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This paper studies a classic maximum entropy sampling problem (MESP), which aims to select the
most informative principal submatrix of a prespecified size from a covariance matrix. By investigating its
Lagrangian dual and primal characterization, we derive a novel convex integer program for MESP and show
that its continuous relaxation yields a near-optimal solution. The results motivate us to develop a sampling
algorithm and derive its approximation bound for MESP, which improves the best-known bound in litera-
ture. We then provide an efficient deterministic implementation of the sampling algorithm with the same
approximation bound. Besides, we investigate the widely-used local search algorithm and prove its first-
known approximation bound for MESP. The proof techniques further inspire us an efficient implementation
of the local search algorithm. Our numerical experiments demonstrate that these approximation algorithms
can efficiently solve medium-sized and large-scale instances to near-optimality. Finally, we extend the anal-
yses to the A-Optimal MESP (A-MESP), where the objective is to minimize the trace of the inverse of the

selected principal submatrix.
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1. Introduction

The maximum entropy sampling problem (MESP) is a classic problem in statistics and information
theory (Gilmore 1996, Jaynes 1957, Shewry and Wynn 1987), which aims to select a small number of
random observations from a possibly large set of candidates to maximize the information obtained.
The MESP has been widely applied to healthcare (Alarifi et al. 2019), power system (Li et al.
2012), manufacturing (Wang et al. 2019), data science (Charikar et al. 2000, Song and Lio 2010,
Zilly et al. 2017), among others. Specifically, suppose that the n random variables follow a Gaussian
distribution and their covariance matrix C' € R"*" has a rank d <n. Then, the goal of MESP is to
seek a size-s (s < d) principal submatrix of C with the largest logarithm of the determinant, i.e.,

MESP can be formulated as
(MESP) z*:= max {logdet(Css): S C[n],|S|=s}, (1)

where Cg s denotes an s x s principal submatrix of C' with rows and columns from set S and
[n] :={1,---,n}. Note that (i) MESP (1) can be generalized to the case that the observations
follow multivariate elliptical distributions (see, e.g., Arellano-Valle et al. 2013); (ii) if s > d, then
the optimal value of MESP (1) is —oo, which is not interesting. Thus, this paper focuses on the
non-trivial setting s < d; (iii) when the true covariance matrix C was not known, one would use the
sample covariance matrix. We show that the theoretical absolute difference between the optimal
value of the true MESP and that of the sample MESP is at most proportional to one over the
square root of sample size, which decays polynomially as the sample size increases (see detailed
derivations in Appendix B); and (iv) if we only know the mean and the covariance of the random
observations, then the formulation (1) is equivalent to the distributionally optimistic counterpart
of the MESP. That is, the joint Gaussian distribution achieves the largest entropy among all the
probability distributions with the same mean and covariance (Cover and Thomas 2012). Thus,

MESP (1) is indeed a very general model and covers many interesting cases.

1.1. Relevant Literature

We review the relevant literature on three aspects: applications, relaxation bounds of MESP, and
exact and approximation algorithms.

Applications: MESP dates back to Shewry and Wynn (1987) and has been applied to many
different areas. One typical application of MESP is the sensor placement (Christodoulou 2015,
Bueso et al. 1998). Due to a limited budget, it is desirable to place a small number of sensors to
effectively monitor spatial and temporal phenomena, including temperature, humidity, air pollu-

tion, etc. Recently, it has been applied to water quality monitoring (O’Flynn et al. 2010). MESP
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has also played an important role in machine learning and data science, such as feature selection
(Charikar et al. 2000, Song and Lio 2010), compressive sensing (Hoch et al. 2014, Schmieder et al.
1993), and image sampling (Rigau et al. 2003, Zilly et al. 2017).

Relaxation Bounds of MESP: It has been proven in Ko et al. (1995) that solving MESP in
general is NP-hard. Hence, many efforts have been made to explore its strong relaxation bounds
(see, e.g., Anstreicher et al. 1996, 1999, Anstreicher and Lee 2004, Anstreicher 2020, 2018, Ko et al.
1995, Hoffman et al. 2001, Lee 1998, Lee and Williams 2003, Anstreicher 2018). For example, Ko
et al. (1995) used the eigenvalue interlacing property of symmetric matrices to derive an upper
bound for MESP. Recent progress by Anstreicher (2020) proposed a new upper bound, referred to
as linx bound, and numerically showed that it dominated other bounds studied in the literature.
In this paper, we derive a Lagrangian dual bound for MESP and also numerically demonstrate
that this new upper bound can be stronger than the linx bound for some numerical cases (see our
numerical study in Section 5).

Exact and Approximation Algorithms: Besides providing stronger upper bounds, researchers
have also attempted to propose exact or approximation algorithms to solve MESP (1). Ko et al.
(1995) was one of the first works to develop a branch and bound (B&B) algorithm for solving
MESP to optimality. Similar works can be found in Anstreicher et al. (1999), Anstreicher (2020,
2018), Burer and Lee (2007) by integrating stronger upper bounds with the B&B algorithm. In this
paper, we provide an equivalent convex integer program for MESP, which is suitable for a branch
and cut (B&C) algorithm.

However, exact algorithms might not be able to solve very large-scale instances. It has been
shown in Anstreicher (2020) that solving MESP (1) on the instance of n =90 to optimality can
take as long as several days. As alternative ones, approximation algorithms have also attracted
much attention. Many approximation algorithms such as greedy and exchange (i.e., local search)
heuristics have been used to generate high-quality solutions for MESP in literature (Ko et al.
1995, Sharma et al. 2015). However, theoretical performance guarantees of these approximation
algorithms are rarely known. Although the objective function of MESP (1) is submodular (Kelmans
and Kimelfeld 1983), it is neither monotonic nor always nonnegative. Thus, existing results on
maximizing the nondecreasing and nonnegative submodular function over a cardinality constraint
might not apply and thus require additional assumptions (Charikar et al. 2000, Sharma et al.
2015). Recently, Nikolov (2015) studied a sampling algorithm for the maximum s-subdeterminant
problem, which can be reduced to MESP (1), and developed its approximation guarantee. The
inapproximability of MESP (1) can be found in Civril and Magdon-Ismail (2013), Summa et al.
(2014), which shows that unless P=NP, it is impossible to approximate MESP within an additive

error slog(c) for some constant ¢ > 1. This paper proposes a different sampling algorithm from the
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one in Nikolov (2015) and improves its approximation bound. We also analyze the well-known local

search algorithm and derive its first-known approximation guarantee. Both proposed algorithms

yield better approximation bound than the greedy algorithm studied in Civril and Magdon-Ismail

(2009). Table 1 summarizes the existing approximation bounds in literature and our proposed ones

for MESP (1). Note that approximation Bound is defined as the difference between the optimal

value and the output value returned by an algorithm.

Table 1 Summary of Approximation Algorithms for MESP

Approximation Algorithm Approximation Bound
. Greedy (Civril and Magdon-Ismail 2009) 2log(s!)
Literature
Samping (Nikolov 2015) slog(s) —log(s!)
. Sampling Algorithm 2 slog(s) +1log((")) — slog(n)
This paper 2
Local Search Algorithm 4 smin {log(s),log(n —s+2—n/s)}

1.2. Summary of Contributions

The objective of this paper is to develop a new convex integer program for MESP (1), analyze

approximation algorithms, and develop their efficient implementations. Below is a summary of our

main contributions:

(i)

(iii)

Through the Lagrangian dual of MESP (1) and its primal characterization, we derive a convex
integer program for MESP (1) and show that its continuous relaxation solution is near-
optimal. In addition, we apply the efficient Frank-Wolfe algorithm to solving the continuous
relaxation and derive its rate of convergence.

The continuous relaxation of the proposed convex integer program inspires us a sampling
algorithm and develop its approximation bound for MESP (1), which improves the best-
known bound in literature. We then provide an efficient deterministic implementation of the
proposed sampling algorithm with the same approximation bound.

Using the weak duality between the proposed convex integer program and its Lagrangian
dual, we investigate the widely-used local search algorithm and prove its first-known approxi-
mation bound for MESP (1). The proof techniques further motivate us to develop an efficient
implementation of the local search algorithm.

Our numerical experiments demonstrate that these approximation algorithms can efficiently

solve medium-sized and large-scale instances to near-optimality.
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(v) Finally, we extend the analyses to the A-Optimal MESP (A-MESP), where its objective is
to minimize the trace of the inverse of the selected principal submatrix. We propose a new
convex integer program for A-MESP, study volume sampling and local search algorithms,
and prove their approximation ratios.

Organization: The remainder of the paper is organized as follows. Section 2 derives an equivalent
convex integer program for MESP. Section 3 develops the sampling algorithm and its deterministic
implementation and also explores their approximation guarantees for MESP. Section 4 investigates
the local search algorithm and proves its approximation guarantee for MESP. Section 5 conducts
a numerical study to demonstrate the efficiency and the solution quality of our proposed approxi-
mation algorithms. Section 6 extends the analyses to A-MESP. Section 7 concludes the paper.

Notation: The following notation is used throughout this paper. We use bold lower-case letters
(e.g., ) and bold upper-case letters (e.g., X) to denote vectors and matrices, respectively, and use
corresponding non-bold letters (e.g., ;) to denote their components. We use 0 to denote the zero
vector. We let R’ denote the set of all the n dimensional nonnegative vectors and let R’} denote
the set of all the n dimensional positive vectors. Given an integer n, we let [n]:={1,2,--- ,n} and
let [s,n]:={s,s+1,--- ,n}. We let I,, denote the n x n identity matrix and let e; denote its i-th
column. Given a set S and an integer k, we let |S| denote its cardinality and let (i) denote the
collection of all the size-k subsets out of S. Given an m x n matrix A and two sets S € [m|, T € [n],
we let Agr denote a submatrix of A with rows and columns indexed by sets S,T, respectively,
let Ag denote a submatrix of A with columns from the set S, and let col(A) denote its column
space. Given a vector € R", we let Diag(x) denote the diagonal matrix with diagonal elements
Xy, ,2,, and let supp(x) denote the support of @. Given a symmetric matrix A, let diag(A)
denote the vector of diagonal entries of A, let AT denote its pseudo inverse, let det(A) denote its
determinant, let tr(A) denote its trace, and let Ayin(A), Amax(A) denote the smallest and largest
eigenvalues of A, respectively. Given a convex set I, we use relint(ID) to denote its relative interior.

Additional notation will be introduced later as needed.

2. Convex Integer Programming Formulation

In this section, we derive the Lagrangian dual (LD) of MESP (1) and its primal characterization
(PC), where the latter inspires us a new convex integer programming formulation of MESP (1) by

enforcing its variables to be binary.

2.1. Mixed Integer Nonlinear Program of MESP

To begin with, we first observe that MESP (1) has an equivalent mixed integer nonlinear pro-

gramming formulation using the Cholesky factorization. To do so, for matrix C =0, let C=V 'V
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denote its Cholesky factorization, where V' € R and let v; € R? denote the i-th column vector
of matrix V for each i € [n]. Also, let us define the following two functions, which correspond to
the objective function of an alternative reformulation of MESP (1), and the objective function of

its Lagrangian dual.

Definition 1 For a d x d matriz X =0 of its eigenvalues Ay > --- > Ay > 0, we define
(i) det(X) :=[Lciq N
(i) dset(X) = Hie[dferl,d] Ai

Note that for any matrix X, det(X) denotes the product of the s largest eigenvalues and det(X)
denotes the product of the s smallest eigenvalues. In fact, the following observation shows that the

objective function of MESP (1) can be represented by the function dset(-)

Observation 1 det (Csg) = det (Yiesviv]).

Proof. Note that Css = V{ Vs. Suppose matrix V| Vi has eigenvalues A\; > --- > A, > 0, which
correspond to the s largest eigenvalues of VsVy'. Therefore, we must have
det (Cs,5) = det (Vg Vi) = [T As = det (Vs Vi) = det (Z viv] > .
i€(s] i€S
O
Let us introduce the binary variables @ € {0,1}" where for each i € [n], z; =1 if the i-th col-
umn vector v; is chosen, and 0 otherwise. Then according to Observation 1, MESP (1) can be
reformulated as
(MESP) z":= max { logdset ( Z xmm]) : Z x; =s,x € {0, 1}"} (2)
i€[n] i€[n]
Note that in this paper, we assume s < d < n. However, it is worth mentioning that when d <
s <n, MESP becomes the well-known D-Optimal design problem, a classic problem in statistics
(de Aguiar et al. 1995, Pukelsheim 2006).

The following proposition summarizes the properties of the objective function in MESP (2).

Proposition 1 The objective function of MESP (2) is (i) discrete-submodular, (ii) non-

monotonic, (iii) neither concave nor conver, and (iv) not always nonnegative.

Proof. See Appendix A.1. O

The non-monotonicity and possible-negativity of the objective function in (2) imply that the
existing approximation results for maximizing monotonic or nonnegative submodular problems
(Charikar et al. 2000, Sharma et al. 2015) are not directly applicable to MESP. The non-concavity

motivates us to explore a new equivalent convex integer program of MESP.
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2.2. Lagrangian Dual (LD) of MESP

In this subsection, we develop the Lagrangian dual (LD) of MESP (2). First, let us introduce an
auxiliary matrix X € R™? and reformulate MESP (2) as

* s . oy | Jp— n
(MESP) z*:= max { logdet(X) : Z v, =X, Z z;=s,xze{0,1} } (3)
i€[n] ic[n]
By dualizing the constraint >, , z;v;v] = X, we can obtain the LD of MESP (3). Before deriving

the LD formulation, we would like to establish the convex conjugate of the objective function in

MESP (3).
Lemma 1 For a d X d matrix A =0, we have

max {log det(X) — tr(XA)} = —logdet(A) - 5, (4)
where function dset(~) is defined in Definition 1.

Proof. See Appendix A.2. O

Using the result in Lemma 1, we are able to show the Lagrangian dual formulation of MESP.

Theorem 1 The optimization problem below is the Lagrangian dual of MESP (3)

LD._ ; _ _g- > ol Av. Vi
(LD) =z AEOI,IL}};I}ERi { log dgt(A) +sv+ ;uz s:v+p; > v, Av,Vie [n]}, (5)

and its optimal value provides an upper bound of MESP, i.e., zIP > z*.

Proof. We let A > 0 denote the Lagrange multiplier associated with the constraint Zie[n] zvv] =
X in MESP (3). Thus, the resulting dual problem is

SLD . min{ max {logdzt (X)—tr(XA)+ Z rv] Av; Z x; =s,x € {0, 1}”}} (6)

AS0 | #,X50
1€[n] 1€[n]

Note that the inner maximization problem above can be separated into two parts: (i) maximization
over X and (ii) maximization over x.

(i) For the maximization over X, applying the identity in Lemma 1, we have
max {log det (X) — tr(XA)} — _logdet(A) — s.

(ii) For the maximization over @, it is known that optimizing a linear function over a cardinality

constraint is equivalent to its continuous relaxation, which leads to that

max{ Z:z:i'viTAvi: in:s,xE{O,l}"} = min {sy%—ZMi:V—l—uizv;Avi,WE [n]},
i€[n]

v,uERT
i€[n] + i€[n]

where the right-hand side is the dual of the continuous relaxation of the left-hand side.
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Plugging the above results (i.e., Parts (i) and (ii)) into the dual problem (6) and combining the
minimization problems over (A, v, u) together, we arrive at (5).

Further, the inequality z* < 2P holds due to the weak duality. O

2.3. Primal Characterization (PC) of LD and Convex Integer Program of MESP

In this subsection, we show the primal characterization (PC) of LD (5), which inspires us an
equivalent convex integer program of MESP (2).
According to the standard result (see, e.g., Bertsekas 1982, Lemaréchal and Renaud 2001) on a

primal characterization of the Lagrangian dual, we have

w,x,X >0

(PC) 2'P:= max {w:invi'v;iX,

(w,:c,X)econv{(w,:c,X):wglogdfet(X),in:s,mE{0,1}”}}.

i€[n]
In general, the convex hull is difficult to obtain, and thus alternatively, we derive the primal
characterization through the dual formulation of LD (5).
The primal characterization relies on the following results. First, for any given X € R%, let us

define a unique integer k based on its sorted elements as below.

