
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Reinforcement Learning Control
With Knowledge Shaping

Xiang Gao , Jennie Si , Fellow, IEEE, and He Huang , Fellow, IEEE

Abstract— We aim at creating a transfer reinforcement learn-
ing framework that allows the design of learning controllers
to leverage prior knowledge extracted from previously learned
tasks and previous data to improve the learning performance of
new tasks. Toward this goal, we formalize knowledge transfer
by expressing knowledge in the value function in our problem
construct, which is referred to as reinforcement learning with
knowledge shaping (RL-KS). Unlike most transfer learning
studies that are empirical in nature, our results include not
only simulation verifications but also an analysis of algorithm
convergence and solution optimality. Also different from the
well-established potential-based reward shaping methods which
are built on proofs of policy invariance, our RL-KS approach
allows us to advance toward a new theoretical result on positive
knowledge transfer. Furthermore, our contributions include two
principled ways that cover a range of realization schemes to
represent prior knowledge in RL-KS. We provide extensive and
systematic evaluations of the proposed RL-KS method. The
evaluation environments not only include classical RL benchmark
problems but also include a challenging task of real-time control
of a robotic lower limb with a human user in the loop.

Index Terms— Reinforcement learning (RL), reward shaping,
transfer learning, value function.

I. INTRODUCTION

TRANSFER learning in the context of reinforcement learn-
ing is less studied than that in supervised or unsuper-

vised learning [1], [2], [3], [4]. In this study, we investigate
knowledge transfer in RL by virtual task. We consider a task
to be described by the components of an RL problem, i.e.,
the state space, the action space, the system dynamics or the
environment, and the rewards or costs. A successful knowledge
transfer is expected to improve learning performance if knowl-
edge from source tasks can be efficiently utilized in learning
a new target task.

Prior knowledge can have a multitude of representations.
A simple and intuitive idea is to directly reuse experience

Manuscript received 11 February 2022; revised 3 September 2022 and
30 October 2022; accepted 2 February 2023. This work was supported by
NSF under Grant 1563454, Grant 1563921, Grant 1808752, Grant 1808898,
Grant 2211739, and Grant 2211740. (Corresponding author: Jennie Si.)

Xiang Gao and Jennie Si are with the School of Electrical, Computer
and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
(e-mail: si@asu.edu).

He Huang is with the Joint Department of Biomedical Engineering, North
Carolina State University, Raleigh, NC 27695 USA, and also with the Joint
Department of Biomedical Engineering, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599 USA (e-mail: hhuang11@ncsu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3243631.

Digital Object Identifier 10.1109/TNNLS.2023.3243631

samples to reduce the number of samples needed to learn
a new task [5]. Reusing previously learned value function
[6], [7] and policy [8], [9] are among the most popular
methods for knowledge representations in the context of a
transfer. Cheng et al. [7] present a heuristic-guided RL (HuRL)
that induces a much shorter-horizon subproblem that provably
solves the original task. Nonetheless, the effectiveness of
HuRL depends on the available heuristic and a bad heuristic
will hinder learning. The method of successor features [8], [9]
is promising as it can decouple environment dynamics from
rewards, and further triggers policy transfer from a set of “base
tasks” to a target task. However, these methods only work
with certain forms of Markov decision processes (MDPs), and
heuristics are still required to properly choose the “base tasks.”
Policy distillation [10], [11] transfers knowledge between tasks
by summarizing multiple learned policies into a single one.
As such, preparing multiple learned policies may take a long
time and thus slow down the entire learning process.

Reward shaping is one of the more popular approaches for
knowledge transfer. The original potential-based shaping and
subsequent extensions of the idea [12], [13], [14], [15], [16]
have been developed and mathematically shown to guarantee
policy invariance under the shaped reward. This approach
represents a large class of transfer methods that modulates
the reward function. Later it was proven that potential-based
shaping and Q-value initialization are equivalent [17]. In [18],
a method that focuses on searching for policies that maximize
the total reshaped reward over a finite planning horizon is
proposed. Yet, it relies on a near-optimal cost-to-go oracle
which is hard to obtain.

While different ideas for transfer in RL have been proposed
and examined, almost all these results are empirical in nature
with a handful of exceptions. An important theoretical result
showed that the choice of knowledge representation, either by
a reward or an initialization of the values, can significantly
influence the learning performance in either direction, posi-
tively and negatively [19]. As such, how to choose a potential
function is important to avoid an adverse transfer effect. These
important issues have not been addressed from two important
aspects. First is how to represent prior knowledge from source
tasks and second, how to ensure a positive transfer.

This study addresses these important questions centered
on a new, value function-based transfer scheme where prior
knowledge can be represented in many ways centered around
two principled ideas of either by a regression model via
supervised learning, or directly in the form of a state-action

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3253-8000
https://orcid.org/0000-0002-0374-7404
https://orcid.org/0000-0001-5581-1423

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

value function. Such knowledge representation frameworks
offer great flexibility. For example, learning from demon-
stration and imitation learning or specifically inverse RL
both can be embedded into our proposed framework. The
former can be a consequence of direct interaction with the
source task with accessible reward signals, and the later can
be a means of recovering the reward function from expert
demonstrations in the source task. In this work, we also make
a step forward by defining a new similarity measure between
the source task and the target task. We show that the proposed
reinforcement learning with knowledge shaping (RL-KS) will
result in a positive transfer if both tasks are sufficiently similar.
In summary, a key advantage of the proposed RL-KS includes
the following. It allows the synthesis of an RL controller to
leverage accumulated knowledge from previous experience of
similar tasks in a variety of flexible ways. As such, it not
only addresses the data shortage problem in some critical
applications but also improves data and time efficiency in
learning new tasks.

The main contributions of this article are summarized below.
1) We have not only formalized a value function-based

transfer learning for RL control design framework, but
also provided multiple and flexible ways to represent
prior knowledge. Additionally, our approach ensures
positive knowledge transfer. Strong results of this nature
are not available in the current literature.

2) We have provided a theoretical analysis of RL-KS with
performance guarantees such as convergence of learn-
ing, solution optimality, and positive transfer of prior
knowledge.

3) We have performed extensive and systematic evaluation
studies to demonstrate the effectiveness of RL-KS.

II. BACKGROUND AND RELATED WORK

This study concerns how to represent prior knowledge and
use it to augment reward/cost or value functions, and more
importantly, how to ensure prior knowledge positively impacts
on learning new tasks. As such, our RL-KS may be viewed as
a reward-shaping technique. As previously proved that reward
shaping is equivalent to value function initialization [17], our
approach may also be considered as a technique of using prior
knowledge to properly initialize the value function [20].

Reward shaping leverages prior knowledge from source
tasks to shape the reward function in a target task aiming
for improved learning. Potential-based reward shaping is a
classical approach where the potential function R f is used
to provide auxiliary rewards to the target task reward R′

based on prior knowledge from the source task reward R,
i.e., R′ = R + R f . As will be shown, we introduce a new
value-shaping framework and because of this, we will be
able to provide performance guarantees and also, constructive
approaches with the flexibility to represent prior knowledge.

In the original reward shaping formulation, the goal is
to preserve the optimal policy with and without the auxil-
iary award, or in short, to achieve policy invariance. The
potential-based shaping function can be a function of the
state, or a state-action function for on-policy learning [13].

Another extension of the potential-based shaping [15] was to
generalize the potential function so that the extra state-action
value function can vary over time. This class of approaches
has been shown to preserve policy, but it does not address the
important question of if an auxiliary award will positively or
negatively impact learning.

Another concern is that the main focus of the above
approaches was on the shaping function F(x, u) as an
extra term in the reward function. Few efforts have directly
addressed the important design question of how prior knowl-
edge can be built into the shaping function, and furthermore,
what learning tasks can benefit from such shaping, and how
to ensure a positive knowledge transfer.

