

X

i2[k+1,d]

�i

◆
= log

✓Y

i2[s]

�i

◆
= log

s

det (X) .

⇤

A.5 Proof of Proposition 3

Proposition 3 The optimal value of PC (9) is equal to z
⇤, i.e., zLD = z

⇤ provided the following

three special cases: (i) C is diagonal; (ii) s= 1; and (iii) s= n.

Proof. We show the three special cases separately.

(i) Suppose that C is diagonal. Without loss of generality, assume that C = Diag(�) with a

nonnegative vector � such that �1 � · · ·� �d > �d+1 = · · ·= �n = 0, then we have vi =
p
�iei

for each i 2 [n] and C = V >V . Clearly, the optimal solution of MESP (2) is x⇤
i = 1 for each

i2 [s] and 0 otherwise. Thus, z⇤ = log
s

det
⇣Q

i2[n] x
⇤
iviv>

i

⌘
= log

⇣Q
i2[s] �i

⌘
.

Let X =
P

i2[n] x
⇤
iviv>

i , then we construct the feasible solution to LD (5) as

⇤
⇤ =

1

�s
(Id �X†X)+X†

,⌫
⇤ = 1, µ⇤

i = 0,8i2 [n].

It is easy to see that (⇤⇤
,⌫

⇤
,µ⇤) is feasible to LD (5) with the objective value

z
LD

� log det
s
(⇤⇤)+ sv

⇤ +
X

i2[n]

µ
⇤
i � s=

X

i2[s]

log(�i) = z
⇤
 z

LD
,
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where the first inequality is by feasibility of (⇤⇤
,⌫

⇤
,µ⇤) and the second one is from the weak

duality.

(ii) Suppose that s = 1. Given any feasible solution x to PC (9), assume that matrix X =
P

i2[n] xiviv>
i has the eigenvalue vector � such that �1 � · · ·� �d. By Lemma 2, as k < s, we

must have k= 0. Thus, the objective value of PC (9) becomes

�s(X) = (s� k) log

✓
1

s� k

X

i2[k+1,d]

�i

◆
= log

✓X

i2[d]

�i

◆
= log

✓X

i2[n]

xiv
>
i vi

◆
.

Therefore, in this case, we have

z
LD =max

x

⇢
log

✓X

i2[n]

xiv
>
i vi

◆
:
X

i2[n]

xi = 1,x2 [0,1]n
�
=max

i2[n]

�
log(v>

i vi)
 
= z

⇤
.

(iii) Suppose that s= n. In this case, the only feasible solution of PC (9) or MESP (11) is xi = 1

for each i2 [n] and clearly, PC (9) and MESP (11) are equivalent. ⇤

A.6 Proof of Lemma 4

Lemma 4 Suppose that for any size-s subset S ✓ [n], the columns {vi}i2S are linearly independent.

Let D := {x2Rn :
P

i2[n] xi = s,x2 [0,1]n}. Then for any x2 relint(D), we have

r
2�s

✓X

i2[n]

xiviv
>
i

◆
⌫�

�
2
max(C)

�2
In, (12)

where the constant � :=minS✓[n],|S|=s �min(CS,S).

Proof. We split the proof into four steps.

Step (i)- An Equivalent Statement. For any x,y 2 relint(D), let X =
P

i2[n] xiviv>
i and Y =

P
i2[n] yiviv>

i , clearly, matrices X and Y are positive-definite and non-singular. Let us define a

function h(t) = �s(X + t(Y �X)) with t2 [0, ✏] for some su�ciently small positive number ✏. Let

�2Rd
++ denote the vector of eigenvalues of X and �1 � · · ·�d > 0. Since

�s(X) = F (�) := log

✓Y

i2[k]

�i

◆
+(s� k) log

✓
1

s� k

X

i2[k+1,d]

�i

◆
,

and F (�) is symmetric and analytic at Rd
++, thus according to theorem 2.1 in Tsing et al. (1994),

�s(X) is analytic and is thus continuous di↵erentiable. Since the positive-definite matrices with

distinct eigenvalues are dense in the space of all the positive-definite matrices, without loss of gener-

ality, we can assume that X has eigenvalues �1 > · · ·> �d > 0 and their corresponding eigenvectors

are q1, · · · ,qd. Suppose that the eigenvalues and their corresponding eigenvectors of X+ t(Y �X)

are �1(t), · · · ,�d(t) and q1(t), · · · ,qd(t). As ✏ is su�ciently small, thus, we still have �1(t)> · · ·>

�d(t) and according to Lemma 2, � and �(t) share the same integer k for all t2 [0, ✏]. Since all the
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eigenvalues are distinct, the eigenvalues {�i(t)}i2[d] and eigenvectors {qi(t)}i2[d] are continuous in

the range of [0, ✏] (see, e.g., Magnus 1985, Overton and Womersley 1995).

As stated in Proposition 2, function �s(cX) is di↵erentiable if matrix cX is positive-definite. Thus,

for any t2 (0, ✏), we have

h
0(t) =

d

dt
h(t) = hr�s(X + t(Y �X)),Y �Xi ,

which implies that

h
00(0) =

d2

dt2
h(t)

���
t=0

=

⌧
d

dt
r�s(X + t(Y �X))

���
t=0

,Y �X

�
.

Therefore, to prove the inequality (12), it is su�cient to show that

h
00(0)��

�
2
max(C)

�2
kx�yk22. (28a)

Step (ii)- A Representation of h
00(0).

By Proposition 2, we have

r�s(X + t(Y �X)) =
X

i2[k]

1

�i(t)
qi(t)qi(t)

> +
X

i2[k+1,d]

s� kP
j2[k+1,d] �j(t)

qi(t)qi(t)
>
.

For the notational convenience, let us define a vector � 2Rd
+ such that

�i = �i,8i2 [k],�i =
1

s� k

X

j2[k+1,d]

�j,8i2 [k+1, d].

Taking the derivative of eigenvalues and eigenvectors over t separately, we obtain

d

dt
r�s(X + t(Y �X))

���
t=0

=�

X

i2[k]

1

�2
i

d�i(t)

dt

���
t=0

qiq
>
i �

X

i2[k+1,d]

1

(s� k)�2
i

d�i(t)

dt

���
t=0

qiq
>
i

| {z }
:=A

+
X

i2[d]

1

�i

dqi(t)

dt

���
t=0

q>
i +

X

i2[d]

1

�i
qi

⇣
dqi(t)

dt

���
t=0

⌘>

| {z }
:=B

.

It follows that

h
00(0) =

⌦
A,Y �X

↵
+
⌦
B,Y �X

↵
. (28b)

Thus, to prove (28a), we need to find lower bounds of
⌦
A,Y �X

↵
and

⌦
B,Y �X

↵
separately.

Step (iii)- Lower Bounds of
⌦
A,Y �X

↵
and

⌦
B,Y �X

↵
.

Before we proceed, let us first prove the following claim.
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Claim 1 For any `2 [s� 1], we have

min
u2D

⇢
1

s� `

X

i2[`+1,d]

�i(U) :U =
X

i2[n]

uiviv
>
i

�
� min

S2[n],|S|=s
�s

⇣X

j2S

vjv
>
j

⌘
:= �,

where for a symmetric matrix X, we let �i(X) denotes its i-th largest eigenvalue.

