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MEAN FIELD CONTROL AND FINITE AGENT APPROXIMATION FOR

REGIME-SWITCHING JUMP DIFFUSIONS

ERHAN BAYRAKTAR, ALEKOS CECCHIN, AND PRAKASH CHAKRABORTY

Abstract. We consider a jump-diffusion mean field control problem with regime switching
in the state dynamics. The corresponding value function is characterized as the unique
viscosity solution of a HJB master equation on the space of probability measures. Using
this characterization, we prove that the value function, which is not regular, is the limit of
a finite agent centralized optimal control problem as the number of agents go to infinity,
with an explicit convergence rate. Assuming in addition that the value function is smooth,
we establish a quantitative propagation of chaos result for the optimal trajectory of agent
states.

1. Introduction

Mean field control problems with regime switching state dynamics is a growing activity of
research starting from the works of [23, 26, 27, 29] and most was recently considered by [18].
This line of research activity is motivated from the need to control large identical interacting
control systems where the interaction is mean-field and there exists a common noise affecting
each system. Though Brownian common noise has been studied at length in the literature,
a simpler example is a Markov chain representing the regime switches experienced by each
system in the network. From a modeling perspective too such hybrid models have been
shown to be extremely powerful [13, 14, 28, 30]. In contrast to a common Markov switching,
it is indeed possible to have a network where each system has its own switching mechanism.
Such a model has been analyzed in [26, 29]. However since there is already a mean field
interaction between the systems it is sensible to have just one common random switching
mechanism to incorporate the hybrid nature of the network.

In this work we model each individual system identically using a controlled jump-diffusion,
where the jumps are independent and identically distributed (i.i.d.) and the drift, diffusion
and jump intensity coefficients are modulated by the same Markov chain. The mean-field
limit of this network is expected to be characterized by the distribution, conditioned on the
history of the switching process, of the solution of a McKean Vlasov jump diffusion with
regime switching coefficients. This mean field limit in an uncontrolled setup and without
jumps has been analyzed in [22]. In some papers including [21, 23, 29] the mean field
interaction has been represented by the conditional expectation of the solution of the McKean
Vlasov jump diffusion. In [22, 29], the stochastic maximum principle has been studied and
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obtained. In contrast, we use Bellman’s dynamic programming principle approach to obtain
a master equation as in [1] and [25]. This equation can be studied by Lions’ lifting of
measure-dependent functions to appropriate functions on the space of random variables.
Traditionally the Wasserstein space of measures and the L2 space of random variables are
used for this purpose. If now the solution is regular enough a classical interpretation of the
master equation is used. Else, one relies on appropriate viscosity solution theory. Because of
the jump terms present in our model, working with Lion’s derivative is not enough to state
the master equation in our case, and one needs to rely on the linear functional derivative
alone. This has been mentioned and explored in [4] while analyzing a controlled McKean
Vlasov jump diffusion without regime switches. In addition [4] provides a theory of viscosity
solutions on the space of probability measures that does not rely on lifting to a Hilbert space.
It is this notion of viscosity solution that we will use, modified of course to account for the
regime switches, in addition to the metric (equivalent to weak topology) on the space of
probability measures defined therein.

The mean field control problem we analyze in the paper is the same as in [4], and is
slightly different from the usual one. Namely, in the finite-agent centralized optimization,
the strategy of any agent is usually expected to depend on the private state and on the
empirical measure of the system, while here it is independent of the private state. In other
words, each agent uses as control the same stochastic process which is given by the central
planner, and we believe that there are several situations which can be modeled in this way.
As a consequence, the controls employed in the limiting mean field control problem are just
deterministic functions of time.

In order to prove convergence of the finite state optimization to the mean field optimiza-
tion, in the usual setup, there are several approaches. Let us mention [12, 11, 19] where
the problem is tackled probabilistically through compactness arguments. In addition con-
vergence with rates can be obtained through FBSDE techniques, see [8] and [20], the latter
with interaction also through the law of the control; but these papers assume convexity in
the measure argument. Another recent paper [17] establishes a convergence rate, assuming
that the limit value function is smooth (which should hold e.g. under convexity).

In this present work, we prove convergence of the value functions with a convergence rate
without assuming convexity, nor that the value function is smooth. Instead, we make use
of the viscosity solution characterization of the optimal value function, which is in general
not differentiable. This is most related to the recent papers [10] and [16]. In [16], the
viscosity solutions of HJB equations in finite-agent deterministic or stochastic optimal control
problems are shown to converge to that of a limiting HJB equation in the space of probability
measures. The latter equation is interpreted through Lions’ lifting in the L2 sense. However
convergence rates are absent in [16]. But since we rely on our particular viscosity solution
structure, we can adopt the ideas in [10] even though the problem addressed there is in
the space of probability measures with finite support. We employ a doubling of variables
argument, using the distance-like function introduced in [4].

A recent preprint [5] provides a rate for the convergence of the value function, under
general assumptions. As explained above, the mean field control problem we consider here is
slightly different and thus the proof of convergence is completely different. As a consequence,
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we obtain a better rate than in [5] (see Remark 4.2). We mention, however, that we impose
a structural assumption on the coefficients, in order to apply the theory of [4].

We also provide, for completeness, a quantitative propagation of chaos for the convergence
of the optimal trajectories, but, to obtain this result, we suppose that the limit value function
is smooth, as in [17]. We mention, in this respect, a recent preprint [6] where the authors
establish a quantitative propagation of chaos, without assuming regularity of the limit value
function: they show that the value function is C1 in an open and dense subset of the space
of probability measures and thus prove convergence if the initial distribution belongs to that
set.

The rest of the paper is organized as follows. In Section 1, we mention the mean field
control problem as motivation to introduce associated assumptions, the state space under
consideration, along with the particular metric on P(R) borrowed from [4] used in our
paper. These notions will be used throughout the rest of this article. In Section 3, we
study the mean field control problem in detail. In particular, we obtain an HJB equation,
define a viscosity solution theory suitable for our purposes and prove that the value function
is the unique viscosity solution to that HJB. Next in Section 4, we introduce the finite
agent centralized control problem and prove the main convergence results: we show using
viscosity solutions that the value function in the finite agent control problem is uniformly
approximated by that in the mean field control problem. Finally, in Section 5 we prove under
additional assumptions, a propagation of chaos result showing that the optimal trajectories
are uniformly close as well.

2. Preliminaries

2.1. The control problem. Consider a complete probability space (Ω,F , (Fs)s∈[0,T ],P) on
which is defined a Brownian motion (Ws)s∈[0,T ], where T > 0 is an arbitrary fixed time
horizon. Let α be a continuous time Markov chain with finite state space S = {1, . . . , s0}
and generator Q = (qij)1≤i,j≤s0. Let P(R) denote the class of probability measures on R.
For (t, ρ) ∈ [0, T ] × P(R) we consider the following controlled McKean-Vlasov stochastic
differential equation with initial condition L(Xt|Fα

t−) = ρ and αt = i0 ∈ S:

dXs = b(s,Xs, µs, vs, αs−)ds+ σ(s,Xs, µs, vs, αs−)dBs + dJs, t ≤ s ≤ T, (2.1)

where µs = L(Xs|Fα
s−), Fα is the filtration generated by the Markov chain α, Js is a purely

discontinuous process with controlled intensity λ(s,Xs, µs, vs, αs−) and the jump sizes are
i.i.d. from some distribution γ ∈ P(R). Furthermore, vs := v(s, µs, αs−) is a deterministic
feedback control of time s, conditional law µs and regime state αs− taking values in a
prescribed Polish space A. Denote A to be this class of admissible controls. The solution
to (2.1) depends on t, ρ, i0 and v. However for ease in presentation we will sometimes omit
these and the solution will be denoted just by Xv or just X, when the dependence on the
initial conditions and the control is clear from the context.

We then consider the value function

V (t, ρ, i0) := inf
v∈A

E

[
∫ T

t

f(s,Xs, µs, vs, αs−)ds+ h(T,XT , µT , αT )

]

, (2.2)

for given functions f and h, and where vs ≡ v(s, )
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Assumption 2.1. The space of probability measures is endowed with the weak* topology
σ(P(R), Cb(R)) where Cb(R) is the space of continuous and bounded functions in R. The
weak* convergence µn → µ is equivalent to: 〈µn, f〉 converges to 〈µ, f〉 for every f ∈ Cb(R).
Whenever required we can use any of the metrics d(µ, µ′) on P(R) which permits it to be
topologically equivalent to the weak* topology. In particular, in the sequel we will use the
metric d(µ, µ′) =

∑

j cj|〈µ − ν, fj〉|, when restricted to a suitable compact set O ⊂ P(R),

where {fj}j is a class of polynomials containing all monomials (see later for more details).
If needed, S is endowed with the metric dS satisfying dS(i0, j0) = 1{io 6=j0}.

Assumption 2.2. There exist constants C0

(i) For any s ∈ [0, T ], x ∈ R, µ ∈ P(R), v ∈ A, i0 ∈ S,

|b(s, µ, v, i0)|+ |σ(s, µ, v, i0)|+ |λ(s, µ, v, i0)| ≤ C0

(ii) There exists a finite set I ∈ N such that for any µ, µ′ ∈ P(R), t, s ∈ [0, T ], x, y ∈ R,
i0 ∈ S

|b(t, µ, v, i0)− b(s, µ′, v, i0)|+ |σ(t, µ, v, i0)− σ(s, µ′, v, i0)|

+ |λ(t, µ, v, i0)− λ(s, µ′, v, i0)| ≤ κ0

(

|t− s|+
∑

k∈I

|
〈

µ− µ′, xk
〉

|
)

.

(iii) γ has δ-exponential moment:
∫

R

exp(δ|x|)γ(dx) < ∞.

(iv) f and h are bounded. Furthermore there exists a finite set I ∈ N such that for any
µ, µ′ ∈ P(R), t, s ∈ [0, T ] and x, y ∈ R:

|f(t, x, µ, v, i0)− f(s, y, µ′, v, i0)|+ |h(t, x, µ, i0)− h(s, y, µ′, i0)|

≤ κ1

(

|t− s|+ |x− y|+
∑

k∈I

∣

∣

〈

µ− µ′, xk
〉∣

∣

)

.

