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Abstract

We formulate and solve a deterministic optimal consumption problem to maximize the discounted

CRRA utility of an individual’s consumption-to-habit process assuming she only invests in a riskless

market and that she is unwilling to consume at a rate below a certain proportion α ∈ (0, 1] of her

consumption habit. Increasing α, increases the degree of addictiveness of habit formation, with α = 0

(respectively, α = 1) corresponding to non-addictive (respectively, completely addictive) model. We

derive the optimal consumption policies explicitly in terms of the solution of a nonlinear free-boundary

problem, which we analyze in detail. Impatient individuals (or, equivalently, those with more addictive

habits) always consume above the minimum rate; thus, they eventually attain the minimum wealth-

to-habit ratio. Patient individuals (or, equivalently, those with less addictive habits) consume at the

minimum rate if their wealth-to-habit ratio is below a threshold, and above it otherwise. By consuming

patiently, these individuals maintain a wealth-to-habit ratio that is greater than the minimum acceptable

level. Additionally, we prove that the optimal consumption path is hump-shaped if the initial wealth-to-

habit ratio is either: (1) larger than a high threshold; or (2) below a low threshold and the agent is more

risk seeking (that is, less risk averse). Thus, we provide a simple explanation for the consumption hump

observed by various empirical studies.

Keywords: Addictive habit formation, consumption hump, optimal consumption, average past con-
sumption, optimal control, free-boundary problem.

1 Introduction

It has been long known that the classical time-separable preferences of Merton (1969) is at odds with empirical
observations; see Grossman and Shiller (1980), Mehra and Prescott (1985), and the references therein. To
address these shortcomings, researchers developed model of habit-formation models in the late 1960’s; see,
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for example, Pollak (1970) and Ryder and Heal (1973). In these models, time-inseparability is introduced
through an explicit dependence of the consumption utility function on the consumption habit, which is defined
as a running average of past consumption. Sundaresan (1989) solved an infinite-horizon, optimal investment
and consumption problem assuming a habit-formation power utility function and a geometric Brownian
motion price process; he demonstrated the smoothness of the optimal consumption process relative to that
of Merton (1969). Constantinides (1990) generalized the specification of the consumption habit process
and provided an explanation for the equity premium puzzle. Under a more general habit-formation utility
and market model, Detemple and Zapatero (1991) and Detemple and Zapatero (1992) derive conditions
under which optimal policies exist and characterize the optimal consumption policy in terms of an unknown
stochastic process that arises from the martingale representation theorem.

The above studies largely assume addictive habit formation, in the sense that they explicitly or implic-
itly assume that the individual is unwilling to consume at a rate below her consumption habit.1 Detemple
and Karatzas (2003) adapted a habit-formation specification that allows for non-addictive habit where con-
sumption can fall below the individual’s consumption habit. For more recent studies on continuous-time
optimal consumption models with habit-formation preferences see Munk (2008), Englezos and Karatzas
(2009), Muraviev (2011), Yu (2015), and Kraft et al. (2017), among others.

We consider an infinite-horizon, optimal consumption problem for an individual who forms a consumption
habit. The novelty of our approach is in introducing a consumption habit-formation constraint that controls
the level of addictiveness of the habit-formation mechanism. In particular, we assume that the individual
is unwilling to consume at a rate that is below a certain proportion α ∈ (0, 1] of her consumption habit.
Setting α = 0 (resp. α = 1) leads to a non-addictive (resp. addictive) habit formation. Choosing α ∈ (0, 1)
leads to partially addictive models, with the level of addictiveness increasing in α. In contrast to the existing
habit-formation literature, our constraint cannot be incorporated in the objective function through infinite
marginal utility, and alters the analysis of the corresponding optimal control problem.

We assume the individual funds her consumption solely through risk-free investment. To avoid bankruptcy,
we show that the wealth-to-habit ratio must always be above a certain “safe level ” xs . We, then, formulate
and solve a deterministic control problem to maximize the discounted CRRA utility of the consumption-to-
habit process. We show that there exists a threshold xα such that if the ratio of wealth-to-habit is above
(resp. below) xα, it is optimal to consume at a rate greater than (resp. equal to) the minimum acceptable
rate imposed by the habit-formation constraint. Furthermore, the individual optimally consumes in such
a way that her wealth-to-habit ratio attains a specific value. We find a significant difference between im-
patient individuals (those whose utility discount rate is above a certain threshold) and patient individuals
(those with utility discount rate below the said threshold). Impatient individuals always consume above
the minimum rate (that is, xα = xs) and, thereby, eventually attain the minimum wealth-to-habit ratio
xs , while patient individuals might consume at the minimum rate (that is, xα > xs) and, thereby, attain
a wealth-to-habit ratio greater than the minimum acceptable level. This patient vs. impatient dichotomy
can also be interpreted as high-addictive habits vs. low-addictive habits. In particular, an impatient (resp.

1Our definition of addictive and nonaddictive models follows Detemple and Zapatero (1991) (see Example 3.2 on page 1639)
and Detemple and Karatzas (2003) (see top of page 266).
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patient) individual has an α that is above (resp. below) a certain threshold, and thus has a more (resp.
less) addictive habit. On the technical side, we obtain explicit results in terms of the solution of a nonlinear
free-boundary problem, which we analyze in detail.