Proof. For a d⇥ d positive-semidefinite matrix U , the function
P

i2[`+1,d] �i(U) is concave (Fan

1949). On the other hand, it is known that for the concave minimization problem, the optimum

can be achieved by one of the extreme points of the feasible region. Thus,

inf
u2D

⇢
1

s� `

X

i2[`+1,d]

�i(U) :U =
X

i2[n]

uiviv
>
i

�
=

1

s� `
min

S2[n],|S|=s

X

i2[`+1,d]

�i

⇣X

j2S

vjv
>
j

⌘

=
1

s� `
min

S2[n],|S|=s

X

i2[`+1,s]

�i

⇣X

j2S

vjv
>
j

⌘

� min
S2[n],|S|=s

�s

⇣X

j2S

vjv
>
j

⌘
,

where the second equation is due to the fact that rank of
P

j2S vjv>
j is equal to s, and the first

inequality is because �s

⇣P
j2S vjv>

j

⌘
is the smallest positive eigenvalues of matrix

P
j2S vjv>

j . ⇧

Now we are ready to show the lower bounds of
⌦
A,Y �X

↵
and

⌦
B,Y �X

↵
.

(a) According to Overton and Womersley (1995), we have

d�i(t)

dt

���
t=0

= q>
i

d(X + t(Y �X))

dt

���
t=0

qi = q>
i (Y �X)qi.

Therefore,
⌦
A,Y �X

↵
is equivalent to

⌦
A,Y �X

↵
=�

X

i2[k]

1

�2
i

�
q>
i (Y �X)qi

�2
�

1

(s� k)�2
i

X

i2[k+1,d]

�
q>
i (Y �X)qi

�2

��
(s� k)2

(
P

j2[k+1,d] �j)2

X

i2[k]

�
q>
i (Y �X)qi

�2
�

s� k

(
P

j2[k+1,d] �j)2

X

i2[k+1,d]

�
q>
i (Y �X)qi

�2

��
1

�2

X

i2[d]

�
q>
i (Y �X)qi

�2
, (28c)

where the first inequality is due to the fact that �1 � · · ·�k >

P
j2[k+1,d] �j

s�k
, the second inequality

is because of Claim 1, and s� k� 1.

(b) According to the result from Magnus (1985) that dqi(t)
dt

���
t=0

= (�iId �X)† d(X+t(Y �X))
dt

���
t=0

qi =

(�iId �X)†(Y �X)qi, where

(�iId �X)† =
X

j2[d],j 6=i

1

�i ��j
qjq

>
j .
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Thus,
⌦
B,Y �X

↵
is equivalent to

⌦
B,Y �X

↵
=
X

i2[d]

1

�i

X

j2[d],j 6=i

1

�i ��j

⇣
q>
j (Y �X)qi

⌘2

+
X

j2[d]

1

�j

X

i2[d],i 6=j

1

�j ��i

⇣
q>
j (Y �X)qi

⌘2

=
X

i2[d]

X

j2[d],j 6=i

⇣ 1

�i

1

�i ��j
+

1

�j

1

�j ��i

⌘⇣
q>
j (Y �X)qi

⌘2

. (28d)

Above, we can split the summations in the right-hand side of (28d) into four cases and also by

plugging the values of �, we can rewrite
⌦
B,Y �X

↵
as

⌦
B,Y �X

↵
=
X

i2[k]

X

j2[k],j 6=i

1

�i�j

⇣
q>
j (Y �X)qi

⌘2

+
X

i2[k+1,d]

X

j2[k+1,d],j 6=i

0

+
X

i2[k]

X

j2[k+1,d],j 6=i

⇣ 1

�i

1

�i ��j
+

s� kP
`2[k+1,d] �`

1

�j ��i

⌘⇣
q>
j (Y �X)qi

⌘2

+
X

i2[k+1,d]

X

j2[k],j 6=i

⇣
s� kP

`2[k+1,d] �`

1

�i ��j
+

1

�j

1

�j ��i

⌘⇣
q>
j (Y �X)qi

⌘2

��
1

�2

X

i2[d]

X

j2[d],j 6=i

⇣
q>
j (Y �X)qi

⌘2

, (28e)

where the inequality is because �i >

P
`2[k+1,d] �`

s�k
� �j for each pair (i, j) 2 [k]⇥ [k+ 1, d], and

P
`2[k+1,d] �`

s�k
� � by Claim 1.

Step (iv)- Combining All the Pieces Together. According to the results (28b), (28c), and

(28e), we can derive that

h
00(0)��

1

�2

X

i2[d]

X

j2[d]

⇣
q>
j (Y �X)qi

⌘2

=�
1

�2
tr(((Y �X)Q)2)

��
1

�2
kY �Xk

2
2

��
1

�2
�
2
max(C)ky�xk22,

where the second inequality is due to Cauchy-Schwartz inequality and that matrix Q is orthonor-

mal, and the third inequality stems from the fact that kY � Xk
2
2 = kV Diag(y � x)V >

k
2
2 

�
2
max(C)ky�xk22. ⇤

A.7 Proof of Lemma 6

Lemma 6 Consider a size-⌧ subset bS ✓ [n] with ⌧ 2 [d] such that {vi}i2bS are linearly independent.

Let X =
P

i2bS viv>
i , and for each i 2 bS, let X�i =X � viv>

i . Then for each (i, j) 2 bS ⇥ ([n] \ bS),
we have the followings

(i)
⌧

det(X) =
⌧�1

det(X�i)v>
i (Id �X†

�iX�i)vi,

(ii)

8
<

:

⌧

det(X�i +vjv>
j ) =

⌧�1

det(X�i)v>
j (Id �X†

�iX�i)vj, if vj /2 col(X�i),
⌧�1

det(X�i +vjv>
j ) =

⌧�1

det(X�i)(1+v>
j X

†
�ivj), otherwise,
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(iii) X† = X†
�i �

X†
�iviv

>
i (Id�X†

�iX�i)

k(Id�X†
�iX�i)vik22

�
(Id�X†

�iX�i)viv
>
i X†

�i

k(Id�X†
�iX�i)vik22

+

(1+v>
i X†

�ivi)(Id�X†
�iX�i)viv

>
i (Id�X†

�iX�i)

k(Id�X†
�iX�i)vik42

,

(iv) X†
�i =X†

�
X†viv

>
i X†X†

kX†vik22
�

X†X†viv
>
i X†

kX†vik22
+ v>

i (X†)3viX
†viv

>
i X†

kX†vik42
,

(v) v>
i X

†vi = 1,

(vi) v>
i (Id �X†X) = 0,

(vii) v>
i (Id �X†

�iX�i)vi =
1

kX†vik22
,

(viii) v>
j (Id �X†

�iX�i)vj =

(
v>
j (Id �X†X)vj +

(v>
j X†vi)

2

kX†vik22
, if vj /2 col(X�i);

0, otherwise.
.

Proof. Part (i). Let X�i =QDiag(�)Q> denote its eigendecomposition. Since the rank of X�i

is ⌧ � 1, without loss of generality, we assume that its eigenvalues satisfy �1 � · · ·�⌧�1 > �⌧ = · · ·=

�d = 0.

