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MEAN FIELD CONTROL AND FINITE AGENT APPROXIMATION FOR
REGIME-SWITCHING JUMP DIFFUSIONS

ERHAN BAYRAKTAR, ALEKOS CECCHIN, AND PRAKASH CHAKRABORTY

ABSTRACT. We consider a jump-diffusion mean field control problem with regime switching
in the state dynamics. The corresponding value function is characterized as the unique
viscosity solution of a HJB master equation on the space of probability measures. Using
this characterization, we prove that the value function, which is not regular, is the limit of
a finite agent centralized optimal control problem as the number of agents go to infinity,
with an explicit convergence rate. Assuming in addition that the value function is smooth,
we establish a quantitative propagation of chaos result for the optimal trajectory of agent
states.

1. INTRODUCTION

Mean field control problems with regime switching state dynamics is a growing activity of
research starting from the works of [23, 26, 27, 29] and most was recently considered by [18§].
This line of research activity is motivated from the need to control large identical interacting
control systems where the interaction is mean-field and there exists a common noise affecting
each system. Though Brownian common noise has been studied at length in the literature,
a simpler example is a Markov chain representing the regime switches experienced by each
system in the network. From a modeling perspective too such hybrid models have been
shown to be extremely powerful [13, 14, 28, 30|. In contrast to a common Markov switching,
it is indeed possible to have a network where each system has its own switching mechanism.
Such a model has been analyzed in [26, 29]. However since there is already a mean field
interaction between the systems it is sensible to have just one common random switching
mechanism to incorporate the hybrid nature of the network.

In this work we model each individual system identically using a controlled jump-diffusion,
where the jumps are independent and identically distributed (i.i.d.) and the drift, diffusion
and jump intensity coefficients are modulated by the same Markov chain. The mean-field
limit of this network is expected to be characterized by the distribution, conditioned on the
history of the switching process, of the solution of a McKean Vlasov jump diffusion with
regime switching coefficients. This mean field limit in an uncontrolled setup and without
jumps has been analyzed in [22]. In some papers including [21, 23, 29| the mean field
interaction has been represented by the conditional expectation of the solution of the McKean
Vlasov jump diffusion. In [22, 29], the stochastic maximum principle has been studied and
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obtained. In contrast, we use Bellman’s dynamic programming principle approach to obtain
a master equation as in [1] and [25]. This equation can be studied by Lions’ lifting of
measure-dependent functions to appropriate functions on the space of random variables.
Traditionally the Wasserstein space of measures and the £2 space of random variables are
used for this purpose. If now the solution is regular enough a classical interpretation of the
master equation is used. Else, one relies on appropriate viscosity solution theory. Because of
the jump terms present in our model, working with Lion’s derivative is not enough to state
the master equation in our case, and one needs to rely on the linear functional derivative
alone. This has been mentioned and explored in [4] while analyzing a controlled McKean
Vlasov jump diffusion without regime switches. In addition [4] provides a theory of viscosity
solutions on the space of probability measures that does not rely on lifting to a Hilbert space.
It is this notion of viscosity solution that we will use, modified of course to account for the
regime switches, in addition to the metric (equivalent to weak topology) on the space of
probability measures defined therein.

The mean field control problem we analyze in the paper is the same as in [4], and is
slightly different from the usual one. Namely, in the finite-agent centralized optimization,
the strategy of any agent is usually expected to depend on the private state and on the
empirical measure of the system, while here it is independent of the private state. In other
words, each agent uses as control the same stochastic process which is given by the central
planner, and we believe that there are several situations which can be modeled in this way.
As a consequence, the controls employed in the limiting mean field control problem are just
deterministic functions of time.

In order to prove convergence of the finite state optimization to the mean field optimiza-
tion, in the usual setup, there are several approaches. Let us mention [12, 11, 19| where
the problem is tackled probabilistically through compactness arguments. In addition con-
vergence with rates can be obtained through FBSDE techniques, see [8] and [20], the latter
with interaction also through the law of the control; but these papers assume convexity in
the measure argument. Another recent paper [17] establishes a convergence rate, assuming
that the limit value function is smooth (which should hold e.g. under convexity).

In this present work, we prove convergence of the value functions with a convergence rate
without assuming convexity, nor that the value function is smooth. Instead, we make use
of the viscosity solution characterization of the optimal value function, which is in general
not differentiable. This is most related to the recent papers [10] and [16]. In [16], the
viscosity solutions of HJB equations in finite-agent deterministic or stochastic optimal control
problems are shown to converge to that of a limiting HJB equation in the space of probability
measures. The latter equation is interpreted through Lions’ lifting in the £2 sense. However
convergence rates are absent in [16]. But since we rely on our particular viscosity solution
structure, we can adopt the ideas in [10] even though the problem addressed there is in
the space of probability measures with finite support. We employ a doubling of variables
argument, using the distance-like function introduced in [4].

A recent preprint [5] provides a rate for the convergence of the value function, under
general assumptions. As explained above, the mean field control problem we consider here is
slightly different and thus the proof of convergence is completely different. As a consequence,



MEAN FIELD CONTROL WITH REGIME SWITCHING 3

we obtain a better rate than in [5] (see Remark 4.2). We mention, however, that we impose
a structural assumption on the coefficients, in order to apply the theory of [4].

We also provide, for completeness, a quantitative propagation of chaos for the convergence
of the optimal trajectories, but, to obtain this result, we suppose that the limit value function
is smooth, as in [17]. We mention, in this respect, a recent preprint [6] where the authors
establish a quantitative propagation of chaos, without assuming regularity of the limit value
function: they show that the value function is C* in an open and dense subset of the space
of probability measures and thus prove convergence if the initial distribution belongs to that
set.

The rest of the paper is organized as follows. In Section 1, we mention the mean field
control problem as motivation to introduce associated assumptions, the state space under
consideration, along with the particular metric on P(R) borrowed from [4] used in our
paper. These notions will be used throughout the rest of this article. In Section 3, we
study the mean field control problem in detail. In particular, we obtain an HJB equation,
define a viscosity solution theory suitable for our purposes and prove that the value function
is the unique viscosity solution to that HJB. Next in Section 4, we introduce the finite
agent centralized control problem and prove the main convergence results: we show using
viscosity solutions that the value function in the finite agent control problem is uniformly
approximated by that in the mean field control problem. Finally, in Section 5 we prove under
additional assumptions, a propagation of chaos result showing that the optimal trajectories
are uniformly close as well.

2. PRELIMINARIES

2.1. The control problem. Consider a complete probability space (2, F, (Fs)scpo,1], P) on
which is defined a Brownian motion (W)scjor1, where 7' > 0 is an arbitrary fixed time
horizon. Let a be a continuous time Markov chain with finite state space S = {1,...,s0}
and generator ) = (g;j)1<ij<so- Let P(R) denote the class of probability measures on R.
For (t,p) € [0,7] x P(R) we consider the following controlled McKean-Vlasov stochastic
differential equation with initial condition £(X;|Ff) = p and oy =iy € S:

dXs = b(s, X, s, Vs, as_)ds + o (s, X, s, vs, s )dBs + d.Jg, t<s<T, (2.1)

where p, = L(X|F), F« is the filtration generated by the Markov chain «, J; is a purely
discontinuous process with controlled intensity A(s, X, its, vs, @s—) and the jump sizes are
i.i.d. from some distribution v € P(R). Furthermore, vs := v(s, ps, s—) is a deterministic
feedback control of time s, conditional law ps and regime state o, taking values in a
prescribed Polish space A. Denote A to be this class of admissible controls. The solution
to (2.1) depends on t, p, ig and v. However for ease in presentation we will sometimes omit
these and the solution will be denoted just by X" or just X, when the dependence on the
initial conditions and the control is clear from the context.