Lemma 2 (lemma 14, Nikolov 2015) Given a wvector X € R? with its elements sorted by
AL > - > Ag and an integer s € [d], there exists a unique integer 0 < k < s such that X\, >

ﬁ Zie[HLd] Ai > Apa1, where by convention Ao = 00.

Throughout this paper, we use k to denote the unique integer in Lemma 2. Next, we define the

objective function of the primal characterization below, which can be also found in Nikolov (2015).

Definition 2 For a d x d matriz X = 0 with its eigenvalues Ay > --- > Ag >0, let us denote
1
Iy( =1 k)1 .
og(HA) og(s_k Z )\z>7
i€ k] i€lk+1,d)

where the unique integer k is defined in Lemma 2.

We are now ready to derive the convex conjugate of the objective function in LD (5).

Lemma 3 Given a d X d matriz X =0 with rank r € [s,d], suppose that the eigenvalues of X are

M= > N> ==X =0 and X = QDiag(AN)Q" with an orthonormal matriz Q. Then
(i)

min {— log det(A) + tr(XA)} = min { Z log(8:) + Z )\lﬁl} (7)

A0 d
. /§1€<R+< 5 i€ls] i€ld]
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(i)
min { Zlogﬂl—kz}\zﬂl} [ (X)+s. (8)

Rd
0<5181€<-"7<ﬁd i€ [s] i€[d]

Proof. See Appendix A.3. O

With the convex conjugate of the objective function in LD (5), using the Lagrangian dual method,

we are able to derive its dual problem and also show the primal characterization below.

Theorem 2 LD (5) has the following primal characterization, i.e.,

(PC) ZLD::mfx{Fs<;Wxiviv;> Zm —=s,xel0,1]" } (9)

i€[n]

where function T's(+) can be found in Definition 2.

Proof. In LD (5), let us introduce Lagrangian multiplies & associated with the constraints. Since
2EP > 2* and the constraint system of LD (5) satisfies the relaxed Slater condition, according to

theorem 3.2.2 in Ben-Tal and Nemirovski (2012), the strong duality holds, i.e.,

LD — i —1 A o (T Av: — U — 1. .
e e { i { ot 4 T T 0T A )

+ + i€[n)] i€[n]
The inner minimization above can be separated into two parts: (i) minimization over A and (ii)
minimization over (v, ), which are discussed below.
(i) Let X =3, z;v;v; . For the minimization over A, applying the identities (7) and (8) in
Lemma 3 and using the fact that >, z;v;] Av; = tr(XA), we have

11{1;101 {—logdset(A) —i—tr(XA)} —s=I(X).

(ii) For the minimization over (v, ), we have

0 if S xi=s,x; <1,Vi€[n];
min sV + i+ 132 —V— — ’ i€[n] yvi =y -
v,nERT { Z a Z Hi } { —00, otherwise.

1€[n]

Putting the above two pieces together, we arrive at (9). O

We remark that PC (9) has the same objective function as another convex relaxation proposed
by Nikolov (2015), but we distinguish our formulation from Nikolov (2015)’s in the following three
aspects: (i) We derive the primal characterization from a Lagrangian dual perspective, which is
also applicable to the A-Optimality (see Section 6) and enables us to derive supdifferentials of the
objective function; (ii) Our PC (9) can be stronger than the one in Nikolov (2015) due to the extra
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constraints z; <1 for each ¢ € [n]; and (iii) LD (5) and PC (9) together are critical to the analysis
of the local search algorithm in Section 4.

The PC (9) is a concave maximization problem and is efficiently solvable. In the next subsec-
tion, we introduce the Frank-Wolfe algorithm to solve it. However, according to Definition 2, the
objective function I'y(-) might not be differentiable. Fortunately, the following result shows how to

derive its supdifferentials.

Proposition 2 Given a d x d matriz X = 0 with rank r € [s,d], suppose that its eigenvalues are
AM>>N>N ==X =0 and X = QDiag(A\)Q" with an orthonormal matriz Q. Then
the supdifferential of the function I's(-) at X that is denoted by 0T o(X) is

ary(X)= {QDiaLg(,B)QT : X = QDiag(A\)Q", Q is orthonormal, A\; > --- > Ay,

1 _
B € conv {,6:52- =—,Viclk],B:= i,WE k+1,r],8; > B,,Vie [r+1,d]} ,
A; Zie[kJrl,d] Ai

where the unique integer k follows from Lemma 2. Note that the function T'(-) is differentiable

whenever X is a positive-definite matriz and the unique supgradient becomes the gradient.

Proof. First, let us define a function ~,(-) as below

WS(A) = min { _Zlog(ﬁ1)+z)\1ﬁz} :FS(X)+S? (10)
BeRY, , —
0<pr<-<py - €l el

where the equation stems from the identity (8) in Lemma 3.

Since function I';(X) is invariant under all the permutations of its eigenvalues, according to

corollary 2.5 in Lewis (1995), we have that
Ory(X)={QDiag(8)Q" : X =QDiag(A)Q",Q is orthonormal, 3 € 9v,(A)} .

Further, by corollary 23.5.3 in Rockafellar (1970), the supdifferential of the concave function
7s(A) is the convex hull of all the optimal solutions 3* of the minimization problem in (10). From

the proof of Lemma 3, any optimal solution 3* satisfies

1 —k
,Bl* - Y’V/LG [k],ﬁl* - SiA’vZG [k_{—lvr]?B: 25:7V/LE [T+17d]
i Zie[k+l,d] g

Hence, the supdifferential of function v,(A) at A is

1 s —
075(A) = conv {,8 Bi=—Vielk],fi==—"+
Zie[k+1,d] Ai

" ,Vie[k+1,r],ﬁi>BT,W€[r+1,d]}.
This completes the proof. O
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As a side product of PC (9), we observe that if we enforce its variables & to be binary, we can

arrive at an equivalent convex integer program for MESP.

Theorem 3 MESP can be formulated as the following convez integer program

mem?) :Zazi:s,we{o,l}"}. (11)

(MESP) z*:=max {FS <
i€[n] 1€[n]

Proof. See Appendix A 4. O

We close this subsection by showing that under three special cases, the optimal value of PC (9)

is equal to that of MESP, i.e., 2P = z*.

Proposition 3 The optimal value of PC (9) is equal to z*, i.e., zMP = z* provided the following

three special cases: (i) C is diagonal; (i1) s=1; and (i) s =n.

Proof. See Appendix A.5. O
The results above demonstrate that the optimal value of the proposed PC (9) can be close to

that of MESP. We further numerically verify this property of PC (9) in Section 5.

3. Frank-Wolfe Algorithm, Sampling Algorithm, and its Deterministic
Implementation

In this section, we apply the Frank-Wolfe algorithm to solving PC (9) and derive its convergence

rate. We also study a randomized sampling algorithm for MESP and prove its approximation

bound, which admits a deterministic implementation with the same performance guarantee.

3.1. Solving PC (9) using Frank-Wolfe Algorithm

In this subsection, we investigate the Frank-Wolfe algorithm for solving PC (9). We define a feasible
solution Z to be an a-optimal solution to PC (9) if the inequality I's(3_, ., Ziviv," ) > 2"” —a with
a € (0,00). Given a target accuracy «, our proposed Frank-Wolfe algorithm returns an a-optimal
solution to PC (9).

The proposed Frank-Wolfe algorithm proceeds as follows. We denote PC (9) to be the primal
problem and LD (5) to be the dual problem. At each iteration ¢, we set the step size ¢, := t%
For the current feasible primal solution z', we let X' =37, aivv] and then compute the
eigendecomposition of matrix X* with eigenvalues A\; > --- > \; and an orthonormal matrix Q such

that X! = Q Diag(A\)Q'. Next, we compute the integer k according to Lemma 2 and construct a

new vector 3" € R% as

;1 5 —

Bl=—Vielk,Bl==——"—+—
Eie[k+l,d] Ai

N Vielk+1,d.
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Thus, let us denote the dual variable by A* = Q Diag(3")QT, which is also a supgradient of function
I's(+) at X' according to Proposition 2. Then we obtain the other two dual variables (v*, u*) of LD
(5) by solving the following minimization problem with a closed-form optimal solution:

(v, 1) ::argmin{sy+ Z,ui —s:v4p; >v Al Vi€ [n]},

u,p,G]Ri i€[n]
i.e., suppose that o is a permutation of [n] such that Uj(l)Atva(l) > > v;(n)Atva(n), then

VA Vo) — 0] AV, Vi€ [s];

vi=v! A, puto = )
o) Yol Hati) =\ Vi€ [s+1,n).

According to Lemma 3, the construction of A’ implies that I'i(X*) = —log dgt(At). Thus, the
duality gap at current iteration only relies on sv*+3 . <] ut—s. We check if the smallest duality gap
is less than the threshold « or not. If “Yes”, then we terminate the algorithm. Otherwise, we keep on
running the algorithm by: (i) deriving the supgradient of PC (9) at the current solution x', which
is g' := (v] Alvy,--+,v] Alw,)"; (ii) computing the incumbent solution Z':= argmax_{(g’) = :
DicmTi=sz€[0,1]"}, ie,

)

At 1, Viels];

ol 0, Viels+1,n]
and (iil) updating the solution &'*! := ;&' + (1 — ¢;)x". The detailed implementation can be found
in Algorithm 1.

Compared to the other first-order methods, the Frank-Wolfe Algorithm 1 is known to deliver a
sparse incumbent solution at each iteration (Freund and Grigas 2016), which allows us to study

the size of the support of its output. To begin with, let us introduce the following key lemma.

Lemma 4 Suppose that for any size-s subset S C [n], the columns {v;}ics are linearly independent.

Let D:={x eR": Y, zi=s,x €[0,1]"}. Then for any x € relin(D), we have
Anax (C)
V2I‘S<inviv:> t —TIH, (12)
i€[n]

where the constant 6 := mingcn],s|=s Amin(Cs,s)-

Proof. See Appendix A.6. O

In Lemma 4, the constant § should be positive, which is a mild assumption and could be easily
satisfied due to the fact s < d. Besides, this assumption (i.e., 6 > 0) is only useful to prove the
convergence rate of Frank-Wolfe Algorithm 1. Therefore, even when J = 0, the proposed Frank-
Wolfe Algorithm 1 would still work and our analyses of the proposed approximation algorithms

would still follow. In practice, when running the Frank-Wolfe Algorithm 1, one may want to add



Yongchun Li and Weijun Xie: Approzimation Algorithms for the Mazimum Entropy Sampling Problem

13

Algorithm 1 Frank-Wolfe Algorithm
1: Input: n x n matrix C > 0 of rank d, integer s € [d], and target accuracy « € (0, 00)

2: Let C =V 'V denote its Cholesky factorization where V € R

3: Let v; € R? denote the i-th column vector of V' for each i € [n]

4: Initialize a feasible solution x° of PC (9), the number of steps ¢ = 0, and the duality gap A = co
5: do

6: Let €, := %

7: Let X*=3%"._ el ]x v;v; with eigenvalues \; > --- > \; and compute X' = Q Diag(A")Q"

8: Compute k according to Lemma 2

9: Compute the new vector 3: ! = A% for each i € [k] and %, otherwise
10: Let A' = QDiag(B)Q"

11: Let o be a permutation of [n] such that U;—(I)At’vg(l) > > v;r(n)Atvg(n)

12: Let v' =] A" (o), sy = Vg Aoy — v for each i € [s] and 0, otherwise
13: Let 7, ;) =1 for all i € [s] and 0, otherwise

14: Update '™ := @' + (1 — &;)z', A:=min{A,sv' + 37, pf — s} and t:=1+1
15: while A > «

16: Output: x!

a small perturbation (e.g., eI, with a small but positive €) to the covariance matrix C to remedy
the singularity. The inequality in Lemma 4 implies that the Hessian of the objective function T',(-)
of PC (9) is lower bounded. Based upon this result, we are able to derive the rate of convergence

of the proposed Frank-Wolfe Algorithm 1.

Theorem 4 Let  denote the output of Frank-Wolfe Algorithm 1. Suppose that for any subset
S C[n] with |S|=s, the columns {v;}ics are linearly independent, and & is an a-optimal solution
of PC (9) for some a € (0,00). Then

(i) The number of iterations is bounded by t <4a~*Lmin{s,n — s}, where L :=0"2)\2_ (C),

max

(i1) The size of support of T satisfies |supp(Z)| < 4a~'Lsmin{s,n — s}.

Proof. Part (i). Let D:={x: 3, ;= s, €0,1]"}. Since I',(-) is continuous in D, thus

LD ._ _  inf -T v, | b

i€[n] i€[n]
Thus, it is equivalent to analyzing the Frank-Wolfe Algorithm 1 on solving the right-hand side
problem. The inequality (12) in Lemma 4 indicates that for any @ € relint(D), the largest eigen-
value of the Hessian of the convex function —I';(3_,.,, ziviv,") is bounded by L. Therefore, the
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smoothness coefficient of —T',(37, ., #sviv;') in relint(D) is at most L. Given the L-smoothness,
for Frank-Wolfe Algorithm 1, after iteration ¢, Pedregosa et al. (2018)[theorem 2] showed that the
duality gap is bounded by
28UD,, yeretini(o) || — Y131 _ 4ALmin{s,n — s}
t+1 t+1
Given the target of the duality gap to be «, it follows that

t <4a 'Lmin{s,n — s}.

Part (ii). Since each iteration of Algorithm 1 increases at most s nonzero entries for the current

solution, the size of the support of the output solution & is bounded by

|supp(Z)| < st <4a~'Lsmin{s,n — s}.

3.2. Sampling Algorithm

In this subsection, we introduce and analyze a randomized sampling algorithm for MESP. Given
an a-optimal solution & of PC (9) with « € (0,00), our proposed sampling algorithm is to sample
a size-s subset S C [n| with probability
3 T
P[S =S := ies®:
de([;ﬂ) [Lics:

The detailed implementation can be found in Algorithm 2. This sampling procedure is similar to

(13)

algorithm 1 in Singh and Xie (2018), which has been proved to be computationally efficient with
running time complexity O(nlogn). The following result helps establish a relationship between the

expected objective value using our sampling procedure and the optimal value of PC (9).

Lemma 5 Given an n x n matriz X =0 of rank d such that X =V 'V with V € R and a

vector € R}, then we have
Z Haz det (VsVy) >exp[ (Zwvv )}
SE([Z]) i€s i€[n]
Proof. The proof follows from theorem 18 in Nikolov (2015) and is thus omitted here. O

Now we are ready to show the approximation bound of the proposed sampling Algorithm 2.

Theorem 5 Given an a-optimal solution & of PC' (9) with « € (0,00), the random set generated
by the sampling Algorithm 2 returns a (slog(s) +1log((")) — slog(n) + a)-approzimation bound for
MESP (2), i.e., suppose the output of Algorithm 2 is the random set S, then

logE {dsét <Z'viv?>} > 2" — slog(s) — log (<Z>> + slog(n) —

i€S
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Algorithm 2 Efficient Implementation of Sampling Procedure (13)

1: Input: n x n matrix C > 0 of rank d and integer s € [d]
2: Let & be an a-optimal solution of PC (9) with a € (0,00)
3: Initialize chosen set S = and unchosen set T =)

4: Two factors: A; = ZSG([:]) [Lics®i, A2=0

5. for j=1,--- ;n do

6: Let Ay = Zse(mvéujr)) [lresr

7 Sample a (0,1) :ﬁ;f‘gll‘m random variable U
8: if ;A5/A; > U then

9: Add j to set S

10: A=A,

11: else

12: Add j toset T

13: A=A, - fjAQ

14: end if

15: end for

16: Output: S

Proof. Given the random set S and its sampling probability (13), the expected exponential of the
objective value of MESP (2) is equal to

E[d&(;m;v:)]—si]) 15 = S]det(Vs V) z(:)zse( Ze)sl—;:es det(Vs V)

exp Ty 3,00 Feviv) -
L)), oy () ol (e
> ((;j)s (”)) exp(+* — ),

where the first inequality is due to Lemma 5, the second one is from Maclaurin’s inequality (Lin and

v

Trudinger 1994), and the last one is due to the a-optimality of the solution Z and the weak duality
2P > 2*. The conclusion follows by taking logarithm on both sides of the above inequalities. [J
We make the following remarks about the result in Theorem 5.
(i) This approximation bound of sampling Algorithm 2 improves the one studied in Nikolov
(2015) using a different sampling scheme, where the existing approximation bound is

log (s*/s!) + a (see Figure 1 for illustrations). To show this fact, it suffices to prove that

(@) =%
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ie.,

((Z) <Z>>1j:n.~(nﬂis+1) =1

where the inequality relies on the fact that n>n — j+1 for each j € [s].