For any ✏> 0, we have

det (X + ✏Id) = det(X�i + ✏Id)
�
1+v>

i (X�i + ✏Id)
�1vi

�

= ✏
n�⌧+1

Y

i2[⌧�1]

(�i + ✏)
�
1+v>

i (X�i + ✏Id)
�1vi

�

= ✏
n�⌧

Y

i2[⌧�1]

(�i + ✏)
�
✏+v>

i QDiag(�(✏))Q>vi

�
,

where the first equality is from the Matrix Determinant lemma (Harville 1998) and in the third

equality, we let �(✏) = ( ✏
�1+✏

, · · · ,
✏

�⌧�1+✏
,1, · · · ,1)> denote the eigenvalues of ✏(X�i + ✏Id)�1. As

⌧

det(X) = lim✏!0 ✏
�(n�⌧) det (X + ✏Id), thus

⌧

det(X) = lim
✏!0

det (X + ✏Id)

✏n�⌧
= lim

✏!0

Y

i2[⌧�1]

(�i + ✏)
�
✏+v>

i QDiag(�(✏))Q>vi

�

= lim
✏!0

Y

i2[⌧�1]

(�i + ✏) lim
✏!0

�
✏+v>

i QDiag(�(✏))Q>vi

�

=
⌧�1

det(X�i)
�
v>
i QDiag (�(0))Q>vi

�
=

⌧�1

det(X�i)v
>
i (Id �X†

�iX�i)vi,

where the third equality is because both limits exist and the last equality is from the fact that the

vector of eigenvalues of (Id�X†
�iX�i) is equal to �(0) and the corresponding matrix consisting of

the eigenvectors is Q.

The proof of Part (ii) is similar to Part (i) and is thus omitted here.

Part (iii) and Part (iv) follow directly from theorem 1 and theorem 6 in Meyer (1973).

Part (v). By Part (iii) and the fact that (Id �X†
�iX�i) is a projection matrix, we have

v>
i X

†vi =v>
i X

†
�ivi �

v>
i X�iviv>

i (Id �X†
�iX�i)vi

k(Id �X†
�iX�i)vik

2
2

�
v>
i (Id �X†

�iX�i)viv>
i X�ivi

k(Id �X†
�iX�i)vik

2
2
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+
(1+v>

i X�ivi)v>
i (Id �X†

�iX�i)viv>
i (Id �X†

�iX�i)vi

k(Id �X†
�iX�i)vik

4
2

=v>
i X

†
�ivi �v>

i X
†
�ivi �v>

i X
†
�ivi +1+v>

i X
†
�ivi = 1.

Part (vi). Since X =X�i +viv>
i , then we have

v>
i (Id �X†X) = v>

i �v>
i X

†X�i �v>
i X

†viv
>
i =�v>

i X
†X�i,

where the second equality is from the fact that v>
i X

†vi = 1 in Part (v).

To compute v>
i X

†X�i, using the result in Part (iii) and the facts that (Id �X†
�iX�i)X

†
�i = 0

and (Id �X†
�iX�i) is a projection matrix, we then obtain

v>
i X

†X�i =v>
i X

†
�iX

†
�i �

v>
i X

†
�iviv>

i (Id �X†
�iX�i)X

†
�i

k(Id �X†
�iX�i)vik

2
2

�
v>
i (Id �X†

�iX�i)viv>
i X

†
�iX

†
�i

k(Id �X†
�iX�i)vik

2
2

+
(1+v>

i X
†
�ivi)v>

i (Id �X†
�iX�i)viv>

i (Id �X†
�iX�i)X

†
�i

k(Id �X†
�iX�i)vik

4
2

=v>
i X

†
�iX

†
�i �v>

i X
†
�iX

†
�i = 0.

Hence, v>
i (Id �X†X) =�v>

i X
†X�i = 0.

Part (vii). According to Part (iv), we have

X†
�iX =X†X �

X†viv>
i X

†

kX†vik
2
2

�
X†X†viv>

i X
†X

kX†vik
2
2

+
v>
i (X

†)3viX†viv>
i X

†X

kX†vik
4
2

, (29a)

X†
�iviv

>
i =X†viv

>
i �

X†viv>
i X

†X†viv>
i

kX†vik
2
2

�
X†X†viv>

i X
†viv>

i

kX†vik
2
2

+
v>
i (X

†)3viX†viv>
i X

†viv>
i

kX†vik
4
2

=�
X†X†viv>

i

kX†vik
2
2

+
v>
i (X

†)3viX†viv>
i

kX†vik
4
2

. (29b)

where the third equality is due to v>
i X

†vi = 1 from Part (v).

Since X =X�i +viv>
i , we can obtain

v>
i (Id �X†

�iX�i)vi = v>
i vi �v>

i X
†
�i(X �viv

>
i )vi = v>

i vi �v>
i X

†
�iXvi +v>

i X
†
�iviv

>
i vi.

Applying the identities in (29a) and (29b), we further have

v>
i (Id �X†

�iX�i)vi =
1

kX†vik
2
2

+
v>
i (X

†)3viv>
i (Id �X†X)vi

kX†vik
4
2

=
1

kX†vik
2
2

.

where the last equality is due to the fact that v>
i (Id �X†X) = 0 from Part (vi).

Part (viii). There are two cases: whether vj is in the column space of X�i or not.
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(a) If vj /2 col(X�i), we follow the proof of Part (vii). Since X =X�i +viv>
i , we can obtain

v>
j (Id �X†

�iX�i)vj =v>
j vj �v>

j X
†
�iXvj +v>

j X
†
�iviv

>
i vj = v>

j (Id �X†X)vj +
(v>

j X
†vi)2

kX†vik
2
2

�v>
i (Id �X†X)vj

v>
j X

†X†vi

kX†vik
2
2

+v>
i (Id �X†X)vj

v>
i (X

†)3viv>
j X

†vi

kX†vik
4
2

=v>
j (Id �X†X)vj +

(v>
j X

†vi)2

kX†vik
2
2

,

where the second equality is due to the identites in (29a) and (29b), and the last equality is

because v>
i (Id �X†X) = 0 from Part (vi).

(b) Second, if vj 2 col(X�i), then we rewrite vj =
P

`2bS\{i} a`vl, which stems from the fact that

the vectors {v`, `2
bS \ {i}} span the column space of X�i. Then it follows that

v>
j (Id �X†

�iX�i)vj =
X

`2S\{i}

a`v
>
` (Id �X†

�iX�i)vj = 0,

where the second equality is because v>
` (Id �X†

�iX�i) = 0 for all `2 bS \ {i} from Part (vi).

⇤

A.8 Proof of Lemma 7

Lemma 7 Let bS denote the output of the local search Algorithm 4 and let X =
P

i2bS viv>
i . Then

for each pair (i, j)2 bS⇥ ([n] \ bS), the following inequality holds

1�
�
v>
i X

†X†vi

�
v>
j (Id �X†X)vj +v>

j X
†viv

>
i X

†vj.

Proof. For each pair (i, j)2 bS⇥ ([n] \ bS), the stopping criterion of Algorithm 4 implies that

s

det(X�i +viv
>
i )�

s

det(X�i +vjv
>
j ), (30a)

and {v`}`2bS are linearly independent. There are two cases to be considered: whether vj is in the

column space of X�i or not.

