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Abstract

We study a Q learning algorithm for continuous time stochastic
control problems. The proposed algorithm uses the sampled state pro-
cess by discretizing the state and control action spaces under piece-wise
constant control processes. We show that the algorithm converges to
the optimality equation of a finite Markov decision process (MDP).
Using this MDP model, we provide an upper bound for the approx-
imation error for the optimal value function of the continuous time
control problem. Furthermore, we present provable upper-bounds for
the performance loss of the learned control process compared to the op-
timal admissible control process of the original problem. The provided
error upper-bounds are functions of the time and space discretization
parameters, and they reveal the effect of different levels of the approx-
imation: (i) approximation of the continuous time control problem by
an MDP, (ii) use of piece-wise constant control processes, (iii) space
discretization. Finally, we state a time complexity bound for the pro-
posed algorithm as a function of the time and space discretization
parameters.
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1 Introduction

The goal of this paper is to develop a convergent learning algorithm for
controlled diffusion processes when the decision maker only has access to
the state process and the cost realizations, and establish error bounds for
the performance of the learned control process compared to the optimal
admissible control as a function of the algorithm parameters.

1.1 Preliminaries

We start with the setup of the paper by defining the dynamics of the control
problem. The objective is to study a controlled diffusion process, X (-), given



by the following stochastic differential equation

X(t) = X0+/0 b(X(s),u(s))ds+/0 a(X(s),u(s))dB(s) (1)

for t > 0 where X (t) € X, and X C R. B(:) is the driving noise which
is assumed to be a Wiener process, and u(-) € U is the control process
with measurable paths. We assume that the control is non-anticipative such
that for 0 < s < ¢, the noise increments B(t) — B(s), are independent of
B(y),u(y) for y < s. We note that the results presented in this paper will
be applicable for multidimensional spaces as well, however, we will assume
that everything is one-dimensional for ease of notation.

We will later put assumptions on the model, which will guarantee the
existence of strong solutions to the diffusion process (1), under admissible
control processes (Assumption 1).

The objective of the controller is to minimize the following infinite hori-
zon discounted cost function

Ws(zo,u) = E [/Ooo e P (X (s),u(s)) ds (2)

where the expectation is with respect to the initial point X (0) = xp and
the given control process u, the stage-wise cost function is denoted by c :
X x U — R, and S is some discount factor.

The optimal cost is denoted by

W5 (wo) = i%f Wa(zo,u)

where the infimum is taken over all admissible control processes.

1.2 Problem Formulation and a Proposed Algorithm

Our goal is to provide a reinforcement learning algorithm which converges
to an approximately optimal control policy under certain assumptions. In
particular, we will show that if the standard Q learning algorithm ([47, 41,
13]) is used for the state process after time and space discretization, we
can find sufficient conditions for the algorithm to converge. Furthermore,
we will provide provable error bounds for the performance of the policies
learned through these iterations. We note that the standard Q learning
algorithm is not readily applicable for the diffusion model we consider in
the paper. The classical Q) learning algorithm is designed for finite Markov
chains, where the Markov property of the data is crucially used to prove



the convergence of the algorithm. In the model we consider here, time
discretization breaks the Markov property of the induced chain unless the
control policies are selected carefully, namely selected as piece-wise constant
functions. Furthermore, even when the sampled process which lives on the
original continuous state space is Markov, the process constructed using
space discretization will not be a Markov chain. Hence, one needs to alter
the convergence proof significantly when the space is discretized, in order
to show the classical Q learning algorithm converges under time and space
discretization.

We assume that the drift, diffusion, and the cost functions b, o and c are
not known. By observing the state process X (¢) and the cost realizations
(X (t),u(t)), we try to learn the Q values of a finite Markov decision pro-
cess (MDP), which will be shown to well approximate the original problem.
Furthermore, we keep track of the state and the cost processes via sampling
the time and discretizing X and U spaces. To this end, we fix a sampling
interval h > 0, and finite subsets X; C X, Uy C U. We put the h depen-
dence on the finite spaces to recover the cases where the space discretization
rate depends on the time discretization rate. We also define the mapping
¢x : X — Xy, to map the original value of the state variables to the discrete
set X, e.g. a natural choice would be a nearest neighbour map.

For the exploration phase, we use a piecewise constant control process,
such that at ¢ x h, for i = 0,1,..., some 4@ € Uy, is chosen according to the
exploration policy and is applied for the time interval [i x h, (i + 1) X h).
Hence, the resulting exploration process (t) is a piecewise constant process.

After we fix the exploration control process (t), we observe the con-
trolled Markov chain process X,

Xp:=X(nxh), forn=0,1,2....

Note that X,, takes values from a continuous set X. We further map these
values to the finite set X}, to construct the stochastic process X,,, which is
defined as

A~

X = ¢x (Xn) (3)

The process X, is the discretized version of the sampled diffusion process,
and hence it takes values from Xj. We note that the learning algorithm will
be constructed using the process { X, }y.

We now present the proposed algorithm formally as follows:

1. Chose a sampling interval A > 0.



2. Choose finite subsets X;, C X and U, C U.
3. Define a mapping ¢x : X — X, (e.g. a nearest neighbour map).
4. Select a Uy, valued piecewise constant exploration process (t).

5. Observe the discrete process X, (see (3)), and for all (&, 4) € X, x Uy,
initiate the Q values by choosing Qo(Z, ), choose the learning rates
ag(Z,0) (see Assumption 2), using the cost realization ¢(X (n x h), )
update

Qry1(2,0) = (1 — g, 4))Qu(E, )
+a(z,0) <c(X(l<: X h), 1) X h+ B 52{1[}11 Qk (Xk+1,v)>
(4)

where 85, = e #*" and X k11 18 the sampled state we observe following
X, = 1.

6. In Section 4, we will prove that under suitable assumptions, the
iterations Qr : X, x U, — R, converge almost surely to some
Q" : Xp, x U, — R. In Section 2, we will show that limit values
are the (Q-values of some finite controlled Markov chain. Using Q*, we
define a mapping v, : X;, — Uj, such that for any & € X,

() = argmin Q*(4,4).
ueUp

7. Define the control process uy(t) such that
up(t) =y (x (X (i x b)), fort € [i x h, (i +1) x h),

that is uy, is a piece-wise constant process, which changes value at the
sampling instances according to the learned map .