We then consider the value function
T
V(t, p,ig) == inﬁlE [/ f(s, X, phs, vs, s )ds + h(T, X, pp, ar) | , (2.2)
veE t

for given functions f and h, and where v, = v(s,)
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Assumption 2.1. The space of probability measures is endowed with the weak* topology
d(P(R),Cy(R)) where Cp(R) is the space of continuous and bounded functions in R. The
weak™ convergence p, — u is equivalent to: {u,, f) converges to {u, f) for every f € Cp(R).
Whenever required we can use any of the metrics d(p, ') on P(R) which permits it to be
topologically equivalent to the weak™ topology. In particular, in the sequel we will use the
metric d(p, p') = 325 ¢il{p — v, f;)|, when restricted to a suitable compact set & C P(R),
where {f;}; is a class of polynomials containing all monomials (see later for more details).
If needed, S is endowed with the metric ds satisfying ds(io, jo) = Lii,£jo}-

Assumption 2.2. There exist constants Cy
(i) Forany s € [0,T], x € R, u € P(R), v € A, iy € S,
[6(s, 1,0, 10)| + | (8, 1, v, 70) | + [A(s, 1, v, 70)| < Co
(ii) There exists a finite set T € N such that for any p, ' € P(R), t,s € [0,T], z,y € R,
ig €S
|b(t, 1, v,40) — b(s, (', v,40)| + |o (L, g, v,40) — o (s, 1, v, 0p)|

+ |)‘(t7,u>vai0) - )\(S,M/ﬂ’aioﬂ < Ko <|t - S| + Z|<,u - Ml>$k>|) :

kel

(#ii) v has 0-exponential moment:

/Rexp(ém)fy(d:c) < 00.

(i) f and h are bounded. Furthermore there exists a finite set T € N such that for any
w, 1 € P(R), t,s€[0,7] and z,y € R:

|f(t,£L’,,lL,U,'é0) - f($>y>ﬂ/>vvi0)| + |h(t>$vu>i0) - h(s,y,,u/, Z0)|

< K <|t—s|+|x—y|+2}<u—u',ka>\> :

kel

(v) All the functions b,o, A\, f,h are Lipschitz-continuous in the measure argument for
the 2-Wasserstein distance Ws.

Remark 2.1. We should note that although the 2-Wasserstein distance and the distance d
are topologically equivalent, they are not strongly equivalent. We need both of (ii) and (v)
above for our main result, Theorem 4.1. See e.g. Propositions 3.4 and 4.1.

2.2. State space.

Notation 2.1. Since the Brownian motion has exponential moments, the solution to (2.1)
also has exponential moments owing to boundedness of the coefficients in Assumption 2.2.
As in [4] we also consider the optimal control problem in O x S, where O := [0,T) x M and
M is the set of probability measures with §-exponential moments. Denote O := [0,T] x M.

Let
es(r) :=exp (5 [m - ID , v €R, (2.3)
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where § is as in Assumption 2.2. For b > 0 we denote

My ={pePR): (ues) <b}.

For M € N,
Om = {(t; 1) €[0,T) x P(R) : (, e5) < Me™ ™},
where
* 500 dO|z|
K —T(2+C0+5CO)+C0 € v(dx)—l .
R

Also denote
Our = {(t.1) € [0.T) x P(R) : {j1,e5) < MeX™},

and@ = Uﬁ:16M-
Remark 2.2. If u,v € M, then
L=rv & <,u—y,3:k>:O Vk € N.

Definition 2.1. A function ¢ : P(R) — R is said to have a linear functional derivative at
€ P(R) if there exists a function Dy, : P(R) x R — R such that for every u, i/ € P(R)
the following relation holds

o) — p(u) = / / Doiplria+ (1= )iy 2) (o — ) (da)dr.

The function D2 ¢ : P(R) x R x R — R stands for the second linear functional deriwative
of p at p and s defined as the linear derivative of Dy, p.

Remark 2.3. Consider the linear function ¢(u) = (u, f) for some f : R — R. Then
Dyp(p,x) = f(x) for any (u,z) € P(R) x R.

In the following we provide a few details on the particular distance d(u,r) we consider
in this article. We consider a slight variation of the distance introduced in [4], to which we
refer for more details. We start off with a set of polynomials against which we will integrate
our measures.

Definition 2.2. Let © be the minimal set of polynomials such that

(i) for any g € ©, g%) € © for all k =0, ..., deg(g);

(ii) for any g € ©, Zze:gl(g) mrg® € © where my = & [, y*v(dy);
(iii) for any g € ©, (¢')* € ©.
(iv) all monomials {x*}5°, is contained in ©.

It can be shown that © is countable. Let {f;}52, be an enumeration of ©. Fix a b > 0
and recall M,, defined earlier. For every f; € ©, consider the finite index set /; so that the
set {f; : i € I;} is the set of polynomials obtained from f; by one of the first three above
operations. Since measures M, have bounded exponential moments,

sj(b) := 1+ sup {(u, f;)? < 00 V7,
pneMb
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and thus set
—1 2

> 2k > sb) | (2.4)
kGIj kGIj
Then we have the following result the proof of which can be found in [4].

Lemma 2.1. With the above choice {c;(b)}32,

I[L,Vb ZC] _V7fj>‘7
7j=1

defines a metric on My. Furthermore a sequence {ji, }nen in M, converges weakly to u € M,
if and only if lim, o0 d(pn, 15 0) = 0.
As a consequence of the definition, we have the following facts, which will be useful in the
sequel. Their proofs can be found in [4].
(1) ¢;(b) <277 and consequently > c;(b) < 1;
(2) for each fz € O with 7 € ]ja Cj(b) S Cz(b)
(3) >, ¢i(b){u, £)2 <1, for all g € M,

Remark 2.4. In the following we will fix an M € N and run our analyses on O,;. To that
effect we fix b = Me®™ T and omit the dependence of ¢; and d on b.

Notation 2.2. Associated with each pair of states (ig, jo) € S X S, g # jo of the Markov
chain o we denote

t
2030 Z Lo, =io} Nas=jo}» < 2030> /0 qiojol{asfﬂo}dsv

0<s<t

Finally for t € [0, T] the process M2 . (t ) is deﬁned by

t0jo

Mlaojo( ) = Zo]o < 20J0>

It can be shown that this is a purely dzscontmuous and square integrable martingale with
respect to the complete filtration F;. See e.g. [22].

As necessary we will use the following notation to measure distance between states in the
state space S of the Markov chain a.

Notation 2.3. For every ig,jo € S J(io,jo) = 1yig2jo)-
3. MEAN FIELD CONTROL PROBLEM

3.1. Dynamic Programming.

Lemma 3.1. The following dynamic programming principle holds:
0
V(t,p,ig) = igﬁE [/ f(s, X, prs, vs, s )ds + V (0, ug, ) | , VO € [t, T, (3.1)
v t

Proof. Since the McKean-Vlasov control problem considered here is deterministic, the dy-
namic programming principle follows from classical results. See, for instance [15]. U
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Notation 3.1. For a given class of functions w = (u(t, 1, ig, ©))ises, the operator L1 acts
on the x and 1y variables and is given by

0%u

- 0 1
EQMOW[U] (IL’) = b(tv x, i, v, ZO)a_Z(t7 H, iOv ,’L’) + 502(t7 x, v, ZO)@(TH H, 7;07 ZI}')
+ A(t, @, p, 9o, v) / (u(t, pyio, v +y) — u(t, u,io, x)) y(dy) (3.2)
R
From (3.1) one obtains the following dynamic programming equation:
- atv(ta K, 20) + SU.E Hv(ta H, 7;Oa Dmv) - Z q:'O,jO (V(t> M, ]0) - V(ta K, ZO)) = 07 (33)
ve jo€S

where

H(t, w0, D V) = — {py f(t, -, 1,0, 40) + L1 [DyV]) (3.4)
Notation 3.2. H :=sup,.4, H".