(i) If vj /2 col(X�i), then by Parts (i) and (ii) in Lemma 6 and the fact that
s�1

det(X�i)> 0, the

local optimality condition (30a) is equivalent to

v>
i (Id �X†

�iX�i)vi � v>
j (Id �X†

�iX�i)vj. (30b)

Plugging the results of Parts (vii) and (viii) in Lemma 6, the above inequality is further

reduced to

1�
�
v>
i X

†X†vi

�
v>
j (Id �X†X)vj +v>

j X
†viv

>
i X

†vj. (30c)
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(ii) If vj 2 col(X�i), then we must have vj 2 col(X). According to Part (vi) in Lemma 6, we have

�
v>
i X

†X†vi

�
v>
j (Id �X†X)vj +v>

j X
†viv

>
i X

†vj = (v>
i X

†vj)
2
.

Using Part (iii) in Lemma 6, we have

v>
i X

†vj =v>
i X

†
�ivj �

v>
i X�iviv>

i (Id �X†
�iX�i)vj

k(Id �X†
�iX�i)vik

2
2

�
v>
i (Id �X†

�iX�i)viv>
i X�ivj

k(Id �X†
�iX�i)vik

2
2

+
(1+v>

i X�ivi)v>
i (Id �X†

�iX�i)viv>
i (Id �X†

�iX�i)vj

k(Id �X†
�iX�i)vik

4
2

=v>
i X

†
�ivj �

v>
i (Id �X†

�iX�i)viv>
i X�ivj

k(Id �X†
�iX�i)vik

2
2

= 0,

where the first equality is due to Part (iii) in Lemma 6, the second equality is due to Part

(vi) in Lemma 6 and vj is a linear combination of {v`}`2bS\{i}, and the last equality is because

(Id �X†
�iX�i) is a projection matrix.

Thus, clearly, we arrive at

�
v>
i X

†X†vi

�
v>
j (Id �X†X)vj +v>

j X
†viv

>
i X

†vj = (v>
i X

†vj)
2 = 0 1.

⇤

A.9 Proof of Theorem 7

Theorem 7 Let bS denote the output of the local search Algorithm 4, then the set bS yields a

smin{log(s), log(n� s�n/s+2)}-approximation bound for MESP (2), i.e.,

log
s

det

✓X

i2bS

viv
>
i

◆
� z

⇤
� smin

n
log(s), log

⇣
n� s�

n

s
+2
⌘o

.

Proof. We split the proof into three steps.

Step 1. Constructing Solution of Dual Variable ⇤.

Given the output bS of the local search Algorithm 4, let us denote X =
P

i2bS viv>
i and let

X�i =X �viv>
i for each i2 bS.

We first construct ⇤ of LD (5) as below

⇤=
1

t

⇥
tr(X†)(Id �X†X)+X†⇤

, (31a)

where t > 0 is a scaling factor and will be specified later. Accordingly, the identity (31a) leads to

that logdet
s
(⇤) = log

s

det(X)+ s log t.

Step 2. Constructing Solution of the Other Dual Variables (⌫,µ) with ⇤ in (31a).
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Next, to construct the solution of the other two dual variables (⌫,µ), we need to check the

feasibility of constraints in LD (5), i.e.,

v>
i ⇤vi  ⌫+µi,8i2 [n]. (31b)

We consider the following two cases: (i) for each i2 bS and (ii) for each j 2 [n] \ bS.
(i) For each i2 bS, we have

v>
i ⇤vi =

1

t

⇥
tr(X†)v>

i (Id �X†X)vi +v>
i X

†vi

⇤
=

1

t
, (31c)

where the second equality results from Parts (v) and (vi) in Lemma 6 with ⌧ = s.

(ii) For each j 2 [n] \ bS, according to Lemma 7, we have

1�
�
v>
i X

†X†vi

�
v>
j (Id �X†X)vj +v>

j X
†viv

>
i X

†vj,8i2
bS.

Summing the above inequality over i2 bS and using the fact that X =
P

i2bS viv>
i , we have

s� tr(X†)v>
j (Id �X†X)vj +v>

j X
†vj = tv>

j ⇤vj. (31d)

By inequalities (31c) and (31d), to find the best (⌫,µ), it su�ces to solve the optimization

problem below:

z
LD

min
t>0

min
⌫,µ2Rn

+

⇢
log

s

det(X)+ s log(t)+ s⌫+
X

i2[n]

µi � s : ⌫+µi �
1

t
,8i2 bS,⌫+µi �

s

t
,8i2 [n] \ bS

�
.

Above, by checking the primal and dual of inner minimization problems, there are following two

candidate optimal solutions

⌫
a =

s

t
,µ

a
i = 0,8i2 [n],

⌫
b =

1

t
, µ

b
i = 0,8i2 bS,µb

i =
s� 1

t
,8i2 [n] \ bS.

Step 3. Finding the Best Scaler t and Proving the Approximation Bound.

Plugging in these two candidate solutions of (⌫,µ), the right-hand side of the above minimization

problem becomes

z
LD

 log
s

det(X)+min
t>0

min

⇢
s log(t)+ s

⇣
s

t
� 1
⌘
, s log(t)+ (n� s)

s� 1

t
+

s

t
� s

�
.

By swapping the two minimum operators and optimizing over t, the right-hand side of above

inequality is further equivalent to

z
LD

 log
s

det(X)+ smin
n
log(s), log

⇣
n� s�

n

s
+2
⌘o

.

According to the weak duality between MESP (3) and LD (5) and the fact that bS is feasible to

MESP (1), we have

log
s

det

✓X

i2bS

viv
>
i

◆
= log

s

det(X) z
⇤
 z

LD
 log

s

det(X)+ smin
n
log(s), log

⇣
n� s�

n

s
+2
⌘o

,

which completes the proof. ⇤
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A.10 Proof of Proposition 5

Proposition 5 If one follows the construction of a feasible solution ⇤ in (15) to LD (5), then

even with the best choice of (⌫,µ), there exists an instance such that

� log det
s
(⇤)+ s⌫+

X

i2[n]

µi � s= z
⇤ + smin{log(s), log (n� s�n/s+2)} .

Proof. We construct the following instance.

Example 3 Given s d n, suppose that for each i2 [n],

vi =

(
ei, if i2 [s],P

j2[s] ej, otherwise.

In the above example, one optimal solution to MESP (2) is S⇤ = [s]. Suppose in the local search

Algorithm 4, we start with bS = S
⇤, then it terminates immediately. We follow (15) to construct a

feasible ⇤ to LD, which is identical to the one (31a) used in Theorem 7. According to the proof of

Theorem 7, we only need to check if the inequalities (31d) are tight, i.e.,

s= tr(X†)v>
j (Id �X†X)vj +v>

j X
†vj = tv>

j ⇤vj,8j 2 [s+1, n].