The problem of RL design for real-time control applications
has been discussed in the field of adaptive dynamic program-
ming (ADP). General results regarding convergence proper-
ties of value iteration under the Q-value formulation have
been developed, first for exact value function approximation
[21], [22] and later for considering value function approxi-
mation errors [23], [24]. Our work considers transfer learning
within an RL context, and thus, addresses a broader class of
application problems.

Consider a nonlinear discrete-time system

xk+1 = F(xk, uk), k = 0, 1, 2, . . . (1)

where k is the time index of system dynamics, xk ∈ Rn is
the state and uk ∈ Rm is the action. The mathematical system
dynamic model F(xk, uk) is unknown.

We need the following definition and assumption to develop
our results.

Definition 1 (Stabilizable System): A nonlinear dynamical
system is said to be stabilizable on a compact set � ∈ Rn ,
if for all initial states x0 ∈ �, there exists a control sequence
u0, u1, . . . , uk ∈ Rm, k = 0, 1, . . . , such that the state xk → 0
as k →∞.

Assumption 1: System (1) is controllable and stabilizable,
and the function F(xk, uk) is Lipschitz continuous for ∀xk, uk .
The system state xk = 0 is an equilibrium state of system
(1) under the control uk = 0, i.e., F(0, 0) = 0. The feedback
control sequence uk is determined from control policy π which
is the actor neural network, and in the most general case
is bounded by actuator saturation. Let u0 = π(x0) = 0 for
xk = 0. The stage cost function R(xk, uk) is finite, continuous
in xk and uk , and positive definite with R(0, 0) = 0.

We consider the following infinite horizon discounted (0 <

γ < 1) value or cost-to-go function for a control law uk =

π(xk):

Jπ (xk, uk) = R(xk, uk)+

∞∑
j=1

γ j R
(
xk+ j , π

(
xk+ j

))
. (2)

III. ACTOR-CRITIC REINFORCEMENT
LEARNING FOR CONTROL

According to Bellman’s optimality principle, the optimal
cost-to-go J ∗(xk, uk) satisfies the action dependent discrete-
time (DT) Hamilton Jacobi Bellman (HJB) equation

J ∗(xk, uk) = R(xk, uk)+ γ min
uk+1

J ∗(xk+1, uk+1) (3)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: REINFORCEMENT LEARNING CONTROL WITH KNOWLEDGE SHAPING 3

and the optimal control law π∗ can be expressed as

π∗(xk) = arg min
uk

J ∗(xk, uk). (4)

By substituting (4) into (3), the DT-HJB equation becomes

J ∗(xk, uk) = R(xk, uk)+ γ J ∗
(
xk+1, π

∗(xk+1)
)

(5)

where J ∗(xk, uk) is the value function corresponding to the
optimal control policy π∗(xk). This equation reduces to the
Riccati equation in an LQR setting, which can be efficiently
solved. In the general nonlinear case, the HJB cannot be
solved exactly. In the following, we consider solving the value
function J ∗(xk, uk) of the HJB equation (5) by actor-critic
algorithms.

Actor-critic methods solve the DT-HJB by learning to
approximate both policy and value functions where actor
refers to the learned policy and critic refers to the learned
value. An actor-critic algorithm starts with an initial value,
e.g., J0(x, u) = 0 and an initial arbitrary policy ξ0. Then for
i = 0, 1, 2, . . . it iterates between

ξi (xk) = arg min
uk

Ji (xk, uk) (6)

and

Ji+1(xk, uk) = R(xk, uk)+ γ Ji (xk+1, ξi (xk+1)). (7)

The actor-critic scheme, therefore, is an incremental opti-
mization procedure that iterates between a sequence of action
policies πi by greedy updates. Note that i is the actor-
critic iteration steps, whereas k is the time index of system
dynamics. Combining (6) and (7), we have

Ji+1(xk, uk) = R(xk, uk)+ γ min
uk+1

Ji (xk+1, uk+1). (8)

Note that, the actor-critic algorithm does not require an
initially stabilizing gain. The sequence Ji (xk, uk) is not a
sequence of Lyapunov functions for the corresponding policies
ξi (xk) which are, in turn, not necessarily stabilizing.

IV. KNOWLEDGE SHAPING IN REINFORCEMENT
LEARNING FOR CONTROL

Given a source task TS and a target task TT , our proposed
RL-KS algorithm aims to improve the learning of an optimal
policy π∗ for TT using knowledge obtained from TS , where
TS ̸= TT . Later, we will address how transferable knowledge
can be formulated as a knowledge representation function Q′.
Here we first discuss how prior knowledge represented as Q′

is integrated into an actor-critic RL solution.

A. RL With Knowledge Shaping

We begin by defining the following external bounded cost
signal R f (xk, uk) that is of the form as in potential-based
reward shaping

R f (xk, uk) = Q′(xk, uk)− γ Q′(xk+1, uk+1) (9)

where Q′ is a representation of prior knowledge which will
be discussed in Section V.

Let

R′(xk, uk) = R(xk, uk)+ R f (xk, uk) (10)

then the knowledge-shaped value function Qπ (xk, uk) for
policy π is given as

Qπ (xk, uk) = R′(xk, uk)+

∞∑
j=1

γ j R′
(
xk+ j , π

(
xk+ j

))
. (11)

From (11) we have

Qπ (xk+1, π(xk+1))

= R′(xk+1, π(xk+1))+

∞∑
j=1

γ j R′
(
xk+1+ j , π

(
xk+1+ j

))
. (12)

Given (11) and (12) we have the following HJB equation for
Qπ (xk, uk) given a policy π :

Qπ (xk, uk) = R′(xk, uk)+ γ Qπ (xk+1, π(xk+1)). (13)

We formulate a new knowledge shaping RL iterative pro-
cedure, similar to (6) and (7), starting from Q0(xk, uk) =

J0(xk, uk) and π0 = ξ0. For i = 0, 1, 2, . . . , RL-KS iterates
between

πi (xk) = arg min
uk

Qi (xk, uk) (14)

and

Qi+1(xk, uk) = R′(xk, uk)+ γ Qi (xk+1, πi (xk+1)). (15)

Combining (14) and (15), we have

Qi+1(xk, uk) = R′(xk, uk)+ γ min
uk+1

Qi (xk+1, uk+1). (16)

Note that the procedure depicted in (6)–(8) is a special case
of that in (14)–(16) when there is no knowledge transfer, i.e.,
R f = 0.

B. Obtaining Knowledge Shaping Function From Source
Tasks

To represent prior knowledge Q′i for RL-KS in iteration i ,
we introduce two principled approaches below. In both cases,
the mathematical models (1) for both Ts and Tt are unknown
to the RL agent. We begin by introducing a sequence of
knowledge weighting factors {αi } that satisfy 0 < αi < 1, and
αi → 0 as i → ∞. Intuitively, such weighting factors allow
learning to immediately benefit from prior knowledge and then
attend to the target task with the transferred knowledge.

1) Directly Learned Value From Source Tasks: From the
previous section, we can directly transcribe previously learned
value functions in a new task.

1) If the value function (Q-table) is available, then a direct
transfer is applied

Q′i (xk, uk) = αi Qs(xk, uk) (17)

where Qs is the Q-table for the source task.
2) If the value function (Q-table) is unknown, then it can

be estimated from expectations over training trajectories.
For example, one can perform a Monte-Carlo simulation
as follows: first, generate trajectories using a random

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

exploratory policy or a pretrained policy. Let this policy
be µ, then for each state and action pair (xk, uk) in
the Q-table, we use an N -step accumulated stage cost
from the source task Rs to represent knowledge from
the source task, that is,

Q′i (xk, uk)=αi

Rs(xk, uk)+

N−1∑
j=1

γ j Rs
(
x j+1, µ

(
x j+1

)).