100 o J
—+— Approximation Bound (Nikolov, 2015) 1000

—e— Our Bound (Theorem 5)

—+— Approximation Bound (Nikolov, 2015)
—e— Our Bound (Theorem 5)

80 800

60 1 600

40 400

Approximation Bounds
Approximation Bounds

204 200 -

T T T T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 900 1000
s

(a) n=100 (b) n=1000
Figure 1 Approximation bounds comparison of our sampling Algorithm 2 and Nikolov (2015) with oo =0.

(ii) The approximation bound attains zero when s =1 and s =n.
(iii) The proof in Theorem 5 indicates that the approximation bound depends on the sparsity of
the a-optimal solution Z to PC (9). Indeed, if we consider the sampling probability as

) Moo
PlS=S]= S —,
[ | D 5e (wPr(@) [Lcs:

for any size-s subset S C supp(Z). Then the approximation bound can be further improved
as (slog(s) + log((f)) —slog(n) + «), where n = |supp(Z)|. This bound can be much smaller
than the one in Theorem 5 if 1 < n.

Another observation is that the optimal value of the continuous relaxation of MESP (11) (i.e., PC

(9)) is not too faraway from the optimal value z*.
Corollary 1 The optimal value of PC' (9) is bounded by z* + slog(s) +1log((")) — slog(n), i.e.
2 < 2MP <2+ slog(s) +log <<Z>> — slog(n).

Proof. The proof follows from that in Theorem 5 by observing that z* > logIE[det(Zi€ svv) )] and

a can be arbitrarily positive. O

The following instance illustrates the tightness of our analysis for the sampling Algorithm 2.
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Proposition 4 Given the sampling probability in (13), there exists an instance such that

logE [dfa,t <Zvivj)] — 2" — slog(s) — log ((Z)) + slog(n).

icS

Proof. Let us consider the following example.

Example 1 Suppose that d = s,n = {s with some positive integer £, and v (—1)+; = €; for all

(i,t) € [s] x [€].

S

Clearly, in Example 1, we have z* = 2" =0, and one optimal solution to PC (9) is ; = £ =  for
all i € [n]. If we use & as the input of the sampling Algorithm 2, then the expected exponential of

the output objective value is

| Zmﬂ

I
7 N
—

v
—

v
VR
» 3
~
~_

|

o

"
=

N

*
\‘_/

n

H‘ES fi s < T)
! — det v,
Z de(@) [Lics@i E

3.3. Deterministic Implementation

To overcome the issue of randomness from the sampling algorithms, it is common to derive their
corresponding polynomial-time deterministic implementation (Nikolov 2015, Singh and Xie 2020,
Nikolov et al. 2019). In this subsection, we also develop the deterministic implementation of the
proposed sampling Algorithm 2 with the same approximation bound, which is presented in Algo-
rithm 3. The key idea of derandomization is to apply the method of conditional expectation (Alon
and Spencer 2016), which requires an auxiliary function regarding the conditional expected value
of the function d:at(-).

First, for notational convenience, let us introduce the elementary symmetric polynomials.

Definition 3 For any vector € € R" and a positive integer £ € [n], we define the elementary sym-
metric polynomial of degree { as
E/x):= Z H.CL‘Z
se(m)i€s
In the deterministic Algorithm 3, given an a-optimal solution to PC (9) and a subset 7' C [n] such
that |T'| =t < s, according to the sampling probability (13), the conditional expected exponential
of the objective value of MESP is equal to

H(T)=E [dfat <Zvivj> T C 5] — 3" P(SITCS)det <Zv,-vj>

= Se(["]) i€S
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> Lircsy HieS”\Txi > Lircsy Hieg\T@

= Z res ey —det(Cs5) = i (MT)) det(Cr,r), (14)

where Iy denotes the indicator function, A(7T) denotes the vector of eigenvalues of
(CV2V (I, — (Ve V) IVe V)V C/?)
in Nikolov (2015). Note that the denominator in (14) can be computed efficiently according to

T ]\ T and the last equality is according to theorem 19
observation 1 in Singh and Xie (2020) with running time complexity O(nlogn). The numerator
can be also computed efficiently according to the remark after theorem 19 in Nikolov (2015), which
requires to compute the characteristic function of a matrix (e.g., Faddeev-LeVerrier algorithm in
Hou 1998) with time complexity O(n?).

Algorithm 3 proceeds as follows. We start with an empty subset S, then for each j ¢ S, we
compute the the conditional expected exponential of the objective value of MESP, provided that the
Jj-th column v; will be chosen, i.e., H(SU{j}). We add j* to S, where j* € argmax;cpps H(SU{j})
and then go to next iteration. This procedure terminates until |S| = s. Besides, Algorithm 3 requires
O(ns) evaluations of function H(-); hence, the corresponding time complexity is O(n°s). Therefore,
we recommend Algorithm 2 due to its simplicity and shorter running time.

The performance guarantee for Algorithm 3 is identical to Theorem 5, as summarized below.

Algorithm 3 Deterministic Implementation

1: Input: n x n matrix C > 0 of rank d and integer s € [d]

2: Let C =V 'V denote its Cholesky factorization where V € R¥*"

3: Let v; € R? denote the i-th column vector of matrix V for each i € [n]
4: Let & be an a-optimal solution & of PC (9) with a € (0,00)

5: Let set S :=0 denote the chosen set

6: fort=1,---,s do

7 Let j* Eargmaxje[n]\g’l-{(gu{j})

8: Add j* to the set S

9: end for

10: Output: S

Theorem 6 The deterministic Algorithm 3 yields the same approxzimation bound for MESP as
the sampling Algorithm 2 , i.e, suppose that the output of Algorithm 3 is §, then

logdzzt <Zviv:> > 2" — slog(s) —log <<Z>> + slog(n) — a.
i€l
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4. Local Search Algorithm and its Approximation Guarantees

In this section, we investigate the widely-used local search algorithm (see, e.g., Hazimeh and
Mazumder 2020, Madan et al. 2019) on solving MESP and prove its performance guarantee. The
local search algorithm runs as follows: (i) first, we initialize a size-s subset S C [n]; (ii) next, we
swap one element from the set S with one from the unchosen set [n] \§ , and we update the chosen
set if such a movement strictly increases the objective value; and (iii) the algorithm terminates

until no improvement can be found. The detailed implementation can be found in Algorithm 4.

Algorithm 4 Local Search Algorithm
1: Input: n x n matrix C > 0 of rank d and integer s € [d]

2: Let C =V TV denote its Cholesky factorization where V € R%*"

3: Let v; € R? denote the i-th column vector of matrix V for each i € [n]

4: Initial subset S C [n] of size s such that {v;} ;g are linearly independent

5: do

6: for each pair (i,j) € 5 x ([n]\ 5) do

7: if logdet (Zée§u{j}\{i} vev(j) > log det (> ic5vv/ ) then
8: Update S:=SU{j}\{i}

9: end if

10: end for

11: while there is still an improvement

12: Output: S

Let us first derive the following technical results on the rank-one update of singular matrices,

which are essential to the analysis of the local search Algorithm 4.

Lemma 6 Consider a size-r subset S C [n] with T € [d] such that {vi};cg are linearly independent.
Let X =Y. svw], and for each i € S, let X_; = X —wv;v; . Then for each (i,5) € S x ([n]\ ),
we have the followings

(i) det(X) = det(X o7 (I — X1, X .)u,,

T T—1
(ii) det(X_; +vv] ) =det(X_;)v] (I, — X', X v, ifv;é¢col(X_,),
T—1

ieS

T—1
det(X_; +v;v] ) =det(X_;)(1 +v] X1 v;), otherwise,
xT ol (-xt x_ ) I—xT x_)vo xt
i) XT = xt _ —iViv ( —iX—i -~ X xT, n
(i) - I(Za—XT X 5)vil3 I(Ta—XT, X _)vil3

(o] X1 o) (Iy-XT X v (1-XT X))
I(Za—X", X _;)vil|4 ’
T T T 3 T
(ZU) Xiz :XT o XT'ui'u; XlXWL N XTXJ(J':Ji'vl-Q)(Jr v, (Xf) verTZivi XT’
I X Tv; 15 1 X Tv; 15 X Tv; 15
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(v) v XTv; =1,
(vi) v] (I,— XTX)=0,
(vii) v (I — X', X_))v

_ 1
XT3 -
(vj X'rvi)2

T _ X R e Ml ; ) -
(UZZZ) ’U;I—(Id _ XiiX,Z-)’Uj _ v; (Id X X)’UJ + IXTo;12 'Lf V; ¢ COI(sz)v ]
0, otherwise.

Proof. See Appendix A.7. O
Lemma 6 helps establish the local optimality condition (i.e., stopping criterion) of the local

search Algorithm 4. That is, we first rewrite the local optimality condition as

i s—1 s s—1
logdet< Z wv?) —logdet< Z wv?) < logdet<2wv;> —10gdet< Z wv?),

2eSU{i\{i} reS\{i} reS teS\{i}

for all i € S and j € [n] \§ , and then use the results in Lemma 6 to simplify the both differences.

Lemma 7 Let S denote the output of the local search Algorithm 4 and let X =3, _sv;v,. Then
for each pair (i,j) € 8 x ([n]\ S), the following inequality holds

1> (v] X' X)) v (I, — X' X)v; +v] XTov XTv;.
Proof. See Appendix A.8. O

4.1. Analysis of Local Search Algorithm 4

Now we are ready to analyze the local search Algorithm 4. The main proof idea is two-fold: (i)
using the output of the local search Algorithm 4 and its local optimality condition in Lemma 7,
we construct a dual feasible solution to LD (5), and (ii) we show that the objective value of this

dual feasible solution can be bounded by z* with some extra constant.

Theorem 7 Let S denote the output of the local search Algorithm 4, then the set S yields a
smin{log(s),log(n — s —n/s+ 2)}-approximation bound for MESP (2), i.e.,

logdfat <2%va) >z —smin{log(s),log (n—s— g —|—2>}.

ies
Proof. See Appendix A.9. g
We make the following remarks about Theorem 7.
(i) To the best of our knowledge, it is the first-known approximation bound of the local search
Algorithm 4 for MESP.
(ii) The approximation bound attains the maximum when s = % and is equal to zero when s =1

or s=n.
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(iii) The approximation bound is weaker than that of the sampling Algorithm 2 in Theorem 5 if
the continuous relaxation can be solved to optimality or very close to optimality. That is, if

a — 0, then we have

slog(s) +log ((’;)) _ slog(n) < smin {1og<s),1og (n s % + 2) } .

However, as we can see from the numerical study, the local search Algorithm 4 in practice is
more capable to find high-quality solutions than the sampling Theorem 5.

(iv) The proof also relies on the sparsity of the optimal solution to PC (9). In fact, if there exists a
sparse optimal solution * to PC (9) (i.e., | supp(x*)| < n), then according to KKT conditions,
we can drop the redundant dual constraints v, Av; < v + p; for each i € [n] \ supp(z*) in
LD (5). Therefore, following the same proof in Theorem 7, the approximation bound can be
further improved as smin{log(s),log(n —s—n/s+2)}, where n = |supp(x*)|.

The following instance shows that the proof of Theorem 7 is tight. That is, the approximation

bound cannot be improved if we construct a feasible A to LD (5) as
1
A= [tr(XT) (I, — XTX)+ XT], (15)

where for the output S of the local search Algorithm 4, we let X = Y csviv] and let t>0 be a

positive scaling factor.

Proposition 5 If one follows the construction of a feasible solution A in (15) to LD (5), then
even with the best choice of (v, ), there exists an instance such that

—logdet(A) + sv+ Z“i —s=2"+smin{log(s),log(n—s—n/s+2)}.

i€[n]
Proof. See Appendix A.10. O
The above proposition shows the tightness of the analysis of Theorem 7. Thus, to improve the
analysis of the local search Algorithm 4, one might need different ways to construct dual feasible
solutions to LD (5). In fact, we show that under a certain assumption, the approximation bound

of the local search Algorithm 4 can be improved.

Proposition 6 Let S denote the output of the local search Algorithm 4. Suppose that v, v; =0 for
each pair (i,7) € S x ([n] \§), then we have

logdsét (vaj) > 2" —smin{log <)\ma}(c)> ,log <>\max(§c)(n—s) _n +2> },
~ s s
i€l

where the constant § is defined in Lemma 4.

Proof. See Appendix A.11. O
Compared with the bound O(slogs) in Theorem 7, the approximation bound in Proposition 6

is O(s), which matches the order of the bound derived for the sampling Algorithm 2.
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4.2. Efficient Implementation of the Local Search Algorithm

In this subsection, we discuss how to efficiently implement the local search Algorithm 4 using the
results in Lemma 6 and develop its corresponding time complexity.

Similar to many improving heuristics, the performance of the local search Algorithm 4 highly
depends on the choice of the initial subset. In practice, we employ the greedy approach to find
an initial solution. The greedy approach begins with an empty set S= (), then at each iteration,
we select one element from the unchosen set [n] \§ that maximizes the marginal increment of the
objective value until |§ | =s. That is, at current iteration £ € [s], suppose that X =3, s v, and
\g | =¢ < s. Then by Part (ii) in Lemma 6, the next element that will be chosen is computed by

+1 ¢
j* €arg max_ <logdet(X +vv)) — logdet(X)> =arg max v, (I,— X X")v;.
JEMNS Je[nN\S
The detailed implementation of the greedy approach can be found in Algorithm 5 at Steps 4-10.
Using the equation above and Part (iii) in Lemma 6, the greedy approach has a running time
complexity of O(s(n — s)d?). Furthermore, we show that the rank-one update techniques for the
singular matrices in Lemma 6 can also improve the implementation of the local search Algorithm 4.

One key component of the local search Algorithm 4 is the swapping procedure (i.e., Steps 6-9),
which might cause the running time to be exponential in the size of the input. To avoid this, we can
restrict the number of swapping iterations by simply introducing a small positive constant 6 > 0

and replacing the condition at Step 8 of Algorithm 4 by

dsét< Z vw[) > (1+9)d?et<2vw2).
eeSU{iI\{i} 3

Then, following from the similar arguments in Madan et al. (2019), the number of swapping iter-
ations is at most O(Ld*0~'log(s)), where L is the encoding length of the matrix V. Note that by
doing so, the approximation bound in Theorem 7 becomes s min{log(s(1+0)),log((n —s)(1+6)—
n/s+2)}.

On the other hand, we can use Parts (ii) and (iv) in Lemma 6 to complete the swapping and
use Part (iii) in Lemma 6 to update matrix X '. Hence, it takes O(s(n — s)d?) for each swapping.
Thus, the local search Algorithm 5 has a polynomial-time complexity of O(Ld*0~*log(s)s(n—s)d?).

These results are summarized below.