In fact,

tr(X†)v>
j (Id �X†X)vj +v>

j X
†vj = tr(X†)

✓X

i2[s]

ei

◆>

(Id �X†X)

✓X

i2[s]

ei

◆
+v>

j X
†vj

=
X

i2[s]

e>
i X

†ei = s,8j 2 [s+1, n],

where the second equality is due to Part (vi) in Lemma 6 with ⌧ = s and the third one is due to

X =
P

i2[s] eie>
i and e>

i X
†e` = 0 for all i, `2 [s] and i 6= `. ⇤

A.11 Proof of Proposition 6

Proposition 6 Let bS denote the output of the local search Algorithm 4. Suppose that v>
i vj = 0 for

each pair (i, j)2 bS⇥ ([n] \ bS), then we have

log
s

det

✓X

i2bS

viv
>
i

◆
� z

⇤
� smin

⇢
log

✓
�max(C)

�

◆
, log

✓
�max(C)

s�
(n� s)�

n

s
+2

◆�
,

where the constant � is defined in Lemma 4.

Proof. The proof follows directly from Theorem 7. Thus, we only sketch the proof for the sake of

page limit.
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Step 0. Given the output bS of the local search Algorithm 4, let us denote X =
P

i2bS viv>
i . Let

�1 � · · ·� �s > �s+1 = · · ·= �d = 0 denote the eigenvalues of X. Clearly, according to the definition

of � and Cauchy’s Interlacing theorem (Bellman 1997), we have �max(C)� �1 and �s � �.

Step 1. Construct ⇤= (�st)�1(Id �X†X)+ t
�1X† such that log

s

det(X) =� log det
s
(⇤)+ s log t.

Step 2. We can show that v>
i ⇤vi = 1/t for all i2 bS.

Since the vectors {vi}i2bS span the column space of X, the assumption that v>
i vj = 0 for each

pair (i, j)2 bS⇥ ([n] \ bS) implies that vj is orthogonal to the column space of X. Thus, we have

v>
j X = 0,v>

j X
† = 0,v>

j ⇤vj = (�st)
�1v>

j vj,8j 2 [n] \ bS.

To obtain the upper bound of v>
j ⇤vj, according to Lemma 7, we have

1�
�
v>
i X

†X†vi

�
v>
j (Id �X†X)vj +v>

j X
†viv

>
i X

†vj =
�
v>
i X

†X†vi

�
v>
j vj,8i2

bS,

where the equality is due to v>
j X

† = 0. Summing the above inequalities over i 2 bS, then for each

j 2 [n] \ bS, we have

v>
j ⇤vj =

1

�st
v>
j vj 

1

�st

s

tr(X†)


�1

�st


�max(C)

�t
,

where the second inequality is due to �1 tr(X†)� s, and the third inequality is from �max(C)� �1

and � �s.

Step 3. To choose (⌫,µ) such that (⇤,⌫,µ) is feasible to LD (5), let us consider the optimization

problem below

min
t>0

min
⌫,µ2Rn

+

⇢
log

s

det(X)+ s log t+ s⌫+
X

i2[n]

µi � s : ⌫+µi �
1

t
,8i2 bS,⌫+µi �

�max(C)

�t
,8i2 [n] \ bS

�
,

which provides an upper bound to z
LD. By optimizing the right-hand side, we obtain

z
LD

 log
s

det(X)+min

⇢
s log

✓
�max(C)

�

◆
, s log

✓
�max(C)

s�
(n� s)+

2s�n

s

◆�
.

Invoking the weak duality between MESP (1) and LD (5) and the fact that bS is feasible to MESP

(1), we conclude that

log
s

det(X) z
⇤
 z

LD
 log

s

det(X)+ smin

⇢
log

✓
�max(C)

�

◆
, log

✓
�max(C)

s�
(n� s)�n/s+2

◆�
.

⇤
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A.12 Proof of Proposition 7

Proposition 7 The objective function of A-MESP (17) is (i) monotonic non-decreasing, (ii) nei-

ther discrete-supermodular nor discrete-submodular, and (iii) neither convex nor concave.

Proof. Part (i). For any size-s subset S ✓ [n] with s � 1, let X =
P

`2S v`v>
` , then for any

i2 [n] \S, we have

s+1
tr
⇥
(X +viv

>
i )

†⇤=
s
tr(X†)+

1+v>
i X

†vi

v>
i (In �XX†)vi

�
s
tr(X†),

where the equality is due to Part (iii) in Lemma 6 , and thus proves the monotonicity.

Part (ii). Consider an instance of n= 3, v1 = 2e1 + e2, v2 = 2e1 � e2 and v3 2 R3. Then we let

S1 = {1}, S2 = {1,2} and X1 =
P

i2S1
viv>

i , X2 =
P

i2S2
viv>

i . In this way, we have

X1 =

0

@
4 2 0
2 1 0
0 0 0

1

A , X†
1 =

0

@
0.16 0.08 0
0.08 0.04 0
0 0 0

1

A , X2 =

0

@
8 0 0
0 2 0
0 0 0

1

A , X†
2 =

0

@
0.125 0 0
0 0.5 0
0 0 0

1

A .

If v3 = (40 10 20)>, then

2
tr
⇥
(X1 +v3v

>
3 )

†⇤
�

1
tr(X†

1) =
1+324

480
�

1+250

400
=

3
tr
⇥
(X2 +v3v

>
3 )

†⇤
�

2
tr(X†

2),

which disproves the discrete-supermodularity.

If v3 = (10 10 20)>, then

2
tr
⇥
(X1 +v3v

>
3 )

†⇤
�

1
tr(X†

1) =
1+52

420


1+62.5

400
=

3
tr
⇥
(X2 +v3v

>
3 )

†⇤
�

2
tr(X†

2),

which disproves the discrete-submodularity.

Part (iii). Let us consider Example 2 in Proposition 1. In this example, we consider two feasible

solutions x1 = (1,0)> and x2 = (0,1)> of A-MESP (17) with s= 1. The following two cases disprove

the convexity and concavity:

Case 1. If a= 1 and b= 1, we have

1

2

1
tr
h�
v1v

>
1

�†i
+

1

2

1
tr
h�
v2v

>
2

�†i
= 1

1
tr

✓X

i2[n]

x
1
i +x

2
i

2
viv

>
i

◆†�
= 2,

which disproves the convexity.

Case 2. If a= 4 and b= 1, then we have

1

2

1
tr
h�
v1v

>
1

�†i
+

1

2

1
tr
h�
v2v

>
2

�†i
=

1

8
+

1

2
�

1
tr

✓X

i2[n]

x
1
i +x

2
i

2
viv

>
i

◆†�
=

1

2
,

which disproves the concavity. ⇤
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A.13 Proof of Lemma 8

Lemma 8 For a d⇥ d matrix ⇤⌫ 0, we have

min
X⌫0

n s
tr(X†)+ tr(X⇤)

o
= 2tr

s

⇣
⇤

1
2

⌘
. (19)

Proof. Following the proof of Lemma 1, the left-hand side of (19) can be equivalently written as

min
�2Rd

+
�1�···��d�0

(
X

i2[s]

1

�i
+ min

Q,✓2Rd
+

✓1···✓d

⇢X

i2[d]

✓i�i : ✓=diag(Q>
⇤Q),Q is orthonormal

�)
,

which can be further reduced to

min
�2Rd

+
�1�···��d�0

⇢X

i2[s]

1

�i
+
X

i2[d]

�i�i

�
.

Minimizing the inner problem over � yields �i =
1p
�i

for any i2 [s] and �i = 0 otherwise. Thus,

min
X⌫0

n s
tr(X†)+ tr(X⇤)

o
= 2

X

i2[s]

p
�i = 2 tr

s

⇣
⇤

1
2

⌘
.