The following lemma from [4] is modified for our purposes but its proof is similar.
Lemma 3.2. Under Assumption 2.2 for any M € N we have
(t, jt,i0) € Oy X S = (u, L(XEFO|FY ) a) € Oy x S, V(u,v) € [t,T] x A.
3.2. Viscosity solutions and test functions. The viscosity sub- and super-solutions are
defined similar to [4]. We begin with the class of test functions.

Definition 3.1. A cylindrical function is a map of the form (t,p,io) — F(t, (i, f),i0) for
some function f: R — R and F : [0,T] x R x § — R. This function is called cylindrical
polynomial if f is a polynomial, and F(-,-,ig) is continuously differentiable for all iy.

Definition 3.2. For E C O, a wiscosity test function on E x S 1is a function of the form
t:U“7Z0 Z@]t:ule (t,,u,’éo)EEXS,

where {@;}; is a sequence of cylmd'r’zcal polynomaals satisfying:

(i) {(b“) = ¢;(+,-,i0)}; are absolutely convergent at every (t,p) for everyip € S,
(i1) for every j € N and ig € S,

deg(Dms0§ )

A}ignoozsup > [ (Dng) ™) =0.

(t HEE k=0
We let Ppys be the set of all wiscosity test functions on £ X S.

Definition 3.3. For E C O and (t, u,i0) € E x S with t < T, the superjet of u at (t, j1, o)
15 given by:

']E’:Su(tv s 7’0) = {(8t30(t, 1y iO)v (Dm(p(tv s k? '))kGS)
€ Do, ) i) = st ) o) |

The subjet of u at (t, u,io) is defined as Jg, qu(t, p,io) = —J gt s(—u)(t, p, o).
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Definition 3.4. For a subspace E C O, the upper semi-continuous envelope of u on E x S
is defined by
u*EXS(tnU“aiO) = thUp U(t,u,'éo).
EB(t’,u’)»—)(t,,u)
ExS

*

The lower semicontinuous envelope u is defined analogously.

Notation 3.3.

* OxS

F— * [ * * M .__ @AIXS
u = u@XS’ Uy = u* 5 U‘M = u@]v[XS’ u —u*

* .

Definition 3.5. We say that a function u: Oy X S — R is a viscosity subsolution of (3.3)
on Oy X S if for every (t, pu,i0) € Oy X S

—m+H(t, p,m,) <0, V(m,m,) € J(lg’zxsu}kv[(t,u,z'o).

We say that a function u: Oy X S — R is a viscosity supersolution of (3.3) on Oy x S
if for every (t, u,ip) € Oy X S

—m+H(t, p,m,) >0, V(m,m,) € J(lg’;lxsuiw(t,u,z'o).

A wviscosity solution of (3.3) is a function on O that is both a subsolution and a supersolution
of (3.3) on Oy x S for every M € N.

Proposition 3.1. For every ¢ € ®o,,xs, (t,1t,90) € Oy X S, and v € A:

O, p, ) = B(t, 1y i0) + /t (0505, s, avs) + (s, L2 [D@]) (3.5)
+ Z os— jo [¢(S’ ,us>j0) - ¢(S’ Hs, as—)] ds (36)
JoFas—
+ Z / [¢(S’ ILLS’jO’ ) - ¢(S> Hs, iOa )] dM((xXS,jo(S)? u € [t> T]> (37)
jotas—eSVt

where p1g = L(Xs|F) and (Xs)sep,m @5 the solution to (2.1) with initial conditional distri-
bution p and oy = ig.

Proof. For a given polynomial f, (us, f) = Ef(X;). Thus using It6’s formula and taking

expectation:
u

(s, [) = (n, ) + (ps, LE= =" [f]) ds.

t
Now considering a cylindrical polynomial ¢(t, i, i) = F(t, (i, f) ,i0) we have

DU, fhuy ) = G(t, p1,70) + /tu [0:0(8, s, ) + O F (s, (s, f)) (s, L5 [ f])] ds

[ bl aedo) = o s

JoFas—

S /f[(b(s,/is,jo,')—¢(Sal~bsai07')]dMgsjo(s)

JoFas— €S
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Since D, d(s, 1, 10) = 0. F (s, (i, f) ,i0)f, we have the result for cylindrical polynomials which
can be extended to general ¢ € Oy as in [4].

O
3.3. Value Function.
Lemma 3.3. For each M, V, V3, and VM are bounded on Oy .
Proof. The proof is similar to that in [4]. O

Proposition 3.2. Assume (3.1) holds. Then for any M € N, the value function V' is both
a viscosity sub- and supersolution to (3.3) on Oy and

V]\Z(Ta M>'é0) = V*M(T,,u, ZO) = <,u> h(T’ K /L,Z())) ,‘v’u € MMeK*T>i0 €S,

Proof. Fix M € N. By Lemma 3.3, both envelopes V;; and VM are finite.

Step 1: Vi, is a wviscosity subsolution for t < T. Suppose that for ¢ € ®p,, s and
(tv M) S OM
0= (V]\Z - (b)(tu M,io) = max (V]\Z - ¢) (tv M,io) VieS.

(t,m)EOM

Fix an arbitrary ¢ and let (¢,,u,) be a sequence in Oy such that (¢, pn, V(ta, fin, i0)) —
(t, g, Vi (t, piyig)). Now fix v € A and let (X[Im#nio) o 7 denote the solution to (2.1)
with constant control v, F*-conditional distribution p, at time ¢, and af = 1. We denote
pv = L(Xmomiow| Fe ) Using (3.1) with 0, = ¢, + h for 0 < h < T — h,,, we have

On

V(tn, b, io) < E [ (s, Xm0 it v, 0 )ds + V(0 i, 043,1)}

tn
On

S E |: f(s’ Xﬁnvﬂn,io,v’ M?) U, Oé?_)ds —I— ¢(9n> Mgn, Oégn):| .

tn

Passing to the limit we obtain

t+h
VJ\}(ta K, ZO) = ¢(t> M, Z0) S E |i/ f(S, X8> Hs, U, as—)ds + ¢(t + ha Htth, at+h):| .
t

Then using Proposition 3.1 and recalling that M. is a martingale, we have that

10J0
t+h

0 < E/ F(5, X f1as 0, (e ) + Oub (5, fre, v0) + (e, L5 D, 8])] ds.
t

This implies

t+h
O S Ea / [83¢(Sv /J’S7 Oés) _'_ <IU’S7 f(sv ) lu’sv Ua Oés_> + Eél«s,as,U[Dmgb])] dS‘
t
This holds for any h > 0. Recalling oy = 7y we then obtain
0< at¢(ta My 'éO) —H" (ta M, ’io, Dm¢)

which implies
_at¢(t> s Z0) + H(ta 22 2.07 Dm¢) S 0.



10 E. BAYRAKTAR, A. CECCHIN, AND P. CHAKRABORTY

Step 2: VM s a viscosity supersolution for t < T. Suppose there exists (¢,u) € Oy,
¢ € ®p,,xs such that

0= (‘/*M - ¢)(t7/~l’7 7'0) = min (V;M - (b)(t? M,’io) Vies.

(t,u)€O0M

Using |4, Lemma 7.1| we get that the above minimum is strict. To derive a contradiction we
assume that

—0uo(t, p,y o) + H(L, p,i9, D) < 0, for some i € S, for some i € S.