(v) All the functions b, σ, λ, f, h are Lipschitz-continuous in the measure argument for
the 2-Wasserstein distance W2.

Remark 2.1. We should note that although the 2-Wasserstein distance and the distance d
are topologically equivalent, they are not strongly equivalent. We need both of (ii) and (v)
above for our main result, Theorem 4.1. See e.g. Propositions 3.4 and 4.1.

2.2. State space.

Notation 2.1. Since the Brownian motion has exponential moments, the solution to (2.1)
also has exponential moments owing to boundedness of the coefficients in Assumption 2.2.
As in [4] we also consider the optimal control problem in O×S, where O := [0, T )×M and
M is the set of probability measures with δ-exponential moments. Denote O := [0, T ]×M.
Let

eδ(x) := exp
(

δ
[√

x2 + 1− 1
])

, x ∈ R, (2.3)
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where δ is as in Assumption 2.2. For b > 0 we denote

Mb := {µ ∈ P(R) : 〈µ, eδ〉 ≤ b} .
For M ∈ N,

OM =
{

(t, µ) ∈ [0, T )× P(R) : 〈µ, eδ〉 ≤ MeK
∗t
}

,

where

K∗ =
δC0

2
(2 + C0 + δC0) + C0

(
∫

R

eδ|x|γ(dx)− 1

)

.

Also denote

OM =
{

(t, µ) ∈ [0, T ]× P(R) : 〈µ, eδ〉 ≤ MeK
∗t
}

,

and O = ∪∞
M=1OM .

Remark 2.2. If µ, ν ∈ M, then

µ = ν ⇔
〈

µ− ν, xk
〉

= 0 ∀k ∈ N.

Definition 2.1. A function ϕ : P(R) → R is said to have a linear functional derivative at
µ ∈ P(R) if there exists a function Dmϕ : P(R)× R → R such that for every µ, µ′ ∈ P(R)
the following relation holds

ϕ(µ)− ϕ(µ′) =

∫ 1

0

∫

R

Dmϕ(rµ+ (1− r)µ′, x)(µ− µ′)(dx)dr.

The function D2
m2ϕ : P(R) × R× R → R stands for the second linear functional derivative

of ϕ at µ and is defined as the linear derivative of Dmϕ.

Remark 2.3. Consider the linear function ϕ(µ) = 〈µ, f〉 for some f : R → R. Then
Dmϕ(µ, x) = f(x) for any (µ, x) ∈ P(R)× R.

In the following we provide a few details on the particular distance d(µ, ν) we consider
in this article. We consider a slight variation of the distance introduced in [4], to which we
refer for more details. We start off with a set of polynomials against which we will integrate
our measures.

Definition 2.2. Let Θ be the minimal set of polynomials such that

(i) for any g ∈ Θ, g(k) ∈ Θ for all k = 0, . . . , deg(g);

(ii) for any g ∈ Θ,
∑deg(g)

k=1 mkg
(k) ∈ Θ where mk =

1
k!

∫

R
ykγ(dy);

(iii) for any g ∈ Θ, (g′)2 ∈ Θ.
(iv) all monomials {xk}∞k=1 is contained in Θ.

It can be shown that Θ is countable. Let {fj}∞j=1 be an enumeration of Θ. Fix a b > 0
and recall Mb defined earlier. For every fj ∈ Θ, consider the finite index set Ij so that the
set {fi : i ∈ Ij} is the set of polynomials obtained from fj by one of the first three above
operations. Since measures Mb have bounded exponential moments,

sj(b) := 1 + sup
µ∈Mb

〈µ, fj〉2 < ∞ ∀j,
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and thus set

cj(b) :=





∑

k∈Ij

2k





−1



∑

k∈Ij

sk(b)





−2

. (2.4)

Then we have the following result the proof of which can be found in [4].

Lemma 2.1. With the above choice {cj(b)}∞j=1

d(µ, ν; b) =
∞
∑

j=1

cj(b)| 〈µ− ν, fj〉 |,

defines a metric on Mb. Furthermore a sequence {µn}n∈N in Mb converges weakly to µ ∈ Mb

if and only if limn→∞ d(µn, µ; b) = 0.

As a consequence of the definition, we have the following facts, which will be useful in the
sequel. Their proofs can be found in [4].

(1) cj(b) ≤ 2−j and consequently
∑

j cj(b) ≤ 1;

(2) for each fi ∈ Θ with i ∈ Ij, cj(b) ≤ ci(b).

(3)
∑

j cj(b)〈µ, fj〉2 ≤ 1, for all µ ∈ Mb.

Remark 2.4. In the following we will fix an M ∈ N and run our analyses on OM . To that
effect we fix b = MeK

∗T and omit the dependence of cj and d on b.

Notation 2.2. Associated with each pair of states (i0, j0) ∈ S × S, i0 6= j0 of the Markov
chain α we denote

[Mα
i0j0

](t) =
∑

0≤s≤t

1{αs−=i0}1{αs=j0},
〈

Mα
i0j0

〉

(t) =

∫ t

0

qi0j01{αs−=i0}ds,

Finally for t ∈ [0, T ] the process Mα
i0j0(t) is defined by

Mα
i0j0

(t) = [Mα
i0j0

](t)−
〈

Mα
i0j0

〉

(t).

It can be shown that this is a purely discontinuous and square integrable martingale with
respect to the complete filtration Ft. See e.g. [22].

As necessary we will use the following notation to measure distance between states in the
state space S of the Markov chain α.

Notation 2.3. For every i0, j0 ∈ S d̃(i0, j0) = 1{i0 6=j0}.

3. Mean field control problem

3.1. Dynamic Programming.

Lemma 3.1. The following dynamic programming principle holds:

V (t, ρ, i0) = inf
v∈A

E

[
∫ θ

t

f(s,Xs, µs, vs, αs−)ds+ V (θ, µθ, αθ)

]

, ∀θ ∈ [t, T ], (3.1)

Proof. Since the McKean-Vlasov control problem considered here is deterministic, the dy-
namic programming principle follows from classical results. See, for instance [15]. �
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Notation 3.1. For a given class of functions u = (u(t, µ, i0, x))i0∈S , the operator Lµ,i0,v
t acts

on the x and i0 variables and is given by

Lµ,i0,v
t [u](x) := b(t, x, µ, v, i0)

∂u

∂x
(t, µ, i0, x) +

1

2
σ2(t, x, µ, v, i0)

∂2u

∂x2
(t, µ, i0, x)

+ λ(t, x, µ, i0, v)

∫

R

(u(t, µ, i0, x+ y)− u(t, µ, i0, x)) γ(dy) (3.2)

From (3.1) one obtains the following dynamic programming equation:

− ∂tV (t, µ, i0) + sup
v∈A

Hv(t, µ, i0, DmV )−
∑

j0∈S

qi0,j0 (V (t, µ, j0)− V (t, µ, i0)) = 0, (3.3)

where
Hv(t, µ, i0, DmV ) = −

〈

µ, f(t, ·, µ, v, i0) + Lµ,i0,v
t [DmV ]

〉

. (3.4)

Notation 3.2. H := supv∈A Hv.

The following lemma from [4] is modified for our purposes but its proof is similar.

Lemma 3.2. Under Assumption 2.2 for any M ∈ N we have

(t, µ, i0) ∈ OM × S ⇒ (u,L(X t,µ,i0,v
u |Fα

u−), αu) ∈ OM × S, ∀(u, v) ∈ [t, T ]×A.

3.2. Viscosity solutions and test functions. The viscosity sub- and super-solutions are
defined similar to [4]. We begin with the class of test functions.

Definition 3.1. A cylindrical function is a map of the form (t, µ, i0) 7→ F (t, 〈µ, f〉, i0) for
some function f : R → R and F : [0, T ] × R × S → R. This function is called cylindrical
polynomial if f is a polynomial, and F (·, ·, i0) is continuously differentiable for all i0.

Definition 3.2. For E ⊆ O, a viscosity test function on E × S is a function of the form

ϕ(t, µ, i0) =

∞
∑

j=1

ϕj(t, µ, i0), (t, µ, i0) ∈ E × S,

where {ϕj}j is a sequence of cylindrical polynomials satisfying:

(i) {φi0
j := φj(·, ·, i0)}j are absolutely convergent at every (t, µ) for every i0 ∈ S,

(ii) for every j ∈ N and i0 ∈ S,

lim
M→∞

∞
∑

j=M

sup
(t,µ)∈E

deg(Dmϕ
i0
j )

∑

k=0

∣

∣

〈

µ, (Dmϕ
i0
j )

(k)
〉∣

∣ = 0.

We let ΦE×S be the set of all viscosity test functions on E × S.

Definition 3.3. For E ⊆ Ō and (t, µ, i0) ∈ E × S with t < T , the superjet of u at (t, µ, i0)
is given by:

J1,+
E×Su(t, µ, i0) :=

{(

∂tϕ(t, µ, i0), (Dmϕ(t, µ, k, ·))k∈S
)

∣

∣

∣

∣

ϕ ∈ ΦE×S , (u− ϕ)(t, µ, i0) = max
E

(u− ϕ)(·, ·, i0)
}

.

The subjet of u at (t, µ, i0) is defined as J1,−
E×Su(t, µ, i0) := −J1,+

E×S(−u)(t, µ, i0).
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Definition 3.4. For a subspace E ⊆ Ō, the upper semi-continuous envelope of u on E × S
is defined by

u∗
E×S(t, µ, i0) := lim sup

E∋(t′,µ′)7→(t,µ)

u(t, µ, i0).

The lower semicontinuous envelope uE×S
∗ is defined analogously.

Notation 3.3.

u∗ := u∗
Ō×S , u∗ := uŌ×S

∗ , u∗
M := u∗

ŌM×S , uM
∗ := uŌM×S

∗

Definition 3.5. We say that a function u : OM ×S → R is a viscosity subsolution of (3.3)
on OM × S if for every (t, µ, i0) ∈ OM × S

−πt +H(t, µ, πµ) ≤ 0, ∀(πt, πµ) ∈ J1,+
OM×Su

∗
M(t, µ, i0).

We say that a function u : OM × S → R is a viscosity supersolution of (3.3) on OM × S
if for every (t, µ, i0) ∈ OM × S

−πt +H(t, µ, πµ) ≥ 0, ∀(πt, πµ) ∈ J1,−
OM×Su

M
∗ (t, µ, i0).