⇤

A.14 Proof of Theorem 9

Theorem 9 The primal characterization of A-LD (20), referred to as (A-PC), is

(A-PC) z
LD
A :=min

x

(
�s

✓X

i2[n]

xiviv
>
i

◆
:
X

i2[n]

xi = s,x2 [0,1]n
)
. (21)

Proof. For A-LD (20), let x2Rn
+ denote the Lagrangian multipliers associated with ⌫+µi � v>

i ⇤vi

for each i2 [n] and thus its dual is equal to

z
LD
A := min

x2Rn
+

max
⇤⌫0,⌫,µ2Rn

+

⇢
2tr

s

⇣
⇤

1
2

⌘
� s⌫�

X

i2[n]

µi +
X

i2[n]

xi(⌫+µi �v>
i ⇤vi)

�
,

where according to theorem 3.2.2 in Ben-Tal and Nemirovski (2012), the strong duality holds since

the constraint system satisfies the relaxed Slater condition.

Clearly, the inner maximization can be separated into two parts: maximization over ⇤⌫ 0 and

maximization over ⌫,µ2Rn
+.

(i) Let X =
P

i2[n] xiviv>
i and then the inner maximization problem over ⇤⌫ 0 becomes

max
⇤⌫0

⇢
2tr

s

⇣
⇤

1
2

⌘
� tr(⇤X)

�
.

Suppose ⇤ has eigenvalues 0  �1  · · ·  �d and ⇤ = P Diag(�)P> with an orthonormal

matrix P . Let us denote ✓ = diag(P>XP ) and for X with rank r, let X =QDiag(�)Q>
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denote its eigendecomposition, where �1 � · · ·� �r > �r+1 = · · ·= �d = 0 and Q is orthonor-

mal. Following the similar proof of Lemma 3, we can reformulate the above maximization

problem as

max
P ,✓2Rd

+,�2Rd
+,

0�1···�d,
✓1�···�✓d�0

(
2
X

i2[s]

p
�i �

X

i2[d]

✓i�i : ✓=diag(P>XP ),P is orthonormal

)
=�s(X),

with an optimal solution

P ⇤ =Q,✓⇤ =�,�⇤
i =

1

�2
i

,8i2 [k],�⇤
i =

(s� k)2

(
P

i2[k+1,d] �i)2
,8i2 [k+1, r],�⇤

i � �
⇤
r ,8i2 [r+1, d].

(ii) For the maximization with respect to ⌫,µ2Rn
+, we have

max
⌫,µ2Rn

+

⇢
� s⌫�

X

i2[n]

µi +
X

i2[n]

xi(⌫+µi)

�
=

(
0, if

P
i2[n] xi = s,xi  1,

1, otherwise.

Combining Parts (i) and (ii), we arrive at (21). ⇤

A.15 Proof of Lemma 9

Lemma 9 For any feasible solution x to A-PC (21), let � 2Rd
+ denote the vector of eigenvalues

of matrix
P

i2[n] xiviv>
i , then we have

�s

✓X

i2[n]

xiviv
>
i

◆
�

Es�1(�)

Es(�)
, (23)

where function Es(·) is introduced in Definition 3.

Proof. Without loss of generality, suppose that the eigenvalues of matrix
P

i2[n] xiviv>
i are sorted

in a descending order, i.e., �1 � · · ·� �d � 0. Let us construct a new vector � as

�i = �i,8i2 [k],�i =

P
i2[k+1,d] �i

s� k
,8i2 [k+1, s],�i = 0,8i2 [s+1, d].

For any two vectors x,y 2Rd, we say that x is majorized by y if

X

i2[t]

xi 

X

i2[t]

yi,8t2 [d� 1],
X

i2[d]

xi =
X

i2[d]

yi.

Further, a function f is Schur-convex if f(x) f(y) holds for any x,y 2 dom(f) that x is majorized

by y (see, e.g., Hwang and Rothblum 1993).

Clearly, � is majorized by � and thus obtain

�s

✓X

i2[n]

xiviv
>
i

◆
=

Es�1(�)

Es(�)
�

Es�1(�)

Es(�)
,

where the inequality follows from the Schur-convexity of function Es�1(·)
Es(·) (see theorem 3.1 in

Guruswami and Sinop 2012 and the fact 1/(f(x)) is Schur-convex if f(x) is Schur-concave). ⇤
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A.16 Proof of Theorem 11

Theorem 11 Given an optimal solution bx to A-PC, the volume sampling Algorithm 6 yields a

min(s,n� s+1)-approximation ratio of A-MESP, i.e.,

E


s
tr

✓X

i2S̃

viv
>
i

◆†��
min(s,n� s+1)z⇤A.

Proof. For any positive semidefinite matrix X ⌫ 0, let �(X) denote the vector of its eigenvalues.

The expected objective value output from Algorithm 6 can be upper bounded by

E


s
tr

✓X

i2S̃

viv
>
i

◆†��
=
X

S2([n]
s )

P[S̃ = S]
s
tr
h�
VSV

>
S

�†i

=
X

S2([n]
s )

Q
i2S bxi

s

det(VSV >
S )

P
S̄2([n]

s )
Q

i2S̄ bxi

s

det(VS̄V >
S̄
)

Es�1(�(VSV >
S ))

s

det(VSV >
S )

=

P
S2([n]

s )
Q

i2S bxi

P
T2( S

s�1)
Es�1(�(VTV >

T ))

P
S̄2([n]

s )
Q

i2S̄ bxi

s

det(VS̄V >
S̄
)

=

P
T2( [n]

s�1)
P

S2([n]
s ),T✓S

Q
i2S bxiEs�1(�(VTV >

T ))

P
S̄2([n]

s )
Q

i2S̄ bxi

s

det(VS̄V >
S̄
)

=

P
T2( [n]

s�1)
(
P

i2[n]\T bxi)
Q

i2T bxiEs�1(�(VTV >
T ))

P
S̄2([n]

s )
Q

i2S̄ bxi

s

det(VS̄V >
S̄
)

min(s,n� s+1)

P
T2( [n]

s�1)
Q

i2T bxiEs�1(�(VTV >
T ))

P
S̄2([n]

s )
Q

i2S̄ bxiEs(�(VS̄V >
S̄
))

=min(s,n� s+1)
Es�1(�(

P
i2[n] bxiviv>

i ))

Es(�(
P

i2[n] bxiviv>
i ))

min(s,n� s+1)�s

✓X

i2[n]

bxiviv
>
i

◆
min(s,n� s+1)z⇤A

where the third equality is due to Cauchy-Binet formula (Broida and Williamson 1989), the fourth

and fifth equalities are due to interchange of summations and collecting terms, the first inequality

stems from the fact that
P

i2[n]\T bxi  min(s,n� s+ 1) for any size-(s� 1) subset T , the sixth

equality is due to Cauchy-Binet formula (Broida and Williamson 1989), the second inequality is

from Lemma 9 and the last inequality results from the weak duality. ⇤

A.17 Proof of Lemma 10

Lemma 10 Suppose that bS is the output of the local search Algorithm 7 and X =
P

i2bS viv>
i , for

each pair (i, j)2 bS⇥ ([n] \ bS), the following inequality always holds

v>
i (X

†)3viv
>
j (In �X†X)vj  v>

i (X
†)2vi +v>

i (X
†)2viv

>
j X

†vj � 2v>
i (X

†)2vjv
>
i X

†vj.
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Proof. Similar to the analysis of Lemma 7, for each pair (i, j), there are two cases to be considered,

conditional on whether vj 2 col(X�i) or not. If the rank of X is s, then
s
tr(X†) = tr(X†), thus for

notational convenience, we use tr(·) instead.