Corollary 2 The running time complexity of the local search Algorithm 5 is O(Ld*0~*log(s)s(n —
s)d?), where L denotes the encoding length of the matriz V. In addition, the local search Algorithm
5 yields a smin{log(s(1+0)),log((n—s)(1+6) —n/s+ 2)}-approzimation bound for MESP.
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Algorithm 5 Efficient Implementation of Local Search Algorithm 4 Initialized by Greedy Solution
1: Input: n x n matrix C > 0 of rank d and integer s € [d]

2: Let C =V 'V denote its Cholesky factorization where V € R

3: Let v; € R? denote the i-th column vector of matrix V for each i € [n]

(a) Greedy Selection
4: Let set S:= 0 denote the chosen set, X ;=0 and X :=0
5. for {=1,---,s do
6: Let j* € argmax; g0, (Is — X X ")v;

T: Add j* to the set S

Xtvwolh(I—XTX)  (I-XTX)vsvlh XT (4ol XTo)(Iy—-XTX)v vl (I;-XTX)
. T XT_ g* Ve \td _ Ud 3* Y5 J i)\"d g*Yix\Ad
8:  Update X':=X'— = 12 1= XTX)v;- 12 1= XTX)v- 1}

9: Update X :=X +vj*'vj1

10: end for

(b) Swapping Procedure

11: Let 6 denote a positive constant

12: do
13: for each i € S do
. o e T o o XT'ui'L;ZTXJrXJr B XTXJ('v%-'vlTXJr 'v;r()(]L)3viX]L'ui'u;r)(]L
1 Compute X =X —vioy, Xoy =X = 500 XT3 B3
15: Let j* € argmaxje[n]\ng(Id —-X_, X",
16: if v (I, — X_ X )v;- > (1+0)v] (I, - X_;X',)v; then
i T t
. G.— GU{i ; — , vl b xt _ X Tam X X))
17: Update S:=SU{j}\{i}, X :== X ;+v;«v;. and X" := X', L= XT X oon
(Id—XT_iX,i)vj*va*XT_i (1+v;r*XT_ivj*)(Id—XiiX,i)vj*v;r*(Id—XT_iX,Z-)‘
I(Tq—XT,X_)v 13 I(Ig—XT X _)vll4 ’
18: end if
19: end for

20: while there is still an update
21: Output: S

5. Numerical lllustrations

In this section, we present numerical experiments on two medium-sized instances in Hoffman et al.
(2001) and Anstreicher (2020), which were provided by Prof. Anstreicher, and one large-scale
instance in Dey et al. (2022) to demonstrate the solution quality and computational efficiency of
our proposed Frank-Wolfe Algorithm 1, sampling Algorithm 2, and local search Algorithm 4 for
solving MESP. All the algorithms are coded in Python 3.6 with calls to Gurobi 7.5 on a PC with 2.3
GHz Intel Core i5 processor and 8G of memory. The codes for these three algorithms are available

at https://github.com/yongchunli-13/Approximation-Algorithms-for-MESP.
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5.1. Numerical Experiments on Two Medium-sized Instances

In this subsection, we test the proposed algorithms on two commonly-used benchmark instances of
MESP in literature and present their computational performance. In particular, the first instance
has a covariance matrix of size 90 x 90 built on a temperature monitoring problem introduced
in Anstreicher (2020), denoted by n = 90 instance, and the second one is based on a covariance
matrix of size 124 x 124 introduced by Hoffman et al. (2001), denoted by n = 124 instance. Please
note that these two covariance matrices are non-singular, i.e., n = d. For the n = 90 instance,
we test 8 cases with s € {10,20,...,80}, while for the n = 124 instance, we test 9 cases with
s €{20,30,...,100}. The computational results are displayed in Table 2 and Table 3, where we let
B&B, Frank-Wolfe, Sampling, Local Search, and Samp+LS denote the Branch and Bound
algorithm used in Anstreicher (2020), the Frank-Wolfe Algorithm 1, the sampling Algorithm 2, the
local search Algorithm 4, and the combination of sampling Algorithm 2 and local search Algorithm
4, respectively. We also use S-FW to denote the size of the support of the continuous relaxation
solution from the Frank-Wolfe Algorithm 1, use time to denote the total time in seconds of an
algorithm spent on a case, and use gap to denote the absolute optimality gaps of algorithms,
computed as the absolute difference between the output value of an algorithm and the optimal
value or the best upper bound of MESP, where only if the optimal value is not available, we use the
upper bound to calculate the gap instead. Note that due to the randomness, we repeat the sampling
Algorithm 2 one thousand times for each case and choose the best output, and its running time
includes the time spent on the repetitions as well as that on running the Frank-Wolfe Algorithm
1. The column “Samp + LS” in Table 2 and Table 3, denotes the integrated sampling Algorithm 2
and local search Algorithm 4. Particularly, in the integrated algorithm, we consider one hundred
random solutions of sampling Algorithm 2 as the initial solutions of local search Algorithm 4 and
then output the best solution for each testing case.

Table 2 and Table 3 present the numerical results. From Table 2 and Table 3, we can see that it
can take more than two days to solve some cases to optimality using the B&B algorithm, indicating
that the optimal value of MESP is in general difficult to obtain. Note that in the n =124 instance,
the optimal value z* decreases when s increases from 80 to 100, which demonstrates that the
objective of MESP may not be monotonic with s. For both instances, the local search Algorithm 4
works quite well, where its absolute optimality gap is always within 0.096, and its running time
is less than a second. The sampling Algorithm 2 is often worse than the local search Algorithm 4
in terms of optimality gap and computational time. The proposed integrated algorithm is able to
find an optimal solution for each testing case, however, takes a longer time. It is seen that the
Frank-Wolfe Algorithm 1 is quite effective, and its output can be indeed very sparse, especially

when s is small.
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Next, we compare two solution algorithms with the heuristic used in Anstreicher (2020) and
the results are illustrated in Figures 2(a) and 2(b). Clearly, the proposed local search Algorithm 4
performs the best among these methods. Finally, Figure 3 compares our Lagrangian dual bound
2EP with the best linx bound found in Anstreicher (2020), where the latter has been shown to
be superior to the other existing upper bounds of MESP on these two instances. In general, these

two bounds are not comparable. We see that our dual bound outperforms the linx bound in some

cases, especially when s is small.

Table 2 Computational results of MESP on the n =90 instance
n=90 B&B! Frank-Wolfe Sampling | Local Search | Samp + LS
s z* time? | gap S-FW time| gap time| gap time | gap time
10 58.532 2088 0.382 23 <1/0.011 18[0.000  <13{0.000 4
20 |111.482 95976 |0.645 42  <110.275  20{0.000 <11{0.000 9
30 [161.539 167796 |0.853 60 <1]0.655 20|0.000 <1/0.000 19
40 1209.969 187344|0.961 80 <1|1.212 19/0.011 <1[0.000 44
50 |257.160 87912 (0.955 84 <1|1.424 19(0.006 <11{0.000 68
60 |303.019 124200.893 87 <1|1.545 191]0.011 <11{0.000 88
70 |347.471 1044 ]0.721 89 <1]1.610 19|0.018 <1[0.000 86
80 |389.997 36| 0.385 89 <1/0.995 191{0.000 <11{0.000 92

! The optimal value and running time of B&B algorithm are from Anstreicher (2020)
2 Time is in seconds
3 The running time is less than a second

Table 3 Computational results of MESP on the n =124 instance
n=124 B&B! Frank-Wolfe Sampling | Local Search | Samp + LS
s z* time? | gap S-FW time| gap time| gap time | gap time
20 77.827 756 10.510 40 1] 0.101  35]0.001 <12/0.000 11
30 1106.700 1692 |1.285 60 2| 0.857 37/0.000 <1(0.000 15
40 [131.055  8712|2.246 80 3| 2.067 39/0.000 <1(0.000 26
50 1149.498 186516 |3.857 98 5| 3.667  44{0.000 <11]0.000 37
60 [164.012 241236 (4.910 106 6| 6.057 41|0.096 <11]0.000 57
70 |172.528 136548 |5.493 115 5| 6.712  41/0.000 <11]0.000 52
80 [175.091 45756(5.529 122 41 7.193  40|0.000 <11]0.000 69
90 |171.262 17352(5.790 124 3110.837  43|0.000 <11]0.000 7
100 |162.865  4140(4.891 124 3] 7.273  39|0.000 <11]0.000 74

! The optimal value and running time of B&B algorithm are from Anstreicher (2020)
2 Time is in seconds
3 The running time is less than a second
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Figure 2 Absolute optimality gap comparison of the sampling Algorithm 2, the local search Algorithm 4, and the
best heuristic in Anstreicher (2020).
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Figure 3 Absolute optimality gap comparison of zP and the linx bound in Anstreicher (2020).

5.2. Numerical Experiments on a Large-scale Instance

In this subsection, we test the proposed algorithms on a large-scale instance with a 2000 x 2000
covariance matrix C' based upon Reddit data from Dey et al. (2022). Note that for this instance,
the matrix C' is singular, and its rank is equal to 949, i.e., d =949 < n =2000. The computational
results are displayed in Table 3, where we use B&C to denote the branch and cut algorithm, use
UB to denote the best upper bound output from B&C algorithm, and use UB to compute the
absolute optimality gaps for the sampling Algorithm 2, the local search Algorithm 4, and their
combination. The lower bound of the B&C algorithm is always inferior to the one found by the

local search Algorithm 4 and is thus not reported.
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We make the following remarks of the implementation of B&C: (i) we use the warm start, i.e.,
we solve the continuous relaxation of MESP (11) using the cutting-plane method (i.e., at each
iteration, we add a supgradient inequality) and add all the cuts into the root node, (ii) if we
encounter a solution  with support S such that its corresponding columns {v; },_g are not linearly
independent, then the supgradient according to Proposition 2 is not well-defined, and thus we add
no-good cut to cut it off, which is in the form of 1 <37, 5(1— ;) + 2,1, 5%, and (iil) we set the
time limit to be 3,600 seconds.

In Table 4, it is expected that the B&C algorithm has difficulty in solving MESP to optimality;
however, it produces a better upper bound than z”. Note that in the sampling algorithm, we
only sample from the support of the output solution from the Frank-Wolfe Algorithm 1 for the
sake of computational efficiency. For the proposed integrated “Samp + LS” algorithm in Table 4,
the running time is limited to be 3,600 seconds for each case. Since we use UB to compute the
optimality gaps of the approximation algorithms, their true optimality gaps can be even smaller.
We also observe that the solution output from the Frank-Wolfe Algorithm 1 is very sparse. The
computational time of the Frank-Wolfe Algorithm 1 is longer because at each iteration, one has to
compute the eigendecomposition in order to obtain the supgradient, which can be time-consuming.
It is seen that the local search Algorithm 4 outperforms the sampling Algorithm 2 and the inte-

@

grated algorithm in both time and solution quality. In particular, in the last row of “Samp +

LS” column means infeasible output, i.e., the selected vectors by the integrated algorithm are lin-
early dependent with the output objective value being —oo, which is possibly because the original
matrix is rank-deficient and the Frank-Wolfe Algorithm 1 selects many linearly dependent vectors.
Thus, we recommend using the vanilla local search Algorithm 4 to solve large-scale problems, with

more stable output and lower computational cost.

Table 4 Computational results of MESP on the n = 2000 instance
n=2000 B&C Frank-Wolfe Sampling |Local Search|Samp + LS
s UB  time!| 2P S-FW time| gap time| gap time | gap time
20 1102.939 3600|103.007 30 119| 0.331 232|0.037 21/0.037 1506
40 |185.327 3600|185.332 61 257| 0.915 359|0.233 23/0.233 2852
60 |256.584 3600|256.589 93 321| 2.415 463|0.303 3310.303 3600
80 [320.812 3600(320.817 160 833| 4.384 950|0.612 41(0.612 3600
100 |380.298 3600(380.307 214 1466| 9.570 1333|1.217 5211.217 3600
120 |436.336 3600(436.350 268 1935|18.478 1973|1.850 72 - 3600

I Time is in seconds
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5.3. Stability of MESP

The MESP (1), selecting optimal s random observations out of n candidates, depends on the
knowledge of the covariance matrix C'. When the true covariance matrix is not known, we propose
to use the sample covariance matrix whose accuracy is highly influenced by the sample size and noise
level. In this subsection, we test the stability of the MESP (1) using the sample covariance matrix
instead of the true one for the same benchmark instance as that in Table 3. Particularly, given the
true covariance matrix C' (i.e., the one used in Table 3), we generate N i.i.d. samples following the
Gaussian distribution with the corrupted covariance matrix, i.e., N'(0,C + wX), where X = 0 is
the corruption part of the covariance matrix and w > 0 is the corruption scalar. For the notational
convenience, let us denote the sample covariance matrix built on N i.i.d. samples as C (N,w). Let
S*,§(N,w) denote the optimal solutions of MESP (1) using C' and CA’(N,w), respectively. Let us
compute the false alarm rate of the optimal solution using the sample covariance as s~1[S*\ S(V, w)|
and its absolute gap of the optimal value as |logdet (Cg« s+) —log det((é(N’w))g(N,w)7§(N,w))|’
Figure 4 presents the 95% confidence intervals of false alarm rate and absolute gap for the case
with n =124, s =50, which are computed by repeating the sampling procedure one hundred times.
We see that as expected, the false alarm rate and absolute gap reduce to zero as sample size N
grows when there is no corruption (i.e., w = 0), implying that the optimal solution and optimal
value of MESP (1) using the sample covariance are closer to the true optimal ones as sample size
increases. However, when there is a corruption (i.e., w > 0), the sample covariance matrix converges
to the corrupted covariance matrix, i.e., C' + w3. Hence, its corresponding optimal solution and
optimal value are close to the corrupted ones instead of true optimality. Therefore, in Figure 4, it
is expected that the false alarm rate or absolute gap does not vanish to zero as the sample size
increases. Nevertheless, the obtained solutions based on the corrupted covariance matrix are still

quite close to the optimal one of the true MESP (1) as shown in Figure 4(a).

6. Extension to the A-Optimal MESP (A-MESP)

In the section, we extend the analyses to the A-Optimal MESP (A-MESP), which instead, mini-
mizes the trace of the inverse of matrix Cs ¢. The A-Optimality, as an alternative measurement of
information, has been widely used in the fields of experimental design (Madan et al. 2019, Nikolov
et al. 2019), subdata selection (Yao and Wang 2019), and sensor placement (Moreno-Salinas et al.

2013, Xu and Dogancay 2017). Formally, A-MESP is formulated as
(A-MESP) 2z := msin {tr (C55): SCnl,|S|=s}. (16)

By default, if Cg g is singular, then tr (Cg}g) = 00.
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Figure 4 95% confidence intervals of false alarm rate and absolute gap for s =50 case on n = 124 instance

6.1. Convex Integer Programming Formulation

This subsection derives an equivalent convex integer program for A-MESP (16).
First, we introduce the following three functions, corresponding to the objective function of
another exact formulation for A-MESP (16), the objective function of the Lagrangian dual, and

the objective function of the primal characterization, respectively.

Definition 4 For a d x d matriz X = 0 of its eigenvalues Ay > --- > Xy >0, let us denote
(i) tr(XT):= D icls] )%_,
(i) tsr(X) = Zie[d—s+1,d] Ais

(i) s(X) =3, £+ (s— k)#’:d]/\_, where the unique integer k is defined in Lemma 2.
i ic R i

Similar to Observation 1, it is straightforward to show that tr (Cg}) = tsr[(ziesvw;r)f]. Thus,
A-MESP (16) can be reformulated as

s T
(A-MESP) 2 :=min {tr [( Z acmmj) } : Z z;=s,x € {0, 1}”}, (17)
i€[n] i€(n]

which reduces to the conventional A-Optimal design problem (Madan et al. 2019, Nikolov et al.
2019) if d < s <n. The following proposition summarizes the properties of the objective function

of A-MESP (17).

Proposition 7 The objective function of A-MESP (17) is (i) monotonic non-decreasing, (ii) nei-

ther discrete-supermodular nor discrete-submodular, and (iii) neither convex nor concave.

Proof. See Appendix A.12. O
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To derive an equivalent convex integer program, we introduce a matrix variable X € R%*? and

reformulate A-MESP (17) as

(A-MESP) zz:: mln {tr (XT): Za:v'v =X, Zay =s,x € {0, 1}} (18)

i€[n] i€[n]
The key idea of deriving the convex integer program is summarized as follows: (i) obtain Lagrangian
dual of A-MESP (18) by dualizing the constraint >, #v;v; = X; (ii) characterize the primal
formulation of the Lagrangian dual; and (iii) enforce the continuous variables in the primal char-

acterization to be binary. To begin with, we introduce the following lemma, which is essential to

derive the Lagrangian dual of A-MESP.

Lemma 8 For a d x d matric A =0, we have

Nl

min {t‘}(XT) + tr(XA)} = 2tr (A ) (19)

Proof. See Appendix A.13. 0
Next, we are going to show the Lagrangian dual of A-MESP (18), denoted by A-LD.

Theorem 8 The Lagrangian dual of A-MESP (17) is

(A-LD) zle = max {2tr (A%> —sU— Z itV > ’U;—Avmi € [n]}, (20)

Ax0,v,pER st
and its optimal value is a lower bound of A-MESP, i.e., 257 < 2%.