Since H is continuous in (¢, p) there exists a neighborhood B of (t, u) such that

— 0u(t, pu,i0) — (. f(t, -, p,v,d0) + Ef’io’v[Dm¢]> <0, V(t,u) € By := BN Oy, Vo e A.
(3.8)
Let (tn, i,) be a sequence in Oy such that (t,, pn, V(ts, tin,i0)) — (¢, 1, VM (t, 1)). This

*

means that for all large n, (t,,u,) € By. Fix an arbitrary control v € A and let
(X lobmt) oy 7y denote the solution to (2.1) with F-conditional distribution p, and value
of the Markov chain af =1 at initial time ¢,,. Consider

0, :=inf{s >t,: (s,ul”) € Byyor al # i} AT.

This is an F“ stopping time. By Proposition 3.1 we have

Ot fnsi0) = OO0, 115, ) = / " [0ubts. .02 + (i £ D) s

Z / ,US, m¢ S ,us>]0a ) m¢(s>ug’i0’.)>dMZ(g]O( )

i0#£joES
From (3.8) we obtain that

On
O(tn, tinyi0) = O(Ons iy v0,) + | (pl, fls, -, pl v, 0l ) ds

Z / :usa m¢ S /J“sajo7 )_ Dm¢(8,ug,i0,')>dM%]O( )

i0#jo€S

Since Oy \ By = Oy \ B is compact and VM — ¢ has a strict minimum at (¢, u), there
exists 7 > 0 independent of v such that ¢ < VM —n <V —non Oy \ B. Hence we now
have

On

¢(tm M, iO) = V(ena Mg,f)’ a&) + <:u?7 f(S, * M?u Vs, O‘?—)> ds
tn
On
/ /*’Ls? m¢(s /~’Ls?]0? ) - Dm¢(s7 /"Lg? iO? )> dMZo]o( ) /)7
tn

l0#JoES
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Since (¢ — V')(tn, tin, o) — 0, for n large enough we have

On
V(tn, finyio) <V (On, g’ o)+ [ (s fs, 1l v, ) ds

tn
6n n
- Z / <M5aDm¢(SaM?>j0a') _Dm¢($>lu“gai0?')> dMi?)ljo(S) - 5
io#joes ¥ tn

Taking expectation we obtain
On

N3

V(tn, fin,io) <E { (2, fs, 1l vs, 0l )y ds + V (0, 1™ Oégn)} -

tn
Rewriting the above and noting that n is independent of v € A we get
On

Y

Vtn, pinyio) <E [ s, Xty vg, 0 )ds + V(0 g Oégn)] -

N3

tn
contradicting (3.1). Hence VM is a viscosity supersolution to (3.3).

_ Step 3: V(T pyio) = (u, h(T, -, p1, i) for p € Myyercer. Consider a sequence (t,, f1,) €
Oy converging to (7', ) such that V3 (T, p,i9) = limy, 00 V (¢, fin, i0). By Assumption 2.2

T
E |i/ <,U2, f(S, '>,U?>Us>04?_)> d$:| — 07
tn

as n — oo. By the compactnes of Oy, there exists i € My, such that 3’ — fi up to a
subsequence. Itd’s formula implies

T
(i’ — p, ) = / (pz, Lz’])ds — 0,
t7l

owing to |4, Lemma 6.8] where £ is the operator (3.2) acting only on the z-variable. This
implies i = p courtesy Remark 2.2. Consequently for arbitrary v € A:

Vj}(t, Ly Z(]) = lim V(tn, o Z(])
n—00

T
< lim E [/ <:u?7 f(sv * :U’gv Vs, Oé?_)> ds + </’L?}‘7 h’(T7 K :ug"v Oég—‘>>:| = <:U’7 h(Tv s M ZO)) :
t7l

n—o0

Since Vi (T, p,i0) > V(T,p,i9) = {(u, h(T,-, 1)), we conclude that Vi (T, p,ip) =
<:u> h(T’ 5 My ZO))

Step 4: VM(T, i, io) = {p, h(T, -, p,i0)) for p € My .x=r. Consider a sequence (t,, fi,) €
Oy converging to (T, p) such that Vi (T, p,i0) = lim, oo V (£, fin, %0). As before

T
B [ G Aot ) ds] 0
t7l

uniformly in v € A. In addition (u}, h(T, -, u%, o)) — (u, h(T,-, @, 1)) as n — oo. For
n € N choose v" € A so that

T
V(tn,,un,zo) > K {/ <:usaf(57 ~,/J,S,US,048_)> ds + </~LT7 h(Tv '7/~LT705T>> - 5
tn
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This implies that
VM(T, p,io) = lim V(tn, fin, io)
n—o0

T
> lim E |:/ <ru’?7 f(sv -,M?,U?’OAQ_)>CZS + <:u?“7 h(Tv '7:“’?“705?“» = <:u7 h’(Tu '7M7i0)> :
tn

O

3.4. Comparison Result.

Proposition 3.3. Let u be a w.s.c. subsolution to (3.3) on Oy x M and v be a l.s.c.
subsolution to (3.3) on Oy x M, such that u(T, p,io) < v(T,p,i0) for any (T, p,i0) €
Oy xM. Thenu < v on Oy x M.

Proof. We argue by contradiction. That is, we assume that there exists iy € & such that
supp,, (v — v)(+,+,i0) > 0. Then the proof is similar to [4, Theorem 8.1]. We only need a
few modifications to factor in the additional argument for the state of the Markov chain and
the additional finite sum in the operator £}""" arising due to the presence of the the Markov
chain, if it appears. In particular, one can take u(-,-) = u(-,-, i) and v(-,-) = v(+,-, i) and
the proof of [4, Theorem 8.1] suffices. O

Proposition 3.4. The value function'V' is the unique viscosity solution to (3.3) on O satisfy-
an V*(Tnu“a 7’0) = V:k(TnU“a Z0) = <,U, h’(Ta 5 ,U>ZO)> fO?" (Ta M>i0) €O0OXxS. MOT@O,UGT; V(a 5 Z0)
restricted to O s Lipschitz continuous in p and %-Holder continuous in time.

\V(t,,u, 7'0) o V(Sv v, 7’0)‘ < C(d(:uv V) + ‘t o S|) (39)
where C' and d depend on M, € Oy, but v € O.

Proof. The proof of uniqueness follows from the comparison principle. Since coefficients are
Ws-Lipschitz, it is easy to see that V' is Ws-Lipschitz in O and so, thanks to the dynamic
programming principle, it is %-Holder continuous in time.

To show that V' is Lipschitz in p with respect to the distance d, recall from Assumption
2.2 that the coefficients b and o (which do not depend on x) and the cost coefficients p —
(f(s,- p,v,0),u) and u — (h(T,-, p, 1), u) are Lipschitz with respect to a finite number of
moments. This assumption gives Lipschitz continuity of the coefficients for d. Indeed, since
all monomials are contained in © and c(z") < ¢(C,2"%), where C, z2* denotes the n — k
derivative of 2", for any u,v € O we have

"1 c(C’nvk:zk)

k k
lg(p) — g(V)| < K kz:; (= v, 2%)| < Ky 2 kamKﬂ — v, Cp ™)
C, -
S K1 C(l’n) ZC(Cn7ka)|<M - Vv Cn,kxk” S ’%ICnd(:uv V)v

k=1

where C), denote a constant which depends just on n an M.
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To prove Lipschitz-continuity in the measure, fix ig € S, t € [0,T], u € Oy, consider a
control « e-optimal for (¢, 1) € Oy and consider another point i € O. Then

V(t> laa Z0) - V(ta 22 ZO) < ‘](t> laa U) - J(ta 22 'U) +e

T
< E/ f(S, st/lsvv& as—) - f(S, X37/~L37U37 as—)dS
t

+ WT, Xr, fir, o) — (T, Xr, fir, o) + €
< C sup Ed(fis, p15) + e,

t<s<T

where s = L(Xs|os-), fis = L(X,|o,_). Denoting E* = E[-|a] and &, € such that £(€) = p,
L(&) = fi, by 1t6’s formula we get (almost surely)

d(fis, pts) = ch\Ea[fj(ffs) — [i(X)]]
SILLACESAC)
+ Zc]