A viscosity solution of (3.3) is a function on O that is both a subsolution and a supersolution
of (3.3) on OM × S for every M ∈ N.

Proposition 3.1. For every φ ∈ ΦOM×S , (t, µ, i0) ∈ OM × S, and v ∈ A:

φ(u, µu, αu) = φ(t, µ, i0) +

∫ u

t

[∂sφ(s, µs, αs) + 〈µs,Lµs,αs,v
s [Dmφ]〉 (3.5)

+
∑

j0 6=αs−

qαs−,j0[φ(s, µs, j0)− φ(s, µs, αs−)]



 ds (3.6)

+
∑

j0 6=αs−∈S

∫ u

t

[φ(s, µs, j0, ·)− φ(s, µs, i0, ·)] dMα
αs−j0

(s), u ∈ [t, T ], (3.7)

where µs = L(Xs|Fα
s−) and (Xs)s∈[t,T ] is the solution to (2.1) with initial conditional distri-

bution µ and αt = i0.

Proof. For a given polynomial f , 〈µs, f〉 = Ef(Xs). Thus using Itô’s formula and taking
expectation:

〈µs, f〉 = 〈µ, f〉+
∫ u

t

〈µs,Lµs−,αs−,v
s [f ]〉 ds.

Now considering a cylindrical polynomial φ(t, µ, i0) = F (t, 〈µ, f〉 , i0) we have

φ(u, µu, αu) = φ(t, µ, i0) +

∫ u

t

[∂sφ(s, µs, αs) + ∂xF (s, 〈µs, f〉) 〈µs,Lµs−,αs−,v
s [f ]〉] ds

+

∫ u

t

∑

j0 6=αs−

qαs−,j0[φ(s, µs, j0)− φ(s, µs, αs−)]ds

+
∑

j0 6=αs−∈S

∫ u

t

[φ(s, µs, j0, ·)− φ(s, µs, i0, ·)] dMα
αs−j0(s)
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Since Dmφ(s, µ, i0) = ∂xF (s, 〈µ, f〉 , i0)f , we have the result for cylindrical polynomials which
can be extended to general φ ∈ OM as in [4].

�

3.3. Value Function.

Lemma 3.3. For each M , V , V ∗
M and V M

∗ are bounded on OM .

Proof. The proof is similar to that in [4]. �

Proposition 3.2. Assume (3.1) holds. Then for any M ∈ N, the value function V is both
a viscosity sub- and supersolution to (3.3) on OM and

V ∗
M(T, µ, i0) = V M

∗ (T, µ, i0) = 〈µ, h(T, ·, µ, i0)〉 , ∀µ ∈ MMeK∗T , i0 ∈ S.

Proof. Fix M ∈ N. By Lemma 3.3, both envelopes V ∗
M and V M

∗ are finite.

Step 1: V ∗
M is a viscosity subsolution for t < T . Suppose that for φ ∈ ΦOM×S and

(t, µ) ∈ OM

0 = (V ∗
M − φ)(t, µ, i0) = max

(t,µ)∈OM

(V ∗
M − φ) (t, µ, i0) ∀i ∈ S.

Fix an arbitrary i and let (tn, µn) be a sequence in OM such that (tn, µn, V (tn, µn, i0)) →
(t, µ, V ∗

M(t, µ, i0)). Now fix v ∈ A and let (X tn,µn,i0,v
s )s∈[tn,T ] denote the solution to (2.1)

with constant control v, Fα
−-conditional distribution µn at time tn and αn

tn = i0. We denote
µn,v
s = L(X tn,µn,i0,v

s |Fα
s−). Using (3.1) with θn = tn + h for 0 < h < T − hn, we have

V (tn, µn, i0) ≤ E

[
∫ θn

tn

f(s,X tn,µn,i0,v
s , µn

s , v, α
n
s−)ds+ V (θn, µ

n
θn, α

n
θn)

]

≤ E

[
∫ θn

tn

f(s,X tn,µn,i0,v
s , µn

s , v, α
n
s−)ds+ φ(θn, µ

n
θn, α

n
θn)

]

.

Passing to the limit we obtain

V ∗
M(t, µ, i0) = φ(t, µ, i0) ≤ E

[
∫ t+h

t

f(s,Xs, µs, v, αs−)ds+ φ(t+ h, µt+h, αt+h)

]

.

Then using Proposition 3.1 and recalling that Mα
i0j0

is a martingale, we have that

0 ≤ E

∫ t+h

t

[f(s,Xs, µs, v, αs−) + ∂sφ(s, µs, αs) + 〈µs,Lµs,αs,v
s [Dmφ]〉] ds.

This implies

0 ≤ E
α

∫ t+h

t

[∂sφ(s, µs, αs) + 〈µs, f(s, ·, µs, v, αs−) + Lµs,αs,v
s [Dmφ]〉] ds.

This holds for any h > 0. Recalling αt = i0 we then obtain

0 ≤ ∂tφ(t, µ, i0)−Hv(t, µ, i0, Dmφ)

which implies

−∂tφ(t, µ, i0) +H(t, µ, i0, Dmφ) ≤ 0.
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Step 2: V M
∗ is a viscosity supersolution for t < T . Suppose there exists (t, µ) ∈ OM ,

φ ∈ ΦOM×S such that

0 = (V M
∗ − φ)(t, µ, i0) = min

(t,µ)∈OM

(V M
∗ − φ)(t, µ, i0) ∀i ∈ S.

Using [4, Lemma 7.1] we get that the above minimum is strict. To derive a contradiction we
assume that

−∂tφ(t, µ, i0) +H(t, µ, i0, Dmφ) < 0, for some i ∈ S, for some i ∈ S.

Since H is continuous in (t, µ) there exists a neighborhood B of (t, µ) such that

− ∂tφ(t, µ, i0)−
〈

µ, f(t, ·, µ, v, i0) + Lµ,i0,v
t [Dmφ]

〉

< 0, ∀(t, µ) ∈ BM := B ∩ OM , ∀v ∈ A.
(3.8)

Let (tn, µn) be a sequence in OM such that (tn, µn, V (tn, µn, i0)) → (t, µ, V M
∗ (t, µ)). This

means that for all large n, (tn, µn) ∈ BM . Fix an arbitrary control v ∈ A and let
(X tn,µn,v,i

s )s∈[tn,T ] denote the solution to (2.1) with Fα
−-conditional distribution µn and value

of the Markov chain αn
tn = i at initial time tn. Consider

θn := inf {s ≥ tn : (s, µn,v
s ) 6∈ BM or αn

s 6= i} ∧ T.

This is an Fα stopping time. By Proposition 3.1 we have

φ(tn, µn, i0) = φ(θn, µ
n,v
θn

, αn
θn)−

∫ θn

tn

[

∂sφ(s, µ
n
s , α

n
s ) +

〈

µn
s ,L

µn
s ,α

n
s−,vs

s [Dmφ]
〉]

ds

−
∑

i0 6=j0∈S

∫ θn

tn

〈µn
s , Dmφ(s, µ

n
s , j0, ·)−Dmφ(s, µ

n
s , i0, ·)〉 dMαn

i0j0
(s)

From (3.8) we obtain that

φ(tn, µn, i0) = φ(θn, µ
n,v
θn

, αθn) +

∫ θn

tn

〈

µn
s , f(s, ·, µn

s , v, α
n
s−)

〉

ds

−
∑

i0 6=j0∈S

∫ θn

tn

〈µn
s , Dmφ(s, µ

n
s , j0, ·)−Dmφ(s, µ

n
s , i0, ·)〉 dMαn

i0j0
(s).

Since OM \ BM = OM \ B is compact and V M
∗ − φ has a strict minimum at (t, µ), there

exists η > 0 independent of v such that φ ≤ V M
∗ − η ≤ V − η on OM \ B. Hence we now

have

φ(tn, µn, i0) = V (θn, µ
n,v
θn

, αn
θn) +

∫ θn

tn

〈

µn
s , f(s, ·, µn

s , vs, α
n
s−)

〉

ds

−
∑

i0 6=j0∈S

∫ θn

tn

〈µn
s , Dmφ(s, µ

n
s , j0, ·)−Dmφ(s, µ

n
s , i0, ·)〉 dMαn

i0j0(s)− η.
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Since (φ− V )(tn, µn, i0) → 0, for n large enough we have

V (tn, µn, i0) ≤ V (θn, µ
n,v
θn

, αn
θn) +

∫ θn

tn

〈

µn
s , f(s, ·, µn

s , vs, α
n
s−)

〉

ds

−
∑

i0 6=j0∈S

∫ θn

tn

〈µs, Dmφ(s, µ
n
s , j0, ·)−Dmφ(s, µ

n
s , i0, ·)〉 dMαn

i0j0(s)−
η

2
.

Taking expectation we obtain

V (tn, µn, i0) ≤ E

[
∫ θn

tn

〈

µn
s , f(s, ·, µn

s , vs, α
n
s−)

〉

ds+ V (θn, µ
n,v
θn

, αn
θn)

]

− η

2

Rewriting the above and noting that η is independent of v ∈ A we get

V (tn, µn, i0) ≤ E

[
∫ θn

tn

f(s,X tn,µn,i0,v
s , µn

s , vs, α
n
s−)ds+ V (θn, µ

n,v
θn

, αn
θn)

]

− η

2
,

contradicting (3.1). Hence V M
∗ is a viscosity supersolution to (3.3).

Step 3: V ∗
M(T, µ, i0) = 〈µ, h(T, ·, µ, i0)〉 for µ ∈ MMeK∗T . Consider a sequence (tn, µn) ∈

OM converging to (T, µ) such that V ∗
M(T, µ, i0) = limn→∞ V (tn, µn, i0). By Assumption 2.2

E

[
∫ T

tn

〈

µn
s , f(s, ·, µn

s , vs, α
n
s−)

〉

ds

]

→ 0,

as n → ∞. By the compactnes of OM , there exists µ̂ ∈ MM such that µn,v
T → µ̂ up to a

subsequence. Itô’s formula implies

〈

µn,v
T − µn, x

j
〉

=

∫ T

tn

〈

µn
s ,L[xj ]

〉

ds → 0,

owing to [4, Lemma 6.8] where L is the operator (3.2) acting only on the x-variable. This
implies µ̂ = µ courtesy Remark 2.2. Consequently for arbitrary v ∈ A:

V ∗
M(t, µ, i0) = lim

n→∞
V (tn, µn, i0)

≤ lim
n→∞

E

[
∫ T

tn

〈

µn
s , f(s, ·, µn

s , vs, α
n
s−)

〉

ds+ 〈µn
T , h(T, ·, µn

T , α
n
T )〉

]

= 〈µ, h(T, ·, µT , i0)〉 .