We are then interested in the following question:

Problem: If we use the learned control u; for the continuous time
model, what do we lose compared the optimal admissible control process.
In other words, we are interested in the difference

Wg(zo,un) — Wi(xo)- (5)



We will try to bound this term in terms of the sampling interval A and the
state and control action spaces’ discretization errors Lx and Ly that are
defined as

Lx :=sup |z — ¢x ()|,
reX

Ly :=sup min |u— upl.
uelU un€Un
We will also analyze the asymptotic case, that is, we will show that under
certain assumptions

Wg(xo,uh) — Wg(x()) —0

as h, Lx, Ly — 0.

To answer these questions, we will show that the iterations in (4) con-
verge to the optimal @ values of some finite Markov chain which approxi-
mates the value function of the diffusion process in (1) with the cost function

2).

1.3 Literature Review

The results and the techniques used in the paper are related to reinforce-
ment learning algorithms for continuous and discrete time control problems,
finite time-space approximations of diffusion processes, and approximation
methods for Markov decision processes. In the following, we summarize the
related works in the literature by their main objectives:

Reinforcement learning for discrete-time stochastic control
problems Optimal control of stochastic ( or deterministic) dynamical sys-
tems typically requires a perfect knowledge about the system components,
however, the correct underlying model of the control problem is usually un-
known or too complicated to work with. The objective of reinforcement
learning is to estimate or learn the relevant information about the problem
such as the value function or the optimal policy by interacting and observ-
ing the system. Majority of the literature, however, deals with discrete-time
and sequential decision making problems. A popular reinforcement learning
algorithm, called Q learning ([47]), for example, is proposed to learn the
Q factors, which is closely related to the value function, for discrete time
and space problems. Q learning is guaranteed to converge under mild as-
sumptions for discrete settings without any information on the transition
models or the cost function of the problem by observing the state and cost
realizations ([41, 13]).



Even though Q learning is simple to implement and requires minimal
knowledge about the system, it is not effective for large or continuous state
and action spaces. To overcome the dimension challenges, one can try to
learn an approximate version of the problem. The approximation can be
done through various methods: One can use function approximations for the
optimal value function (see [37, 42]). To approximate the value functions,
neural networks, state aggregation, or linear approximation techniques with
finitely many linearly independent basis functions can be used. For state
aggregation and linear approximation methods, convergence can be shown,
however, a rigorous error analysis is usually not available. Some related work
includes [36, 28, 11, 38, 35] and references therein. For the aforementioned
works, typically, either a careful parametrization of the value functions or
strong density assumptions on the transition kernels are required. How-
ever, for general continuous time problems, these assumptions might be too
strong. For example, the sampled continuous time stochastic controlled pro-
cess we will study in this paper, can only be shown to have weakly continuous
transition dynamics (see Lemma 1 and Lemma 2). In [15], it is shown that,
by choosing a finite subset of the action space and discretizing the state
space, one can consistently learn nearly optimal control policies for systems
with weakly continuous transition models.

Approximations for continuous time control problems Space ap-
proximation methods allow one to use learning algorithms for control prob-
lems with large state spaces, however, these methods only work for discrete
time decision making problems. Control problems in continuous time, in
general, are not feasible to work with numerically. Due to complex nature
of the problems, solutions of the control process may not be available, which
results in approximation attempts on the time domain, either through the
state process or the optimality equation. [22] provides a general Markov
chain approximation method for the controlled diffusion processes, by di-
rectly approximating the continuous time state process with a finite space
controlled Markov chain. It is shown that under certain ’consistency’ con-
ditions, state process and value function approximations are asymptotically
close to the solutions of the continuous time process. [19, 20] establish con-
vergence rates for such approximation methods. Improved convergence rates
for finite approximation methods are later presented in [5, 4]. We note that,
these works study the approximation of an available model and do not focus
on learning an approximate model when the dynamics are not available to
the decision maker.

Reinforcement learning in continuous time Learning and planing
in continuous time problems become much more challenging in continuous



time mainly because of the complex dynamics and optimality equation of
the problems.

We first note that our main objective and contribution is to rigorously
prove convergence of the discretization based model-free learning algorithms
for general diffusion processes and to provide provable error bounds that
clearly indicate the effect of space and time discretization.

A large number of papers dealing with learning of continuous time control
problems (learning of value functions or control policies), considers linear
dynamics and cost setting, and develop algorithms and theoretical results
using the structural properties of this limited setting, see e.g. [32, 8, 43,
34, 18, 45, 46] for some of the related papers that work with linear models.
In our paper, we consider general non-linear controlled diffusion dynamics,
where the only assumption we put on the dynamics is a standard continuity
assumption, which is required for existence results.

Another large set of studies in learning of continuous time control prob-
lems consider deterministic dynamics see e.g. [40, 48, 27, 18, 23, 50, 31]. We
note that the approximation, convergence and structural analysis are con-
siderably more challenging for continuous time stochastic control problems.
We further note that some of these studies focus on approximate solutions to
the optimal control problem with an available model, instead of considering
model-free learning methods.

Another related direction includes estimation and learning of dynamics
for stochastic differential equations see e.g. [49, 6, 33, 26]. In these papers,
the focus is on the learning of models for control-free stochastic processes
governed by stochastic differential equations (SDEs), which differs from our
objective of learning optimal value functions and-or near optimal policies in
controlled stochastic processes.

Learning methods are also used to find (approximate) solutions to partial
differential equations and to solve HJB equations (approximately) see e.g.
[40, 1, 12, 24]. Note that these works approach to the solution problem with
a model in hand ( i.e. model-based not model-free), where the focus is on
finding the solution of the PDEs and HJB equations which is by itself a
challenging problem.

The closest papers to ours are [39, 3, 30]. [30] proposes a learning method
using time and space discretizations for a general controlled diffusion pro-
cess, and proves that the learned approximations are asymptotically optimal
as the discretization parameters converge to 0. In our paper, we present error
bounds in terms of the space and time discretization rate, which explicitly
shows the effects of discretization. [39, 3| proposes ‘advantage functions’
for continuous time learning algorithms building on the observation that Q



values are no longer informative for continuous time settings, and this ob-
servation is also widely used in the literature. In our results, we show that
this claim should be approached with care. We show that as long as the
space discretizaton rate is at least as high as the time discretization rate, Q
values of the approximate MDP model well approximate the value function
of the controlled diffusion problem.