Proof. By dualizing the first constraint of A-MESP (18), we can formulate the dual problem as

sz;ZI[r\lggc{w{r)lgn {tr(XT)+tr (XA) - Zx'v Av;: Zﬂ:z—s xe{0,1}" }}

Applying Lemma 8 to the inner minimization problem over X, the dual problem becomes

ZﬁDI:I/I\lé%{{lein{QtI‘( ) ZLU’UTA’U szz—sa:e{Ol}"}}

1€[n] 1€[n]
Similarly, we derive the dual of minimization problem over & and combine the dual with the
maximization over A, which obtains A-LD problem. Apparently, 24P < 2% by weak duality. O

In addition, A-LD (20) has an equivalent primal characterization.

Theorem 9 The primal characterization of A-LD (20), referred to as (A-PC), is

(A-PC) zf\D ‘= min {@5 ( Z x{uﬂ)j) : Z x;=s,x €0, 1]"} (21)
i€[n] i1€[n]
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Proof. See Appendix A.14. O
As a side product of Theorem 9, we can obtain the subdifferentials of the convex but non-smooth

objective function ®,(-) for A-PC (21).

Proposition 8 Given a d x d matriz X = 0 with rank r > s, suppose the vector of eigenvalues of
X is X such that \y >+ >N\, >Ny ==X =0 and X = QDiag(A)Q" with an orthonormal
matriz Q. Then the subdifferential of function ®.(-) at X that is denoted by 0P, (X) is

00,(X) = {QDiag(,@)QT : X = QDiag(A\)Q", Q is orthonormal,
,BECOHV{,B'B»zl vielk e —t"F
- Mi )\iu s M1 Zie[k+1ad] )\Z

Note that the subdifferential of ®,(-) above is unique and becomes the gradient when X > 0 is

NVielk+1,r),8; >, Vie [r—f—l,d]}}.

non-stngular.

Proof. The proof is similar to that of Proposition 2 and is thus omitted here. O
Another side product is that we obtain an equivalent convex integer program of A-MESP by

enforcing the variables  in A-PC (21) to be binary.

Theorem 10 The A-MESP is equivalent to the following convex integer program

(A-MESP) =z := mwin {@S < Z a:ww?) : Z x;=s,x € {0, 1}”} (22)

i€[n] i€[n]

Proof. The proof is similar to that of Theorem 3 and is thus omitted. O

6.2. Volume Sampling Algorithm

In this subsection, we present a polynomial-time volume sampling algorithm for A-MESP, which
has been applied to the generalized A-Optimal design (Derezinski and Warmuth 2017, Nikolov
et al. 2019). A size-s subset S C [n] is sampled with the probability

P[S = 8] := Hiesfidet(ggiesviv;) ‘
2 se () lies Tidet(Yies vv;)

Different from the sampling Algorithm 2, this probability formula, known as volume sampling,

delivers the proportional volume spanned by the selected vectors. Algorithm 6 describes an efficient
implementation of this volume sampling algorithm, with running time complexity O(n?).
Next, we analyze the approximation ratio of the volume sampling Algorithm 6. We start with

the following observation.
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Algorithm 6 Efficient Implementation of Volume Sampling Procedure
1: Input: n x n matrix C > 0 of rank d and integer s € [d]

2: Let & is an optimal solution of A-PC

3: Initialize chosen set S =0 and unchosen set 7' = ()

4: Two factors: A; = ZSG([’;]) ([Tics @) det (V4 Vi), A, =0
5. for j=1,--- ;n do

6: Let A, = ZSG([Z]),SQS,TQS:Q (ITics i) det (V5 Vi)

7: Sample a (0,1) uniform random variable U
8: if Ay/A; >U then

9: Add j to set S

10: A=A,

11: else

12: Add j toset T

13: A=A — A,

14: end if

15: end for

16: Output S

Lemma 9 For any feasible solution x to A-PC (21), let XA € Ri denote the vector of eigenvalues

of matriz >, . x;v;v; , then we have

®, < >z > > M (23)

i€[n]

i€[n]

where function E.(+) is introduced in Definition 3.

Proof. See Appendix A.15. O

Observe that the right-hand side of the inequality (23) is equivalent to the relaxation bound
of A-MESP proposed by Nikolov et al. (2019). Hence, Lemma 9 also indicates that our proposed
bound is stronger than the existing one. The following theorem shows that we further improve the

approximation ratio of the volume sampling Algorithm 6.

Theorem 11 Given an optimal solution & to A-PC, the volume sampling Algorithm 6 yields a

min(s,n — s+ 1)-approzimation ratio of A-MESP, i.e.,

EH<ZM>TH < min(s,n— s+ 1)z},

Proof. See Appendix A.16. g
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Note that this approximation ratio improves the one stated in theorem A.3 (Nikolov et al. 2019),

n+1
2

in particular, if s > , our approximation ratio is strictly better. Since we use the same volume
sampling procedure, its deterministic implementation follows exactly from appendix B in Nikolov

et al. (2019) and is thus omitted here.

6.3. Local Search Algorithm for A-MESP

This subsection analyzes the local search algorithm to solve A-MESP, which is presented in Algo-
rithm 7. The efficient implementation straightforwardly follows from the local search Algorithm 5
in Section 4 and is thus omitted. Therefore, we mainly focus on deriving the approximation ratio

of the local search Algorithm 7.

Algorithm 7 Local Search Algorithm
1: Input: n x n matrix C > 0 of rank d and integer s € [d]

2: Let C =V 'V denote its Cholesky factorization where V € R¥*"

3: Let v; € R? denote the i-th column vector of matrix V for each i € [n]

4: Initial subset S C [n] of size s such that {vi},c5 are linearly independent

5: do

6: for each pair (i,7) € 5 x ([n]\ 5) do

7: if tr (Zie§u{j}\{i} vm?) <tr (Y;cgviv) then
8: Update S:=SU{j}\{i}

9: end if

10: end for

11: while there is still an improvement

12: Output: S

Let us begin with the following local optimality condition for the Algorithm 7.

Lemma 10 Suppose that S is the output of the local search Algorithm 7 and X =3 . & vv,, for

each pair (i,7) € S x ([n] \g), the following inequality always holds
v (XTvw] (I, - X" X)v; <v (X0, + v (XT)*v0] XTv; —20] (XT) 00 XTv;.

Proof. See Appendix A.17. O
The local optimality condition inspires us a construction of a feasible solution to A-LD (20), which

allows the weak duality to bound the output value from the local search Algorithm 7.
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Theorem 12 The local search Algorithm 7 yields a s/2+ 6~ min {Ayax (C), 10 + (N — $) Apax (C) } -
approximation ratio for A-MFESP, i.e,

t?(%vm?) Smin{; <1+)\ma’:5(c)> ,% <n+s+ (n_s)gmax(c)>}z;,

where S is the set produced by Algorithm 7, and 0 is defined in Lemma 4.

Proof. See Appendix A.18. n

We remark that the result in Theorem 12 is the first-known approximation ratio of the local
search Algorithm 7 for A-MESP. Finally, Table 5 summarizes the existing and our developed
approximation ratios for A-MESP.

Table 5 Summary of Approximation Algorithms for A-MESP

Algorithm Approximation Ratio
Literature |Volume Sampling (Nikolov et al. 2019) s
. Volume Sampling Algorithm 6 min{s,n —s+1}
This paper
Local Search Algorithm 7 $/24+ 07 min { Ay (C),nd + (N — $) Amax (C) }

7. Conclusion

This paper studies the maximum entropy sampling problem (MESP) and develops two approxi-
mation algorithms with provable performance guarantees. Observing that the objective function of
MESP is neither convex nor concave, we derive a new convex integer program for MESP through
the Lagrangian dual relaxation and its primal characterization. Using the optimal solution of the
primal characterization, we develop an efficient sampling algorithm and prove its approximation
bound, which improves the best-known bound in literature. By developing new mathematical tools
for the singular matrices and analyzing the Lagrangian dual of the proposed convex integer pro-
gram, we further analyze the local search algorithm and prove its first-known approximation bound
for MESP. The proof techniques that we developed inspire us an efficient implementation of the
local search algorithm. Our numerical study shows that both algorithms work very well, and the
local search algorithm performs the best and consistently yields near-optimal solutions. Finally,
we extend all analyses to the A-Optimal MESP (A-MESP), develop a new convex integer program
and study the volume sampling and local search algorithms with their approximation ratios. Our
proposed algorithms are coded and released as open-source software. One possible future direction

is to study MESP with general distributions.
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Appendix A. Proofs
A.1 Proof of Proposition 1
Proposition 1 The objective function of MESP (2) is (i) discrete-submodular, (ii) non-

monotonic, (iii) neither concave nor conver, and (iv) not always nonnegative.

Proof. Part (i). The discrete-submodularity has been proved by Kelmans and Kimelfeld (1983).

We show the other three properties using the following example.

Example 2 For MESP (2), let n=d=2, v, =(y/a,0)" and vy = (0,vb)".
Part (ii) & Part (iv). In Example 2, when a =2 and b= 1/4, we have

1 2 1
logdet (v1v] ) =log2 > logdet (viv] +vov, ) =log 3 < 0,

which proves that the objective function of MESP is not monotonic and is not always nonnegative.
Part (iii). In Example 2, let us consider two feasible solutions ' = (1,0)" and ? = (0,1)" with

s=1.If a=1 and b=1, then we have

1 1 1 1 1 1 2 1
3 log det (’U1’01T) + 3 log det (UQ'UQT) =02>logdet < Z Wv;v?) =log o

i€[n]
which disproves the concavity.

If a=16 and b=1, then we have
1 1 1 1 1 xll + CE?
3 log det (vlvlT) + 3 log det (vgv;) =log4 <logdet ( Z 2'viviT> =log8,
which disproves the convexity. O

A.2 Proof of Lemma 1

Before proving Lemma 1, we first show the following technical lemma.

Lemma 11 Given Ay >---> X320 and 0 < 3, <--- < By, we have
(i)
—argmln{zazﬁl D6, <> N vteld—1),) 6 _Z)\} (24)

OcRY i€ld] i€lt] i€lt] i€ld] i€ld]
01>-->04

(i)
ﬂ:zargmin{Z@)\ Yoo Y Buvteld-1] 29_2@} (25)

i€[d] i€[t+1,d] i€[t+1,d) 1€[d] i€[d]
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Proof. To prove Part(i), it needs to show that the vector A € R% is an optimal solution to the

minimization problem in the right-hand size of (24). We use the induction to prove this result.

(a) When d =1, clearly, there is only one optimal solution, which is 67 = A;.

(b) Suppose that the result holds for any d < d where d > 1. Now let us consider the case that

d = d. Since the feasible region of the minimization problem in the right-hand size of (24) does

not contain a ray, one of its optimal solutions must be an extreme point, which is denoted by

9. Then 5, as an extreme point, must satisfy at least d binding constraints. There are two cases

to be discussed:

o If there exists an integer ¢ € [d — 1] such that > el 6; = >_ici Ai» then problem (24) can

be lower bounded by the sum of the following two minimization problems:

min Zel@ > 6 <Z>\Z,Vtef 1, 0:=> X,y >0 3,

i€lt] i€ft] ic() i€lt)

min 0B Y < D NVtelt+1d, Y b= > Ay, >

i€[t+1,d] i€[t+1,t] i€[t+1,t] i€[t+1,d] i€[t+1,d]

>0,

According to the induction, there exists an optimal solution of each minimization problem such

that 67 =\, for any ¢ € [d], which is feasible to the original problem (24) and thus is optimal.

e If there does not exist an integer ¢ € [d —1] such that ", i 0, = Zie[ﬂ A, then the extreme

point 0 must satisfy 51 = é\d = Zle . Given 0< 8, < --- < f3,, we have
1 d
> NBi< e” s
i€[d] i€[d]

Therefore, when d = c?, 0* = X is also an optimal solution.

The proof of Part (ii) directly follows from the above if we consider B = (Ag, Ag_1,- -

(5da5d717"‘ 7»31)T and 6 = (edaedfla"' ,91)T in Part (1)

Now let us prove Lemma 1.
Lemma 1 For a d X d matrix A =0, we have
max {log det(X) — tr(XA)} — _logdet(A) —

where function det(-) is defined in Definition 1.

))\1)T7 )‘ =

Proof. For any d x d matrix X > 0, suppose that X is the vector of its eigenvalues satisfying A; >

-+ > X4 >0, and according to the eigendecomposition (Abdi 2007), there exists an orthonormal
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matrix @ such that X = Q Diag(A)Q". Then the objective function in the left-hand side of (4) is

equivalent to

log det(X) — tr(X A) = log < 11 )\i> — tr(Diag(A)QTAQ) = log (H )\i> > 0,

i€[s] i€(d]

where let @ = diag(Q " AQ). Thus, the left-hand side of (4) becomes

max {log < H )\i> — min { Z 0;); : 0 =diag(Q"AQ),Q is orthonormal}}

R4
AERL, i€[s] Q0€R: €ld]
A1 2Ag >0

Since any permutation matrix is orthonormal, for any fixed A\; > --- > A4, to maximize
— Zie[ 4 0;)\;, we must have 6; <--- <6, based on the rearrangement inequality (Hardy et al. 1952).
Thus, the left-hand side of (4) is further reduced to

max log < H A ) — min { Z 0 : 0 =diag(Q"AQ),Q is orthonormal} . (26a)
)‘ERi’ i€[s] Q’GERi i€[d]
A1 2Ag20 01<--<b4

Let B3 denote the vector of eigenvalues of A such that 8, <--- < f; and let A = P Diag(3)P"
with an orthonormal matrix P. Since @ is orthonormal, the eigenvalues of Q" AQ are also equal
to 3. According to the well-known majorization inequalities between eigenvalues 38 and diagonal
entries 6 (see, e.g., Horn 1954, Thompson 1977), the inner minimization problem in (26a) can be

lower bounded by

min {Zm o< > Buvteld—1] 29_2@}

ocrY )
=+
o1<..<o, * €l i€[t+1,d] i€[t+1,d] i€[d] i€[d]

Applying Part (i) in Lemma 11, an optimal solution to the minimization problem is 8* = 3. Thus,
the optimal value of the relaxed minimization problem is Zie[ 4 AiB;, which is achieved by letting
Q* =P and 6* = 3 for the inner optimization problem in (26a) and is thus optimal.