Since V ∗
M(T, µ, i0) ≥ V (T, µ, i0) = 〈µ, h(T, ·, µ, i0)〉, we conclude that V ∗

M(T, µ, i0) =
〈µ, h(T, ·, µ, i0)〉.

Step 4: V M
∗ (T, µ, i0) = 〈µ, h(T, ·, µ, i0)〉 for µ ∈ MMeK∗T . Consider a sequence (tn, µn) ∈

OM converging to (T, µ) such that V ∗
M(T, µ, i0) = limn→∞ V (tn, µn, i0). As before

E

[
∫ T

tn

〈

µn
s , f(s, ·, µn

s , vs, α
n
s−)

〉

ds

]

→ 0,

uniformly in v ∈ A. In addition 〈µn
T , h(T, ·, µn

T , α
n
T )〉 → 〈µ, h(T, ·, µ, i0)〉 as n → ∞. For

n ∈ N choose vn ∈ A so that

V (tn, µn, i0) ≥ E

[
∫ T

tn

〈

µn
s , f(s, ·, µn

s , v
n
s , α

n
s−)

〉

ds+ 〈µn
T , h(T, ·, µn

T , α
n
T )〉

]

− 1

n
.
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This implies that

V M
∗ (T, µ, i0) = lim

n→∞
V (tn, µn, i0)

≥ lim
n→∞

E

[
∫ T

tn

〈

µn
s , f(s, ·, µn

s , v
n
s , α

n
s−)

〉

ds+ 〈µn
T , h(T, ·, µn

T , α
n
T )〉

]

= 〈µ, h(T, ·, µ, i0)〉 .

�

3.4. Comparison Result.

Proposition 3.3. Let u be a u.s.c. subsolution to (3.3) on OM × M and v be a l.s.c.
subsolution to (3.3) on OM × M, such that u(T, µ, i0) ≤ v(T, µ, i0) for any (T, µ, i0) ∈
OM ×M. Then u ≤ v on OM ×M.

Proof. We argue by contradiction. That is, we assume that there exists i0 ∈ S such that
supOM

(u − v)(·, ·, i0) > 0. Then the proof is similar to [4, Theorem 8.1]. We only need a
few modifications to factor in the additional argument for the state of the Markov chain and
the additional finite sum in the operator Lµ,v,i

t arising due to the presence of the the Markov
chain, if it appears. In particular, one can take u(·, ·) ≡ u(·, ·, i0) and v(·, ·) ≡ v(·, ·, i0) and
the proof of [4, Theorem 8.1] suffices. �

Proposition 3.4. The value function V is the unique viscosity solution to (3.3) on O satisfy-
ing V ∗(T, µ, i0) = V∗(T, µ, i0) = 〈µ, h(T, ·, µ, i0)〉 for (T, µ, i0) ∈ O× S . Moreover, V (·, ·, i0)
restricted to O is Lipschitz continuous in µ and 1

2
-Holder continuous in time.

|V (t, µ, i0)− V (s, ν, i0)| ≤ C
(

d(µ, ν) +
√

|t− s|
)

(3.9)

where C and d depend on M , µ ∈ OM , but ν ∈ O.

Proof. The proof of uniqueness follows from the comparison principle. Since coefficients are
W2-Lipschitz, it is easy to see that V is W2-Lipschitz in O and so, thanks to the dynamic
programming principle, it is 1

2
-Holder continuous in time.

To show that V is Lipschitz in µ with respect to the distance d, recall from Assumption
2.2 that the coefficients b and σ (which do not depend on x) and the cost coefficients µ →
〈f(s, ·, µ, v, i), µ〉 and µ → 〈h(T, ·, µ, i), µ〉 are Lipschitz with respect to a finite number of
moments. This assumption gives Lipschitz continuity of the coefficients for d. Indeed, since
all monomials are contained in Θ and c(xn) ≤ c(Cn,kx

k), where Cn,kx
k denotes the n − k

derivative of xn, for any µ, ν ∈ O we have

|g(µ)− g(ν)| ≤ κ1

n
∑

k=1

|〈µ− ν, xk〉| ≤ κ1

n
∑

k=1

1

Cn,k

c(Cn,kx
k)

c(Cn,kxk)
|〈µ− ν, Cn,kx

k〉|

≤ κ1
Cn

c(xn)

n
∑

k=1

c(Cn,kx
k)|〈µ− ν, Cn,kx

k〉| ≤ κ1Cnd(µ, ν),

where Cn denote a constant which depends just on n an M .
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To prove Lipschitz-continuity in the measure, fix i0 ∈ S, t ∈ [0, T ], µ ∈ OM , consider a
control α ǫ-optimal for (t, µ) ∈ OM and consider another point µ̃ ∈ O. Then

V (t, µ̃, i0)− V (t, µ, i0) ≤ J(t, µ̃, v)− J(t, µ, v) + ǫ

≤ E

∫ T

t

f(s, X̃s, µ̃s, vs, αs−)− f(s,Xs, µs, vs, αs−)ds

+ h(T, X̃T , µ̃T , αT )− h(T, X̃T , µ̃T , αT ) + ǫ

≤ C sup
t≤s≤T

Ed(µ̃s, µs) + ǫ,

where µs = L(Xs|αs−), µ̃s = L(X̃s|αs−). Denoting E
α = E[·|α] and ξ, ξ̃ such that L(ξ) = µ,

L(ξ̃) = µ̃, by Itô’s formula we get (almost surely)

d(µ̃s, µs) =
∑

j

cj|Eα[fj(X̃s)− fj(Xs)]|

≤
∑

j

cj |E[fj(ξ̃)− fj(ξ)]|

+
∑

j

cj

∣

∣

∣
E
α

∫ s

t

{

f ′
j(X̃r)b(r, µ̃r, vr, αr)− f ′

j(Xr)b(r, µr, vr, αr)

+
1

2
f ′′
j (X̃r)σ

2(r, µ̃r, vr, αr)−
1

2
f ′′
j (Xr)σ

2(r, µr, vr, αr)

+ λ(r, µ̃r, vr, αr)

∫

R

(f(X̃r + y)− f(X̃r))γ(dy)− λ(r, µr, vr, αr)

∫

R

(f(Xr + y)− f(Xr))γ(dy)
}

dr
∣

∣

∣
.

Since

gj(x) :=

∫

R

(fj(x+ y)− fj(x))γ(dy) =

deg(fj)
∑

i=1

f
(i)
j (x)

i!

∫

R

yiγ(dy) =

deg(fj)
∑

i=1

mif
(i)
j (x),

the definition of cj(b) (with b = MeK
∗T ), and the property

∑

j cj〈µ, fj〉2 ≤ 1, as µ ∈ OM ,
and the boundedness of b, σ and λ yield

d(µ̃s, µs)

≤ d(µ, µ̃) +

∫ s

t

{

∑

j

cj |Eα[f ′
j(X̃r)− f ′

j(Xr)]||b|∞ + C
∑

j

cj |Eα[f ′
j(Xr)]|d(L(X̃r),L(Xr))

+
1

2

∑

j

cj |Eα[f ′′
j (X̃r)− f ′′

j (Xr)]||σ2|∞ + C
∑

j

cj |Eα[f ′′
j (Xr)]|d(L(X̃r),L(Xr))

+
∑

j

cj|Eα[gj(X̃r)− gj(Xr)]||λ|∞ + C
∑

j

cj|Eα[gj(Xr)]|d(L(X̃r),L(Xr))
}

dr

≤ d(µ, µ̃) + C

∫ s

t

d(L(X̃r),L(Xr))dr,

Thus Gronwall’s lemma, taking expectation, gives the claim. �



14 E. BAYRAKTAR, A. CECCHIN, AND P. CHAKRABORTY

4. Finite agent centralized control problem

4.1. Problem setup and viscosity solution definition. We assume the following state
dynamics interpreted in the weak sense for an N−agent system similar to the controlled
McKean-Vlasov jump-diffusion (2.1)

dXk
s = b(s,Xk

s , µ
N
s , v

N
s , αs−)ds+ σ(s,Xk

s , µ
N
s , v

N
s , αs−)dB

k
s + dJk

s , s > t, k = 1, . . . , N,
(4.1)

with initial condition Xk
s = xk and where {Bk}k are independent Brownian motions, {Jk}k

are independent purely discontinuous processes with controlled intensity λ(s,Xk
s , µ

N
s , vs, αs−)

and the jump sizes are i.i.d. from the distribution γ ∈ P(R) satisfying Assumption 2.2(iii).
The Markov chain α initialized at αt = i0 is the noise common to all agents, and is the same
as in (2.1). Admissible controls are of the form vNs = v(s, µN

s , αs−) taking values in the Polish
space A. The coefficients b, σ, λ, and the distribution γ all satisfy the same Assumption 2.2.
The same is true for the running cost f and the terminal cost h in the value function

uN(t,x, i0) = inf
vN∈A

1

N

N
∑

k=1

E

[∫ T

t

f(s,Xk
s , µ

N
s , v

N
s , αs−)ds+ h(T,Xk

T , µ
N
T , αT )

]

, (4.2)

where Xt = x ∈ R
N . The corresponding HJB turns out to be

− ∂

∂t
uN(t,x, i0) + sup

v

1

N

N
∑

k=1

Hv
k (t,x, i0, NuN , NDuN , ND2uN)

−
∑

j0∈S

qi0j0
[

uN(t,x, j0)− uN(t,x, i0)
]

= 0, (t,x, i0) ∈ [0, T ]× R
N ,×S, (4.3)

where

Hv
k(t,x, i0, u, γ, γ̃) =

[

−
[

f(t, xk, µ
N(x), v, i0) + b(t, xk, µ

N(x), v, i0)γi

+
1

2
σ2(t, xk, µ

N(x), v, i0)γ̃ii + λ(t, xk, µ
N(x), v, i0)

∫

R

[

uN(t,x+ eky, i0)− uN(t,x, i0)
]

γ(dy)

]]

,

where µN(x) =
1

N

∑N
k=1 δxk

. Denote

Hv :=
1

N

N
∑

k=1

Hv
k (4.4)

and H := supv H
v.