(18)

We can also use Q-learning with learning rate a to
update the Q-table for the source task. For iteration
j = 0, 1, . . . , jmax

Q′(j+1)(xk, uk) = Q′(j)(xk, uk)

+ a
[

Rs(xk, uk)

+ γ min
uk+1

Q′(j)(xk+1, uk+1)

− Q′(j)(xk, uk)

]
. (19)

Then

Q′i (xk, uk) = αi Q′(jmax)
(xk, uk). (20)

Additional approaches can also be used such as inverse
RL, imitation learning, and other means. Once the Q-value
from the source task is obtained, it can be applied as prior
knowledge for transfer to target task. As such, this class of
representation approaches actually include several different
implementation procedures.

2) Indirectly Learned Value From Source Tasks: The indi-
rect method formulates transferable knowledge based on a
batch of samples of (xk, uk, xk+1) from the source task, based
on which we extract system dynamics in the form of Fs(xk, uk)

by supervised learning. For deterministic MDPs, Fs predicts
the next state x̂k+1 given samples of (xk, uk, xk+1)

x̂k+1 = Fs(xk, uk). (21)

For stochastic MDPs, Fs predicts the transition probability.
The system model Fs is learned using general function approx-
imation models to minimize the following loss function:

L Fs =
(
x̂k+1 − xk+1

)2
. (22)

Recently, several works reported that relaxing the Markov
assumption and using a recurrent model can effectively retain
necessary past information to prevent aliasing. This has also
been empirically shown by A3C + LSTM [25]. Additional
advantage of using dynamic model Fs is to allow offline
off-policy training, which can be achieved by using samples
generated from an exploratory policy (usually uniform random
action selection). As such, we can bootstrap data collected
from previous tasks, and having a batch of data from an
exploratory policy generally leads to more stable learning,
compared to on-policy training.

After a regression model Fs is obtained, we can now
formulate a Q′(xk, uk) value function based on N -step return
by using Fs(xk, uk): with an initialization of (x j , u j), we can

Algorithm 1 RL-KS
Input: Samples {(xk, uk, xk+1)}, which include those from
source task Ts .
Output: Optimal policy for target task Tt .
Initialization: Set iteration index i = 0, . . . , imax , initial
knowledge weighting factor 0 < α0 < 1, number of steps
N .
Hyperparameter: Knowledge weighting factor αi decreases
from α0 to 0, e.g. αi = αi

0.
1: if Ts is a finite MDP then
2: Obtain Q′i from (17)-(20).
3: else
4: Learn prior knowledge Fs in (21) using samples

(xk, uk, xk+1) from Ts .
5: Get transfer knowledge Q′i from (23).
6: Get R′ from (9) and (10).
7: end if
8: while i < imax do
9: Obtain policy πi from (14).

10: Collect sample (xk, uk, xk+1) from task Tt .
11: Update Q-value function Qi+1 from (15).
12: i ← i + 1, k ← k + 1.
13: end while
14: return Optimal policy for target task Tt .

generate a sequence of N state and action pairs (x j , u j),

(x j+1, πi (x j+1)), . . . , (x j+N−1, πi (x j+N−1)) using (21) and
policy πi from (14). We then define prior knowledge
Q′i (xk, uk) as

Q′i
(
x j , u j

)
= αi

Rs
(
x j , u j

)
+

N−1∑
j=1

γ j Rs
(
x j+1, πi

(
x j+1

)).

(23)

We now summarize the RL-KS algorithm in Algorithm 1.

V. ANALYTICAL PERFORMANCE GUARANTEE

Here we provide performance guarantees for the proposed
RL-KS.

A. Properties of the Proposed Algorithm Without
Approximation Error

The actor-critic update in (16) will generate a sequence of
iterative Q-value functions {Qi (xk, uk)}. In this section, the
convergence of the RL-KS algorithm will be proved by show-
ing that the sequence {Qi (xk, uk)} converges to the optimal
value function J ∗(xk, uk) without considering approximation
error.

Lemma 1: Let {πi } be the control laws as in (14). Define Qi

as in (15). Let {µi } be a sequence of control laws associated
with Λi below

Λi+1(xk, uk) = R′(xk, uk)+ γΛi (xk+1, µi (xk+1)). (24)

If Q0(·) = Λ0(·) = 0, then Qi+1(xk, uk) ≤ Λi+1(xk, uk),∀i .
Proof: It can be derived by noticing that Qi+1 is the

result of minimizing the right-hand side of (15) with respect

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: REINFORCEMENT LEARNING CONTROL WITH KNOWLEDGE SHAPING 5

to the control input uk+1, while Λi+1 is a result of an arbitrary
control input.

Lemma 2: Let the sequence {Qi } be defined as in (15).
If the system is controllable on � and Q′(0, 0) = 0, then
there is an upper bound Y such that 0 ≤ Qi (xk, uk) ≤ Y , for
i = 1, 2, . . .

Proof: Let η(xk) be a continuous mapping from xk , and
the resulting controls are upper bounded by saturation, and let
Z0(·) = 0, and Z i is updated by

Z i+1(xk, uk) = R′(xk, uk)+ γ Z i (xk+1, η(xk+1)) (25)
Z1(xk, uk) = R′(xk, uk). (26)

Let Z i (xk, η) = Z i (xk, η(xk)) be a shorthand notation. Notic-
ing the difference

Z i+1(xk, uk)− Z i (xk, uk)

= γ
[
Z i (xk+1, η)− Z i−1(xk+1, η)

]
= γ 2(Z i−1(xk+2, η)− Z i−2(xk+2, η))

...

= γ i (Z1(xk+i , η)− Z0(xk+i , η))

= γ i Z1(xk+i , η) (27)

we can obtain

Z i+1(xk, uk)

= γ i Z1(xk+i , η)+ Z i (xk, uk)

= γ i Z1(xk+i , η)+ γ i−1 Z1(xk+i−1,)+ Z i−1(xk, uk)

= γ i Z1(xk+i , η)+ γ i−1 Z1(xk+i−1, η)

+ γ i−2 Z1(xk+i−2, η)+ Z i−2(xk, uk)

= γ i Z1(xk+i , η)+ γ i−1 Z1(xk+i−1, η)

+ γ i−2 Z1(xk+i−2, η)+ · · · + γ Z1(xk+1, η)+ Z1(xk, η)

=

i∑
j=0

γ j Z1
(
xk+ j , η

)
. (28)

According to (26) and (28)

Z i+1(xk, uk) =

i∑
j=0

γ j R′
(
xk+ j , uk+ j

)
≤

∞∑
j=0

γ j R′
(
xk+ j , uk+ j

)
. (29)

Since R′(xk+ j , uk+ j) is bounded, there exists a finite Y such
that

∞∑
j=0

γ j R′
(
xk+ j , uk+ j

)
≤ Y ∀i. (30)

By using Lemma 1, we get

Qi+1(xk, uk) ≤ Z i+1(xk, uk) ≤ Y ∀i (31)

so the proof is completed.
Based on Lemmas 1 and 2, we now present the convergence

proof of the Q-value function sequence.
Theorem 1: Define the sequence {Qi } as in (15) with

Q0 = 0, and the control law sequence {πi } as in (14). Let

the source task knowledge Q′(xk, uk) ≥ 0. Then, we can
conclude that {Qi } is a nondecreasing sequence satisfying
Qi ≤ Qi+1,∀i .

Proof: Define a new sequence {Φi } as

Φi+1(xk, uk) = R′(xk, uk)+ γΦi (xk+1, πi+1(xk+1)) (32)

where Φ0 = Q0 = 0. Now we show that Φi (xk, uk) ≤

Qi+1(xk, uk). Note that we use the shorthand notation in the
following proof, e.g. Φi (xk+1, πi+1) = Φi (xk+1, πi+1(xk+1)).

First, we prove that it holds for i = 0. Since

Q1(xk, uk) = R′(xk, uk) (33)
Q1(xk, uk)−Φ0(xk, uk) = R′(xk, uk) ≥ 0 (34)

we have

Φ0(xk, uk) ≤ Q1(xk, uk). (35)

Second, we assume that it holds for i −1, i.e., Φi−1(xk, uk) ≤

Qi (xk, uk),∀xk . Then, for i , from (15) and (32), we get

Qi+1(xk, uk)−Φi (xk, uk)

= γ
[
Qi (xk+1, πi)−Φi−1(xk+1, πi)

]
≥ 0 (36)

that is,

Φi (xk, uk) ≤ Qi+1(xk, uk). (37)

Thus, the above equation is true for any i by mathematical
induction.