1

N i 1
+ §f]’-’(Xr)02(r, fir, Ur, Q) — §f]’-’(Xr)02(r, [, Ur, Q)

[ B ) = £ )

A i) [ (CE ) = D) = NG trs0) [ PO+ 9) = SX)2 )|
Since
deg(f f(l ( ) ' deg(f;) ]
0= [Ute+n) - e = 3 7 [y =3 miPe)

the definition of ¢;(b) (with b = MeX™™), and the property Zj cilp, [ <1, as p € Oy,
and the boundedness of b, o and A yield

d(fis, 1)
<)+ [ { el = XM+ € B XA )
+ 5 ZCHEQ[_]C;/(XT) - fy//(XTﬂHO-z‘OO + CZC]|Ea[fg//(Xr)]|d(£(Xr)7 ‘C(Xr))

J

+ 3 GIE (%) = g (XN +C 3 6 EIg; (X ALKy, £(X,) Jdr

<d(p )+ C / (LX), L(X,))dr,

Thus Gronwall’s lemma, taking expectation, gives the claim. O
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4. FINITE AGENT CENTRALIZED CONTROL PROBLEM

4.1. Problem setup and viscosity solution definition. We assume the following state
dynamics interpreted in the weak sense for an N—agent system similar to the controlled
McKean-Vlasov jump-diffusion (2.1)

dX¥ =b(s, XF 1N 0N o, Yds 4+ o (s, XF pN 0N o, )dBY +dJF, s>t k=1,...,N,

(4.1)
with initial condition X* = x; and where {B*},, are independent Brownian motions, {J*};
are independent purely discontinuous processes with controlled intensity A(s, X%, i, v,, o)
and the jump sizes are i.i.d. from the distribution v € P(R) satisfying Assumption 2.2(iii).
The Markov chain « initialized at oy = 7 is the noise common to all agents, and is the same
as in (2.1). Admissible controls are of the form v = v(s, u¥, a,,_) taking values in the Polish
space A. The coefficients b, o, A\, and the distribution v all satisfy the same Assumption 2.2.

The same is true for the running cost f and the terminal cost h in the value function

u™(t,x,io) = inf —ZE{/ s, XE u ol o, ds + WT, XE 1 ar) |, (4.2)

wNeda N

where X, = x € RY. The corresponding HJB turns out to be
5, 1«
- U Nt x,i0) + Sup - Z_: H}(t,x,i9, Nu™, NDu™, ND*uN)

- Z qlo]o t X jO) —u (t,X, Z0>:| = 07 (t7X7 ZO) € [OvT] X RNv XSv (43)

Jo€S

where
v . ~\ N : N .
Hk(t7X> Z(),U,')/,')/) - [_ [f(twrkmu (X)>'U77'0) +b(t,xk,,u (X)>'U77'0)7i

1 N : . .
+ 502(15, T, 1Y (%), 0, 40)Fis + At o, 1 (%), v, 40) / [ (¢, x + exy, i) — u™ (¢, x, )] W(dy)H ;
R

1
where pV(x) = I SV 04, Denote

1 N
H' = > H (4.4)
k=1

and H :=sup, H".

Definition 4.1. (i) A function u : [0,T] x RN x & — R is a viscosity subsolution of
(4.3) if whenever ¢ € CY([0,T] x RN x &) and (u* — ¢)(-,,i0) has a local mazima at
(t,x) € [0,T] x RN, then

0
atqb(t X,i9) + H(t,x,i9, No, NDé, ND?*¢) + qum (t,%, o) — u(t,x,14)] <O0.
Jo€S
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(ii) A function u : [0,T] x RY x S — R is a viscosity supersolution of (4.3) if whenever
¢ € CH2([0,T] xRN x 8) and (u, — ¢)(-, -, ip) has a local minima at (t,x) € [0,T] xRN, then

0 . . ‘ .
_aqﬁ(t X, Z0) + H(ta X, 10, N¢> ND¢> ND2¢) + Z Qigjo [U(t, X>]0) - U(t, X, Z0)] 2 0.

Jo€S
(i1i) A function u is a viscosity solution of (4.3) if it is both a viscosity subsolution and a

viscosity supersolution of (4.3).

Notation 4.1. We use the following notation to transform u®™ to a function on Oy X S:
a (t, 1N (x),10) == uN (L, %, 4p), for (t,x,i) € [0,T] x RY x S. (4.5)
In addition the empirical projection of any ¢ is given by
&N (t,%,10) = p(t, u™¥ (x),140), for (t,x,ip) € [0,T] x RN x S.
Let also
| N
oY = {(t,,u) cO:pu= NZ(SI forsomeXE]RN}

i=1

be the set of empirical measures with finite exponential moment, and
| N
oY = {(t,u) €Oy :p= N;éw forsomexeRN}.

Let us remark that every empirical measure has exponential moments, since it is a finite
measure. Moreover, the value function 4 is defined on O and not on O3}, because the
latter set is not invariant for the dynamics of the empirical measure process, while it is
invariant for the limiting dynamics.

Proposition 4.1. The value function u™ is the unique viscosity solution to the HJB (4.3).
Furthermore 4 is Lipschitz continuous in u € O for Wy and is %—H&lder-contmuous mn

[0,T]:

. . 1

@ (t, 1™ (x)) — @ (s, 1™ ()] < C(Wap (x), 1 () + |t = s]7). (4.6)
Proof. In a setting without regime switches, comparison principle for the viscosity solution
of (4.3) is true [24]. Consequently the comparison principle when the regime switches are

present follows just as in the Proof of Proposition 3.3. Then by an application of the
Stochastic Perron’s method [2, 3] we have uniqueness of u®.

Since coefficients are Wy-Lipschitz, it is easy to prove that @ is Wy-Lipschitz in u. From
the dynamic programming principle, it then follows the 1/2 Holder-continuity in time. [

4.2. Convergence to mean field control.

Lemma 4.1. The following relations hold (see for example [9])

9 n 1o Ny

8$2¢ (t,X, 7’0) - Name(b (tnu (X)ervaZ)v

? N 1 0? N N . 1 0 0,5 +n N .

a—x? (t>XaZO)_Na—y2Dm¢ (tnu (X)aZO>Ii)+ma—ya_me2¢ (tnu (X)’107$iaxi)7
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where ¢ and &N are related by

¢N(ta X, Z()) = &N(t’ ILLN(X)7 20)

Remark 4.1. In the following we will often use the following distance like quantity instead
of d*(p,v):

ZC] - b fJ

We stress that d depends on M, which is the bound on the exponential moments of the
measure, because the ¢; do. It is readily checked using Cauchy-Schwarz inequality and the
relation Z;’il ¢; <1, that

~

d*(p,v) < d(p,v). (4.7)

Theorem 4.1. For any M > 0 we have

Q
S

sup | V(t, pyio) — @ (t, i) | < —7, (4.8)

(m“ﬂo)eo]ﬂ\rfxs N

=

for a constant C'y; depending on M.

Remark 4.2. The exponent 1/4 comes from the %-Hélder continuity in time of the value
functions, as it is clear from the proofs. Assuming more regularity of the coefficients, we
may obtain Lipschitz regularity in time; in the case without jumps and regime switching,
such regularity is proved in [5]. Thus, in this case, we can obtain N ~2 as convergence rate.