Definition 4.1. (i) A function u : [0, T ] × R
N × S → R is a viscosity subsolution of

(4.3) if whenever φ ∈ C1,2([0, T ] × R
N × S) and (u∗ − φ)(·, ·, i0) has a local maxima at

(t,x) ∈ [0, T ]× R
N , then

− ∂

∂t
φ(t,x, i0) +H(t,x, i0, Nφ,NDφ,ND2φ) +

∑

j0∈S

qi0j0 [u(t,x, j0)− u(t,x, i0)] ≤ 0.
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(ii) A function u : [0, T ]× R
N × S → R is a viscosity supersolution of (4.3) if whenever

φ ∈ C1,2([0, T ]×R
N ×S) and (u∗−φ)(·, ·, i0) has a local minima at (t,x) ∈ [0, T ]×R

N , then

− ∂

∂t
φ(t,x, i0) +H(t,x, i0, Nφ,NDφ,ND2φ) +

∑

j0∈S

qi0j0 [u(t,x, j0)− u(t,x, i0)] ≥ 0.

(iii) A function u is a viscosity solution of (4.3) if it is both a viscosity subsolution and a
viscosity supersolution of (4.3).

Notation 4.1. We use the following notation to transform uN to a function on OM × S:

ûN(t, µN(x), i0) := uN(t,x, i0), for (t,x, i0) ∈ [0, T ]× R
N × S. (4.5)

In addition the empirical projection of any ϕ is given by

ϕ̃N(t,x, i0) = ϕ(t, µN(x), i0), for (t,x, i0) ∈ [0, T ]× R
N × S.

Let also

ON =

{

(t, µ) ∈ O : µ =
1

N

N
∑

i=1

δxi
for some x ∈ R

N

}

be the set of empirical measures with finite exponential moment, and

ON
M =

{

(t, µ) ∈ OM : µ =
1

N

N
∑

i=1

δxi
for some x ∈ R

N

}

.

Let us remark that every empirical measure has exponential moments, since it is a finite
measure. Moreover, the value function ûN is defined on ON and not on ON

M , because the
latter set is not invariant for the dynamics of the empirical measure process, while it is
invariant for the limiting dynamics.

Proposition 4.1. The value function uN is the unique viscosity solution to the HJB (4.3).
Furthermore ûN is Lipschitz continuous in µ ∈ O for W2 and is 1

2
-Hölder-continuous in

[0, T ]:

|ûN(t, µN(x))− ûN(s, µN(y))| ≤ C
(

W2(µ
N(x), µN(y)) + |t− s| 12

)

. (4.6)

Proof. In a setting without regime switches, comparison principle for the viscosity solution
of (4.3) is true [24]. Consequently the comparison principle when the regime switches are
present follows just as in the Proof of Proposition 3.3. Then by an application of the
Stochastic Perron’s method [2, 3] we have uniqueness of uN .

Since coefficients are W2-Lipschitz, it is easy to prove that ûN is W2-Lipschitz in µ. From
the dynamic programming principle, it then follows the 1/2 Holder-continuity in time. �

4.2. Convergence to mean field control.

Lemma 4.1. The following relations hold (see for example [9])

∂

∂xi
φN(t,x, i0) =

1

N

∂

∂y
Dmφ̃

N(t, µN(x), i0, xi),

∂2

∂x2
i

φN(t,x, i0) =
1

N

∂2

∂y2
Dmφ̃

N(t, µN(x), i0, xi) +
1

N2

∂

∂y′
∂

∂y
D2

m2φ̃N(t, µN(x), i0, xi, xi),
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where φN and φ̃N are related by

φN(t,x, i0) = φ̃N(t, µN(x), i0).

Remark 4.1. In the following we will often use the following distance like quantity instead
of d2(µ, ν):

d̂(µ, ν) =

∞
∑

j=1

cj〈µ− ν, fj〉2.

We stress that d depends on M , which is the bound on the exponential moments of the
measure, because the cj do. It is readily checked using Cauchy-Schwarz inequality and the
relation

∑∞
j=1 cj ≤ 1, that

d2(µ, ν) ≤ d̂(µ, ν). (4.7)

Theorem 4.1. For any M > 0 we have

sup
(t,µ,i0)∈ON

M
×S

∣

∣V (t, µ, i0)− ûN(t, µ, i0)
∣

∣ ≤ CM

N
1

4

, (4.8)

for a constant CM depending on M .

Remark 4.2. The exponent 1/4 comes from the 1
2
-Hölder continuity in time of the value

functions, as it is clear from the proofs. Assuming more regularity of the coefficients, we
may obtain Lipschitz regularity in time; in the case without jumps and regime switching,
such regularity is proved in [5]. Thus, in this case, we can obtain N− 1

2 as convergence rate.

Proof. We use the following notations:

E+
N = sup

(t,µ,i0)∈ON
M

×S

(

V (t, µ, i0)− ûN(t, µ, i0)
)

,

E−
N = sup

(t,µ,i0)∈ON
M

×S

(

ûN(t, µ, i0)− V (t, µ, i0)
)

.

In order to prove (4.8) it is enough to show that each of E+
N and E−

N satisfy the same bound.
In the following we will only show that

E+
N ≤ C

N
1

4

(4.9)

and the other case can be done similarly. Note that E+
N can be taken to be positive as

otherwise inequality (4.9) holds trivially. The proof has been broken into parts for ease in
reading. We fix M > 0 and define the distance d according to the constant b = MeK

∗

T .
Please note that in the following, the constants C may depend on M and might change from
line to line, but they are not renamed.

Step 1: Doubling of variables. For a positive sequence (εN , ηN) → (0, 0), we define the
following map on (OM × S)× (ON × S), where PN is the set of empirical measures νN (x),
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x ∈ R
N :

ΦN (t, µ, i0, s, ν, j0) = V (t, µ, i0)− ûN(s, ν, j0)−
1

2εN
d̂(µ, ν)− 1

2εN
(t− s)2

− 1

2εN
d̃(i0, j0)−

2T − t− s

4T
E+

N − ηN log
(

1 +
∑

j

cj 〈ν, fj〉2
)

, (4.10)

where ûN is defined above. Note that we add the penalization because ON is not compact.

Step 2: Maximum attained. The maximum of ΦN is attained and at some (t̄, µ̄, ī0, s̄, ν̄, j̄0).
This is because OM is compact, lim|x|→+∞ΦN (t, µ, i0, s, ν

N(x), j0) = −∞ and ΦN is contin-
uous in t, µ, s, ν.

Step 3: Bound on d(µ̄, ν̄). Since ΦN (t̄, µ̄, ī0, s̄, ν̄, j̄0) ≥ ΦN(t̄, ν̄, ī0, s̄, ν̄, j̄0), from the Lipschitz
continuity of V in (3.9), we have

1

2εN
d̂(µ̄, ν̄) ≤ V (t̄, µ̄, ī0)− V (t̄, ν̄, ī0) ≤ Cd(µ̄, ν̄) ≤ C

√

d̂(µ̄, ν̄).

This implies
√

d̂(µ̄, ν̄) ≤ CεN ,

which using relation (4.7) implies

d(µ̄, ν̄) ≤ CεN .

Step 4: Bound on |t̄− s̄|. Since ΦN (t̄, µ̄, ī0, s̄, ν̄, j̄0) ≥ ΦN (s̄, µ̄, ī0, s̄, ν̄, j̄0), we have that

1

2εN
(t̄− s̄)2 ≤ V (t̄, µ̄, ī0)− V (s̄, µ̄, ī0) +

t̄− s̄

4T
E+

N ≤ C|t̄− s̄| 12 + t̄− s̄

4T
E+

N ,

where we have utilized the Hölder property of V . Since E+
N is bounded (V and uN both

bounded on ON
M × S) we obtain

|t̄− s̄| 12 ≤ Cε
1

3

N .

Step 5: Bound on d̃(i0, j0). Since ΦN (t̄, µ̄, ī0, s̄, ν̄, j̄0) ≥ ΦN(t̄, µ̄, j̄0, s̄, ν̄, j̄0), we have that

1

2εN
d̃(i0, j0) ≤ V (t̄, µ̄, ī0)− V (t̄, µ̄, j̄0).

Since the right hand side is bounded we have

d̃(i0, j0) ≤ CεN .

Since εN → 0, for N large enough we have that ī0 = j̄0. In the sequel we will assume that
N is large enough so that this is indeed the case.
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Step 6 Case I: t̄ = T . For (t, µ, i0) ∈ ON
M×S, we have ΦN (t̄, µ̄, ī0, s̄, ν̄, j̄0) ≥ ΦN(t, µ, i0, t, µ, i0).

This implies

V (t, µ, i0)− ûN(t, µ, i0)

≤ 2T − 2t

4T
E+

N + V (t̄, µ̄, ī0)− ûN(s̄, ν̄, j̄0)−
1

2εN
d̂(µ̄, ν̄)− 1

2εN
(t̄− s̄)2 − t̄− s̄

4T
E+

N

− ηN log
(

1 +
∑

j

cj 〈ν̄, fj〉2
)

+ ηN log
(

1 +
∑

j

cj 〈µ, fj〉2
)

≤ 1

2
E+

N + V (t̄, µ̄, ī0)− ûN(s̄, ν̄, j̄0) + ηN log
(

1 +
∑

j

cj 〈µ, fj〉2
)

.

We notice that

V (t̄, µ̄, ī0)− ûN(s̄, ν̄, j̄0) = 〈µ̄, h(T, ·, µ̄, ī0)〉 − 〈ν̄, h(T, ·, ν̄, ī0)〉
+ ûN(T, ν̄, j̄0)− ûN(s̄, ν̄, j̄0).