Furthermore, according to Lemma 1, we know that
Qi (xk, uk) ≤ Λi (xk, uk). Combining with (37), we have

Qi (xk, uk) ≤ Φi (xk, uk) ≤ Qi+1(xk, uk) (38)

which completes the proof.
According to Lemma 2 and Theorem 1, we can obtain that
{Qi } is a monotonically nondecreasing sequence with an upper
bound, and therefore, its limit exists. Here, we define the limit
as limi→∞ Qi (xk, uk) = Q∞(xk, uk) and present the following
theorem.

Theorem 2: Let the cost function sequence {Qi } be defined
as in (15). Then, its limit satisfies

Q∞(xk, uk) = R′(xk, uk)+ γ min
uk+1

Q∞(xk+1, uk+1). (39)

Proof: For any uk+1 and i , according to (15), we can
derive

Qi (xk, uk) ≤ R′(xk, uk)+ γ Qi−1(xk+1, uk+1). (40)

Combining with

Qi−1(xk+1, uk+1) ≤ Q∞(xk+1, uk+1) (41)

which is obtained from (38), we have

Qi (xk, uk) ≤ R′(xk, uk)+ γ Q∞(xk+1, uk+1). (42)

Let i →∞, we have

Q∞(xk, uk) ≤ R′(xk, uk)+ γ Q∞(xk+1, uk+1). (43)

Note that in the above equation, uk+1 is chosen arbitrarily,
thus, it implies that

Q∞(xk, uk) ≤ R′(xk, uk)+ γ min
uk+1

Q∞(xk+1, uk+1). (44)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

On the other hand, since the cost function sequence satisfies

Qi+1(xk, uk) = R′(xk, uk)+ γ min
uk+1

Qi (xk+1, uk+1) (45)

applying inequality (41), and letting i →∞, we have

Q∞(xk, uk) ≥ R′(xk, uk)+ γ min
uk+1

Q∞(xk+1, uk+1). (46)

Based on (44) and (46), we can conclude that (39) is true.
Theorem 3: Let Q∞(xk, uk) = limi→∞ Qi (xk, uk) and

π∞(xk) = limi→∞ πi (xk), then the Q-value sequence
Qi (xk, uk) and the policy πi (xk) converge to the optimal
value J ∗ and optimal policy π∗ as defined in (3) and (4),
respectively,

Q∞(xk, uk) = J ∗(xk, uk) (47)
π∞(xk) = π∗(xk). (48)

Proof: We need Theorem 2 to show this result. Notice
that from the relationship between (14) and (15), we have

Q∞(xk, uk) = R′(xk, uk)+ γ min
uk+1

Q∞(xk+1, uk+1)

= R′(xk, uk)+ γ Q∞(xk+1, π∞(xk+1)) (49)

and

π∞(xk) = arg min
uk

Q∞(xk, uk). (50)

As i →∞, the knowledge weighting factor α→ 0. Therefore,
R′(xk, uk)→ R(xk, uk). Thus (49) becomes

Q∞(xk, uk) = R(xk, uk)+ γ Q∞(xk+1, π∞(xk+1)). (51)

Comparing (3) and (4) with (50) and (51), we conclude that
(47) and (48) are true.

B. Properties of the Proposed Algorithm With Approximation
Errors

Considering approximation errors in (14) and (15), starting
from Q̂0(xk, uk) = 0 with an initial π̂0, for i = 0, 1, 2, . . . ,

we have

π̂ i (xk) = arg min
uk

Q̂i (xk, uk)+ ρi (xk) (52)

Q̂i+1(xk, uk) = R′(xk, uk)+ γ Q̂i (xk+1, πi (xk+1))

+ ϱi (xk, uk) (53)

where ρi (xk) and ϱi (xk, uk) are finite approximation error
functions of the iterative control and Q-value function, respec-
tively. For convenience of analysis, for ∀i = 0, 1, . . . , we
assume that ρi (xk) = 0 and ϱi (xk, uk) = 0 for xk = 0 and
uk = 0.

Considering approximation errors, we generally have
π̂ i (xk) ̸= πi (xk), Q̂i+1(xk, uk) ̸= Qi (xk, uk), i = 0, 1, . . . ,

and the convergence property in Theorems 1–3 for accurate
case becomes invalid. Hence, in this section, new convergence
criteria will be established considering approximation errors
in each iteration, which makes the iterative Q-value function
converge to a finite neighborhood of the optimal one.

Define the target Q-value function as

0′i (xk) = min
uk

{
R′(xk, uk)+ γ

[
Q̂i−1(xk+1, uk+1)

+ Q′i−1(xk+1, uk+1)
]}

(54)

and

0i (xk) = min
uk

{
R′(xk, uk)+ γ Q̂i−1(xk+1, uk+1)

}
(55)

where Q̂0(xk, uk) = 00(xk, uk) = 0.

For i = 0, 1, 2, . . . , there exist finite constants υ ≥ 1 and
τ ≥ 1 that makes

Q̂i (xk, uk) ≤ υ0′i (xk, uk) ≤ υτ0i (xk, uk) (56)

hold uniformly. Let σ = υτ , it becomes

Q̂i (xk, uk) ≤ σ0i (xk, uk). (57)

Hence, we can give the following theorem.
Theorem 4: Let xk ∈ Rn be an arbitrary state and Assump-

tion 1 hold. For i = 0, 1, . . . , let 0i (xk) be expressed as (55)
and Q̂i (xk, uk) be expressed as (53). Let 0 < λ < ∞ and
1 ≤ δ <∞ be constants that make

J ∗(xk+1, uk+1) ≤ λR′(xk, uk) (58)

hold uniformly. If there exists 1 ≤ σ < ∞ that makes (56)
hold uniformly, then we have

Q̂i (xk, uk) ≤ σ

1+
i∑

j=1

λ jσ j−1(σ − 1)

(λ+ 1) j

J ∗(xk, uk) (59)

where i = 0, 1, . . .

Proof: The theorem can be proved by mathematical
induction. First, let i = 0. Then, (59) becomes

Q̂0(xk, uk) ≤ σ J ∗(xk, uk). (60)

This can be obtained as Q̂0(xk, uk) ≡ 0 ≤ J ∗(xk, uk) ≤

σ J ∗(xk, uk). Therefore, the conclusion holds for i = 0.
Next, let i = 1. According to (55), we have

01(xk, uk)

= min
uk

{
R′(xk, uk)+ γ Q̂0(xk+1, uk+1)

}
≤ min

uk

{
R′(xk, uk)+ γ σ J ∗(xk+1, uk+1)

}
≤ min

uk

{(
1+ λ

σ − 1
λ+ 1

)
R′(xk, uk)

+ γ

(
σ −

σ − 1
λ+ 1

)
J ∗(xk+1, uk+1)

}
=

(
1+ λ

σ − 1
λ+ 1

)
min

uk

{
R′(xk, uk)+ γ J ∗(xk+1, uk+1)

}
=

(
1+ λ

σ − 1
λ+ 1

)
J ∗(xk, uk). (61)

Note that in the derivation above, γ J ∗(xk+1, uk+1) ≤

J ∗(xk+1, uk+1) ≤ λR′(xk, uk) holds according to (58), we have

Q̂1(xk, uk) ≤ σ

(
1+ λ

σ − 1
λ+ 1

)
J ∗(xk, uk) (62)

which shows that (59) holds for i = 1.
Assume that (59) holds for i = l − 1, where l =

1, 2, . . . Then, for i = l, let c =
∑l−1

j=1((λ
j−1σ j−1

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: REINFORCEMENT LEARNING CONTROL WITH KNOWLEDGE SHAPING 7

(σ − 1))/((λ + 1) j)), d = ((λl−1σ l−1(σ − 1))/((λ + 1)l)),
we have

0l(xk, uk)

= min
uk

{
R′(xk, uk)+ γ Q̂l−1(xk+1, uk+1)

}
≤ min

uk

{
R′(xk, uk)+ γ σ(1+ λc)J ∗(xk+1, uk+1)

}
≤ min

uk

{
R′(xk, uk)+ γ σ(1+ λc)J ∗(xk+1, uk+1)

}
≤ min

uk

{
(1+ λc + λd)R′(xk, uk)

+ γ [σ(1+ λc)− c − d]J ∗(xk+1, uk+1)
}

=

1+ λ

l−1∑
j=1

λ j−1σ j−1(σ − 1)

(λ+ 1) j + λ
λl−1σ l−1(σ − 1)

(λ+ 1)l


×min

uk

{
R′(xk, uk)+ γ J ∗(xk+1, uk+1)

}
=

1+
l∑

j=1

λ jσ j−1(σ − 1)

(λ+ 1) j

J ∗(xk, uk). (63)

Then, according to (56), we can obtain (59), which proves
the conclusion for i = 0, 1, . . .