Plugging this optimal solution into the inner maximization problem in (26a), we can obtain

max {log<H)\> —Zml}, (26b)

Aerd :
=+
A > > Ay>0 i€[s] 1€[d]

which can be solved by A\f = ﬁ% for all ¢ € [s] and 0 otherwise. Therefore, we have

max {logdset(X) — tr(XA)} = —logdet(A) —

This completes the proof. O
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A.3 Proof of Lemma 3

Lemma 3 Given a d x d matriz X =0 with rank r € [s,d], suppose that the eigenvalues of X are
AM> >N > ==X =0 and X = QDiag(N\)Q" with an orthonormal matriz Q. Then

()
min {— log dgt(A) + tr(XA)} = min { Z log(5;) + Z )\Zﬂz} (7)

A=0 BeRrd |
+
0<B1 <<y i€[s] i€[d]

(ii)
min { Zlogﬁl+2)\lﬂl}— (X)) +s. (8)

Berd,
0<f1 < <6y 1€[s] i€[d]

Proof. Part (i). Suppose A has eigenvalues 0 < 8; < --- < f3; and A = P Diag(8)P" with an
orthonormal matrix P. Then the objective function in the left-hand side of (7) is equal to
- logdset(A) +tr(XA)=—log ( H /31') +tr (PT X PDiag(8)) = —log < H ﬁi> Z 0,5,
i€]s] i€[s] i€(d]
where 0 = diag(P" X P).
For any fixed ) <--- < 34, according to the rearrangement inequality (Hardy et al. 1952), to

minimize Zle () 0.5;, we must have 0; > --->6,. Thus, the left-hand side of (7) becomes

min { —log ( H /6’1> + min { Z 0;8; : 0 =diag(PT X P), P is orthonormal} } (27a)
peRY, i[s] Pocry | [0

0<B1<-<By 012>-->04
As P is orthonormal, thus the eigenvalues of PT X P are also equal to A. Then the inner mini-

mization problem in (27a) can be lower bounded by

{Zezﬂz > o <Z)\1,Vte —1,) 0= X0 >- }

i€ld] i€lt] i€[d] i€[d]
According to Part (ii) in Lemma 11, the optimal value of the inner minimization problem in (27a)
is ), c(a) iBi; which is achieved by letting P* = @Q and 6 = X. This proves the identity (7).
Part (ii). Let us introduce an additional variable 7 to differentiate the first s smallest 3 elements

and simplify the order constraint in the left-hand problem (8) as
min = log(B)+ Y N pi<TViels], B> Vie[s+1,d] . (27b)
PERLT ic(s) ield]

Let p € RY denote the Lagrangian multipliers and the Lagrangian function is

H’aﬁa ZlOg Bz +Z)\zﬁz+z,u’z i Z /‘LZ(T—IBZ)

1€[d] 1€[s] 1€[s+1,d]
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Clearly, as the constraints in the convex program (27b) are linear, the relaxed Slater condition holds.
Let (p*, 3*,7*) denote the pair of optimal primal and dual solutions. Then the KKT conditions of

the convex program (27b) are

OL oL

BT +A+ 1=0,Vie p B, ) =N — i =0,Vic[s+1,d],
aﬁz(“ B, ) = & I Haﬁl( B, T") I [ ]
aL

p,p T Zuz > =0, (B =) =0,¥i € [s],p; (v = B7) = 0,Vi € [s+ 1,d],

i€[s+1,d]

B <t ViEs ],61- 27‘ Vi€ [s+1,d],ul >0,Vie[d],

which are necessary and sufficient optimality conditions (see theorem 3.2.4 in Ben-Tal and
Nemirovski 2012). Recall that matrix X has rank r and its eigenvalues are sorted such that
Ay > 2 A > > A > Ay = - = Ag = 0. Additionally, according to the KKT conditions, the
optimal solution {f; };c(s) must be sorted in an ascending order, i.e., 31 <--- < ;. Thus, let integer
k €10, s] denote the largest index such that 3 < 7* (by convention, we let 35 =0, = c0). Then

the above KKT conditions can be simplified as

1 1
ﬂ}:xMJ:QWe[]ﬁ_¢7m 4——A>0v“ﬂk+1ﬂ

=\N>0,68 =7t Vie[s+1,rl;u; = \=0,8>7"Vie[r+1,d;

= Y =

1€[s] 1€[s+1,d]

This implies that all pairs of the optimal primal and dual solutions are characterized by the

following set

k
= (.uaﬁvT) :7-287”81_ VzE [k] /B’:T7Vi:[k+17r]aﬁi2/6T7Vi6 [T—’_lad])
Dbt N Ai
1
i =0,Vi=[kl,ui=——\,Vi=[k+1,7],u; =0,Vi= [r+1,d]}.
T

Consequently, any optimal solution for problem (27b) satisfies

s—k s—k
= Vielk+1,r,0; > =————,
Zie[k+1,d] Ai Zie[k+1,d] Ai

which is feasible to the minimization problem in (8) and thus is optimal.

B = €[k, 8; = Vie[r+1,d,

1
)Ti,vrl

Then the optimal value of the minimization problem in (8) is equal to
—Zlog —i—ZAWB* Zlog —k)log M +s=T4(X)+s,
=R <ld) sk

where the second equality is due to Definition 2 of I';(X). This completes the proof. O
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A.4 Proof of Theorem 3

Theorem 3 MESP can be formulated as the following convex integer program

(MESP) z*;:mjx{ (va > > zi=s,z{0, 1}”} (11)

1€[n] i€[n]
Proof. 1t is sufficient to prove that for any feasible solution  to MESP (11), we must have
log det ( Z :Ummf) =T, ( Z xiviv:> .
i€[n] i€(n]

Given a solution x, we let X =5 ]:/z:i'vi'viT with rank 7 and let A denote its eigenvalues such

i€n
that A\; > --- > \; > 0. Since the rank of[’ matrix X satisfies r < s, there are two cases to be discussed
regarding whether r = s holds or not.
(i) If r < s, then clearly, we have log dset (X) = —o00. On the other hand, by the choice of & in
Lemma 2, it is evident that & =r such that — > icierra A = 0. It follows that I's (X) =
—o00 = logdet (X).
(ii) If r =s, there must exist an integer £ such that \y > - > N> X1 = = A > Ay ==
Ag = 0. By the uniqueness of k, we must have k = £. Thus, from Definition 2, the objective
value is equal to

_log<H)\> log< 1k 3 )\Z-):log<H)\i>:10gdset(X).

i€[k+1,d] i€(s]

A.5 Proof of Proposition 3

Proposition 3 The optimal value of PC (9) is equal to z*, i.e., zI'P = 2* provided the following
three special cases: (i) C is diagonal; (11) s=1; and (iii) s=n

Proof. We show the three special cases separately.

(i) Suppose that C is diagonal. Without loss of generality, assume that C = Diag(\) with a
nonnegative vector A such that Ay >---> Xy > Agp1 =--- =\, =0, then we have v; = /Aje;
for each i € [n] and C =V TV. Clearly, the optimal solution of MESP (2) is z; =1 for each
i € [s] and 0 otherwise. Thus, z* =log det (Hie[n] x;‘viv;) =log (Hie[s] )\i>.

Let X =>._  zv;v,, then we construct the feasible solution to LD (5) as

1€[n]

1
A= (L= X'X)+ Xt =17 =0,Vi€ [n].

S

It is easy to see that (A*,v*, u*) is feasible to LD (5) with the objective value

zLDg—logdet )+ sv* +Z,uz—s—210g =2* < 2HP,

1€[s]
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where the first inequality is by feasibility of (A*,v*, u*) and the second one is from the weak
duality.

(ii) Suppose that s = 1. Given any feasible solution & to PC (9), assume that matrix X =
Zie[n] x;v;v; has the eigenvalue vector A such that A\; >--- > \;. By Lemma 2, as k < s, we

must have k£ =0. Thus, the objective value of PC (9) becomes
1 T
i€lk+1,d] i€[d] i€[n]
Therefore, in this case, we have
2P = max < lo x| z;=1,2€]0,1]" } =max{log(v, v;)} =2".
ax q log ( 3 wwfvi): ) 0.1)" p = max {log (v vi) }
i€[n] i€[n]

(iii) Suppose that s =n. In this case, the only feasible solution of PC (9) or MESP (11) is z; =1

for each i € [n] and clearly, PC (9) and MESP (11) are equivalent. O

A.6 Proof of Lemma 4

Lemma 4 Suppose that for any size-s subset S C [n], the columns {v;}ics are linearly independent.
LetD:={x eR": ", xi=s,x €[0,1]"}. Then for any x € relini(D), we have

2
VZFS(invi,viT> i _)\mag;(c’)]-n) (12)
i1€[n]

where the constant § := mingcy,sj=s Amin (Cs,s)-

Proof. We split the proof into four steps.

Step (i)- An Equivalent Statement. For any @,y € relint(D), let X =3, , v, and Y =
Zie[n] y;v;v, , clearly, matrices X and Y are positive-definite and non-singular. Let us define a
function h(t) =T'y(X +t(Y — X)) with ¢ € [0, €] for some sufficiently small positive number €. Let
A€ ]RSIH denote the vector of eigenvalues of X and \; > ---A; > 0. Since

I,(X)=F():=log (g] )\i> + (s —k)log <Sik > A)

i€[k+1,d]
and F'(A) is symmetric and analytic at R%_, thus according to theorem 2.1 in Tsing et al. (1994),
I's(X) is analytic and is thus continuous differentiable. Since the positive-definite matrices with
distinct eigenvalues are dense in the space of all the positive-definite matrices, without loss of gener-
ality, we can assume that X has eigenvalues A; > --- > \; > 0 and their corresponding eigenvectors
are qi, - ,qq. Suppose that the eigenvalues and their corresponding eigenvectors of X +¢(Y — X))
are A\i(t), -+, Aa(t) and qi(t),---,qa(t). As € is sufficiently small, thus, we still have A;(t) >--- >

Aq(t) and according to Lemma 2, A and A(¢) share the same integer k for all ¢ € [0, ¢]. Since all the
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eigenvalues are distinct, the eigenvalues {\;(t)};ciq and eigenvectors {q;(t)};c(q are continuous in
the range of [0, €] (see, e.g., Magnus 1985, Overton and Womersley 1995).
As stated in Proposition 2, function I', (5(\ ) is differentiable if matrix X is positive-definite. Thus,

for any ¢ € (0,¢€), we have

W) = Sh(t) = (VIL(X 1Y — X)), ¥~ X),

which implies that

W(0) =S a)

t=0

<§tvr (X +HY — X)) t:O,Y—X>.

Therefore, to prove the inequality (12), it is sufficient to show that

11 )\IQHdX C
W) > Pt Dy (280)

Step (ii)- A Representation of h”(0).

By Proposition 2, we have

VIL(X+HY -X))=) = —~abat)’.

1€ [k]

1
RORAKACHRSP DN

i€[k+1,d) “i€lk+1,d] Ai(t)

For the notational convenience, let us define a vector 3 € R% such that

. 1 .
Blel,Vle[k],@:ﬂ Z AJ,VZE[]C‘Fl,d}

JjElk+1,d]

Taking the derivative of eigenvalues and eigenvectors over t separately, we obtain

d 1 d)\ 1 d;(t
G V(X +H(Y = X)) _—Z KDY L dt( ) 4
- ie[k+1,d] v -
1 dqz dg;(t) T
+Z t= ql+zﬂzqz( dt tO) '
:=B
It follows that
R'(0)=(AY -X)+(BY - X). (28D)

Thus, to prove (28a), we need to find lower bounds of <A, Y - X> and <B7 Y - X> separately.
Step (iii)- Lower Bounds of (A4,Y — X) and (B,Y — X).

Before we proceed, let us first prove the following claim.
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Claim 1 For any { € [s — 1], we have

w5 % Sl b2 e 2(007) =6
ZG [6+1,d] i€[n] JjES

where for a symmetric matriz X, we let \;(X) denotes its i-th largest eigenvalue.

Proof. For a d x d positive-semidefinite matrix U, the function >, ., n Ai(U) is concave (Fan
1949). On the other hand, it is known that for the concave minimization problem, the optimum

can be achieved by one of the extreme points of the feasible region. Thus,

. 1
S P DRVCILED ST TN I SR O 3ET)
16 [6+1,d] 1€[n] Cie[e+1,d] JjES
1

_3—656[{?% s Z Ai<zvjv;)

i€[e+1,s] JjES

= m1|»r‘31\—s (Z’U]’Uj )7

where the second equation is due to the fact that rank of

v! is equal to s, and the first

jes ViY;
inequality is because )\S<Zj cg ViV, > is the smallest positive elgenvalues of matrix } . v vjv. ©
Now we are ready to show the lower bounds of <A,Y — X> and <B,Y — X>
(a) According to Overton and Womersley (1995), we have
dA;(t) +d( X +t(Y - X)) T
B2 L L 4i=a; ( )a
Therefore, <A, Y- X > is equivalent to
1 2 1 2
<A,Y—X>=—z? (qiT(Y—X)qi) —W Z (qi—r(Y_X)qi)
ic[k] " v oielk+1,d]
(s —k)? T 2 s—k T 2
> — (¢/ (Y -X)ai) - (¢ (Y - X)q))
(Ejewm,d] Ar)? ;m O jeirraX)? ie[;m]
1

Y >Z]ek+1d j

where the first inequality is due to the fact that A\; > —

, the second inequality
is because of Claim 1, and s — k > 1.
(b) According to the result from Magnus (1985) that d‘h(t)

(Nl — X)) (Y — X)gq;, where

NL—-X)T = )

JEld],i#i

d —
= (Nl — X)Tg(XH((;iX)) q; =

t=0 t=0
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Thus, <B Y — X > is equivalent to

(B,Y — X) Zﬂl 3 ziA (a) (v = X) )+Z > Ai,\i(qu(Y_X)qi)z

i€[d] JE[d],j#1 Jje d] i€ld],i#j J

XY (4 ity L1 )(qT<Y—X>qi)2. (28d)
/Bz % 6])\ _A ’

i€ld] je[d],j#i

Above, we can split the summations in the right-hand side of (28d) into four cases and also by

plugging the values of 3, we can rewrite <B Y — X > as

<B,Y—XZZ C(dv-xe) - Y Y o

i€[k] jelk],j#i Aidj i€k+1,d] je[k+1,d),j#i

’ Z Z (;’ Ai i Aj i Zé:[k:fd] Ae A i )\i) (qu(Y - X)qi)2

i€[k] jelk+1,d],j#i

" Z Z (Zfe[k+1d])\ i 1)\ +/\i)\ i)\l)<qu(Y_X)qi>2

i€[k-+1,d] jE[k],j#i G

> 23 Y (v -X)a) (28¢)

i€ld] jeld],j#i

where the inequality is because \; > Z“L;d/\z > )\; for each pair (¢,j) € [k] x [k +1,d], and
Zze[ji—llfi’d] e > 6 by Claim 1.
Step (iv)- Combining All the Pieces Together. According to the results (28b), (28c), and
(28e), we can derive that
" 1
HOESESS Z (/¥ = X)a) =5 (¥ - X)Q)")
i€ld] jeld

Z—*HY X3
= 52>\?nax( )Hy_wnga

where the second inequality is due to Cauchy-Schwartz inequality and that matrix @ is orthonor-

mal, and the third inequality stems from the fact that ||Y — X||2 = ||V Diag(y — )V "|]2 <
Afnax( )”y_a;”% U

A.7 Proof of Lemma 6

Lemma 6 Consider a size-r subset S C [n)] with T € [d] such that {vi},cq are linearly independent.
Let X =Y, svv,, and for each i € S, let X ;=X —wvv;". Then for each (i,j) € S x ([n]\ S),
we have the followings

(i) det(X) = det(X ol (I — X1, X_,)v,,
det(X_, +v,0]) = det(X_)o] (I — X1, X_ v, if v, ¢ col(X_,),

(ZZ) T—1 T—1
det(X_; + v ) =det(X_;) (1 +v] X' v;), otherwise,
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i) X . Xt xT o] (1-x1 X)) _ (Ig-XT X_vo] XT, 4
(i) - -7 I(L—XT X w3 I(T—XT X w3
d —ir—i)Yillg d —ir—i)Yillg
(o) XT o) (1-XT X wiw] (1,-XT X _)
I(Tg—XT X )yvill ’
(“)) XT o XT _ XT’UZ"UZTXTX.“ B XTXJ('v%-'vZTXJr 'v;r()(]L)3'uiX]L'ui'u;r)(]L
- X T2 X Tv; 12 1 X Tv; 13 ’

(v) v, XTv; =1,
(i) vT (I~ X' X) =0,

(vii) UI(Id—XLX—i)Ui:m’
T xt)2
(L, — XX, + B0y, );
(viii) v] (I — X1, X v, ={ " (o= X1 X)v; + T 405 ¢ col(Xi);,
0, otherwise.

Proof. Part (i). Let X_; = QDiag(A\)Q" denote its eigendecomposition. Since the rank of X _;
is 7 — 1, without loss of generality, we assume that its eigenvalues satisfy Ay >--- A\, 1 >\, =---=
Ag=0.

For any € > 0, we have

det (X +ely) =det(X_; +ely) (1+ v (X_; +ely) 'v;)

— T H Aite) (T+v] (X +ely) 'v;)

i€[r—1]

=7 J] A+ (c+v QDiag(B(e)Q ).

i€[r—1]

where the first equality is from the Matrix Determinant lemma (Harville 1998) and in the third

equality, we let B(e) = ( < —1,---,1)" denote the eigenvalues of e(X_; +el;)~'. As

€
A1+e? P Ar_1+e€?

det(X) = lim, e~ det (X +eI,), thus

U det (X + el
det(X):liiréW:hi% T O+ e) (e+ ) QDiag(3()Q " v)
i€[r—1]
=lim ﬂ ]<Az—+e> lim (¢ + v, Q Diag(8(c))Q " v:)
e[r—1

— det(X_,) (v] QDiag (8(0) QT v,) = det(X_,)o] (I — X', X_,)v,

where the third equality is because both limits exist and the last equality is from the fact that the
vector of eigenvalues of (I, — X', X_;) is equal to B(0) and the corresponding matrix consisting of
the eigenvectors is Q.

The proof of Part (ii) is similar to Part (i) and is thus omitted here.

Part (iii) and Part (iv) follow directly from theorem 1 and theorem 6 in Meyer (1973).