Our contributions In this paper, we will study an approximate Q
learning algorithm for general continuous time stochastic control problems
by discretizing the time, and state and action spaces. The discretization
in time will assumed to be uniform, however, state and action spaces can
be discretized in a non-uniform way. We will show that the algorithm will
converge under mild assumptions, even when the space quantization is non-
uniform. Different from earlier works, we will then provide error bounds and
convergence rates in terms of the discretization parameters. The bounds
will suggest that, even though the algorithm converges for general space
quantization, the performance of the learned value functions and policies will
depend on the quantization scheme. Furthermore, provided error bounds
will emphasize the effects of different levels of the approximation such as
estimating the diffusion process with a controlled Markov chain, use of piece-
wise constant policies, and state and action space quantization. Lastly, we
will also discuss the effect of discretization parameters on the learning speed
of the algorithm.

1.4 Outline of the Paper

In Section 2, we construct a finite space Markov decision process (MDP) that
will serve to approximate the diffusion process (1). In particular, in Section
2.1, we present a controlled discrete time control process, which has the same
distributions as the diffusion process at the sampling instances, when the
diffusion process is controlled using piece-wise constant control functions.
In Section 2.2, we present a finite space controlled Markov chain, that is
constructed based on the MDP from Section 2.1, using state aggregation
methods.

In Section 3, we analyze the differences between the value function of
the diffusion process (1), and the value function of the finite space MDP
constructed in Section 2.2. Furthermore, we provide upper bounds for the
error (or regret) of the control policy designed for the finite space MDP,
when it is used to control the diffusion process, in terms of the approximation
parameters; where the comparison is with respect to the performance of the
optimal admissible control process.



In Section 4, we show that the algorithm (4) converges, under certain
assumptions, to the Q values of the finite space MDP constructed in Section
2.2, and thus, we provide error bounds for the learned policy using the
results from Section 3.

Finally, in Section 5, towards a practical purpose, we analyze the con-
vergence rate of the algorithm (4), with respect to the sampling interval
lengths, h, and the number of iterations where we provide time complexity
bounds.

2 Approximate Markov Chains

In this section, we provide two controlled Markov chains which will help us
to analyze the error term (5).

2.1 A Markov Chain Construction with Exact Approxima-
tion of the Diffusion Process

The first Markov chain we will present will have the same finite dimensional
distributions with the sampled diffusion process under piece-wise constant
control processes.

Let X be the state space, and Uy be the control action space of the
Markov chain.

We define the transition probabilities as follows: For any k € Z, dis-
tribution of the state X} conditioned on the past state and action vari-
ables, is determined by the diffusion process (1), such that, conditioned on
(Tk—1, -+, @0, U—1,---,U0), X has the same distribution as

X(h) = 1 + /Oh b(X (), up_1)ds + /Oh o(X(s),up1)dB(s).  (6)
Hence, for any A € B(X)
Pr(Xy € Alzpp—1) ujo-1)) = Tn(Alzk—1,ur—1)
where (z, u)[O,kfl} = 20,..., LE_1,UQ, ..., Uk_1, Such that
Tn(dzg|zp—1, up—1) ~ X (h)

where X (h) determined by (6) and where 7}, is the transition kernel of the
Markov chain which is a stochastic kernel from X x U, to X.

10



We also define a stage-wise cost function ¢ : X x U — R4 such that
for any (z,u) € X x Uy,

cp(z,u) == c(x,u) X h

where c¢ is the cost function of the diffusion process (see (2)).
We now define the infinite horizon discounted cost function

> Bhen(Xk, U)

k=0

Jg, (0, 7) = EIn7 (7)

where 8, := e #*" and ~ is an admissible policy. An admissible policy is
a sequence of control functions {v;, ¥ € Z,} such that 7 is measurable
with respect to the o-algebra generated by the information variables I, =
X4 Upr-11}, k€N, Iy = {Yy}, where

U =wx), keZy,

are the Ujp-valued control actions. We define I' to be the set of all such
admissible policies. The optimal cost function is defined as

I, (w0) = Jg, (w0,7)- (8)

Remark 1. An important property of the MDP model we will make use of,
is the following one: suppose that we are given an admissible policy v € T’
defined for the MDP, we define the following control process u(t) such that

u(t) =v(X(k x h)), fort €[k xh,(k+1)xh) 9)

which is a piece-wise constant control process. Then, the controlled Markov
chain state process Xy, under the policy v and the controlled diffusion process
X (t) under the control process defined in (9) have the same distributions at
the sampling instances if they start from the same initial points, that is, for
any k € Z,

X ~ X(k x h).

2.2 Finite State MDP Construction by Discretization of the
State Space

We now construct an MDP with a finite state space by dicretizing the state
space X.

We start by choosing a collection of disjoint sets {B;}, such that
U;B; = X, and B; N Bj =  for any ¢ # j. Furthermore, we choose a

11



representative state, &; € B;, for each disjoint set. For this setting, we
denote the new finite state space by Xy := {Z1,...,Zp}. We put the de-
pendence on the parameter h, since we will let the size of the finite set, M
go to oo as h — 0. The mapping from the original state space X to the
finite set X}, is done via

ox(x)=12; ifxzeB;. (10)

Furthermore, we choose a weight measure 7*(-) € P(X) on X such that
7™ (B;) > 0 for all i € {1,...,M}. We now define normalized measures
using the weight measure on each separate quantization bin B; such that

()= ")
ST (By)
that is 7 is the normalized weight measure on the set B;, #; belongs to.

We now define the cost and transition kernels for this finite set using the
normalized weight measures such that for any #;,2; € X,

@@u>=/cmww;wm

0

VACB;, Yie{l,...,M} (11)

&)*

Py (2|2, u) /'EB\azu ;( x). (12)

where 7}, is the transition model for the MDP constructed in Section 2.1.

Having defined the finite state space X, the cost function C} and the
transition model P, we can now introduce the optimal value function for
this finite model. We denote the optimal value function, which is defined
on Xy, by jﬁh : X3, — R. Note that jﬁh satisfies the following Bellman
equation for any Z; € Xp:

Jg, (&) = inf ¢ Ch(&i,u) + By > Jg, (81) Py (21|84, u) (13)
u€Un #16Xn

We can easily extend this function over the state space X by making it
constant over the quantization bins. In other words, if z; € B;, where
U;B; = X, for any x € B;, we write

Ip, () = Jpg, (&)
Furthermore, the following equation follows directly from the dynamic pro-
gramming principle for the Q values of the finite MDP:

Qh(%i,u) = Cp(Zi,u) + B valn Qr,(21,0) Py (T1|24, w).

1

12



Remark 2. We will prove that the iterations (4) converge to some Q* which
satisfies the above equation, under suitable conditions on the diffusion pro-
cess.