Theorem 5: Let xk ∈ Rn be an arbitrary state and Assump-
tion 1 hold. Suppose Theorem 4 holds for ∀xk ∈ Rn . If for
0 < λ <∞ the inequality

1 ≤ σ ≤
λ+ 1

λ
(64)

holds, then as i →∞, approximated value function Q̂i (xk, uk)

in (53) is uniformly convergent to a bounded neighborhood of
the optimal value function J ∗(xk, uk), that is,

lim
i→∞

Q̂i (xk, uk) ≤ σ

(
1+

λ(σ − 1)

1− λ(σ − 1)

)
J ∗(xk, uk). (65)

Proof: According to (63) in Theorem 4, we can see that
for j = 1, 2, . . . the sequence {((λ jσ j−1(σ − 1))/((λ+ 1) j))}

is a geometric series. Then, (63) can be written as

0i (xk, uk) =

1+

λ(σ−1)

(λ+1)

(
1−

(
λσ
λ+1

)i
)

1− λσ
λ+1

J ∗(xk, uk). (66)

As i →∞, if 1 ≤ σ ≤ ((λ+ 1)/λ), then (66) becomes

lim
i→∞

0i (xk, uk) = 0∞(xk, uk)

≤

(
1+

λ(σ − 1)

1− λ(σ − 1)

)
J ∗(xk, uk). (67)

According to (56), let i →∞, we have

Q̂∞(xk, uk) ≤ σ0∞(xk, uk). (68)

From (67) and (68), we can obtain (65).

C. Positive Knowledge Transfer

We consider a knowledge transfer by first defining a task
similarity measure between Ts and Tt .

Definition 2: Consider the iterative cost-to-go Ji+1(xk, uk)

in (6) and (7), and the cost-to-go with knowledge transfer
Qi+1(xk, uk) in (14) and (15), respectively. A source task
Ts and a target task Tt are similar if DTs ,Tt (xk, uk) =

Ji+1(xk, uk)− Qi+1(xk, uk) < τ for all i = 0, 1, . . . , where τ

is a positive threshold value.
Definition 3: The N -step return for the iterative cost-to-

go Ji+1(xk, uk) in (6) and (7) is defined as J N
i (xk, uk) =∑N−1

j=1 γ j R(xk+ j , ξi (xk+ j)), and the N -step return for the cost-
to-go with knowledge transfer Qi+1(xk, uk) in (14) and (15)
is defined as QN

i (xk, uk) =
∑N−1

j=1 γ j R′(xk+ j , πi (xk+ j)).

We would like to show how learning performance can
be improved with knowledge transfer by a transfer measure.
Let C(Ts, Tt) ∈ R below denote the benefit of transferring
learned knowledge in source task Ts to the target task Tt . Then
C(Ts, Tt) > 0 indicates positive transfer, while C(Ts, Tt) < 0
indicates negative transfer. We denote such transfer benefit by
using a jump-start measure

C(Ts, Tt) = J N
i (xk, uk)− QN

i (xk, uk). (69)

Our result for the benefit of a transfer is given below.
Theorem 6: Let there exist τ > 0, and assume that the

source task Ts and the target task Tt are sufficiently similar
accordingly to Definition 2. Let R f (xk, uk) ≥ τ , where R f

is as in (9). Then the benefit of transfer C(Ts, Tt) > 0 as
N →∞.

Proof: Equations (7) and (15) can be written as

Ji+1(xk, uk)

= R(xk, uk)+ J N
i (xk, uk)+

∞∑
j=N

γ j R
(
xk+ j , ξi

(
xk+ j

))
(70)

and

Qi+1(xk, uk) = R′(xk, uk)+ QN
i (xk, uk)

+

∞∑
j=N

γ j R′
(
xk+ j , πi

(
xk+ j

))
. (71)

As N → ∞,
∑
∞

j=N γ j R(x j+1, ξi (x j+1)) → 0 and∑
∞

j=N γ j R′(x j+1, πi (x j+1)) → 0 hold. Then (70) and (71)
become

Ji+1(xk, uk) = R(xk, uk)+ J N
i (xk, uk) (72)

and

Qi+1(xk, uk) = R′(xk, uk)+ QN
i (xk, uk). (73)

Next, we are going to prove J N
i (xk, uk) > QN

i (xk, uk) holds
for the following situations.

1) If Qi+1(xk, uk) ≤ Ji+1(xk, uk), then we can get
J N

i (xk, uk) > QN
i (xk, uk) from (72) and (73) because

R′(xk, uk) = R(xk, uk)+ R f (xk, uk) > R(xk, uk).
2) If Qi+1(xk, uk) > Ji+1(xk, uk), according to Definition

2 we have Qi+1(xk, uk)−Ji+1(xk, uk) < τ ≤ R f (xk, uk).
Then from (72) and (73)

J N
i (xk, uk)− QN

i (xk, uk)

=
[
Ji+1(xk, uk)− R(xk, uk)

]
−

[
Qi+1(xk, uk)− R′(xk, uk)

]
= Ji+1(xk, uk)− Qi+1(xk, uk)+ R f (xk, uk)

> 0. (74)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Hence, both cases result in a positive transfer for
i = 0, 1, . . .

Theorem 6 is formulated and proved relying on the task
similarity measure within a similarity threshold τ , namely that
smaller τ means more similarity between the tasks, and that
prior knowledge gained from the source task will benefit the
learning of the target task. In other words, the transfer is a
positive transfer. However, currently how to properly select τ

remains an open question and heuristics are still needed. It is a
trade-off between making transfers between a wider range of
tasks and ensuring positive transfer. In Section VII, we provide
a few examples to illustrate this task similarity measure and
positive learning transfer.

VI. IMPLEMENTATION OF RL-KS

Here we provide implementation procedures of the proposed
RL-KS algorithm and different knowledge representations
including Q-Table and actor-critic.

A. Using Q-Table

For simple cases such as finite state MDPs and the state
and action spaces are small enough, the value functions can
be represented as tables. In this tabular case, exact solutions
can often be found by updating the values in the Q-table. The
proposed algorithm first obtain knowledge shaping function
Q′ from the source task as in (17)–(20), then follows (10) and
(16) for updating the Q-values.

B. Actor-Critic Neural Networks

For the case of large or continuous state and control space
problems, the proposed RL-KS method is implemented using
an actor-critic structure. Here we provide the implementation
details used in our experiments.