Proof. We use the following notations:

E]J’\_f = sup (V(tmuaz()) - ﬁN(tMJo)) )
(t,u,io)EOA]\/TIXS
E]?f = sup (ﬁN(ta Ky ZO) - V(ta Ky Zo)) :

(t,1,i0)€ON, xS

In order to prove (4.8) it is enough to show that each of E}; and Fy satisfy the same bound.
In the following we will only show that

C
EY < 4.9
i< (1.9
and the other case can be done similarly. Note that E}; can be taken to be positive as
otherwise inequality (4.9) holds trivially. The proof has been broken into parts for ease in
reading. We fix M > 0 and define the distance d according to the constant b = MeX'T.
Please note that in the following, the constants C' may depend on M and might change from

line to line, but they are not renamed.

Step 1: Doubling of variables. For a positive sequence (ey,ny) — (0,0), we define the
following map on (Oyr x 8) x (O x §), where P is the set of empirical measures vV (x),
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x € RV :

. . , . , I 1
(I)N(t,,U/,Z(], S, Vv.](]) = v(t7M7Z0> o UN(‘S? Vv.](]) o Ed(:uv V) o E(t o S>2

1 - i . 2T—t_8 2
_ Ed(zo,jo) — TE;{, —nylog (1 + ;cj (v, fi) >, (4.10)

where 4" is defined above. Note that we add the penalization because O is not compact.

Step 2: Mazimum attained. The maximum of ®y is attained and at some (%, fi, 79, 5, 7, jo)-
This is because Oy is compact, limx|— o0 P (t, 1, %0, 5, vN(x), jo) = —oo and @y is contin-
uous in t, i, s, V.

Step 3: Bound on d(ji, 7). Since ®y(t, i, o, 5, 7, jo) > ®n(t, 7,40, 5, 7, Jo), from the Lipschitz
continuity of V' in (3.9), we have

1 - - - -
—d(ﬁ,D)SV(t,ﬁ,Zo)—V( 7D’ZO)§Cd(ﬂ’D)§C d(ﬂﬁlj)

QEN

This implies

Step 4: Bound on |t — 5|. Since ®y(t, i, g, 5, U, jo) > Pn (5, [i, i0, S, 7, Jo), we have that

1 _ - - t—35 _ .1 t—35
E(t o S>2 < v(tvlu’uz(]) o V(S,M,Zo) + AT E]J’\} < C|t - 8‘2 + AT

_l’_
Ey,

where we have utilized the Holder property of V. Since Ey is bounded (V and u” both
bounded on O x &) we obtain

Step 5: Bound on cZ(z'O,jo). Since @y (¢, i, 0, 5, U, jo) > P (L, fi, Jo, 5, 7, Jo), we have that

Since the right hand side is bounded we have

d(io, jo) < Cen.

Since ey — 0, for N large enough we have that iy = jy. In the sequel we will assume that
N is large enough so that this is indeed the case.
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Step 6 Case I: t = T. For (t, u,iy) € ON xS, we have @y (¢, [i, ig, 5, 7, Jo) > Pn(t, p1, 40, L, 1, i0)-
This implies
V(ta 22 ZO) - '&N(ta 22 ZO)

2T — 2t - 1. 1 f—53
< S Bt Vi) — V(5.7 :

< SEy 4+ V(i) = V(5 ,00) + v log (14D ¢ (s £5)).

N —

We notice that
V(t, i,10) — 0" (5,7, 5) <M> W, i) — (2, W(T, -, Dy dg))
a™N(T, 7, 50) — 0™ (5,7, jo).
Using the Lipschitz assumption on h and Holder continuity of u” in time, we get
V(i) — 0% (5,7, o) < C (d(,0) +|T = 5 ) < Cef,

aslong as ey > . Now taking supremum over (¢, 11, i), and recalling that > ¢t fj>2 <1

it € Oy, we obtain

1 1 1
B < Cleh +nw) + 5 BF = Ef < C(ek +mw). (4.11)

Step 7 Case II: s =T. Similar to Case 1.
Step 7 Case III: 0 < t,5 < T. We use the viscosity solution properties.
(i) @ — ¢ has a minimum at (5, 7, jo) where

. - _ = 1 T/ ]- -
30(57 v, jO) = v(t7M7Z0> - Ed(lu’v V) - H(t - 8)2

1 -_ 2T —t — s 2
2—d(lo,]o) TE;\? — 1y log (1 + Zj:cj (v, fj) )

Recall that 7 = p (x”) for some x” € R". Let us now define the function
@N(Sv X, jO) = SO(Sv /J’N(X)7 jO)
It is readily checked that ¢~ € CY2([0,T] x RY x §). This implies

- N
g_t 1 1 v/ = 72 ~ ~ ~
EN - EE-F ngngk(s7X 7]07N§0N7NDSON7ND2SON)

) diojo [PV (5,X7, o) — @M (5,%7,jo)] = 0. (4.12)

JoES
It is readily checked that

Z qm]o (5,x ’]0) QDN(ga XDa]O =5 Z Tiojo Ljojo-

JoE€S jOES
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Here using Lemma 4.1 and the definition of linear derivative

N

1 - . - -
P X_j Hy(5,x", jo, NN, NDgN, ND*@")
1 N
= Sljpz [p(g, xy, 7,0, Jo, D™ ) — 7(5, 27, 7, v, jo, Dmgp)}
= sup <V [ 5, V0 ]0> DmQDN) - T(ga E 17,21,30, DmQO Dm290 )}>
where '
plt, v, 00, D™ ) = = (f(t, 2, v,0,40) + L} [Do™)(x))
and

2
r(t,x, v, 0,09, Dpd™, D220"N) = iU—(t T, U0 zo)ag%lﬁqu]v(t V,ig, T, T)

+ A(t,z,v,v,10) [// m¢NtV+ (x+y 0z), 70, + YY)

—Dy ™ (t, v + N(éﬁy —dz), to, :E)} dr
— (D™ (t, v, ig, @ +y) — D@ (¢, 1,40, 7)) | 7(dy)

(ii) V — ¢ has a maximum at (£, i, i) where

- 1 1 1 ~ -
t,ow,ig) = 4N (5,0, o) + —d?(u, ) + —(t — §)* + —d(io, J
’QD( ,,U,Zo) Uu (S VJO)_I—Q&N (May)+2€N( S) +25N (107]0)
2T — 3
T +77N10g<1+zcj 7, f;) )

This implies
—8t¢(f> :D“a z0) + H(t_a ,a750a me) + Z %ojo [,lvb(t_a ﬁ,jo) - w(ﬂ :D“a z0)] S 0.

Jo€S
Consequently
t -5 1 _ _
+ _E+ + H(t I ZO) mw + Z q—()]o t i ) w(tnﬂ“’ 7’0)] <0. (413)
EN 4T 0es
0

Here it is readily checked that

_ - - 1
Z qOJO t Ko J ) w(t"u’ZO)] ~ 5. Z q;ojol{jo7égo}'

2e
JoeS N joes
In addition we have

H(t_a ,a7507 Dm,lvb) = Sup <ﬁ> - {f(ﬂ ) :D“a 1)7;0) + £?7207U[Dm¢]}>
= sup <ﬂ7p(t_7 ) /]’7 ’07507 Dm¢)> .
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(iii) Adding (4.12) and (4.13) we obtain that

1
2TE+ < SU.p <V [ S, 71/ v jOquSON) o

T(gv ) ﬁ? U’.;(]’ Dm(pN>:| >
— sup <,U,p(t> Sy CH z07 mw)>

S sup <177 {p(g,-,;?,v,jo,DmQON) (t, ,M”U 7/07 mw }> lnf —ﬁ,p({,',ﬁ,U,ZO,me>>
—inf <;7, (8, -, 7,0, jo, Dm<PN)>