Part (v). By Part (iii) and the fact that (I, — X', X_,) is a projection matrix, we have

T T T T T T
’UZ.TXT'vi :U:Xizvz _ v, X_i’Ui'UZ- (Ier — X_Z‘X2—i)vi _ v, (Id — X_i)f_,;)’vivi Xg_i’Ui
I(La = X2, X i)will3 1(Ly = X2, X i)will3
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N (14+v] X_v)v] (I, - X', X_ v (I, - X', X_))v,
1(Za = X1, X 3)ws13
:'UTXIZ'Uz — ’UTXizUz — 'UTXi,"Ui, +1 —|—’UZT)(T_Z’Uz =1.

K2 3 7

Part (vi). Since X = X_; +v;v,, then we have
v, (I, - X'X)=v —v/] XTX_;, —v] XTvv] = v XTX_,,

where the second equality is from the fact that v, XTv; =1 in Part (v).
To compute v, XTX_;, using the result in Part (iii) and the facts that (I, — X', X_,)X', =0

and (I, — X', X_,) is a projection matrix, we then obtain

o] X' v (I, - X1, X_)X!, o (I,-X",X_)vv X', X7,
(Lo — X", X )3 (Lo — X", X _)vil3

N (14v X" v)v] (I, - X, X_)vv (I,- X', X_)XT,

1(La — X1, X 3)wil3

= X X", —o/ XT.XT =o0.

v XX, =v X", XT, -

Hence, v, (I, — XTX)=-v] XX _;=0.
Part (vii). According to Part (iv), we have

Xvv! XT XX XTX v (XTPv,X o0 XTX

¥ < e R 2
Xt T = Xl X! XTI XTvo] X' XTvw! XTow| | o (X0, XTv0] XTvv!
o o | X ;13 [ X ;13 1 X i3
Xt XTvw! o] (X130, X v
B LS R P ST R 20

where the third equality is due to v,/ XTv; =1 from Part (v).

Since X = X _; +v;v;', we can obtain
v (I - X', X_)vi=vv, —v] X1 (X —vw) v, =vv, —v] X Xv,+v] X! v v,

Applying the identities in (29a) and (29b), we further have

1 v (XT3 (I — XTX)v; 1

T T
(I - X' X v, = - )
o a = Xo X v = T X0, X703

where the last equality is due to the fact that v, (I, — XTX) =0 from Part (vi).

Part (viii). There are two cases: whether v, is in the column space of X_; or not.
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(a) If v, ¢ col(X _;), we follow the proof of Part (vii). Since X = X_; +v;v,", we can obtain

T _ xt —v v — o' X7 Tt ma e — o (T — X X ). 4 (X0
v, (I— X", X _)v;=v; v, —v; X', Xv;+v; X, 0,0, v;=v; (I4— X' X)v; + X032
' ' Vill2
v XTX T, v (XT)v0] X,
T t J v T t ? t7d v
—v, (- X" X)v,———-+v, Ig— X" X)v;
TIX 3 T IX Tl
(v] XTv;)?

oy T T
=v (- X' X)v, + L
! X 3

where the second equality is due to the identites in (29a) and (29b), and the last equality is
because v, (I; — XTX) =0 from Part (vi).

(b) Second, if v; € col(X_;), then we rewrite v; =3, 5 ;, a,v;, which stems from the fact that
the vectors {v,¢ € S\ {i}} span the column space of X_;. Then it follows that

o (- X' X o= Y aw/ (Ii— X7, X_)v; =0,
LeS\{:}

where the second equality is because v} (I, — X!, X_;) =0 for all £€ S\ {i} from Part (vi).
n

A.8 Proof of Lemma 7

Lemma 7 Let S denote the output of the local search Algorithm 4 and let X =3, _sv;v,. Then
for each pair (i,j) € S x ([n] \§), the following inequality holds

1> (v XT X)) v (I - X" X)v; +v] XTvv XTv,.

-~

Proof. For each pair (i,5) € § x ([n]\ S), the stopping criterion of Algorithm 4 implies that
det(X_; +viv] ) > det(X_, +v;v)), (30a)

and {v¢},. g are linearly independent. There are two cases to be considered: whether v; is in the
column space of X_; or not.
s—1
(i) If v; ¢ col(X_;), then by Parts (i) and (ii) in Lemma 6 and the fact that det(X_;) >0, the

local optimality condition (30a) is equivalent to
v (I, - X1, X ), >v] (I, - X1, X_)v;. (30Db)

Plugging the results of Parts (vii) and (viii) in Lemma 6, the above inequality is further

reduced to

1> (v X' X)) v (I, - X' X )v; +v] XTvv X (30c)
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(i) If v; € col(X_;), then we must have v; € col(X). According to Part (vi) in Lemma 6, we have
(v XTX ;) v (I — X" X )v; +v] X vv] XTv; = (v XTv,)*.

Using Part (iii) in Lemma 6, we have

o Xt o X v — o] X_vv] (I,— X', X_)v; v (Lo - X' X v X v,
T (L — X, X 3)wi13 (L — X1, X w3
N (1+v] X_v)v] (I, - X', X _)vv] (I, - X', X _,)v;
I(Ls— X, X )vill4
v (I;— XLX,Z»)'viviTX,ivj 0
I(La— X1, X 3)v;3 ’

—y ' xT
=v;, X ,v; —

where the first equality is due to Part (iii) in Lemma 6, the second equality is due to Part
(vi) in Lemma 6 and v, is a linear combination of {v,},. \(i}» and the last equality is because
(I,— X',X_,) is a projection matrix.

Thus, clearly, we arrive at

v, X' XTv,)v] (I,— X" X)v;, +v.] XTv,o] XTv. = (v XTv.)?=0<1.
i J J J 1 J 1 J

A.9 Proof of Theorem 7

Theorem 7 Let S denote the output of the local search Algorithm 4, then the set S yields a
smin{log(s),log(n — s —n/s+ 2)}-approzimation bound for MESP (2), i.e.,

logdset <szvj> > 2" —smin{log(s),log <n—s— % —1—2)}.

i€S
Proof. We split the proof into three steps.
Step 1. Constructing Solution of Dual Variable A.
Given the output S of the local search Algorithm 4, let us denote X = >_
X ;=X —wv;v/ for each i € S.
We first construct A of LD (5) as below

,egViv; and let

A:% [tr(XT)(I; - XTX)+ XT], (31a)

where t > 0 is a scaling factor and will be specified later. Accordingly, the identity (31a) leads to
that logdet(A) =log dZ:t(X) + slogt.
Step 2. Constructing Solution of the Other Dual Variables (v, u) with A in (31a).
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Next, to construct the solution of the other two dual variables (v,u), we need to check the

feasibility of constraints in LD (5), i.e.,
v Av; <v+ Vi € [n). (31b)

We consider the following two cases: (i) for each i € S and (ii) for each j € [n] \§ .

(i) For each i€ S, we have

1 1
v Av; = n [tr(X v, (I, — XTX)v; + v/ XTo] = o (31c)

where the second equality results from Parts (v) and (vi) in Lemma 6 with 7=s.

(i) For each j € [n]\ S, according to Lemma 7, we have
1> (viTXTXT'vi) 'va(Id — XTX)'vj + vaXT'viviTXT'vj,W €s.
Summing the above inequality over ¢ € S and using the fact that X =3, & v;v,, we have
s>tr( XN (I, — X' X)v; +v] XTv; =tv] Av;. (31d)

By inequalities (31c) and (31d), to find the best (v,u), it suffices to solve the optimization

problem below:

s 1 ~ ~
PP < min min {logdet(X) + slog(t) + sv+ Z Wi —Ss:v+p; > —=,VieS,v+pu; > f,W € [n] \S}
t>0 v,p€R?Y o t t
Above, by checking the primal and dual of inner minimization problems, there are following two
candidate optimal solutions
vt = f,,u? =0,Vi € [n],
t
1 ~ -1 ~
V= ;,,uszNi esS b= ST,Vi €[n]\S.

Step 3. Finding the Best Scaler ¢t and Proving the Approximation Bound.
Plugging in these two candidate solutions of (v, ), the right-hand side of the above minimization

problem becomes

s -1
2P Slogdet(X)—l—rtﬂ;glmin{slog(t)—i—s (; —1) ,slog(t)—I—(n—s)s " —|—i—s}.

By swapping the two minimum operators and optimizing over t, the right-hand side of above

inequality is further equivalent to
AP < logdset(X) + smin {log(s), log (n s 2) } .
s

According to the weak duality between MESP (3) and LD (5) and the fact that S is feasible to
MESP (1), we have
logdsét <ZU{UZT> =log dset(X) <zr <P < logdsét(X) + smin {log(s),log (n sy 2> } ,
~ s
ieS

which completes the proof. O
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A.10 Proof of Proposition 5

Proposition 5 If one follows the construction of a feasible solution A in (15) to LD (5), then

even with the best choice of (v, ), there exists an instance such that
—logdet(A) + sv+ Z i —s=2z"+ smin {log(s),log(n —s—n/s+2)}.
° i€[n]

Proof. We construct the following instance.

Example 3 Given s <d <n, suppose that for each i € [n],

v; = {ei7 ZfZE [5]7

> jcis €i»  Otherwise.

In the above example, one optimal solution to MESP (2) is S* = [s]. Suppose in the local search
Algorithm 4, we start with S =5, then it terminates immediately. We follow (15) to construct a
feasible A to LD, which is identical to the one (31a) used in Theorem 7. According to the proof of
Theorem 7, we only need to check if the inequalities (31d) are tight, i.e.,

s=tr( X", (I,— X' X)v; +v] XTv; =tv] Av;,Vj € [s+1,n].
In fact,

.
tr(XT)v]-T(Id—XTX)vj—|—vaXij:tr(XU(Zei) Id—XTX<

1€[s]

ez> —i—vaXTvJ

i€[s]

:ZerTeizs,VJ €ls+1,n],

i€[s]

where the second equality is due to Part (vi) in Lemma 6 with 7 = s and the third one is due to

X =3 e;e] and e] XTe, =0 for all i,/ € [s] and i # /. O

A.11 Proof of Proposition 6

Proposition 6 Let S denote the output of the local search Algorithm 4. Suppose that v, v; =0 for
each pair (i,7) € S x ([n] \§), then we have

logdsét <Zviv;> > 2" smin{log <)\ma’(;(c)> ,log <>\max(§c)(ns) _n +2> },
~ s s
i€l

where the constant § is defined in Lemma 4.

Proof. The proof follows directly from Theorem 7. Thus, we only sketch the proof for the sake of
page limit.
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Step 0. Given the output S of the local search Algorithm 4, let us denote X =3, & v;v, . Let
AL > > A > A1 = - - = Ag = 0 denote the eigenvalues of X . Clearly, according to the definition
of § and Cauchy’s Interlacing theorem (Bellman 1997), we have Ap..(C) > A; and A, > 0.
Step 1. Construct A = (A )" '(I; — XTX)+¢' X' such that log dset(X) = —log dgt(A) + slogt.
Step 2. We can show that v,/ Av; =1/t for all i € S.

Since the vectors {v;}; 5 span the column space of X, the assumption that v, v; =0 for each

pair (i,7) € S x ([n] \ §) implies that v, is orthogonal to the column space of X. Thus, we have
v/ X =0,v, X'=0,v Av;, = (\t) 'v/ v;,Vj € [n] \ S.
To obtain the upper bound of 'vaA'vj, according to Lemma 7, we have
1> (’uiTXTXTU,-) va(Id ~ X" X)v; + UJ.TXTvinTXT'uj = (UIXTXTvi) v;vj,Vi IS §,

where the equality is due to ’vaX f = 0. Summing the above inequalities over i € S , then for each

j€[n]\ S, we have

1 1 A A
)\ t'UjT'Uj < S S 1 S max(C)

.
Y5 A =Nt r(XT) SOt 5t

where the second inequality is due to A\; tr(X ") > s, and the third inequality is from A,..(C) >\
and 6 < \,.
Step 3. To choose (v, p) such that (A, v, u) is feasible to LD (5), let us consider the optimization

problem below

. . b 1 . a /\max<C) . a9
min min, {logdet(X)—l—slogt—l—sy—i— Z Wi — SV pu; > ;,Vz eS,v+pu; > T,Vz € [n] \S},

+ 1€[n]

which provides an upper bound to 2. By optimizing the right-hand side, we obtain

s 25 —
zLDglogdet(X)+min{slog (AHM’(;(C’)) ,slog ()\ma‘;‘éc)(n—s)jL SS n>}

Invoking the weak duality between MESP (1) and LD (5) and the fact that S is feasible to MESP
(1), we conclude that

logdfat(X) <z <P < logdset(X) +smin{log (/\ma’(;<(:')> ,log <)\ma;s(c)(n— s) —n/s+2> } .

O
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A.12 Proof of Proposition 7

Proposition 7 The objective function of A-MESP (17) is (i) monotonic non-decreasing, (ii) nei-

ther discrete-supermodular nor discrete-submodular, and (iii) neither convex nor concave.

Proof. Part (i). For any size-s subset S C [n] with s > 1, let X =3, cv/, then for any
i€[n]\S, we have

s+1 , s 1 TXT i
(X +ow))] =tr(XT) 4 T2 Y

> tr(X T
0T (L - XX, = FXD,

where the equality is due to Part (iii) in Lemma 6 , and thus proves the monotonicity.
Part (ii). Consider an instance of n =3, v; = 2e; + €,, v, = 2e; — e, and vz € R3. Then we let

Si={1},8;={1,2} and X, =3, g vw, Xo=), ¢ vv/. In this way, we have

420 0.16 0.08 0 800 0.125 0 0
X,;=(210], X/=10080040|, Xo=[020]|, XI=[ 0 050
000 0 00 000 0 00

If v3=(40 10 20)T, then

2

[, + vy )1] — tr(X]) =

1+324> 1+250

3 2
_ T
B0 2 400 —tr[(X2+U3’U;)T:|—tI'(X2),

which disproves the discrete-supermodularity.

If v3=(10 10 20)7, then

1+52 < 1+62.5
420 — 400

2 1 3 2
tr [(Xl —I—vgv;)T] — tr(XD = =tr [(XQ +’U5'U;)T} —tr(X;r),

which disproves the discrete-submodularity.

Part (iii). Let us consider Example 2 in Proposition 1. In this example, we consider two feasible
solutions ! = (1,0)" and %= (0,1)" of A-MESP (17) with s = 1. The following two cases disprove
the convexity and concavity:

Case 1. If a=1 and b=1, we have

11 11 1 a:ll—l—xf f
itr {(vlvf)q —|—§tr [(UQU;)T} =1 Str[(Z 5 vw?) ] =2,

which disproves the convexity.

Case 2. If a=4 and b=1, then we have

st [(ww])] + 5r [(ore]) ] =

which disproves the concavity. O
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A.13 Proof of Lemma 8

Lemma 8 For a d x d matrix A >0, we have
. S 1 _ l)
min {tr(X )+ tr(XA)} 2t8r (A2 ) (19)

Proof. Following the proof of Lemma 1, the left-hand side of (19) can be equivalently written as

1

min Z — + min { Z 0;); : 0 =diag(Q"AQ),Q is orthonormal} ,

Aerd , i Qeecr: L

Ay Sy >0 €l o1 <..<b, ‘€l
1= ZAdZ 1>xbqg

which can be further reduced to
. 1
m”% Z )T + Z BiXi ¢
A1 ZAeﬁidZO i€[s] ! 1€[d]

1

VB
min {tsr(XT) +tr(XA)} = 22 VBi=2 fr (A%) .
1€[s]

Minimizing the inner problem over A yields \; = for any i € [s] and \; =0 otherwise. Thus,

X=0

A.14 Proof of Theorem 9

Theorem 9 The primal characterization of A-LD (20), referred to as (A-PC), is

(A-PC) Zf“D = mln{q)s(szvl’vr) : inzs,mé [O, 1]7),}. (21)
i€[n] i1€[n]

Proof. For A-LD (20), let € R" denote the Lagrangian multipliers associated with v+ p; > v;" Av;
for each i € [n] and thus its dual is equal to

AP = min  max {2tr<A%>syz,ui—f—z:xi(y+,u¢’v;Avi)},

xER AX0,v,uER™
+ + i€[n] 1€[n]

where according to theorem 3.2.2 in Ben-Tal and Nemirovski (2012), the strong duality holds since
the constraint system satisfies the relaxed Slater condition.

Clearly, the inner maximization can be separated into two parts: maximization over A > 0 and
maximization over v, u € R’} .