1) Critic Network: The critic network consists of three
layers of neurons, namely the input layer, the hidden layer
and the output layer. It takes the state xk and the action uk

as inputs. We chose sigmoid as the activation function in our
implementation. The prediction error ec,k ∈ R of the critic
network can be written as

e(i+1)
c,k = R′(xk, uk)+ γ Q̂i

(
xk+1, π

(i)(xk+1)
)
− Q̂i+1(xk, uk)

(75)

where Q̂i is the approximated value function.
To correct the prediction error, the weight update objective

is to minimize the squared prediction error Ec,k , denoted as

E (i+1)
c,k =

1
2

(
e(i+1)

c,k

)2
. (76)

2) Action Network: The action network also has three layers
of neurons with the output layer neuron having a hyperbolic
tangent activation function. The input to the action network
is xk and the out is uk . Under our problem formulation,
the objective of adapting the action network is to minimize
the following performance error based on the approximated
Q-value:

E (i+1)
a,k =

1
2

Q̂2
i+1(xk, uk). (77)

Fig. 1. Windy gridworld problem. The black arrows indicate wind directions,
and the red arrows indicate an optimal path. (a) Original gridworld and an
optimal path. (b) Changed wind condition. (c) Changed grid size and goal
location.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate RL-KS performance based
on three experiments, including a finite state MDP problem
“windy gridworld,” and two continuous control problems
namely the cart-pole balancing problem and the real-time
control of a robotic knee with a human user in the loop.
In several evaluations, we compare RL-KS with two baselines:
1) a naive actor-critic and 2) a pretrained actor-critic. The
former is based on [26] and trained from scratch for new tasks,
while the latter is obtained by training the naive actor-critic
for the source task. All hyperparameters are given below in
respective tasks.

A. Windy Gridworld

Fig. 1(a) shows a rectangular “windy gridworld” represen-
tation of a simple finite MDP, which is adopted from [27]
and [28]. In this problem, the agent’s actions are affected
by the wind directions. The left panel of Fig. 1 shows an
optimal policy (path) for the original gridworld setup. Four
actions are possible at each cell: north, south, east, and west,
which deterministically cause the agent to move one cell in the
indicated direction. If the agent takes an action that would take
it off the grid, its location will remain unchanged. Notice that
the “windy” states are indicated by arrows, where the agent
experiences an extra “push” action that makes it move one
step toward the indicated wind direction. For example, if the
agent is in a windy state with the north wind (pointing upward)
and executes an action to the right, then the agent will end up
moving right one cell but also another upward move. As a
result, the agent moves diagonally upward to the right.

Each episode includes a maximum of 30 time steps. At the
beginning of each episode, the agent starts from the “S”
state and moves according to some policy until it reaches a
maximum of 30 steps or until it reaches the “G” state. The
reward is −0.1 everywhere except the goal state which is 10.
Therefore the goal is to maximize the reward.

We test the idea of RL-KS for two cases: 1) wind condition
change shown in the center panel of Fig. 1, and 2) grid size
and goal state change shown in the right panel of Fig. 1. In the
first case, the nine windy cells ranging from (2, 3) to (4, 5)
each has a probability of 0.2 to become a wind-less cell and a
probability of 0.2 to change wind direction (here (a, b) means
ath row and bth column, counting from the top-right corner).
In the second case, the size of the map is extended from a
5 × 6 to a size of 7× 8. Meanwhile, the goal state is randomly
chosen from cells (5, 5), (5, 6), (6, 5), and (6, 6).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: REINFORCEMENT LEARNING CONTROL WITH KNOWLEDGE SHAPING 9

Fig. 2. Comparison of average episode reward of ten episodes. (a) Changed
wind, (b) Changed size and goal. The shaded areas indicate the resulted
performance experienced in the ten simulation episodes.

Fig. 3. Illustrations of (a) cart-pole problem, (b) OpenSim human-prosthesis
problem.

We solve this windy gridworld problem using RL-KS and
the naive actor-critic. Both algorithms here use a tabular form
to store the Q-values, and an ϵ-greedy exploration strategy
with ϵ = 0.1. The learning rate a is 0.1 and the discount
rate γ = 0.9. For RL-KS, we use N = 20 and we evaluate
α0 = 0.5 and 0.8 during experiments.

We set up our experiments as follows. For each of the
“changed wind” and “changed goal and size” experiments,
we first randomly generate ten source tasks and ten target
tasks, respectively. We set the task similarity threshold τ = 10.
From the ten source and target tasks, we chose the pair that is
the most similar. For the source task, we obtain Q′ following
(17)–(20). Then, the Q-table of the target task is updated
following an RL-KS update as in (16).

Fig. 2 summarizes performance of RL-KS under two dif-
ferent knowledge weighting factors, and a benchmark case
using naive actor-critic (which is dHDP). Performances are
respectively shown based on average episode reward (the total
reward an agent has collected in each of ten episodes) for
changed wind or changed size and goal. In both scenarios,
RL-KS has outperformed the baseline. We also notice that the
larger the α0 is the more beneficial to the target task from
transferring knowledge.

B. Inverted Pendulum Cart-Pole Balancing Problem

We use the same cart-pole system [Fig. 3(a)] as in [26],
except that the control force that pushes or pulls the cart is
continuous rather than binary. We test RL-KS performance for
changing the pole length from source task to target tasks.

This cart-pole model has four state variables: pole angle,
pole angular velocity, cart distance, and cart velocity. We have
adopted the settings from [26] where a run consists of a

Fig. 4. Average number of samples required for the cart-pole problem. The
source task is with half pole length l = 0.5 m, and the target tasks are with
l = 0.3, 0.4, 0.5, 0.6, and 0.7 m, respectively.

Fig. 5. Example trajectories of states and control during training where the
states are initialized with zero values except the initial pole angle is 5◦.

maximum of 1000 consecutive trials. It is considered success-
ful if the last trial (trial number less than 1000) of the run has
lasted 6000 time steps. Otherwise, if the controller is unable to
learn to balance the cart-pole within 1000 trials (i.e., none of
the 1000 trials has lasted over 6000 time steps), then the run
is considered unsuccessful. In our simulations, we have used
0.02 s for each time step, and a trial is a complete process
from start to fall. A pole is considered fallen when the pole
is outside the range of [−12◦, 12◦] and/or the cart is beyond
the range of [−2.4, 2.4] m in reference to the central position
on the track.

The default value of the half-pole length l is 0.5 m. We first
obtain the system dynamics Fs with default length using linear
regression xk+1 = Fs(xk, uk). The action variable uk ∈ R is
the force applied on the cart. 200 samples of (xk, uk, xk+1)

are obtained by performing Monte-Carlo sampling on the
cart-pole model, and the regression model Fs is built using
these samples. Then the transferred knowledge Q′ is computed
based on (23).

The critic network and actor network for the cart-pole
problem are implemented using feed-forward neural networks
with 5-6-1 neurons and a 4-6-1 neurons, respectively. During
training, both network weights are randomly initialized subject
to a uniform distribution between −0.1 and 0.1. The discount
factor γ in (15) is 0.9 and the maximum iteration number
imax is 5000. Finally, we let the similarity threshold τ = 25,
N = 100, and two α0 choices (0.5 and 0.8) are evaluated.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

With the regression model we obtain the prior knowledge Q′

for transfer. We apply RL-KS to solve target tasks with differ-
ent half-pole lengths. Specifically, the target tasks considered
are l = 0.3, 0.4, 0.5, 0.6, 0.7 m. Note that to solve the source
task of length 0.5 m, the RL-KS agent still needs learning to
obtain the optimal value function Q∗ as Q′ represents partial
knowledge. We have performed ten runs for each target task
with the cart initially at center position and the pole initially
placed at uniformly randomized angles between [−5.7◦, 5.7◦].
We record the average number of total samples (xk, uk, xk+1)

required to successfully complete each of the target tasks.
Fig. 4 summarizes the average results from ten runs with
randomly initialized network weights and initial pole positions
for each algorithm setting. In the figure, naive actor-critic
is based on [26] with identical network settings and other
parameters (e.g. γ). The pretrained actor-critic is obtained
by training the naive actor-critic in a run at l = 0.5 m with
200 samples which is comparable to RL-KS. Fig. 4 shows that
RL-KS requires fewest samples to reach respective optimal
solutions, except the case that the pretrained actor-critic works
better when l = 0.5 m as the source and target tasks are
identical. Fig. 5 is an example during training where the states
are initialized with zero values except the initial pole angle
is 5◦. It is a result corresponding to the target task of l = 0.6 m.