We further define uniform error bounds resulting from the discretization
of the state and actions spaces such that

Lx :=sup |z — ¢x(z)],
reX

Ly :=sup min |u — up].
uelU un€UL
We note that later in the paper (see Corollary 1) we will see that, for the
approximation error of the diffusion process to go to 0 with increasing dis-
cretization rates, we will need Lx, Ly < h.

3 Approximation of the Diffusion Process by a Fi-
nite MDP

Recall that we are interested in the term
Wi(zo,un) — Wj(zo)

where wuy, the control process obtained with vy, that is learned via (4). The
first term represents the cost induced by the application of the control de-
signed for the finite space MDP, when it is used for the continuous time
model. The second term represents the optimal cost for the continuous time
model. In Section 4, we will prove that the learned policy ~, is optimal for
the MDP defined in Section 2.2. Hence, in this section, we will assume that
Y, solves (13).
We write the following:

Wa(zo,un) — Wg(xo) = We(zo, un) — Jg, (T, V1) (14)
+ Jg, (w0, 7n) — I3, (0) (15)
+ J3, (o) — W5 (o). (16)

In what follows, we will analyze each term separately.

3.1 Analysis of term (14)

The following result provides a bound for the difference between the value
function of a diffusion process controlled with piece-wise constant control

13



processes and the value function of an MDP controlled with an admissible
policy.

Assumption 1. For the diffusion process given in (1), we assume that

e sup, , [b(z,u)| < B, and sup, , |o(x,u)| < B, for some B < co.

o [b(z,u) — b2/, v)| + |o(z,u) — o(2,v)] < K (|l —2|+|u—1d|) for
some K < co and for any z,2' € X, and u,v’ € U.

e sup,, |c(x,u)| < C for some C' < .

o c(z,u) —c(a', )| < K (|lz —2'| + |u—|) for some K < oo and for
any x,2' € X, and u,u’ € U.

e The process is nondegenerate such that o?(x,u) > 0 for every x,u €
X x U.

Note that these assumptions are sufficient for the existence of a unique
strong solution to (1) under admissible control processes.

Proposition 1. Let v € T be an admissible policy for the sampled controlled
Markov chain, and up(-) be the corresponding piece-wise constant control
process for the diffusion process such that

up(t) = y(x(i x h)), forte€[i x h,(i+ 1) x h].

Under Assumption 1, we have that for any ro € X
KBh 2h
(We(wo,un) — Jg, (x0,7)| < hB + P (h + > :

Proof. The proof can be found in Appendix A. O

3.2  Analysis of term (15)

For the analysis of (15), we will need to calculate the Lipschitz constants of
the sampled controlled Markov chain in terms of the Lipschitz constants of
the diffusion process introduced in Assumption 1.

In what follows, we will focus on the controlled Markov chain constructed
in Section 2.1. Recall that we have

Th(dxg|zk—1,ur—1) ~ X (h)

14



where

h h
X(h) =xp_1+ / b(X(s),up—1)ds +/ o(X(s),up—1)dB(s).
0 0
Furthermore,

B i=e "
cn(z,u) == c(x,u) X h.

Lemma 1. Under Assumption 1,

W (T Cly, ), Tl ) < o — e 50,
where W1 denotes the first order Wasserstein distance.
Proof. The proof can be found in Appendix C. O
Lemma 2. Under Assumption 1, if h <1
W (Th (|, w), T (-la, @) < |u — a]2Ke25°h,
where W1 denotes the first order Wasserstein distance.
Proof. The proof can be found in Appendix D. O

Proposition 2. Under Assumption 1, if 5 > K + K72, and if h < 1,

2
A " Kh — KhehE+5=8) + 2K 2peh (2K =B)
sup ‘Jﬁh(x()v’}/h) - Jﬁh(l‘o)‘ < Lo

zo€X (1 —eBh)(1 - eh(K+KT2—/3))
Kh

+
(1—eBh)(1 - eh(KJrKTQ—ﬁ))

Lx

Proof. The proof is a direct implication of [15, Theorem 2.6], which states
that

X X U X, U X

. ol — Praza, + Brol o o
sup |Jg, (x0,9n) — J35, (w0)| < =< T < ¢ TrLy+ < Lx,
mg;\ (@0, 30) = Jj, (@0)]| < 1-B1-pay) 7T A=) - X))

for constants aﬁﬁ, a?, o@g—, ay < oo such that

o |e(z,u) = c(a’,u)| < o |z — 2,

15



° ‘C(l’,U) — C(x’u/)‘ < OéICU‘U o ’LL/‘7
o Wi(T (|z,u), T(|a',u)) < af|z -2,
o Wi(T (|2, u), T(|z,u)) < affu -],

Hence, the result follows from Lemma 1 and Lemma 2, by noting that
aX, oV < hK. O

c

3.3 Analysis of term (16)

Recall that (16) deals with the optimal value function of the sampled con-
trolled Markov chain and the optimal value function of the controlled diffu-
sion process. Hence, we make use of finite difference approximation methods
for Bellman equations. The following result, taken from [21, 14], gives an
upper bound on the performance loss of the piece-wise constant policies
applied for the diffusion processes.

Lemma 3 ([21, 14]). Let uj, denote the piece-wise constant control process,
which is constant over the intervals [kh,k(h + 1)) for k € {0,1,...}, that
achieves the minimum cost for (2) over such piece-wise constant policies.
Under Assumption 1, we have

Wi (0, ul) — Wi(wo) < Nhi

for some constant N < oo, which only depends on the discount factor 5 and
the Lipschitz coefficients of the model.

Remark 3. One might expect that if the dynamics of the diffusion process
are changing slowly, and the cost function does not have rapid changes with
respect to the state process, then the time discretizetion leads to smaller
performance losses. Indeed, as it is shown in [14, Proposition 2.4], if Wg
and ¢ are regular enough, namely if

sup (uzzuu:uwﬁ)noo n ||Luc|oo) < o0
u

where Ly, is the generator function of the diffusion process for some control
action u, then one might have

Wg(xo,up,) — W(xo) < Nh.

We are now ready to analyze (16).
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Proposition 3. Under Assumption 1

% X KBh [2h 1

Proof. We start by the following bound
Jp, (x0) = Wi (o) < J5, (x0) — Wp (o, up,) + Wa(xo, up) — Ws(xo)
< J5, (w0) — Ws(wo, up) + Nhi

where the last bound follows directly from Theorem 3. For the first term, let
7y, denote the corresponding control policy for the controlled Markov chain
( that has the same law at the sampling instances as ujy). Note that this
policy is not necessarily optimal for the sampled controlled Markov chain.
Hence, we have the following bound:

J5, (x0) — Wa(wo,up,) < Jg, (x0,v4) — Wal(zo, up,)

<hB4+ —""_|h+/2].
hB 1 o 3h (h )

The last bound follows from Theorem 1.
Combining what we have so far, we can conclude that

. . KBh 2h 1
Jﬂh(ZEo)—W/g(xO)ghB—Fl_e_mL(h—F 7r>+Nh4.