(i) Let X =31 z;v;v; and then the inner maximization problem over A = 0 becomes

max {2‘51" (A%> - tr(AX)}.

A>0 s

Suppose A has eigenvalues 0 < 3; <--- < 3; and A = PDiag(8)P" with an orthonormal
matrix P. Let us denote 8 = diag(P" X P) and for X with rank r, let X = QDiag(A\)Q"
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denote its eigendecomposition, where Ay > --- > \. > A\, 1=---= A3 =0 and Q is orthonor-
mal. Following the similar proof of Lemma 3, we can reformulate the above maximization
problem as
max 23 " \/Bi— Y 0:8;:0=diag(P" XP), P is orthonormal » = ®,(X),
P’BERi’BERi’ i€[s] i€[d]

0<B1<<By,
61220420

with an optimal solution
(s —k)?
(Zie[k+1,d] /\i)2 ’

(ii) For the maximization with respect to v, u € R’y we have

0 if§.E T, =81, <1
_ _ g E ? 7 [n] 7 sy =
ﬁ?ﬂi{i{ v pat xl ot } { 00, i

otherwise.
i€[n]

=Q,0"=\3'=—.Vic[k],B = Vielk+1,7],8 =85 Vielr+1,d.

/\2’

Combining Parts (i) and (ii), we arrive at (21). O

A.15 Proof of Lemma 9

Lemma 9 For any feasible solution x to A-PC (21), let XA € ]Ri denote the vector of eigenvalues

of matriz 37, Tivv] , then we have

P, ( >z ) > ]Z‘Ei})‘) (23)

where function E(-) is introduced in Definition 3.

Proof. Without loss of generality, suppose that the eigenvalues of matrix Z xiviv: are sorted

16 n

in a descending order, i.e., \; > --- > X; > 0. Let us construct a new vector 3 as

Zze k+1,d] )\

ﬂl:)\“Vze[]ﬁl— —k ,VZE[k+1,$],/81207v26[3+1,d]

For any two vectors @,y € R?, we say that x is majorized by y if
Za:l < Zy“Vt €ld—1] Zml Zyl
i€lt] i€ld) ic[d]
Further, a function f is Schur-convex if f(x) < f(y) holds for any &,y € dom(f) that x is majorized
by y (see, e.g., Hwang and Rothblum 1993).
Clearly, A is majorized by 3 and thus obtain

T 7Es—1(/8) Es—1(>‘)
o Tl ) =g > i

where the inequality follows from the Schur-convexity of function

Es—l(')
Es()

(see theorem 3.1 in

Guruswami and Sinop 2012 and the fact 1/(f(x)) is Schur-convex if f(x) is Schur-concave). [
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A.16 Proof of Theorem 11

Theorem 11 Given an optimal solution & to A-PC, the volume sampling Algorithm 6 yields a

min(s,n — s+ 1)-approzimation ratio of A-MESP, i.e.,

E[&KZW;f” < min(s,n— s+1)%).

Proof. For any positive semidefinite matrix X > 0, let A(X) denote the vector of its eigenvalues.

The expected objective value output from Algorithm 6 can be upper bounded by

E [tsr [(Zuivj) T” - P[S = S]tr [(VSVST)*}
i€§ SE([?])
> s Bdet(VsVY) B (A(VEVE)
se(n)) 256([2]) HieS fidet(Vng) det(VSVST)
B ZSE([gJ) [Lics i ZTe(sfl) B, (A(VrV,))
ZSG([Q]) [Tics @dzt(VSVgT)
Sre( ) Lse(t) res lies T A (V2 V)
s () Ties Fdet (V V)
ZTE (S[f]l) (Zie[n]\T z;) HieT TiEs ()‘(VTVTT))
de([zl) Hieé */T\idset(vﬁvg)
2ore(im) Hier T B (A(Vr VL))
ZSe([’;]) HieS‘ /x\iES(A(VSVST))
ES—l(A(ZiE[n] Ziv;v;))
E; ()‘(Zie[n] Tvv]))

<min(s,n—s+1)P, < Z Ec\iviv;) <min(s,n—s+ 1)z}

1€[n]

where the third equality is due to Cauchy-Binet formula (Broida and Williamson 1989), the fourth

<min(s,n—s+1)

=min(s,n—s+1)

and fifth equalities are due to interchange of summations and collecting terms, the first inequality
stems from the fact that >, ., @i < min(s,n — s+ 1) for any size-(s — 1) subset T', the sixth
equality is due to Cauchy-Binet formula (Broida and Williamson 1989), the second inequality is
from Lemma 9 and the last inequality results from the weak duality. O
A.17 Proof of Lemma 10

Lemma 10 Suppose that S is the output of the local search Algorithm 7 and X =3, & vv, , for

each pair (i,5) € S x ([n]\ S), the following inequality always holds

v (X" v (I, - XTX)v; <o (X0 + v (XT) w0 XTv; — 20 (XT) 050 XTo;.
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Proof. Similar to the analysis of Lemma 7, for each pair (7, j), there are two cases to be considered,
conditional on whether v; € col(X_;) or not. If the rank of X is s, then tsr(XT) =tr(XT), thus for
notational convenience, we use tr(-) instead.

(i) If v; ¢ col(X_;), according to the local optimality condition, we have

1+o/ X v,
tr(XT) <tr[(X_i +v0)) ]| =tr(XT,) + 3t 7
(XS] )=+
v (XT)3v; 1+ol X',
_tr(XT)* LT( )2 + J TJ
v, (XT) V; ’UJT(In—X_7X_Z)’U‘7
v (XT)3; 1+v] X',
=tr(XT) - ZT( T)g + T — T] 2 /s T (X 1) 2. (32)
v, (XT)%v; o (I,— XX )'vj+('vj Xtv,)2 /v (XT)%v;

where the equalities follow from Part (iii), Part (iv) and Part (viii) in Lemma 6, respectively.
Then by Part (iv) in Lemma 6, we further have
v XTvv] (XT); N v (XT3 (v] XTv;)?
v (XT); (v (XT)?v;)?

vaXL-'vj = vaXT'uj -2
Plugging the equation above into the local optimality condition (32), we can simplify it as
v (X v (I, - X' X )v; <o (X0 + v (XT)vv] XTv; — 20 (XT) 00 XTo;.

(ii) If v; € col(X_;), we show that v/ (I, — XX )v; =0 and v, X'Tv; =0 for each i € S in the

proof of Lemma 7. Thus, it is clear that

0=v, (X" ’vv] (I, - X" X)v; <o/ (XT)v; +v] (XT) v X'v;

= v, (X120 + v (X)) Xt — 20 (XT) 20,0, X1,
]

A.18 Proof of Theorem 12

Theorem 12 The local search Algorithm 7 yields a s/2+ 6~ min {Ayax (C), 10 + (N — $) Amax (C) } -
approximation ratio for A-MFESP, i.e,

t‘?(iezgvivf) Smin{; <1+/\ma’(‘5(c)> % <n+s+ (n-5>2m<0)>}227

where S is the set produced by Algorithm 7, and d is defined in Lemma 4.

Proof. Let us denote X =3 & v;v; . Clearly, the rank of X is s and suppose that its eigenvalues
satisfy Ay > - > A, > Agpy = - = Ay = 0. Thus, tr(X1) =¥, & = tr(XT). If the rank of an

n X n positive semi-definite matrix Y is s, since tr(Y) = tr(Y), thus for notational convenience,

1€[s]

we will use tr(-) instead.
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Similar to the proof in Theorem 7, our proof relies on the weak duality of A-LD (20). Consider
a feasible variable A of A-LD (20) as

A =2 X"+ 22A7%(I, — X' X),

where t > 0 is a scaling factor and will be specified later. Next, to construct the solution of the

other two dual variables (v, u), we need to check the feasibility of constraints in A-LD (20), i.e

v Av; <v+ p,;, Vi € [n)].

There are two cases to be considered: (i) for each i € S and (i) for each j € [n]\ S.

(i)

For each i € S , we have
v Av; =2t%v, (XT)%v; <282 tr(XT), (33a)

where the equation is due to Part (vi) in Lemma 6 and the inequality is from

Zzes 7 (XT) v; :tr(XT)
For each j € [n] \§ , according to Lemma 10, for each i € S , we have

viT (XT)3U¢’UJT(LL — XTX)’Uj < UiT(XT)zvi + ’U:(XT)2UZ~’U]TXT’UJ- — QUiT(XT)ijv:XTUj.
Summing up the above inequality over all i € S , we can obtain

1 -
t—ijTA'vj <A 0] (Lo+ XX )v; + e[ (X)) (I — XT X )v; + 20 (XT)?;

<tr(XT) + tr(X M) XTo; + A %0 (I, — XTX)v,

where the first inequality is due to tr[(X1)?] > A;2. Above, we can further bound the right-

hand side as below

1
t—zvaAvj <tr(XT) + tr(X o] XTo; + %0/ (I, - XTX)v,

<tr(XT) + A7 (X o XTX v, + A 1tr(XT v (I;— X' X)v;

J

= r(XT) (142 0] v,) < tr(XT) (1 e >

where the second inequality is because tr[(XT)] > A\;! and X7 = A\;?XTX, and the third

inequality is due to the facts that v, v, < Ay (C) for any £ € [n] and A\, > 4.

Thus, for cach j € [n]\ S, we must have

v Av; < t*tr(XT) (1 + )m(;(())> : (33b)
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Using inequalities (33a) and (33b) to construct (v, p), it suffices to solve the optimization problem

24P > max max t2\/§tsr(XT) —sv— z i v+ g > 26%tr(X 1), Vi€ S,
t>0 u,[.LERi ——

v+ > (X (1 + A“’(‘s(C)) Vi € [n)] \§}.

Above, by checking the primal and dual of inner maximization problems, there are following two

candidate optimal solutions:

v =t*r(XT) <1 + )\m@(;(c)> ,pd =0,Vi € [n],

~

e~ )\max C .
VP =2t%r(X 1), ul =0,Vi € S, ub = t*tr(XT) <5() - 1) Vien]\S.
Plugging in these two solutions, the above maximization problem becomes

2P > tr(XT)Itngjxmax{Q\th —s(1+ Ama’(‘s(c))t?,m@t - <25+ (n—s) <A’(‘5(C) — 1>> tQ} .

By swapping the two maximization operators and optimizing over t, the right-hand side of above

inequality is further equivalent to

LD 2 :
24 >tr<XT>maX{s<1+Amax<0>/a>’n+s+<n—s>kmx<0>/5}'

Using the fact that 24P < 2%, we obtain the desired approximation ratio. O

Appendix B. MESP (1) using Sample Covariance Matrix

When the true covariance matrix C' is not available, we estimate it using NV i.i.d. samples, denoted
by (A7N. Suppose that the random observations are multi-variate sub-Gaussian (see the formal
definition in Vershynin 2018). According to theorem 4.7.1 in Vershynin (2018), we have the following

generalization bound between the sample covariance matrix and the true one

E[Hc—@vuz} Sc(ﬁ—i— X,) (34a)

where ¢ > 0 is a positive constant depending on the data and for a symmetric matrix X, we let
| X ||2 denote its largest eigenvalue. Then, let Zy denote the optimal value of MESP (1) using the

sample covariance matrix C N, 1.e.,
Zy = max {logdet((é’N)s’s) .S Cnl,|S] = s} . (34D)

Next, we show that with high probability, one has |2* — Zy| = O(1/V'N).
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Proposition 9 Suppose that the random observations are multi-variate sub-Gaussian and the
positive constants (,( > 0 denote the minimum of all the smallest eigenvalues among all the
s X s positive definite principal submatrices of C' and the maximum of all the largest eigenval-
ues among all the s X s principal submatrices of C, respectively. If the sample size satisfies N >
max{n, 16¢*n/(n>¢?)(2( /¢ +1)%*2} with the constants ¢ >0 and n € (0,1), then with probability at
least 1 —n, we have

|2* zN|<slog(1—|—4c >§408 iy

¢ U

Proof. We split the proof into two steps.
Step I. Since N >n, the inequality (34a) implies that

E[IC-Elk] < 20\@ (340)

Together with Markov inequality, we have

~ 2¢ |In ~ 2¢ |In n |N ~
Pl|C CNHQ_n,/N} 1 IP’[HC Cnll >~ N}_1 26,/711@[”0 CN||2}_1 n

Thus with probability at least 1 — ), the estimated covariance matrix éN satisfies

2c 2c
I <Cc-C %—”—I. 4d
n N n N n N n (3 )

Step IL Let S* and Sy denote the optimal solutions of MESP (1) and formulation (34b),
respectively. Since the optimal principal submatrix Cg« g+ is positive definite and N >
16¢2n/ (n2¢2)(2C /¢ + 1)*~2, using the bounds of Cy in (34d), (Cy)s+.s- is also positive definite
with the smallest eigenvalue at least (/2 (see the inequalities (34e) below). Thus, both the optimal
principal submatrices Cg+ g« and (éN)§N7§N must be positive definite and their corresponding

optimal values z* and Zy satisfy

2" — 2y =logdet(Cs- s+) — logdet((Cn)g, 5, )
=logdet(Cgx g+) — logdet((CA'N)s*,s*) + IOgdet((éN)s*,s*) - logdet((éN)§N,§N)
S logdet(CS*,S*) — logdet((é\’N)S*ys*)

2¢ In

~ ~ 2c |n A
Slogdet <(CN)S*,S* +; NIS> —logdet((C’N)S*,S*)zlogdet <Is+77 N(CN)EE’S*)

<slog 1+20\/7 1 <310g<1+40 n)
- VN i ((Cy)sese) )~ VN )’

where the first inequality is because of the optimality of (éN) Gn.Bn the second one is due to

inequalities (34d), the third one is from the monotonicity of function log(-), and the last one is due

to the fact that if N > 16¢?n/(n?¢?)(2¢/¢ +1)?*2 > 16¢%n/(n*¢?), we must have

~ n
Auin(C)sr ) 2 din Cir) = 2oy [ 22 = 2\ [ 2 2 (340
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Similarly, since N > 16¢*n/(n*¢?)(2¢/¢ +1)**72, the matrix Cg g must also be positive definite

and thus, its smallest eigenvalue must be at least (. Therefore, we can also show that

2* —Zy =logdet(Csx g+) — logdet((aN)gNﬁN)
=logdet(Cs+ s+) —logdet(Cg 5, ) +logdet(Cs, 5, ) — logdet((CA’N)gN’gN)

> logdet(Cs, 3, ) —logdet( (C )SN SN)

n B 2c In 4
>logdet(Cyg, 5, ) —logdet < 5y.8n T \/;IS> = —log det (Is + n\/;CgN’§N>
> —slog [ 1+ = w/n— —slog< T n)
= N \ain(Cs, 5,) VN

All the results in Step II hold almost surely conditioning on that ||C — (/;\’NHQ <2¢/ny/n/N, where
the latter occurs with probability at least 1 — 7. This completes the proof. O

Appendix C. MISOCP Formulation of MESP

In this section, we develop a mixed integer second-order conic programming (MISOCP) formulation
for MESP, which is equivalent to the nonlinear convex integer program studied by Anstreicher

(2020). The formulation from Anstreicher (2020) has the following form

1
(MESP) z* := max {2 log det (yC Diag(x)C + I,, — Diag(x)) — fslog Z x;=s,xe|0,1]" }
1€[n]

(35a)

where « is a positive scalar and can be arbitrary. In fact, a good choice of v can improve the
continuous relaxation of formulation (35a). According to table 1 in Sagnol et al. (2015), we can

show that the above formulation (35a) is equivalent to

* . E - 1/n ) 1
(MESP) 2z":= e SO log <1_11(J”) ) 2slog(7)
j=
s.t. Z VCiZ; + Z er_n2Z,=4J,dJ is lower triangular,

i€[n] k€[n+1,2n]
| Z.e;||> < tijxi, Vi € [2n],Yj € [n],
Z ti; <J;;,Vj€ln], (35b)
i1€[2n]

tiJ‘ > O,VZ € [2”],\Vlj S [n],

1—z;, =x,4, Vi€ [n],
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where C; denotes the i-th column vector of matrix C. Note that according to chapter 2.3 in Ben-
Tal and Nemirovski (2001), we can equivalently represent the objective function in the formulation

(35b) as a second order conic program.
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