C. Robotic Prosthesis Control With Human in the Loop

Robotic prosthesis mimics biological joints to generate
torques to enable the robotic knee motion for an amputee
user. The device needs to be adjusted by its knee joint
impedance values based on mechanical sensor measurements
in the prosthesis. The intrinsic controllers built into the devices
provide generic, low-level automatic control of joint torques.
As human users differ from weight to size and physical
conditions, and as users have different life-style needs, extrin-
sic control is needed to customize the device by providing
impedance parameter settings for individual users. These new
powered devices signify the future of rehabilitation. But auto-
matically fitting the device to a human user remains a major
challenge to unleash the full potential of the robotic device.
Few automatic tuning technologies are currently available.
The only functioning solution relies on multiple sessions of
manually tuning a small subset of a large number of impedance
parameters one at a time, unable to account for the interacting
effects of the parameters during each tuning session. This
highly heuristic approach is time-consuming, costly, and not
scalable to reaching the full potential of this powerful robotic
device.

Reinforcement learning, especially transfer reinforcement
learning is expected to provide the optimal impedance param-
eter tuning adaptively to meet individual user’s needs. With
the knowledge obtained from impedance control tuning of
multiple users over multiple sessions, it is expected the
improve tuning performance by transferring such knowledge
to similar prosthesis users. In the following, we provide simu-
lation evaluations to validate the transfer learning framework,
RL-KS, in this important application problem. Specifically, We
consider transferring knowledge of impedance control from

Fig. 6. Average number of samples required for the robotic prosthesis control
problem simulated in OpenSim [29]. The source task is with a normalized
body weight of 0.1 kg, and the target tasks are with normalized body weights
of 0.08, 0.09, 0.10, 0.11, and 0.12 kg, respectively.

one subject at a given body weight to several other subjects
at different body weights.

We use OpenSim [29], a widely used human locomo-
tion simulation platform, to simulate level-ground walking
of a human-prosthesis system. Fig. 3(b) shows the OpenSim
lower limb walking model. In this model, five rigid-body
segments linked by one-degree-of-freedom pin joints are used
to represent the human body. The right knee is treated as
a prosthetic knee and controlled by a finite-state impedance
controller (FS-IC) modeled after a biological joint, while the
other joints follow prescribed motions. The FS-IC divides a
gait cycle into four phases, in each of the four phases the
torque at the prosthetic knee is determined by the following
impedance control law, T = K (θ − θe) + Bω, where K , B
and θe are the impedance parameters: K is stiffness, B is
damping coefficient and θe is equilibrium position. The goal
of automatically customizing a robotic knee for a user is to
tune these impedance parameters optimally and adaptively to
meet individual user’s needs. Further comprehensive details
can be found from [30], [31], [32], [33], and [34].

Our RL-KS-based tuning approach proceeds as follows.
We first collect 50 samples of (xk, uk, xk+1) from the OpenSim
simulation model. As the source task, we set the subject’s
body weight at OpenSim normalized scale of 0.1 kg. The
regression model Fs is determined by supervised learning:
xk+1 = Fs(xk, uk). Then prior knowledge Q′ is computed
based on Fs from Q′(xk, uk) = Q(Fs(xk, uk)) = Q(xk+1) =

x2
k+1. After each gait cycle k, the differences (errors) between

the measured knee angle profile and the target knee profile
at the feature points, xk ∈ R2, are computed and treated as
the states of an RL controller. The adjustments to the three
impedance parameters are the action denoted by uk ∈ R3.
We use a quadratic error to denote stage cost based on the state
error and the control. The state, control, and cost objective are
set up the same way as in [30].

The critic network and actor network for the OpenSim
experiment are implemented using feed-forward neural net-
works with 5-8-1 neurons and 2-8-3 neurons, respectively.
During training, both network weights are randomly initialized
subject to a uniform distribution between −0.1 and 0.1. The
discount factor γ in (15) is 0.95 and the maximum iteration
number imax is 200. We set τ = 6, N = 20 and have evaluated
two conditions of α0 at 0.5 and 0.8.

We are now ready to transfer prior knowledge from the
source task of a subject with an OpenSim normalized body
weight of 0.1 kg to target tasks with different normalized
body weights respectively at: 0.08, 0.09, 0.10, 0.11, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: REINFORCEMENT LEARNING CONTROL WITH KNOWLEDGE SHAPING 11

Fig. 7. Example trajectories of states during training in all four phases where
the initial impedance parameters are 10% higher than the prescribed values.
It is a result corresponding to the target task of normalized body weight at
0.08 kg.

0.12 kg. We perform ten runs for each target task with initial
impedance parameters by adding uniform random noise with
a 20% variance of the prescribed impedance parameters [32].
We record the average number of total samples (xk, uk, xk+1)

required to successfully complete each of the target tasks.
Fig. 6 summarizes the average results from ten runs with
randomly initialized network weights and initial impedance
parameters for each algorithm setting. In the figure, naive
actor-critic is based on [26] with identical network settings and
other parameters (e.g. γ) compared to RL-KS. The pretrained
actor-critic is obtained by training the naive actor-critic in
a run with a body weight of 0.10 kg using 50 samples
which is comparable to RL-KS. Fig. 6 shows that RL-KS
has improved learning performance over both the naive and
pretrained actor-critics with less number of training samples,
except for the case when the body weight is 0.10 kg, which
means the source task and the target task are identical. Fig. 7
is an example during training where the initial impedance
parameters are 10% higher than the prescribed values. It is a
result corresponding to the target task of body weight 0.08 kg.
In Fig. 7, RL-KS has successfully reduced the errors in all four
gait phases.

VIII. CONCLUSION

We have provided a set of new and comprehensive results
on knowledge transfer within an actor-critic reinforcement
learning construct. Our RL-KS has not only formalized a value
function-based transfer learning for RL control framework
but also provided multiple and flexible ways to represent
prior knowledge. Additionally, our approach ensures positive
knowledge transfer. Our analysis and experimental evaluation
demonstrate the effectiveness of the proposed RL-KS. Strong
results of this nature are not available in the current literature.
Note that, our analysis is built on the introduction of a “task
similarity” measured against a threshold factor τ . This notion
has allowed us to develop a new positive transfer result.
While Theorem 6 has provided a specification of τ , how to
constructively and properly select τ , and how to maximize
transfer efficiency remain to be investigated in the future.

We speculate that this hyperparameter may be task dependent
and thus be dictated by specific applications. Our RL-KS,
however, has provided an important bridge to potentially
addressing those synthesis questions.

REFERENCES

[1] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey,” J. Mach. Learn. Res., vol. 10, pp. 1633–1685,
Jul. 2009.

[2] A. Lazaric, “Transfer in reinforcement learning: A framework and a
survey,” in Reinforcement Learning (Adaptation, Learning, and Opti-
mization), M. Wiering and M. Van Otterlo, Eds. Berlin, Germany:
Springer, 2012, ch. 12, pp. 143–173.

[3] F. L. D. Silva and A. H. R. Costa, “A survey on transfer learning for
multiagent reinforcement learning systems,” J. Artif. Intell. Res., vol. 64,
pp. 645–703, Jan. 2019.

[4] Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, “Transfer learning in deep
reinforcement learning: A survey,” 2020, arXiv:2009.07888.

[5] A. Lazaric, M. Restelli, and A. Bonarini, “Transfer of samples in batch
reinforcement learning,” in Proc. 25th Int. Conf. Mach. Learn. (ICML),
New York, NY, USA, 2008, pp. 544–551.

[6] M. E. Taylor, P. Stone, and Y. Liu, “Transfer learning via inter-task
mappings for temporal difference learning,” J. Mach. Learn. Res., vol. 8,
no. 9, pp. 2125–2167, 2007.

[7] C.-A. Cheng, A. Kolobov, and A. Swaminathan, “Heuristic-guided
reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34,
2021, pp. 13550–13563.