3.4 Near Optimality of the Approximate Control

Combining the results, we have presented so far, we can now state the main
theorem of this section:

Theorem 1. Under Assumption 1, we have

Wa(zo,up) — WE(:L‘()) <e(h,Lx, Lvu)

17



where

KBh 2h

Kh — Kheh(K+KTQ_f3) + 2K2heh(2K2*f8)
+
(1= e=Bh)(1 — MK+ =5))
Kh
(1— e=Bh)(1 — ME+E-8))
+ NI, an

Ly

+ Lx

where up, is the control process obtained with vy, which is optimal for the
finite MDP model constructed in Section 2.2.

Note that, as stated in Remark 3, the last term in Theorem 1 can be
replaced by Nh, if the dynamics and the cost function are regular enough,
e.g. if they do not change rapidly with time.

Corollary 1. For small h, the upper bound derived in Theorem 1, behaves
as

C<\/E+LX;ZL“+hi>

for some C' < oo. This representation makes the distinction between the
effects of different steps of the approximation. The first term results from
the Markov chain approximation of the diffusion process, the second term is
due to the state and action space discretization, and finally the last term is
due to the piece-wise constant control processes. We note again that the last
term may be replaced with h if the dynamics are reqular enough.

4 Convergence of the Learning Algorithm and
Near Optimality of the Learned Policies
In this section we present the main results of the paper.
We first show that the iterations in (4) converge to the optimal Q val-

ues of the approximate controlled Markov chain constructed in Section 2.2.
Recall that the Q value iterations are in the following form:

18



QkJrl(j;a A) - (1 - ak(:%,ﬁ))Qk(ﬁc,@)

) (e % 10,2) ot 5 i @ (Kic o))
(15)

+
Q
=

®
>

where £, = e #*" and Xk+1 is the discretized sampled state we observe
following ¢x (z(i x h)) = Z. Furthermore, ¢x maps the original state space
X to the finite subset Xj,.

Assumption 2.

i. ap(Z,0) =0 unless (X, ug) = (2,4). Furthermore,

(2.1) 1
a(z,0) = - .
T+ 200 Yxmtm—a)
This implies ag(&,u) = t—&%l if we have visited (&,4) pair t many times

until time k, i.e. the learning rates are linear.

i1. The controlled diffusion process converges to its unique invariant
measure under the exploration policy.

1. Bvery & € Xy, and 4 € Uy, is visited infinitely often during explo-
ration.

Remark 4. For the stability assumption (i), we need the exploration policy
to be a stabilizing policy such that it leads the process to its invariant mea-
sure. Since we use piece-wise constant policies for exploration, the stability
can be tested using the Lyapunov type stability criteria for the resulting dis-
crete time Markov decision process (see Section 2.1). E.g. let C C X be
a compact set, b € R, ¢ > 0, and V : X — Ry (e.g. V(x) = |x|), if the
following is satisfied for all x € X:

/X V()T (dylx) = BV (2iy1)|e = 2] < V() — ¢ + bliecy

then the process is positive Harris recurrent and thus admits a unique sta-
tionary measure (see [29]), where T, is the transition kernel when we use
h-rate time discretization under the piece-wise constant exploration policy .

The third assumption (iii) is a usual requirement for reinforcement learn-
ing algorithms.
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Remark 5. The stability assumption (i), can be replaced with so called
replay buffer (as in [9]) such that if for every k, X (k x h) ~ m, for some
m € P(X), the iterations (18) will converge. In particular, = will take the
role of the stationary distribution under the exploration policy.

Proposition 4. Under Assumption 2, the iterations (18) converge almost
surely to some Qj : Xy, x Uy — R, which satisfies for every 2,4 € X3 x Uy,

Qp(&,0) = Ci(2,4) + B Y, min Qf(1,8)P; (212, u)
wleth1€Uh

where C} and P are defined in (12).
Proof. The proof can be found in Appendix B. O

Once, @}, is obtained, one can construct the policies such that
Y (E) = arg min @Qy(2,4)
Using these policies, following control processes are defined
up(t) = vp (ox (X (i x b)), for t € [i x h,(i+ 1) X h). (19)

Hence, uy is a piece-wise constant process, which changes value at the sam-
pling instances according to the learned map .

The the following result is a direct implication of Theorem 1, and The-
orem 4:

Theorem 2. Under Assumption 1, and Assumption 2, iterations in (18)
converge to some Q} . For the learned control process uy, (see (19)), we have

Wa(xo, up) — Wg(ﬂso) <e(h,Lx, Ly)

where e(h, Lx, Ly) is defined in (17), and where wuy, is the control policy
learned by using the approximate Q-learning algorithm ().
Furthermore, for small h, we have that

Lx + L
e(h, Ly, Ly) < C <x/ﬁ+ % +hi>

for some C' < .

We now present results for the asymptotic case.

The first one states that if we first increase the quantization rate of the
spaces and thus if the quantization error goes to 0, then if we take the
sampling interval of the time to 0; the error bound goes to 0.
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Corollary 2. Under Assumption 1,

li li W, - W3 =0.
hli)I%)LX,ILISHO( p(wo,un) = Wij(zo)) =0

We now define the quantization rate and the quantization error as a
function of h and denote them by Lx(h), Ly (h):

Corollary 3. Under Assumption 1,

}llli}% (Wg(wo, uh) — Wﬂ (IL’o)) =0

if Lx(h), Ly(h) go to 0 at a faster rate than h, i.e. if LXT(h), L'Uh(h) — 0 as
h —0.

Remark 6. The space discretization approach we have followed so far gives
us precise error bounds and a convergence analysis under general conditions.
However, we can adapt Q learning algorithms with function approrimation
to our setting as well. In particular, we will focus on linear approximations
and discuss their convergence properties. Consider the set of @ functions
that can be parametrized over the parameter 0 that can be expressed as the
linear span of a fixed set of M linearly independent functions ¢; : XxU — R,
such that the Q values can be written as

M
Qg(l’, U) = Z ¢z($, U)Q(Z)a
i=1

then we can construct the following iterations to learn the Q) values over the
parametrized family:

Okt+1 = Ok + arpd(Tg, ug) Ag (20)

where Ay = ¢(Zy, uy) + B maxyecy Qt(XtH,u) — Qi(Zy,uy), such that Ty is
the sampled diffusion process.