Using the Lipschitz assumption on h and Holder continuity of uN in time, we get

V (t̄, µ̄, ī0)− ûN(s̄, ν̄, j̄0) ≤ C
(

d(µ̄, ν̄) + |T − s̄| 12
)

≤ Cε
1

3

N ,

as long as εN & 1
N

. Now taking supremum over (t, µ, i0), and recalling that
∑

j cj 〈µ, fj〉2 ≤ 1
if µ ∈ OM , we obtain

E+
N ≤ C

(

ε
1

3

N + ηN
)

+
1

2
E+

N =⇒ E+
N ≤ C

(

ε
1

3

N + ηN
)

. (4.11)

Step 7 Case II: s̄ = T . Similar to Case I.

Step 7 Case III: 0 ≤ t̄, s̄ < T . We use the viscosity solution properties.

(i) ûN − ϕ has a minimum at (s̄, ν̄, j̄0) where

ϕ(s, ν, j0) = V (t̄, µ̄, ī0)−
1

2εN
d̂(µ̄, ν)− 1

2εN
(t̄− s)2

− 1

2εN
d̃(̄i0, j0)−

2T − t̄− s

4T
E+

N − ηN log
(

1 +
∑

j

cj 〈ν, fj〉2
)

.

Recall that ν̄ = µN(xν̄) for some xν̄ ∈ R
n. Let us now define the function

ϕ̃N(s,x, j0) := ϕ(s, µN(x), j0).

It is readily checked that ϕ̃N ∈ C1,2([0, T ]× R
N × S). This implies

s̄− t̄

εN
− 1

4T
E+

N +
1

N
sup
v

N
∑

k=1

Hv
k(s̄,x

ν̄ , j̄0, Nϕ̃N , NDϕ̃N , ND2ϕ̃N)

+
∑

j0∈S

qi0j0
[

ϕ̃N(s̄,xν̄ , j0)− ϕ̃N(s̄,xν̄ , j̄0)
]

≥ 0. (4.12)

It is readily checked that
∑

j0∈S

qi0j0
[

ϕ̃N(s̄,xν̄ , j0)− ϕ̃N(s̄,xν̄ , j̄0)
]

=
1

2εN

∑

j0∈S

qī0j01j0 6=j̄0 .
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Here using Lemma 4.1 and the definition of linear derivative

1

N
sup
v

N
∑

k=1

Hv
k(s̄,x

ν , j̄0, Nϕ̃N , NDϕ̃N , ND2ϕ̃N)

=
1

N
sup
v

N
∑

k=1

[

p(s̄, xν̄
k, ν̄, v, j̄0, Dmϕ

N)− r(s̄, xν̄
k, ν̄, v, j̄0, Dmϕ)

]

= sup
v

〈

ν̄,
[

p(s̄, ·, ν̄, v, j̄0, Dmϕ
N)− r(s̄, ·, ν̄, v, j̄0, Dmϕ

N , D2
m2ϕN)

]〉

where

p(t, x, ν, v, i0, Dmφ
N) = −

(

f(t, x, ν, v, i0) + Lν,i0,v
t [Dmφ

N ](x)
)

and

r(t, x, ν, v, i0, Dmφ
N , D2

m2φN) =
1

N

σ2

2
(t, x, ν, v, i0)

∂

∂y

∂

∂y′
D2

m2φN(t, ν, i0, x, x)

+ λ(t, x, ν, v, i0)

[
∫

R

∫ 1

0

{

Dmφ
N(t, ν +

r

N
(δx+y − δx), i0, x+ y)

−Dmφ
N(t, ν +

r

N
(δx+y − δx), i0, x)

}

dr

−
(

Dmφ
N(t, ν, i0, x+ y)−Dmφ

N(t, ν, i0, x)
)]

γ(dy)

(ii) V − ψ has a maximum at (t̄, µ̄, ī0) where

ψ(t, µ, i0) = ûN(s̄, ν̄, j̄0) +
1

2εN
d2(µ, ν̄) +

1

2εN
(t− s̄)2 +

1

2εN
d̃(i0, j̄0)

+
2T − s̄− t

4T
E+

N + ηN log
(

1 +
∑

j

cj 〈ν̄, fj〉2
)

.

This implies

−∂tψ(t̄, µ̄, ī0) +H(t̄, µ̄, ī0, Dmψ) +
∑

j0∈S

qī0j0 [ψ(t̄, µ̄, j0)− ψ(t̄, µ̄, ī0)] ≤ 0.

Consequently

− t̄− s̄

εN
+

1

4T
E+

N +H(t̄, µ̄, ī0, Dmψ) +
∑

j0∈S

qī0j0 [ψ(t̄, µ̄, j0)− ψ(t̄, µ̄, ī0)] ≤ 0. (4.13)

Here it is readily checked that
∑

j0∈S

qī0j0 [ψ(t̄, µ̄, j0)− ψ(t̄, µ̄, ī0)] =
1

2εN

∑

j0∈S

qī0j01{j0 6=ī0}.

In addition we have

H(t̄, µ̄, ī0, Dmψ) = sup
v

〈

µ̄,−
{

f(t̄, ·, µ̄, v, ī0) + Lµ̄,̄i0,v
t̄ [Dmψ]

}〉

= sup
v

〈µ̄, p(t̄, ·, µ̄, v, ī0, Dmψ)〉 .
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(iii) Adding (4.12) and (4.13) we obtain that

1

2T
E+

N ≤ sup
v

〈

ν̄,
[

p(s̄, ·, ν̄, v, j̄0, Dmϕ
N )− r(s̄, ·, ν̄, v, j̄0, Dmϕ

N)
]〉

− sup
v

〈µ̄, p(t̄, ·, µ̄, v, ī0, Dmψ)〉

≤ sup
v

〈

ν̄,
{

p(s̄, ·, ν̄, v, j̄0, Dmϕ
N)− p(t̄, ·, µ̄, v, ī0, Dmψ)

}〉

− inf
v
〈µ̄− ν̄, p(t̄, ·, µ̄, v, ī0, Dmψ)〉

− inf
v

〈

ν̄, r(s̄, ·, ν̄, v, j̄0, Dmϕ
N )

〉

=: I1 + I2 + I3. (4.14)

Assumption 2.2 gives that the function 〈µ, f(t̄, ·, µ, v, ī0)〉 is Lipschitz for d. Thus

〈µ̄, f(t̄, ·, µ̄, v, ī0)〉 − 〈ν̄, f(s̄, ·, ν̄, v, ī0)〉 ≤ C(|t̄− s̄|+ d(µ̄, ν̄)) ≤ Cε
2

3

N .

Bound for I1. We have

Dmϕ(t, ν, j0, x) =
1

εN

∞
∑

j=1

cj 〈µ̄− ν, fj〉 fj(x)− 2ηN

∑

j cj 〈µ, fj〉 fj(x)
1 +

∑

j cj 〈µ, fj〉
2 , (4.15)

Dmψ(t, µ, i0, x) =
1

εN

∞
∑

j=1

cj 〈µ− ν̄, fj〉 fj(x), (4.16)

and, since µ̄ ∈ OM

∑

j

cj 〈ν̄, fj〉2 ≤ 2d̂(µ̄, ν̄) + 2
∑

j

cj 〈µ̄, fj〉2 ≤ 2Cε2N + 2 ≤ 3 (4.17)

if N is large enough. We compute
∣

∣

∣

∣

b(s̄, ν̄, v, ī0)
∂

∂x
Dmϕ

N(s̄, ν̄, ī0, x)− b(t̄, µ̄, v, j̄0)
∂

∂x
Dmψ(t̄, µ̄, ī0, x)

∣

∣

∣

∣

≤ |b(s̄, ν̄, v, ī0)− b(t̄, µ̄, v, j̄0)|
1

εN

∞
∑

j=1

cj
∣

∣〈µ̄− ν̄, fj〉 f ′
j(x)

∣

∣ + |b(s̄, ν̄, v, ī0)|2ηN
∑

j cj | 〈ν̄, fj〉 f ′
j(x)|

1 +
∑

j cj 〈ν̄, fj〉
2

≤ C(|t̄− s̄|+ d(µ̄, ν̄))
1

εN

∞
∑

j=1

cj
∣

∣〈µ̄− ν̄, fj〉 f ′
j(x)

∣

∣ + CηN

∑

j cj| 〈ν̄, fj〉 f ′
j(x)|

1 +
∑

j cj 〈ν̄, fj〉
2

≤ C

ε
1

3

N

∞
∑

j=1

cj
∣

∣〈µ̄− ν̄, fj〉 f ′
j(x)

∣

∣+ CηN

∑

j cj| 〈ν̄, fj〉 f ′
j(x)|

1 +
∑

j cj 〈ν̄, fj〉2
.

Similarly we obtain that
∣

∣

∣

∣

σ2

2
(s̄, ν̄, v, ī0)

∂2

∂x2
Dmϕ

N(s̄, ν̄, ī0, x)−
σ2

2
(t̄, x, µ̄, v, j̄0)

∂2

∂x2
Dmψ(t̄, µ̄, ī0, x)

∣

∣

∣

∣

≤ C

ε
1

3

N

∞
∑

j=1

cj
∣

∣〈µ̄− ν̄, fj〉 f ′′
j (x)

∣

∣ + CηN

∑

j cj| 〈ν̄, fj〉 f ′′
j (x)|

1 +
∑

j cj 〈ν̄, fj〉2
,
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and
∣

∣

∣

∣

λ(s̄, x, ν̄, v, ī0)

∫

R

(

Dmϕ
N(s̄, ν̄, ī0, x+ y)−Dmϕ

N(s̄, ν̄, ī0, x)
)

γ(dy)

−λ(t̄, x, µ̄, v, ī0)

∫

R

(Dmψ(t̄, µ̄, ī0, x+ y)−Dmψ(t̄, µ̄, ī0, x)) γ(dy)

∣

∣

∣

∣

≤ C

ε
1

3

N

∞
∑

j=1

cj

∣

∣

∣

∣

〈µ̄− ν̄, fj〉
∫

R

(fj(x+ y)− fj(x)) γ(dy)

∣

∣

∣

∣

+ CηN

∑

j cj | 〈ν̄, fj〉
∫

R
(fj(x+ y)− fj(x)) γ(dy)|

1 +
∑

j cj 〈ν̄, fj〉
2

=
C

ε
1

3

N

∞
∑

j=1

cj |〈µ̄− ν̄, fj〉 gj(x)|+ CηN

∑

j cj| 〈ν̄, fj〉 gj(x)|
1 +

∑

j cj 〈ν̄, fj〉2
,

where the last equality follows by Taylor’s expansion and the polynomial

gj(x) =

∫

R

(fj(x+ y)− fj(x)) γ(dy) =

∞
∑

i=1

mif
(i)
j (x).