[8] A. Barreto et al., “Successor features for transfer in reinforcement
learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1–11.

[9] A. Barreto et al., “Transfer in deep reinforcement learning using suc-
cessor features and generalised policy improvement,” in Proc. 35th Int.
Conf. Mach. Learn., vol. 80, Jul. 2018, pp. 501–510.

[10] M. Barekatain, R. Yonetani, and M. Hamaya, “MULTIPOLAR: Multi-
source policy aggregation for transfer reinforcement learning between
diverse environmental dynamics,” in Proc. 29th Int. Joint Conf. Artif.
Intell., Jul. 2020, pp. 3108–3116.

[11] H. Yin and S. J. Pan, “Knowledge transfer for deep reinforcement
learning with hierarchical experience replay,” in Proc. 31st AAAI Conf.
Artif. Intell., vol. 31, 2017, pp. 1640–1646.

[12] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Proc. Int.
Conf. Mach. Learn., 1999, pp. 278–287.

[13] E. Wiewiora, G. Cottrell, and C. Elkan, “Principled methods for advising
reinforcement learning agents,” in Proc. 20th Int. Conf. Mach. Learn.,
2003, pp. 792–799.

[14] S. Devlin and D. Kudenko, “Dynamic potential-based reward shaping,”
in Proc. 11th Int. Conf. Auton. Agent. Multi Agent. Syst., Richland, SC,
USA, 2012, pp. 433–440.

[15] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowe, “Expressing
arbitrary reward functions as potential-based advice,” in Proc. 29th AAAI
Conf. Artif. Intell., 2015, pp. 2652–2658.

[16] T. Brys, A. Harutyunyan, M. E. Taylor, and A. Nowé, “Policy transfer
using reward shaping,” in Proc. Int. Conf. Auton. Agent. Multi Agent.
Syst., Richland, SC, USA, 2015, pp. 181–188.

[17] E. Wiewiora, “Potential-based shaping and Q-value initialization are
equivalent,” J. Artif. Intell. Res., vol. 19, pp. 205–208, Sep. 2003.

[18] W. Sun, J. A. Bagnell, and B. Boots, “Truncated horizon policy search:
Combining reinforcement learning and imitation learning,” in Proc. Int.
Conf. Learn. Represent., Apr. 2018, pp. 1–14.

[19] S. Koenig and R. G. Simmons, “The effect of representation and
knowledge on goal-directed exploration with reinforcement-learning
algorithms,” Mach. Learn., vol. 22, nos. 1–3, pp. 227–250, Jan. 1996.

[20] F. L. Da Silva, G. Warnell, A. H. R. Costa, and P. Stone, “Agents
teaching agents: A survey on inter-agent transfer learning,” Auto. Agents
Multi-Agent Syst., vol. 34, no. 1, pp. 1–17, Apr. 2020.

[21] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time
nonlinear HJB solution using approximate dynamic programming:
Convergence proof,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 38, no. 4, pp. 943–949, Aug. 2008.

[22] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of
unknown nonaffine nonlinear discrete-time systems based on adaptive
dynamic programming,” Automatica, vol. 48, no. 8, pp. 1825–1832,
2012.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[23] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 779–789, Apr. 2013.

[24] Q. Wei, F.-Y. Wang, D. Liu, and X. Yang, “Finite-approximation-error-
based discrete-time iterative adaptive dynamic programming,” IEEE
Trans. Cybern., vol. 44, no. 12, pp. 2820–2833, Dec. 2014.

[25] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[26] J. Si and Y. T. Wang, “On-line learning control by association and
reinforcement,” IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264–276,
Mar. 2001.

[27] A. Ansari. (2013). Windy-Grid-World-Q-Learning. [Online]. Available:
https://github.com/adilansari/Windy-Grid-World-Q-Learning

[28] R. S. Sutton and A. G. Barto, Reinforcement Learning : An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[29] S. L. Delp et al., “OpenSim: Open-source software to create and analyze
dynamic simulations of movement,” IEEE Trans. Biomed. Eng., vol. 54,
no. 11, pp. 1940–1950, Nov. 2007.

[30] X. Gao, J. Si, Y. Wen, M. Li, and H. Huang, “Reinforcement learning
control of robotic knee with human-in-the-loop by flexible policy itera-
tion,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 10, pp. 1–15,
May 2021.

[31] M. Li, Y. Wen, X. Gao, J. Si, and H. Huang, “Toward expedited
impedance tuning of a robotic prosthesis for personalized gait assistance
by reinforcement learning control,” IEEE Trans. Robot., vol. 38, no. 1,
pp. 407–420, Feb. 2022.

[32] Y. Wen, J. Si, X. Gao, S. Huang, and H. H. Huang, “A new powered
lower limb prosthesis control framework based on adaptive dynamic
programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 9,
pp. 2215–2220, Sep. 2017.

[33] Y. Wen, J. Si, A. Brandt, X. Gao, and H. Huang, “Online reinforcement
learning control for the personalization of a robotic knee prosthesis,”
IEEE Trans. Cybern., vol. 50, no. 6, pp. 1–11, Jan. 2019.

[34] X. Gao, J. Si, Y. Wen, M. Li, and H. Helen Huang, “Knowledge-guided
reinforcement learning control for robotic lower limb prosthesis,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Aug. 2020, pp. 754–760.

Xiang Gao received the B.S. degree in automation
from the Huazhong University of Science and Tech-
nology, Wuhan, China, in 2011, and the M.S. and
Ph.D. degrees in electrical engineering from Arizona
State University, Tempe, AZ, USA, in 2014 and
2020, respectively.

He is currently a Researcher with the Intelligent
Robot Research Center, Jihua Laboratory, Foshan,
Guangdong, China. His current research interests
include robot learning, machine learning, computer
vision, and rehabilitation robotics.

Jennie Si (Fellow, IEEE) received the B.S. and M.S.
degrees from Tsinghua University, Beijing, China, in
1985 and 1988, respectively, and the Ph.D. degree
from the University of Notre Dame, Notre Dame,
IN, USA, in 1992.

She has been a Faculty Member with the School of
Electrical, Computer and Energy Engineering, Ari-
zona State University, Tempe, AZ, USA, since 1991.
She consulted for Intel, Arizona Public Service, and
Medtronic, Phoenix, AZ, USA. She has served on
several professional organizations’ executive boards

and international conference committees. She was an Advisor to the NSF
Social Behavioral and Economical Directory. Her research interests focus on
reinforcement learning control utilizing tools from optimal control theory,
machine learning and neural networks. She is also interested in fundamental
neuroscience of the frontal cortex and its role in decision and control
processes.

Dr. Si was a recipient of the NSF/White House Presidential Faculty Fellow
Award in 1995 and the Motorola Engineering Excellence Award in 1995.
She is a Distinguished Lecturer of the IEEE Computational Intelligence
Society. She served on several proposal review panels. She was a past
Associate Editor of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL,
the IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, the
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,
and a past Action Editor of Neural Networks. She is a current Senior Editor
of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING
SYSTEMS.

He (Helen) Huang (Fellow, IEEE) is a Jackson
Family Distinguished Professor with the Joint
Department of Biomedical Engineering, NC State
University, Raleigh, NC, USA, and the University
of North Carolina at Chapel Hill, Chapel Hill,
NC, USA, and the Director for the Closed-Loop
Engineering for Advanced Rehabilitation (CLEAR)
Core. Her research interests lie in neural-machine
interfaces, control of prosthetics and exoskeletons,
human–robot interaction, and human movement
control.

Prof. Huang is a fellow of AIMBE and a member of the Society for
Neuroscience, AAAS, BMES, and ASB. She was the recipient of the Delsys
Prize for Innovation in Electromyography, the Mary E. Switzer Fellowship
with NIDRR (current NIDILRR), the NSF CAREER Award, the ASA SPES
Award, and the ALCOA Foundation Distinguished Engineering Research
Award.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on August 23,2023 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