= Il—l—Ig—f—[g. (414)
Assumption 2.2 gives that the function (u, f(¢, -, i, v, %)) is Lipschitz for d. Thus
(i, [(E, - 11, v,00)) — (2, f(5, - Dy 0,00)) < O = 5| + d(f, 7)) < Ce.
Bound for I,. We have
Z ¢ (s f) iz )
Dyo(t, v, jo, © ¢ (b —v, f) fi(x) — (4.15)
Z ’ " MUY G g
m¢(t /1’77'07 ZC] V f] fJ( ) (416)
and, since 1 € Oy
ch 2<2d(p,p)+2) ¢ (p f;)* <20e3 +2<3 (4.17)
J
if N is large enough. We compute
-, 0 _ = 0 - =
6.7, 0,10) 5 Do (5.7 ) = 0 10 J) - Dot )
- — = 1 = - ZQ?‘(ﬁ?f]) f/(x>|
< |b(5,7,v,19) — b(t, fi, v, jo)| — -, + |b(5, 7, v,10)|2 J 4
_| ( o) ( 2 ]0)|€N; ‘< f] } | 0)| N 1+chj (D,fj>2
o N R > el fi) (@)
< C(ft =3[ +d(a,7)— > _c;|(a— . f;) fi(x)| + O =~ —
<"‘:Njg1 ! 7 1+chj <V,fj>2
C & > 6l (v 1) fi (@)
<= ¢ l{n—0,f;) fi(z)| + Cny =2 .
efngj " 1+225¢ (i)
Similarly we obtain that
02 82

82
(t i ,LL,U '70)8 2 mw(t lel()v )

2
< S olla-nf) (o) + coy =)

7(5, v,v, ZO)@DmSON(Ea v, g07 ,’L’)
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and

A(E,x,ﬂ,v,io)/R(me (5,000, + 1) — Dm<PN(§757T0735)) v(dy)

_>‘(£7 Z, lav v, E0) / (me(t_v ﬁjoa T+ y) - me(t_v :angv LL’)) V(dy)‘

R

_c = >l i) Jg (file +y) — fi(2)) 7(dy)]
el : d C J
736|055 [ Gt = et + o Faineys
O > ¢l (v, £3) g5()]
—5] 1C]|< — v, fi) g;(x )|+C77N1+chj<17’fj>2 g
where the last equality follows by Taylor’s expansion and the polynomial
5(0) = [ (hle+) - Z mif (o
Consequently
(5,2, 7,0, jo, D™ ) — p(t, z, i, v, ig, D))
C & y >, ¢l (o fp) (fi(@) + f](2) + g;()) |
< T Xl (o) + £10) + )|+ T -

This implies by Cauchy-Schwarz inequality
~ 1/2
N2, - 2
2 G (S0 S (6074 (1 + 0.0))
j=1

/
o (S s S (0 )+ 0+ 9))
" L+ 3¢ (7, f)?

c .
— (d(,7))""” + Oy < Ced + Oy, (4.18)
€N

<
since d(ji, 7) < Ce% and > e (7, ¢;)? < 3 for ¢; = 5 [, g5 (see [4] and (4.17)).
Bound for I,. By Assumption 2.2 and similar computations as above, we have
0 C—
b(tx,u,vzo)a mw(t :u7107 Sazcj<,u_y7f]>f]/(x)7

o 02

92 (t Y M?U Z0)0$2Dm¢(£”a7i07 S _ZC] v, /»/(ZZ}'),

_ - _ - _ - C &
)‘(tax>ﬂavai0) /R (Dm¢(taﬁ>i0>z + y) - me(tﬂaZOax)}’y(dy) S a ch <ﬁ - 1;7 f]> g](ZL')
j=1
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This implies

2

:_N Cj<ﬁ_yf] |:<:u_l/b(t ,U,U 20 f>+< D %(t ,U,U ZO)f >+<M—V>>\(t>l%v>io)9j>

< QZC [(a— 2.5 (5= 2. f) +(a—2.f]) + (5~ 7,97)]

} J ~ 1/2 o , 1/2 o , 1/2
< a(ZCj(ﬂ—ﬂ,ij) ((ch@y,f;) ) 1 <ch<ﬁ—l7,fj’-’> )

j=1
o0 1/2 c
+ (Zcm—a,gjf) ) —d(,7) < Ce.

Consequently we have

12| < Cey. (4.19)

Bound for I3. Observe that

- 1
Doa™(8,7, 5o,y y') = > el hiy)
j=1

Sl W) (4252 ¢ (7, f)?) =2 Yoo e (B ) Fi(y) 222 e (s fi) fily))
(L4520 @ 1))

— 2N

N N
=717 +1NTy

We bound the second term as

_ 0 0 _
<V7 8_ya—y/rév(y7 .CL’,,’L')>

S e (B L+ 26 (o f)7) +2( X2 ¢ (7, f) (P, ff)é )’
(L35 f))
S e () (L+325 ¢ (7, f)?)
(L4200 @ 1))

<Z;11 ¢ (v, fj>2>§
<6,
1+ Z;; ¢ (P, fj>2 B

<2

<2

<6
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while the first term is bounded by
— 1 Ny/— 1 - — /\2
V>NT1 (V,ZE',I’) :NEN;Cj<V’(f)>
< Yo
7. f:

C
<
- NEN

where we have used (4.17). Furthermore we notice that

1
I y) = /[Dmgo (5,7 + 1(ery = 02),2 + ) = Dy (5,7, Jo, + )] dr

/5NZCJ p—(v N((S:c-i-y )),fj>—(ﬂ—z},fj>>fj(g;+y)dr

QN&?N ZC] (filz +y) = fi(x) filz +y).

Let us omit the penahzatlon term with the log, which is bounded in a similar way. Similarly

Thus

o0 o0

<ﬂ,/R[I§(-,y)—f§(w Wl <dy>>_ e ch (5.9 < gy Z%WWSWZN-

Since A and o are bounded we conclude that

C
I < —— . 4.2
13| < New + Cnn (4.20)

ound for . Combining (4.11), (4.18), (4.19) an .20), we obtain from (4.1
Bound for EY;. Combini 4.1 4.18), (4.19 d (4.20 btain f 4.14

1
E;§0(5N+nN+—)
Ney
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C
N

By choosing the optimal ey = ﬁ and 7y arbitrarily, we get the desired result £ <

I,

5. PROPAGATION OF CHAOS

In this section we consider, for completeness, the case in which the value function of the
limiting mean field control problem is smooth. In such case, the limiting optimal trajectory
is unique and thus our aim in to prove a quantitative propagation of chaos result, that is,
to bound the distance between the optimal trajectories pl¥ and p; for the finite-agent and
mean field control problems respectively. Notably, this bound involves not only the value
functions, but also their measure derivatives. The bound obtained in this section is more
standard and independent of the previous main result Theorem 4.1, and is obtained in terms
of the Wasserstein distance.

To that aim we introduce some additional assumptions. Note that here we run our analylis
on the entire OV, not on OF.

Assumption 5.1. We have that V(t, i, 1) is continuously differentiable in time and twice
continuously (linear functional) differentiable in the measure p. The derivative D, is
twice continuously differentiable and D? ¢ once continuously differentiable in space. All the
derivatives are uniformly bounded. Further, ¥ € CY2([0,T] x RY).

This assumption permits to improve the convergence rate for the value functions in
(4.8), while to bound the optimal trajectories we also need some assumptions on the pre-
Hamiltonian H" given by (3.4).

Assumption 5.2. The pre-Hamiltonian H"(t, p, io, D,V is continuously differentiable in
v € A, O, H" is Lipschitz continuous with respect to p, and H" is uniformly concave in A:

H? (t, W, i(], DmV) < H* (t, H, ’io, DmV) - 87,7-[”1 (t, H, ’io, Dmv>|’01 - ’UQ| — >\‘U1 - ’02‘2,
for some A > 0.