Consequently
∣

∣p(s̄, x, ν̄, v, j̄0, Dmϕ
N)− p(t̄, x, µ̄, v, ī0, Dmψ)

∣

∣

≤ C

ε
1

3

N

∞
∑

j=1

cj
∣

∣〈µ̄− ν̄, fj〉
(

f ′
j(x) + f ′′

j (x) + gj(x)
)∣

∣+ CηN

∑

j cj | 〈ν̄, fj〉
(

f ′
j(x) + f ′′

j (x) + gj(x)
)

|
1 +

∑

j cj 〈ν̄, fj〉
2 .

This implies by Cauchy-Schwarz inequality

|I1| ≤
C

ε
1

3

N

(

∞
∑

j=1

cj〈µ̄− ν̄, fj〉2
∞
∑

j=1

cj

(

〈

ν̄, f ′
j

〉2
+
〈

ν̄, f ′′
j

〉2
+ 〈ν̄, gj〉2

)

)1/2

+ CηN

(

∑∞
j=1 cj〈ν̄, fj〉

2 ∑∞
j=1 cj

(

〈

ν̄, f ′
j

〉2
+
〈

ν̄, f ′′
j

〉2
+ 〈ν̄, gj〉2

))1/2

1 +
∑

j cj 〈ν̄, fj〉
2

≤ C

ε
1

3

N

(d̂(µ̄, ν̄))1/2 + CηN ≤ Cε
2

3

N + CηN , (4.18)

since d̂(µ̄, ν̄) ≤ Cε2N and
∑∞

j=1 cj〈ν̄, φj〉2 ≤ 3 for φj = f ′
j, f

′′
j , gj (see [4] and (4.17)).

Bound for I2. By Assumption 2.2 and similar computations as above, we have

b(t̄, x, µ̄, v, ī0)
∂

∂x
Dmψ(t̄, µ̄, ī0, x) ≤

C

εN

∞
∑

j=1

cj 〈µ̄− ν̄, fj〉 f ′
j(x),

σ2

2
(t̄, x, µ̄, v, ī0)

∂2

∂x2
Dmψ(t̄, µ̄, ī0, x) ≤

C

εN

∞
∑

j=1

cj 〈µ̄− ν̄, fj〉 f ′′
j (x),

λ(t̄, x, µ̄, v, ī0)

∫

R

(Dmψ(t̄, µ̄, ī0, x+ y)−Dmψ(t̄, µ̄, ī0, x)} γ(dy) ≤
C

εN

∞
∑

j=1

cj 〈µ̄− ν̄, fj〉 gj(x).
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This implies

I2 = sup
v∈A

〈

µ̄− ν̄,Lµ̄,̄i0,v
t̄ [Dmψ]

〉

=
1

εN

∞
∑

j=1

cj 〈µ̄− ν̄, fj〉
[

〈

µ̄− ν̄, b(t̄, µ̄, v, ī0)f
′
j

〉

+

〈

µ̄− ν̄,
σ2

2
(t̄, µ̄, v, ī0)f

′′
j

〉

+ 〈µ̄− ν̄, λ(t̄, µ̄, v, ī0)gj〉
]

≤ C

εN

∞
∑

j=1

cj
∣

∣〈µ̄− ν̄, fj〉
[〈

µ̄− ν̄, f ′
j

〉

+
〈

µ̄− ν̄, f ′′
j

〉

+ 〈µ̄− ν̄, gj〉
]∣

∣

≤ C

εN

(

∞
∑

j=1

cj〈µ̄− ν̄, fj〉2
)1/2





(

∞
∑

j=1

cj
〈

µ̄− ν̄, f ′
j

〉2

)1/2

+

(

∞
∑

j=1

cj
〈

µ̄− ν̄, f ′′
j

〉2

)1/2

+

(

∞
∑

j=1

cj〈µ̄− ν̄, gj〉2
)1/2



 ≤ C

εN
d̂(µ̄, ν̄) ≤ CεN .

Consequently we have

|I2| ≤ CεN . (4.19)

Bound for I3. Observe that

D2
m2ϕN(s̄, ν̄, j̄0, y, y

′) =
1

εN

∞
∑

j=1

cjfj(y)fj(y
′)

− 2ηN

∑∞
j=1 cjfj(y)fj(y

′)
(

1 +
∑∞

j=1 cj 〈ν̄, fj〉
2 )− 2

∑∞
j=1 cj 〈ν̄, fj〉 fj(y)

∑∞
i=1 ci 〈ν̄, fi〉 fi(y′)

(

1 +
∑∞

j=1 cj 〈ν̄, fj〉
2 )2

= rN1 + ηNr
N
2

We bound the second term as
〈

ν̄,
∂

∂y

∂

∂y′
rN2 (ν̄, x, x)

〉

≤ 2

∑∞
j=1 cj

〈

ν̄, f ′2
j

〉 (

1 +
∑∞

j=1 cj 〈ν̄, fj〉
2 )+ 2

(
∑∞

j=1 cj 〈ν̄, fj〉
〈

ν̄, f ′2
j

〉
1

2

)2

(

1 +
∑∞

j=1 cj 〈ν̄, fj〉
2 )2

≤ 2

∑∞
j=1 cj 〈ν̄, fj〉

(

1 + 3
∑∞

j=1 cj 〈ν̄, fj〉2
)

(

1 +
∑∞

j=1 cj 〈ν̄, fj〉2
)2

≤ 6

(

∑∞
j=1 cj 〈ν̄, fj〉2

)
1

2

1 +
∑∞

j=1 cj 〈ν̄, fj〉2
≤ 6,
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while the first term is bounded by
〈

ν̄,
1

N
rN1 (ν̄, x, x)

〉

=
1

NεN

∞
∑

j=1

cj
〈

ν̄, (f ′
j)

2
〉

≤ 1

NεN

∞
∑

j=1

cj 〈ν̄, fj〉

≤ C

NεN

where we have used (4.17). Furthermore we notice that

I13 (x, y) =

∫ 1

0

[

Dmϕ
N (s̄, ν̄ +

r

N
(δx+y − δx), x+ y)−Dmϕ

N(s̄, ν̄, j̄0, x+ y)
]

dr

=

∫ 1

0

1

εN

∞
∑

j=1

cj

(〈

µ̄− (ν̄ +
r

N
(δx+y − δx)), fj

〉

− 〈µ̄− ν̄, fj〉
)

fj(x+ y)dr

=
1

2NεN

∞
∑

j=1

cj (fj(x+ y)− fj(x)) fj(x+ y).

Let us omit the penalization term with the log, which is bounded in a similar way. Similarly

I23 (x, y) =

∫ 1

0

[

Dmϕ
N(s̄, ν̄ +

r

N
(δx+y − δx), x)−Dmϕ

N (s̄, ν̄, j̄0, x)
]

dr

=
1

2NεN

∞
∑

j=1

cj (fj(x+ y)− fj(x)) fj(x).

This implies
∫

R

[

I13 (x, y)− I23 (x, y)
]

γ(dy) =
1

2NεN

∞
∑

j=1

cj

∫

R

{fj(x+ y)− fj(x)}2γ(dy)

≤ 1

2NεN

∞
∑

j=1

cj

(
∫

R

(fj(x+ y)− fj(x))γ(dy)

)2

=
1

2NεN

∞
∑

j=1

cjg
2
j (x).

Thus
〈

ν̄,

∫

R

[I13 (·, y)− I23 (·, y)]γ(dy)
〉

≤ 1

2NεN

∞
∑

j=1

cj
〈

ν̄, g2j
〉

≤ 1

2NεN

∞
∑

j=1

cj〈ν̄, gj〉2 ≤
1

2NεN
.

Since λ and σ are bounded we conclude that

|I3| ≤
C

NεN
+ CηN . (4.20)

Bound for E+
N . Combining (4.11), (4.18), (4.19) and (4.20), we obtain from (4.14)

E+
N ≤ C

(

ε
1

3

N + ηN +
1

NεN

)

.
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By choosing the optimal εN = 1

N
3
4

and ηN arbitrarily, we get the desired result E+
N ≤ C

N
1

4

. �

5. Propagation of chaos

In this section we consider, for completeness, the case in which the value function of the
limiting mean field control problem is smooth. In such case, the limiting optimal trajectory
is unique and thus our aim in to prove a quantitative propagation of chaos result, that is,
to bound the distance between the optimal trajectories µN

t and µt for the finite-agent and
mean field control problems respectively. Notably, this bound involves not only the value
functions, but also their measure derivatives. The bound obtained in this section is more
standard and independent of the previous main result Theorem 4.1, and is obtained in terms
of the Wasserstein distance.

To that aim we introduce some additional assumptions. Note that here we run our analylis
on the entire ON , not on ON

M .

Assumption 5.1. We have that V (t, µ, i0) is continuously differentiable in time and twice
continuously (linear functional) differentiable in the measure µ. The derivative Dmϕ is
twice continuously differentiable and D2

m2ϕ once continuously differentiable in space. All the
derivatives are uniformly bounded. Further, uN ∈ C1,2([0, T ]× R

N).

This assumption permits to improve the convergence rate for the value functions in
(4.8), while to bound the optimal trajectories we also need some assumptions on the pre-
Hamiltonian Hv given by (3.4).

Assumption 5.2. The pre-Hamiltonian Hv(t, µ, i0, DmV ) is continuously differentiable in
v ∈ A, ∂vHv is Lipschitz continuous with respect to µ, and Hv is uniformly concave in A:

Hv2(t, µ, i0, DmV ) ≤ Hv1(t, µ, i0, DmV )− ∂vHv1(t, µ, i0, DmV )|v1 − v2| − λ|v1 − v2|2,

for some λ > 0.

Let v∗,N be the optimal feedback control for the N -agent optimization and v∗ be the
optimal feedback control for the the mean field control problem. The optimal controls are
unique because of the assumed regularity and uniform concavity.