(i) If vj /2 col(X�i), according to the local optimality condition, we have

tr(X†) tr[(X�i +vjv
>
j )

†] = tr(X†
�i)+

1+v>
j X

†
�ivj

v>
j (In �X�iX

†
�i)vj

= tr(X†)�
v>
i (X

†)3vi

v>
i (X†)2vi

+
1+v>

j X
†
�ivj

v>
j (In �X�iX

†
�i)vj

= tr(X†)�
v>
i (X

†)3vi

v>
i (X†)2vi

+
1+v>

j X
†
�ivj

v>
j (In �XX†)vj +(v>

j X†vi)2/v>
i (X†)2vi

, (32)

where the equalities follow from Part (iii), Part (iv) and Part (viii) in Lemma 6, respectively.

Then by Part (iv) in Lemma 6, we further have

v>
j X

†
�ivj = v>

j X
†vj � 2

v>
j X

†viv>
j (X

†)2vi

v>
i (X†)2vi

+
v>
i (X

†)3vi(v>
j X

†vi)2

(v>
i (X†)2vi)2

.

Plugging the equation above into the local optimality condition (32), we can simplify it as

v>
i (X

†)3viv
>
j (In �X†X)vj  v>

i (X
†)2vi +v>

i (X
†)2viv

>
j X

†vj � 2v>
i (X

†)2vjv
>
i X

†vj.

(ii) If vj 2 col(X�i), we show that v>
j (In �X†X)vj = 0 and v>

i X
†vj = 0 for each i 2 bS in the

proof of Lemma 7. Thus, it is clear that

0 = v>
i (X

†)3viv
>
j (In �X†X)vj  v>

i (X
†)2vi +v>

i (X
†)2viv

>
j X

†vj

= v>
i (X

†)2vi +v>
i (X

†)2viv
>
j X

†vj � 2v>
i (X

†)2vjv
>
i X

†vj.

⇤

A.18 Proof of Theorem 12

Theorem 12 The local search Algorithm 7 yields a s/2+�
�1min{�max(C), n�+(n� s)�max(C)}-

approximation ratio for A-MESP, i.e,

s
tr

✓X

i2bS

viv
>
i

◆
min

⇢
s

2

✓
1+

�max(C)

�

◆
,
1

2

✓
n+ s+

(n� s)�max(C)

�

◆�
z
⇤
A,

where bS is the set produced by Algorithm 7, and � is defined in Lemma 4.

Proof. Let us denote X =
P

i2bS viv>
i . Clearly, the rank of X is s and suppose that its eigenvalues

satisfy �1 � · · · � �s > �s+1 = · · · = �d = 0. Thus,
s
tr(X†) =

P
i2[s]

1
�i

= tr(X†). If the rank of an

n⇥ n positive semi-definite matrix Y is s, since
s
tr(Y ) = tr(Y ), thus for notational convenience,

we will use tr(·) instead.
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Similar to the proof in Theorem 7, our proof relies on the weak duality of A-LD (20). Consider

a feasible variable ⇤ of A-LD (20) as

⇤= 2t2(X†)2 +2t2��2
s (In �X†X),

where t > 0 is a scaling factor and will be specified later. Next, to construct the solution of the

other two dual variables (⌫,µ), we need to check the feasibility of constraints in A-LD (20), i.e.,

v>
i ⇤vi  ⌫+µi,8i2 [n].

There are two cases to be considered: (i) for each i2 bS and (ii) for each j 2 [n] \ bS.

(i) For each i2 bS, we have

v>
i ⇤vi = 2t2v>

i (X
†)2vi  2t2 tr(X†), (33a)

where the equation is due to Part (vi) in Lemma 6 and the inequality is from
P

i2bS v
>
i (X

†)2vi = tr(X†).

(ii) For each j 2 [n] \ bS, according to Lemma 10, for each i2 bS, we have

v>
i (X

†)3viv
>
j (In �X†X)vj  v>

i (X
†)2vi +v>

i (X
†)2viv

>
j X

†vj � 2v>
i (X

†)2vjv
>
i X

†vj.

Summing up the above inequality over all i2 bS, we can obtain

1

t2
v>
j ⇤vj  �

�2
s v>

j (Id +X†X)vj +tr[(X†)2]v>
j (Id �X†X)vj +2v>

j (X
†)2vj

 tr(X†)+ tr(X†)v>
j X

†vj +�
�2
s v>

j (Id �X†X)vj,

where the first inequality is due to tr[(X†)2]� �
�2
s . Above, we can further bound the right-

hand side as below

1

t2
v>
j ⇤vj  tr(X†)+ tr(X†)v>

j X
†vj +�

�2
s v>

j (Id �X†X)vj

 tr(X†)+�
�1
s tr(X†)v>

j X
†Xvj +�

�1
s tr(X†)v>

j (Id �X†X)vj

= tr(X†)(1+�
�1
s v>

j vj) tr(X†)

✓
1+

�max(C)

�

◆
,

where the second inequality is because tr[(X†)] � �
�1
s and X†

⌫ �
�1
s X†X, and the third

inequality is due to the facts that v>
` v`  �max(C) for any `2 [n] and �s � �.

Thus, for each j 2 [n] \ bS, we must have

v>
j ⇤vj  t

2tr(X†)

✓
1+

�max(C)

�

◆
. (33b)
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Using inequalities (33a) and (33b) to construct (⌫,µ), it su�ces to solve the optimization problem

z
LD
A �max

t>0
max

⌫,µ2Rn
+

⇢
t2
p

2
s
tr(X†)� s⌫�

X

i2[n]

µi : ⌫+µi � 2t2tr(X†),8i2 bS,

⌫+µi � t
2tr(X†)

✓
1+

�max(C)

�

◆
,8i2 [n] \ bS

�
.

Above, by checking the primal and dual of inner maximization problems, there are following two

candidate optimal solutions:

⌫
a = t

2tr(X†)

✓
1+

�max(C)

�

◆
, µ

a
i = 0,8i2 [n],

⌫
b = 2t2tr(X†), µb

i = 0,8i2 bS,µb
i = t

2tr(X†)

✓
�max(C)

�
� 1

◆
,8i2 [n] \ bS.

Plugging in these two solutions, the above maximization problem becomes

z
LD
A � tr(X†)max

t>0
max

⇢
2
p

2t� s(1+
�max(C)

�
)t2,2

p

2t�

✓
2s+(n� s)

✓
�max(C)

�
� 1

◆◆
t
2

�
.

By swapping the two maximization operators and optimizing over t, the right-hand side of above

inequality is further equivalent to

z
LD
A � tr(X†)max

⇢
2

s(1+�max(C)/�)
,

2

n+ s+(n� s)�max(C)/�

�
.