Then the convergence of this iterations can be shown (see [28]). In par-
ticular, one can show that the algorithm converges if

e The sampled process converges to its stationary distribution during
exploration under the exploration policy,

e The exploration policy is already close to the optimal policy (precise
condition can be found in [28]).
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Note that the second assumption is quite restrictive. Furthermore, [28] does
not provide an analysis for the error analysis of the limit Q) function with
respect to the optimal Q values, which in our setting would be the optimal Q)
values of the MDP model constructed in Section 2.1 using piece-wise constant
controls for the diffusion process.

In a recent work ([9]), the assumptions are relaxed using ‘coupled @
learning’ with a so called ‘replay buffer’ assumption. If one uses the following
iterations:

U1 = U + (g, up) Qo (x4, ur) — wp),
Vi1 = U + Brd(mg, up) Ay

where A = c(x¢,up) + S maxyey Qu, (Xit1, u) — Qu, (¢, uy). It is then shown
that these iterations converge if

e oy and By are square summable but not summable, and oy = o(B;) or
o K 6t7

e For allt, (x;) can be sampled from a fized distribution, say w, or so
called replay buffer.

Furthermore, for the limit Q) values Q,+, we have that

* 1 * -k l—0o ﬁo-
Q" — Quelloc < m”@ — ProjyQ* |l + 7@

where o is constant that depends on the set of linear basis functions. Hence,
if the the optimal Q) values are in the linear span of basis functions, we might
get an approximation error depending on the basis functions. Note further
that the replay buffer assumption replaces the stationarity assumption. How-
ever, existence of such a setup might be hard to find, i.e. one may not be
able to start the process from a desired distribution.

In summary, both of these Q learning with linear approximations algo-
rithms can be used by discretizing the time for diffusion processes. Under
somehow restrictive assumptions, convergence can also be shown. Further-
more, the approximation error will be in the order of hi/4 (piece-wise con-
stant policy approximation error) plus the error presented in (21). However,
both of these results are still not fully conclusive, as they do not analyze the
performance of the learned policies but only focus on the difference between
the limit @Q values and the optimal @Q values.

(21)
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5 A Discussion on the Convergence Rate of the
Learning and the Effect of Sampling and Quan-
tization Rates on the Learning Speed

For approximation accuracy, finer sampling intervals and higher quantiza-
tion rates lead to smaller error bounds. However, it is clear that finer sam-
pling intervals and higher quantization rates also result in slower learning.
In particular, higher quantization rate of the state and action spaces results
in larger aggregate state and action spaces which in turn leads to dimension
issues for the learning. Furthermore, finer sampling intervals increases the
discount factor fj of the approximate Q learning algorithm in (18), and
higher discount rates make the iterations in (18) to converge at a slower
rate by increasing the effective horizon of the problem.

First, we note that the algorithm presented in this paper relies on the
convergence of the state process to its stationary distribution, since the
state aggregation results in non-Markovian dynamics. Hence, the conver-
gence speed of the algorithm depends on the convergence to the invariant
measure of the process. Our motivation in this section is to study the effect
of state and time discretization parameters on the speed of the Q learning
algorithm. However, these discretization parameters do not affect the speed
of the convergence to the stationary distribution, as this is related to the
dynamics of the underlying diffusion process. Thus, for a simpler presenta-
tion, we will assume the state process starts from its stationary distribution
under the exploration policy and always stays there during the exploration.

The following well known result ([10, Theorem 5]) is stated using the
notation of this paper. The result provides a sample complexity bound for
the near optimal ) estimates when the learning rate is linear, i.e. aj = %,
as in this paper.

Proposition 5 ([10]). Let Q7 be the value of the Q-learning algorithm using
linear learning rate at time T. Then with probability at least 1 — §, for any
positive constant ¢ we have |Qr — Qj || < €, given that

2 ‘XhH]Uh'Vmﬂ«Z
T=Q| (L L+1)1=6n" L 22

where Vg = ||JA5h||OO < hl”_c%jj, and L is the covering time for the algo-

rithm, that is the smallest time for every state and action pair to be visited
at least once.

23



The above result can be simplified for small enough h. We can write
that

In(L+L+1)
ek RIL In( \X;LHU;J)

1 Sebh
r<(;) Tenr 23)

where we use < as we drop some constant and logarithmic dependence.

From (23), we observe that decreasing the time discretization parameter
h, increases the sample complexity exponentially. Note that, as the required
sample size increases exponentially, the duration we need to observe the
diffusion process in real time to get e-near estimates also increases, since the
exponential increase in the sample complexity dominates the decrease rate
on h.

For the effect of the space discretization, we can see that the sample
complexity increases in a logarithmic way with the second term, but the
dominant effect is caused by the increase on the cover time L, as we have
that L > |X| x |Up|, and depending on the sampling frequency of the
samples, the cover time can be even greater. Nonetheless, the cover time
increases at least linearly with the increase on the size of the aggregate
state and action spaces, which in turn increases the sample complexity at a
polynomial rate depending on the parameter h.

Figure 1 shows the change on the required time when for h € [0.7,0.9],
€ € [0.1,0.5] and when |Xj| and |Uy| are assumed to be order of .

«10%

S < ) ~ e .
h 089 "44 o015 02 025 03 035 04 045

epsilon

Figure 1: Sample complexity for different values of error and sampling pa-
rameters
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However, this is the sample complexity to achieve e-near estimates of
@, which is also an estimate of the true value function (see Theorem 2
and Corollary 1). Hence, one needs to pick the sampling parameter h in
a careful way considering the trade-off between the convergence speed and
the approximation accuracy. Following Figure 2 provides an example for
the error bounds given a given level sample points T" ~ 9500. The graph
on the left shows the difference between Q7 and Qj (see (18)), clearly the
error for the learning of the approximate model decays as h increases for a
fixed level of sample points since the learned model becomes simpler as h
increases. The graph on the right shows represents the upper bound on the
difference

Qr — Q| < [Qr — Qi + Q) — @7,

with proper scaling. Note that the first term is the distance from the ap-
proximate Q value, whereas the second term is the approximation error. We
can see that after a certain value, increasing h results on greater total error
for these specific parameter intervals.

error
Relative error

0.75 08 0.85 0.9 0.95

Figure 2: |Q% — Q7| and |Q% — Q*| for different values of h when T' ~ 9500.