Let v*" be the optimal feedback control for the N-agent optimization and v* be the
optimal feedback control for the the mean field control problem. The optimal controls are
unique because of the assumed regularity and uniform concavity.

Remark 5.1. Since v — H" is continuously differentiable and strictly concave, v*(t, i, i)
appears as the unique solution of the equation 0, H"(t, u, 49, D,,V) = 0. By the implicit
function theorem, v* is also Lipschitz continuous in the space and measure arguments.

Remark 5.2. In a setting without jumps and when the diffusion coefficient o is uncontrolled,
Assumption 5.2 can be seen in |7] where the drift coefficient is assumed to be an affine
function of the control and the cost function is assumed to be convex.
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Observe that from (4.4) using Lemma 4.1 and denoting ¢y (t,x) = p(t, x5, u™ (x), v, i) for
o =f,b o, A we have

N
1 %)
H"(t,x,ip, NuN, NDu , ND*u") = —— >~ [ fr(t,x) 4 b (t, x) = D™ (t, p (%), o, 1)

ol 0? 10 . ,
+7(tvx) 8—y2D Mt " (x )Zoafck)ﬂLNa—y—,me (t, " (x), 10, Tk, T1)

r

—DmﬂN(t, :U'N(X) + N((Smk—l—y - 5%)7 00, xk)] deY(dy)] )
where @V is given by (4.5). Recalling (3.4) we thus have

Hv(t7xv i07 NU,N,NDUN, ND2UN) = Hv(t7MN(X)7/LOvaaN> + Rilj(tnuN(X) iOv )
+R12)(t>:u ( )ZOauN)a (51)

where

. 1 0 0 . .
(0¥ ) 1) = - (160, 5 D2 1)) ).

and
RSt 1 () i, i) = <uN<x>, A5, 1V (%), 0 o) [ / [Dma%w(x),z'o, )
[ P 0+ =t i)~ [ [0

_ /01 Dy (t, 1™ (x) + %(6% —4.), o, -)dr]v(dy)} >

Lemma 5.1. Under Assumption 5.1 for u™(x) € O%;

IRV (5, 1 (%), g, &™) + [ RS (5, 1 (x), dg, a™)| <

LS

As a consequence, VN almost solves (4.3):

d - N 1 = v . N N 217N

_EV (txzo)+sgpN;Hk(t,x,zo,NV ,NDV*™ ND“VY)
N - 1 : N

=3 i [V (% G0) = V(B xi0)| = O(5), (Lxii0) €[0,T] X RY, xS, (5.2)

N
Jo€S
and we obtain

sup ‘V(tmu720) - '&N(tnuaiO)‘ S (53)

(t,p,i0)€ON xS

=l
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Proof. The term Rzl’*’N is bounded because D? , is continuously differentiable with uniformly
bounded derivatives. Observe that by definition of the linear functional derivative (with
non-relevant arguments omitted)

r

Dyt (1 (%) + 10ty = 0y), 2+ y) = D™ (1™ (%), 2 + 9)

1
o [ (D2 060+ B Gy~ S )

™r

— D? QﬁN(MN(X) + W(é’”y — ), + y,y))drl.

m

Since 7 satisfies Assumption 2.2(iii), we conclude that Ry < €. This implies (5.2) and,

as a consequence, VN (t,x,iy) = V(t, " (x),ip) is such that V — $(T —¢) is a (classical)
subsolution to (4.3), while V + (T —t) is a (classical) supersolution. Thus the comparison
principle gives

sup f/(t,x, ip) — uN(t,x, ip)| <
(t,%,i0)€[0,T] xRN xS

Y

=ie

which is equivalent to (5.3). O

We can now estimate the distance between the feedback functions

Lemma 5.2. Let ¥ be the optimal empirical measure process for the centralized finite-agent
control problem. Under Hypotheses 5.1 and 5.2 we have

T
C
IE/ |v*(s,uév,a8) — v*’N(s,ui,V,as)Pds < N (5.4)
0

Proof. We compute the expected value of V along pu?.

B V(o) ~ (V0 a0 [ [ 2 visu s

=K

T T
_/ H (s, 1, g, DV )ds + / Z Gou_ o[V (5, 1Y j0) — V (s, uY, as_)]] .
0 0

JoES
From (5.3) we thus have

E [V(T, 1, ar)] —E[V(0, 1, ao)]

<E

T
’U*'N ~ . ~
_/ H (S?:uiv?aS?DmV) + ans—jo[u]v(snuév>]0) - UN(SnU“éVaaS—)]dS]
0

Jo€S

T U*,N N v* N C
+E (H (5, 11, vy, DiV) — HY (5, 1, v, DmV)) ds| + =
; N
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From the relation (5.1) we then have
E [V(T> /”L¥7 O‘T)} —E [V(O> /”Lév’ Oé())}

T
<E {— / H” (s, 1Y, a, NVN  NDVN ND?*VN)ds
0

T
3 sl (s o) = o v s | [ o T B Y,
0

JoE€S

T * N * C
+E [/ (?—[” T (s, g, DR V) — HY (s, 1Y o, DmV)) ds] + —.
0 N

Consequently since Ry + R satisfy Lemma 5.1 this implies from (4.3)
E [V(T> :u¥> O‘T)} —E [V(O, Iué\/’ OZO)} <E ['&N(T> :u¥> O‘T)} —E ['&N(O> ,ué\/’ O‘O)}

T * N * C
+E {/ <’Hv ’ (s,uév,as, D, V)—H" (s,uév,ozs, DmV)> ds] + —.
0 N

Again using Theorem 4.1 we now obtain
T
. . C
E {/ (Hv (5, 1, g, DV) — HY N(Sjuév,as,DmVD ds] < N (5.5)
0

Since v* maximizes the pre-Hamiltonian H (s, uY, ay, D,,V') we have from Assumption 5.2

M (s, 1), e, DV) = H (5, 1l 00, Dy V) > Al = 0V,

s

This implies from (5.5) that (5.4) holds. O

Let B = {B*}Y_, be independent Brownian motions, & = {U;}32, be an infinite sequence
of ii.d. random variables from 7, and N = {N*¥}¥ | be independent standard Poisson
processes. Recall v*V is the unique optimal feedback control for the N-agent optimization
and p is the corresponding optimal measure trajectory. In addition let (X**);<1<n be the
corresponding optimal jump diffusion with v*" as the control and driven by B, i/ and A as
follows

dX:’k = b(37 X:’kv :U’feva U:’Na Oés—)ds + 0(37 X:’ka :uiva U:’Nv as—)dB§ + dJ:JC’

where

Nt'k t
J;k”l‘C:ZUl7 NF = NF (/ )\(S,X:’k,uév,v;k’]v,ozs_) ds) .
=1 0

Let (Y*),<p<n be defined similarly driven by the same B, U and N, but with v* as the
control. Let p be the corresponding empirical measure trajectory.

Recall v* is the unique optimal feedback control for the the mean field control problem and
1 is the corresponding optimal measure trajectory. In addition let X* be the corresponding
optimal jump diffusion with v* as the control. We also consider N i.i.d. copies of X*, namely,

{X*’k}lngN which are driven by B, U and N.

The proof of the following theorem is a standard argument of propagation of chaos, thus it
is omitted. It uses the Ws-Lipschitz-continuity of the coefficients and the established bound
(5.4).
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Theorem 5.1. Under Assumptions 5.1, 5.2, and 2.2-(v),

C
E| s Xk —vE?) <= 5.6
o N Z‘ )=w >0
E | sup —Z|Xk X)) < ¢ (5.7)
s€(0, t] N
E | sup Wl ot| < -C- 53)
te[0,T) |~ VN
E | sup Wa(u;' /~Lt>- <L (5.9)
t€[0,T] b - NP
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