Using the fact that zLD
A  z

⇤
A, we obtain the desired approximation ratio. ⇤

Appendix B. MESP (1) using Sample Covariance Matrix

When the true covariance matrix C is not available, we estimate it using N i.i.d. samples, denoted

by bCN . Suppose that the random observations are multi-variate sub-Gaussian (see the formal

definition in Vershynin 2018). According to theorem 4.7.1 in Vershynin (2018), we have the following

generalization bound between the sample covariance matrix and the true one

E
h
kC � bCNk2

i
 c

✓r
n

N
+

n

N

◆
, (34a)

where c > 0 is a positive constant depending on the data and for a symmetric matrix X, we let

kXk2 denote its largest eigenvalue. Then, let bzN denote the optimal value of MESP (1) using the

sample covariance matrix bCN , i.e.,

bzN :=max
S

n
log det(( bCN)S,S) : S ✓ [n], |S|= s

o
. (34b)

Next, we show that with high probability, one has |z⇤ � bzN |=O(1/
p
N).
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Proposition 9 Suppose that the random observations are multi-variate sub-Gaussian and the

positive constants ⇣, ⇣̄ > 0 denote the minimum of all the smallest eigenvalues among all the

s ⇥ s positive definite principal submatrices of C and the maximum of all the largest eigenval-

ues among all the s⇥ s principal submatrices of C, respectively. If the sample size satisfies N �

max{n,16c2n/(⌘2
⇣
2)(2⇣̄/⇣+1)2s�2

} with the constants c > 0 and ⌘ 2 (0,1), then with probability at

least 1� ⌘, we have

|z
⇤
� bzN | s log

✓
1+

4c

⌘⇣

r
n

N

◆


4cs

⌘⇣

r
n

N
.

Proof. We split the proof into two steps.

Step I. Since N � n, the inequality (34a) implies that

E
h
kC � bCNk2

i
 2c

r
n

N
. (34c)

Together with Markov inequality, we have

P

kC � bCNk2 

2c

⌘

r
n

N

�
= 1�P


kC � bCNk2 >

2c

⌘

r
n

N

�
� 1�

⌘

2c

r
N

n
E
h
kC � bCNk2

i
� 1� ⌘.

Thus with probability at least 1� ⌘, the estimated covariance matrix bCN satisfies

�
2c

⌘

r
n

N
In �C � bCN �

2c

⌘

r
n

N
In. (34d)

Step II. Let S
⇤ and bSN denote the optimal solutions of MESP (1) and formulation (34b),

respectively. Since the optimal principal submatrix CS⇤,S⇤ is positive definite and N �

16c2n/(⌘2
⇣
2)(2⇣̄/⇣ + 1)2s�2, using the bounds of bCN in (34d), ( bCN)S⇤,S⇤ is also positive definite

with the smallest eigenvalue at least ⇣/2 (see the inequalities (34e) below). Thus, both the optimal

principal submatrices CS⇤,S⇤ and ( bCN)bSN ,bSN
must be positive definite and their corresponding

optimal values z⇤ and bzN satisfy

z
⇤
� bzN = logdet(CS⇤,S⇤)� log det(( bCN)bSN ,bSN

)

= logdet(CS⇤,S⇤)� log det(( bCN)S⇤,S⇤)+ logdet(( bCN)S⇤,S⇤)� log det(( bCN)bSN ,bSN
)

 log det(CS⇤,S⇤)� log det(( bCN)S⇤,S⇤)

 log det

✓
( bCN)S⇤,S⇤ +

2c

⌘

r
n

N
Is

◆
� log det(( bCN)S⇤,S⇤) = logdet

✓
Is +

2c

⌘

r
n

N
( bCN)

�1
S⇤,S⇤

◆

 s log

 
1+

2c

⌘

r
n

N

1

�min(( bCN)S⇤,S⇤)

!
 s log

✓
1+

4c

⌘⇣

r
n

N

◆
,

where the first inequality is because of the optimality of ( bCN)bSN ,bSN
, the second one is due to

inequalities (34d), the third one is from the monotonicity of function log(·), and the last one is due

to the fact that if N � 16c2n/(⌘2
⇣
2)(2⇣̄/⇣ +1)2s�2

� 16c2n/(⌘2
⇣
2), we must have

�min(( bCN)S⇤,S⇤)� �min(CS⇤,S⇤)�
2c

⌘

r
n

N
� ⇣ �

2c

⌘

r
n

N
�

⇣

2
. (34e)
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Similarly, since N � 16c2n/(⌘2
⇣
2)(2⇣̄/⇣+1)2s�2, the matrix CbSN ,bSN

must also be positive definite

and thus, its smallest eigenvalue must be at least ⇣. Therefore, we can also show that

z
⇤
� bzN = logdet(CS⇤,S⇤)� log det(( bCN)bSN ,bSN

)

= logdet(CS⇤,S⇤)� log det(CbSN ,bSN
)+ logdet(CbSN ,bSN

)� log det(( bCN)bSN ,bSN
)

� log det(CbSN ,bSN
)� log det(( bCN)bSN ,bSN

)

� log det(CbSN ,bSN
)� log det

✓
CbSN ,bSN

+
2c

⌘

r
n

N
Is

◆
=� log det

✓
Is +

2c

⌘

r
n

N
C�1

bSN ,bSN

◆

��s log

 
1+

2c

⌘

r
n

N

1

�min(CbSN ,bSN
)

!
��s log

✓
1+

4c

⌘⇣

r
n

N

◆
.

All the results in Step II hold almost surely conditioning on that kC� bCNk2  2c/⌘
p
n/N , where

the latter occurs with probability at least 1� ⌘. This completes the proof. ⇤

Appendix C. MISOCP Formulation of MESP

In this section, we develop a mixed integer second-order conic programming (MISOCP) formulation

for MESP, which is equivalent to the nonlinear convex integer program studied by Anstreicher

(2020). The formulation from Anstreicher (2020) has the following form

(MESP) z⇤ :=max
x

(
1

2
logdet (�CDiag(x)C + In �Diag(x))�

1

2
s log(�) :

X

i2[n]

xi = s,x2 [0,1]n
)
,

(35a)

where � is a positive scalar and can be arbitrary. In fact, a good choice of � can improve the

continuous relaxation of formulation (35a). According to table 1 in Sagnol et al. (2015), we can

show that the above formulation (35a) is equivalent to

(MESP) z
⇤ := max

x,Z1,··· ,Z2nt,J

n

2
log

✓ nY

j=1

(Jj,j)
1/n

◆
�

1

2
s log(�)

s.t.
X

i2[n]

p
�CiZi +

X

k2[n+1,2n]

ek�nZk = J ,J is lower triangular,

kZiejk
2
 tijxi,8i2 [2n],8j 2 [n],

X

i2[2n]

tij  Jj,j,8j 2 [n],

ti,j � 0,8i2 [2n],8j 2 [n],

1�xi = xn+i,8i2 [n],
X

i2[n]

xi = s,

x2 {0,1}n,

(35b)
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where Ci denotes the i-th column vector of matrix C. Note that according to chapter 2.3 in Ben-

Tal and Nemirovski (2001), we can equivalently represent the objective function in the formulation

(35b) as a second order conic program.
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