The sample complexity bound presented in (22) reveals that the increase
is exponential in ﬁ, this rate is clearly not desired and it turns out that
it can be avoided using different learning rates, «y, rather than using linear
learning rates. For example, using polynomial learning rates, ap = k% for
some w € (1/2,1), one can achieve following sample complexity for e-near
estimates for small enough h (see [10, Theorem 4]):

1 1
L1+3w1 X w L 1 1-w
T S < n(‘ hHUhD) + <hln()> 1 3

h2e2 €
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where the exponential increase with respect to h is eliminated.

Further improvements and variations can be achieved for the sample
complexity and the convergence rate, using different learning rates, e.g.
rescaled learning rates, carefully chosen constant learning rates, or with
different variations of the Q learning algorithm such as speedy Q learning,
or variance reduced Q learning (see e.g. [2, 44, 25]).

We note that, even though different convergence rates can be derived
using different reinforcement learning algorithms, if the algorithms are con-
structed using the time and state discretization procedure as in this paper,
the learned value function will be the value function of the approximate
MDP model constructed in Section 2.2. Hence, the convergence speed can
be improved with different learning rates or different @ learning variants,
however,

Lx +1L
\/E+7X;Lr C i

which is the error upper-bound for the approximation via state and time
discretization and piece-wise constant polices, will not change.

6 Conclusion

We have constructed an approximate Q learning algorithm for a controlled
diffusion process through discretization in time and space. We have showed
that this algorithm converges under an ergodicity assumption on the state
process. Furthermore, we have showed that the limit Q values satisfy the
optimality equation of a finite Markov decision process, which has the same
distribution as the diffusion process at the sampling points when the diffu-
sion process is controlled with a piece-wise constant control process. Using
these observations, we have derived upper bounds, as a function of the dis-
cretization parameters, for the approximation error of the learned policies
compared to the performance of the optimal admissible control process.

Possible future directions, building on the analysis in this paper are as
follows:

e When we discretize the state space, the aggregated state process is no
longer a Markov process, hence, we use an ergodicity assumption, to
guarantee the convergence of the Q learning algorithm. However, if the
quantization is fine enough, one might expect the learning algorithm
to stay in a set of values with sufficiently small variations even without
the ergodicity assumption. Hence, a possible future problem is to relax
the ergodicity assumption we consider here.
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e In this paper, we have used the traditional @) learning algorithm, for
the simplicity of the presentation. For faster learning rates, different
variations such as the variance reduction techniques, can be consid-
ered. We note that, if one uses the same time and space quantization
scheme, the learned value functions will be the same as in this paper,
however, using different variations of the Q learning algorithm will
change the learning speed.

e The analysis used in this paper, can be extended to partially observed
systems using the results from [16, 17] under proper filter stability
conditions.

e We have not considered the exploration and exploitation trade-off; one
might study this relation considering the provided convergence rate in
this paper.
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A Proof of Proposition 1

Note that the way we constructed the controlled Markov chain in Section
2.1, implies that the state process for the controlled Markov chain, and the
state process for the diffusion process have the same distribution at the
sampling instances. That is

X~ X(kxh), forall k € Z,.

We can then write that

(Wi (0, un) — Jo, (20,7)| = | E [ [ e e me) ds] B

> Bren(Xe, Us)
k=0

l

& (k+1)h )
— B[S / e=0c(X (3), un(s))ds| — E |3 Blen(Xx, Up)
k=0 " Fh Pt
> (k+1)h
<[ B[, - e mrEL g,
k=0 kh

We know focus on the term inside:

d

<E|

s — gk ch (X, Uk)
e P (X (s),un(s)) —e Bhkh]

e P5e(X (), un(s)) — e*ﬁhkc(X(s),uh(s))H +B|
<e (1 — e |elloo + e MK E | X (s) — Xi]

e Ihe(X (s), un(s)) — e MRe(X, U)|

for the last step, we used the fact that up(s) = Uy as it is a piece-wise
constant control process. For the second term, we have that for s € [kh, (k+

1)h)

S S

b (r), un(r))dr + / o (2(r), un (r))dB(r).

|

X@—m+/

kh

Thus, using Assumption 1 we can write

BIIX(5) = Xl] < Pl | dr+ [l H | B

< Bh+ BE||Z,|] = B <h+ ﬁ)

where Zj, is normally distributed with mean 0 and variance h.
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By combining everything we have so far, we write

[We(zo,un) — Jg, (70,7)]

o0 (k+1)h 2%
< / e — =B el + e~ KB (1t /2 ) ds

k=0 kh ™
=> <e—ﬁhk<1 — e M)||c|loo + e P* KB ( )) h

k=0

K Bh 2h
—hB+ -0 [ he D
+ 1 — e bh ( + ™ )

B Proof of Proposition 4

Proof. We start by writing the iterations in a more compact from by defining
Ch := c(z(i x h),a) x h, and X; := d)x(X((i +1) x h)):

Qua(#,8) = (1 — (&, 0))Qul(#, @) + o (2, ) <ch + fn min Qi (X1, v))

We define
Fy(&,a) == Cp, + ﬁth(Xl) Qp(2,1)
Fy(#,4) = Cj(&,0) + B Yy _ Vi(d1) P (812, @) — Q}, (2, 0),

1

where V;(Z) := minyeu, Qk (a%, U).
Then, we can write the following iteration
Apr1(#,4) = (1 — op(2, ) Ap(2,4) + ap(Z, @) Fie (&, 7).
Now, we write Ay = d;, + w; such that
Ok41(2,0) = (1 — ap(®,0))0k(Z, @) + ap(2,4) Fr(2, 0)

Wr1 (T, 4) = (1 — a2, 0))wi(2, ) + ag (2, 0)rp(T, @)

where 1y, := Fj, — Fjy = BVi(X1) — B 35, Vi(@1) P (21|12, ) + Cy — C (2, ).
Next, we define

re(®,0) = BV (X1) = B Y V*(&1) Py (#1]&,4) + Cp, — C (4,

21

H)

29



We further separate wy = uy + v such that

2>
u:>
g
W
=

Upy1(2,0) = (1 — o, 0) Jup(Z, @) + o
Vp1(2,0) = (1 — ag (2, 0) ) v (2, 0) + o (2, @)y (2, 0)

where e = rp — 1.