Remark 5.1. Since v 7→ Hv is continuously differentiable and strictly concave, v∗(t, µ, i0)
appears as the unique solution of the equation ∂vHv(t, µ, i0, DmV ) = 0. By the implicit
function theorem, v∗ is also Lipschitz continuous in the space and measure arguments.

Remark 5.2. In a setting without jumps and when the diffusion coefficient σ is uncontrolled,
Assumption 5.2 can be seen in [7] where the drift coefficient is assumed to be an affine
function of the control and the cost function is assumed to be convex.
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Observe that from (4.4) using Lemma 4.1 and denoting ϕk(t,x) ≡ ϕ(t, xk, µ
N(x), v, i0) for

ϕ = f , b, σ, λ we have

Hv(t,x, i0, NuN , NDuN , ND2uN) = − 1

N

N
∑

k=1

[

fk(t,x) + bk(t,x)
∂

∂y
Dmû

N(t, µN(x), i0, xk)

+
σ2
k

2
(t,x)

(

∂2

∂y2
Dmû

N(t, µN(x), i0, xk) +
1

N

∂

∂y

∂

∂y′
D2

m2 ûN(t, µN(x), i0, xk, xk)

)

+λk(t,x)

∫

R

∫ 1

0

[

Dmû
N(t, µN(x) +

r

N
(δxk+y − δxk

), i0, xk + y )

−Dmû
N(t, µN(x) +

r

N
(δxk+y − δxk

), i0, xk)
]

dsγ(dy)
]

,

where ûN is given by (4.5). Recalling (3.4) we thus have

Hv(t,x, i0, NuN , NDuN , ND2uN) = Hv(t, µN(x), i0, Dmû
N) +Rv

1(t, µ
N(x), i0, û

N)

+Rv
2(t, µ

N(x), i0, û
N), (5.1)

where

Rv
1(t, µ

N(x), i0, û
N) =

1

N

〈

µN(x),
∂

∂y

∂

∂y′
D2

m2 ûN(t, µN(x), i0, ·, ·)
〉

,

and

Rv
2(t, µ

N(x), i0, û
N) =

〈

µN(x), λ(s, ·, µN(x), v, i0)

[
∫

R

[

Dmû
N(t, µN(x), i0, ·+ y)

−
∫ 1

0

Dmû
N(t, µN(x) +

r

N
(δ·+y − δ·), i0, ·+ y)dr

]

γ(dy)−
∫

R

[

Dmû
N(t, µN(x), i0, ·)

−
∫ 1

0

Dmû
N(t, µN(x) +

r

N
(δ·+y − δ·), i0, ·)dr

]

γ(dy)

]〉

Lemma 5.1. Under Assumption 5.1 for µN(x) ∈ ON
M

|Rv∗,N

1 (s, µN(x), i0, û
N)|+ |Rv∗,N

2 (s, µN(x), i0, û
N)| ≤ C

N
.

As a consequence, Ṽ N almost solves (4.3):

− ∂

∂t
Ṽ N (t,x, i0) + sup

v

1

N

N
∑

k=1

Hv
k (t,x, i0, NṼ N , NDṼ N , ND2Ṽ N)

−
∑

j0∈S

qi0j0

[

Ṽ N(t,x, j0)− Ṽ N(t,x, i0)
]

= O
( 1

N

)

, (t,x, i0) ∈ [0, T ]× R
N ,×S, (5.2)

and we obtain

sup
(t,µ,i0)∈ON×S

∣

∣V (t, µ, i0)− ûN(t, µ, i0)
∣

∣ ≤ C

N
. (5.3)
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Proof. The term Rv∗,N

1 is bounded because D2
m2 is continuously differentiable with uniformly

bounded derivatives. Observe that by definition of the linear functional derivative (with
non-relevant arguments omitted)

Dmû
N(µN(x) +

r

N
(δx+y − δy), x+ y)−Dmû

N(µN(x), x+ y)

=
r

N

∫ 1

0

(

D2
m2 ûN(µN(x) +

r1r

N
(δx+y − δx), x+ y, x+ y)

−D2
m2 ûN(µN(x) +

r1r

N
(δx+y − δx), x+ y, y)

)

dr1.

Since γ satisfies Assumption 2.2(iii), we conclude that Rv∗,N

2 ≤ C
N

. This implies (5.2) and,

as a consequence, Ṽ N(t,x, i0) = V (t, µN(x), i0) is such that Ṽ − C
N
(T − t) is a (classical)

subsolution to (4.3), while Ṽ + C
N
(T − t) is a (classical) supersolution. Thus the comparison

principle gives

sup
(t,x,i0)∈[0,T ]×RN×S

∣

∣

∣
Ṽ (t,x, i0)− uN(t,x, i0)

∣

∣

∣
≤ C

N
,

which is equivalent to (5.3). �

We can now estimate the distance between the feedback functions

Lemma 5.2. Let µN
s be the optimal empirical measure process for the centralized finite-agent

control problem. Under Hypotheses 5.1 and 5.2 we have

E

∫ T

0

|v∗(s, µN
s , αs)− v∗,N(s, µN

s , αs)|2ds ≤
C

N
. (5.4)

Proof. We compute the expected value of V along µN .

E
[

V (T, µN
T , αT )

]

− E
[

V (0, µN
0 , α0)

]

= E

[
∫ T

0

∂

∂s
V (s, µN

s , αs)ds

]

= E

[

−
∫ T

0

Hv∗(s, µN
s , αs, DmV )ds+

∫ T

0

∑

j0∈S

qαs−j0[V (s, µN
s , j0)− V (s, µN

s , αs−)]

]

.

From (5.3) we thus have

E
[

V (T, µN
T , αT )

]

− E
[

V (0, µN
0 , α0)

]

≤ E

[

−
∫ T

0

Hv∗,N (s, µN
s , αs, DmV ) +

∑

j0∈S

qαs−j0 [û
N(s, µN

s , j0)− ûN(s, µN
s , αs−)]ds

]

+ E

[
∫ T

0

(

Hv∗,N (s, µN
s , αs, DmV )−Hv∗(s, µN

s , αs, DmV )
)

ds

]

+
C

N
.
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From the relation (5.1) we then have

E
[

V (T, µN
T , αT )

]

− E
[

V (0, µN
0 , α0)

]

≤ E

[

−
∫ T

0

Hv∗,N (s, µN
s , αs, NṼ N , NDṼ N , ND2Ṽ N )ds

+
∑

j0∈S

qαs−j0 [û
N(s, µN

s , j0)− ûN(s, µN
s , αs−)]ds

]

+

∫ T

0

[Rv∗,N

1 (s, µN
s , αs, Ṽ

N) +Rv∗,N

2 (s, µN
s , αs, Ṽ

N)]ds

+ E

[
∫ T

0

(

Hv∗,N (s, µN
s , αs, DmV )−Hv∗(s, µN

s , αs, DmV )
)

ds

]

+
C

N
.

Consequently since R1 +R2 satisfy Lemma 5.1 this implies from (4.3)

E
[

V (T, µN
T , αT )

]

−E
[

V (0, µN
0 , α0)

]

≤ E
[

ûN(T, µN
T , αT )

]

− E
[

ûN(0, µN
0 , α0)

]

+ E

[
∫ T

0

(

Hv∗,N (s, µN
s , αs, DmV )−Hv∗(s, µN

s , αs, DmV )
)

ds

]

+
C

N
.

Again using Theorem 4.1 we now obtain

E

[∫ T

0

(

Hv∗(s, µN
s , αs, DmV )−Hv∗,N (s, µN

s , αs, DmV )
)

ds

]

≤ C

N
. (5.5)

Since v∗ maximizes the pre-Hamiltonian Hv(s, µN
s , αs, DmV ) we have from Assumption 5.2

Hv∗(s, µN
s , αs, DmV )−Hv∗,N (s, µN

s , αs, DmV ) ≥ λ|v∗s − v∗,Ns |2.
This implies from (5.5) that (5.4) holds. �

Let B = {Bk}Nk=1 be independent Brownian motions, U = {Ul}∞l=1 be an infinite sequence
of i.i.d. random variables from γ, and N = {Nk}Nk=1 be independent standard Poisson
processes. Recall v∗,N is the unique optimal feedback control for the N -agent optimization
and µN is the corresponding optimal measure trajectory. In addition let (X∗,k)1≤k≤N be the
corresponding optimal jump diffusion with v∗,N as the control and driven by B, U and N as
follows

dX∗,k
s = b(s,X∗,k

s , µN
s , v

∗,N
s , αs−)ds+ σ(s,X∗,k

s , µN
s , v

∗,N
s , αs−)dB

k
s + dJ∗,k

s ,

where

J∗,k
s =

N∗,k
t

∑

l=1

Ul, N∗,k
t = Nk

(
∫ t

0

λ
(

s,X∗,k
s , µN

s , v
∗,N
s , αs−

)

ds

)

.

Let (Y k)1≤k≤N be defined similarly driven by the same B, U and N , but with v∗ as the
control. Let ρN be the corresponding empirical measure trajectory.

Recall v∗ is the unique optimal feedback control for the the mean field control problem and
µ is the corresponding optimal measure trajectory. In addition let X∗ be the corresponding
optimal jump diffusion with v∗ as the control. We also consider N i.i.d. copies of X∗, namely,
{X̃∗,k}1≤k≤N which are driven by B, U and N .

The proof of the following theorem is a standard argument of propagation of chaos, thus it
is omitted. It uses the W2-Lipschitz-continuity of the coefficients and the established bound
(5.4).
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Theorem 5.1. Under Assumptions 5.1, 5.2, and 2.2-(v),

E

(

sup
s∈[0,T ]

1

N

N
∑

k=1

|X∗,k
s − Y k

s |2
)

≤ C

N
(5.6)

E

(

sup
s∈[0,t]

1

N

N
∑

k=1

|X̃k
s − X̃∗

s |2
)

≤ C

N
(5.7)

E

[

sup
t∈[0,T ]

W2(µ
N
t , ρ

N
t )

]

≤ C√
N

(5.8)

E

[

sup
t∈[0,T ]

W2(µ
N
t , µt)

]

≤ C

N1/9
(5.9)
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