We now show that vy (Z,4) — 0 almost surely for all (&,4). Note that,
because of the way we chose the learning rates ay, vg(Z,a) is only updated
when the process hits Z,u during the exploration. Thus, we define the
following stopping times

T(n+1)={mink > 7(n) : ¢x(zr) = &,uy = 4}

where 7(0) = 0. In what follows, we will focus on the v, (Z, %) process, since
we assume that every (&, ) pair is visited infinitely often, these stopping
times are bounded almost surely and hence, we can make sure that n — oo
as k — oo. Furthermore, we have that «,(Z,4) = %, as n is the number of
times the we have hit (A @) pair.

When oy, (#,4) = L for every (2,4) pair, the problem reduces to
1 n—1
Unt (8,) = — Z:OT;';/(:E,Q).
n/=

Above, even though, we do not write the time dependence on Xl, dis-
tribution of the X is different every time we make the update, since the
marginal distribution of x; is different. However, using the fact that the
random variables (X1, X;) form a controlled Markov chain since they are
sampled at the stopping times 7(k), and using the invariant measure of the
original state process, we can write

nh_)n(f)loﬁ Z V(X)) / ZV* ) Th(Bjlx, 4)7; (dx)

1 n—1
nlgxoloﬁ Z Cp = lim_~ D c(z(r(n) x h), i) x h = /B (@, u) s (dx).
n’/=0

where B is the quantization bin & belongs to. Hence, we have proved that
vg(Z,u) = 0, noting

C (i) = / en(, u)is, (do)

Pr(&|2;,u) /'EB\:BU ;( x).
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Now, we go back to the iterations:

A

(5k+1(5AU,fL) = (1 —ak(i,ﬂ))ék( ,ﬂ) -I-Otk(.f,ﬂ) k(i?,’ll)
uk+1(if:,a) = (1 — ak(i ﬁ))uk(i ZAL) -+ Ozk(.% ﬂ)ek(A )
Vp+1(Z,0) = (1 — ag (2, 0) ) v (2, 0) + ag(Z, @)rp (2, ).

§>

Note that, we want to show Ay = 0 +ug+vr — 0 almost surely and we have
that vg(#,4) — 0 almost surely for all (Z, ). The following analysis holds
for any path that belongs to the probability one event in which v (I, u) — 0.
For any such path and for any given € > 0, we can find an N < oo such that
||vglloo < € for all K > N as (I, u) takes values from a finite set.

We now focus on the term &y + uy for k£ > N:

(O + wpg1) (@, 0) = (1 — (&, 0)) (0 + up) (&, ) + oy (&, 0) (F), + ek)(a(z, a)).

Observe that for k > N,
(Fy + ex) (2, 0) =(F), — r}) (2, 0) = /Bth( 1) — BV*(X1)
< B, max |Qr(2, 1) — Q"(2,1)| = Bnll Aklloo
< Bnl|0k + uklloo + Bre

where the last step follows from the fact that vy — 0 almost surely. By
choosing C' < oo such that §:= 8,(C' +1)/C < 1, for ||0x + ug||co > Ce, we
can write that

Brllok + wk + €lloo < BlIok + tk]lso-

Now we rewrite (24)

(Opy1 + upy1) (&, 4) = (1 — (@, 0)) (O + up) (&, ) + ap(@, @) (Fy + ex) (&, 1)
< (1 — o(2,0)) 8k + ug) (&, 0) + ap(#,2) 3]0k + oo

By [13, Lemma 3], (0x41 + uk+1)(Z, @) tends to 0 for ||0x + uk||cc > Ce. This
shows that the condition ||dx + uk|lcc > Ce cannot be sustained indefinitely.
Next, we show that once the process hits below Ce it always stays there.
Suppose || + uk|loo < Ce,

(Grrr + wps1) (@, 0) < (1 — ag(®, ) (6 + we) (@, @) + aw(E, 8)Bn (165 + welloo + €)
< (1 —og(z,0)Ce + ap(z,0)Br(Ce+€)
= (1 — ap(2,0))Ce + ag(z,a)Br(C + 1)e
< (1—ok(2,4))Ce+ ag(2,a)Ce,  (Bp(C+1) <O)
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Then, we can write ||0g1+1 + Uk+1]loo < Ce.
Thus, taking € — 0, we can conclude that Ay = 0 +ug + v — 0 almost

surely.
Therefore, the process )1, determined by the algorithm converges almost
surely to Q. O

C Proof of Lemma 1

We are interested in the distance between the distributions of the following
random variables

h h

z(h) —x(O)—i—/O b(x(s),u)ds—i—/o o(x(s),u)dB(s)
h h

o) =0+ [ blao). s+ [ lyl).aB(o).

We define z(h) := z(h) — y(s), whose dynamics are given by

h h
z(h) = 2(0) —l—/o b(:v(s),y(s),u)ds-i—/o a(x(s),y(s),u)dB(s)

Using the Ito formula
ho h
B2 < 23+ B | [ 220(e(9).0(5). s + B | [ a(e)yto), s
0 0
h h
< Zg+2K/ E[Z2] ds+K2/ E[ZZ] ds.
0 0
We can then use Gronwall’s inequality to write
E[Z(h)Q] < de(QK-Q-K?)h.
Using the Holder’s inequality, we can further write
2
E[IX () = Y ()] < |e(0) - y(0) |+,

which concludes the proof.
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D Proof of Lemma 2

We first define the following random variables
h h
z(h) = z(0) —i—/o b(x(s),u)ds—i—/o o(x(s),u)dB(s)
h h
y(h) = z(0) +/0 b(y(s),&)ds+/0 o(y(s),w)dB(s).

By defining z(h) := x(h) — y(s), whose dynamics are given by

B h
z(h) = b(x(s),y(s),u, ﬂ)ds—l—/o a(x(s),y(s),u,u)dB(s)

where

j=all

(ZC(S), y(3)7 u, Ql) = b(:c(s), u) - b(y(s),ﬁ)
a(x(s),y(s),u, @) := o(x(s),u) — o (y(s), @).

Using the Holder’s inequality, the boundedness, and the continuity proper-
ties of b, o, under the assumption that A < 1, we can write

(/Oh (KZ(s) + Klu — ) dB(s)>2]

h h
—2F U (KZ(S)+K|u—ﬂ|)2ds} §4K2/ E[Z(s)?] ds + 4K*h|u — af?
0 0

E[Z(h)?] <E [/Oh (KZ(s) + K|u — ))? ds] +FE

under the assumption that h < 1, and using the Gronwall inequality
E [Z(h)?] < 4K?|u — 02K,
Using the Holder’s inequality, we can conclude that

E[X(h) =Y (h)|] < 2Ke*K*Mu — 4.
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