Various empirical studies indicate that consumption spending of individuals usually have a hump-shaped
pattern, with spending typically increasing until the age of about 50 and then decreasing; see Thurow (1969)
for an early study and Fernández-Villaverde and Krueger (2007) for a more recent one. In a recent article,
Kraft et al. (2017) provided a theoretical justification for the consumption hump through an agent’s habit
formation. They considered a finite-horizon, optimal consumption model with addictive habit formation,
in which the agent only invests in a risk-free market and with the objective of maximizing the discounted
CRRA utility of the difference between consumption and the consumption habit. They derived the optimal
consumption policy in closed form and provided sufficient conditions for the presence of a consumption hump
in the asymptotic case of large investment horizon.

We compliment the study of Kraft et al. (2017) by providing necessary and sufficient conditions for the
presence of a consumption hump in our model; see Proposition 3.4 below. As in their paper, we show that
a consumption hump can exist only if the individual’s subjective utility discount rate is higher than the
risk-free rate. We find that a consumption hump exists if the individuals initial wealth-to-habit is higher
than a specific threshold, which we characterize as the solution of a certain algebraic equation (see (3.23)
below). Additionally, we find that a consumption hump can occur for individuals with low wealth-to-habit
ratio (of around the level xα mentioned above), but only if their risk aversion rate is low (more specifically,
their risk-aversion must be below that of a log-utility investor). Thus, our justification for a consumption
hump is either: (1) excess initial wealth (relative to habit); or (2) lack of wealth and low risk aversion. Our
first condition (with high wealth-to-consumption ratio) is similar to the condition provided by Kraft et al.
(2017), while the second scenario (with low wealth-to-consumption ratio and risk aversion) is new.

To the best of our knowledge, our paper is the first that incorporates the degree of addictiveness of habit
formation via an admissibility constraint that cannot be incorporated in the objective function through
infinite marginal utility. It should be mentioned that there is a related literature on optimal consumption
models with ratcheting and drawdown constraints; see, Dybvig (1995), Elie and Touzi (2008), Jeon et al.
(2018), Roche (2019), Angoshtari et al. (2019), Albrecher et al. (2020), and Albrecher et al. (2022) among
others. In these studies, the individual is forbidden to consume below a proportion α of the running max-
imum of her past consumption. In parallel to addictive and non-addictive habit formation, the case α = 1
corresponds to the ratcheting constraint, while α ∈ (0, 1) represents the drawdown constraint. There is,
however, significant differences between the above studies and ours. Indeed, in contrast to habit formation
based on average past consumption, drawdown and ratcheting constraints represent a severe form of habit
formation for which the effect of past consumption does not “fade away” with time, and the habit process
cannot be reduced by lowering the rate of consumption. Furthermore, drawdown and ratcheting constraints
lead to singular control, while our setting leads to regular control.

In a companion article Angoshtari et al. (2022), we extend our model to the case when the agent invests in
a risky asset as well as the risk-free asset, which leads to a stochastic control problem. The results presented
herein for the deterministic case is not a special case of our other paper, however. On the technical side,
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the analysis of the stochastic control problem relies on randomness of the model and degenerates once the
risky asset is removed. Furthermore, the results presented here rely on analysis of a single ODE, while the
stochastic case reduces to a coupled system of first-order ODEs with a free boundary, whose analysis is
much more intricate. Thus, our deterministic model in the current paper is more tractable and amenable to
extensions such as equilibrium modeling. On the economic side, we don’t see structural differences between
patient and impatient individual in the stochastic case, in the sense that, for the optimal consumption policy,
we always have xα > xs (that is, the individual consumes patiently) regardless of the value of the utility
discount rate. Finally, our goal in the current paper is to explain the consumption hump, while our stochastic
model explains the equity premium puzzle.

The rest of the paper is organized as follows. In Section 2, we introduce the consumption habit process,
derive its basic properties, and define our optimal consumption problem. In Section 3, we formulate the
Hamilton-Jacobi-Bellman (HJB) free-boundary-problem and solve it semi-explicitly by applying the Legendre
transform. This section includes the main result of the paper, namely, Theorem 3.1, in which we verify that
the solution of the HJB free-boundary-problem yields the value function and the optimal consumption policy.
Furthermore, Proposition 3.4 provides necessary and sufficient conditions for the presence of a consumption
hump. In Subsection 3.2, we derive the optimal policy for logarithmic utility and, in Subsection 3.3, we
investigate the effect of adding income at a constant rate. In Section 4, we illustrate the optimal consumption
and wealth process and their sensitivity to some of the model parameters through several numerical examples.
We conclude in Section 5. Longer proofs are included in the appendices.

2 Problem formulation

We consider an individual who invests in a riskless asset with a fixed interest rate r > 0 and who consumes
in order to maximize her utility of lifetime consumption. Let C(t ) ≥ 0 denote the individual’s consumption
rate at time t ≥ 0, such that

∫ t
0 C(u)du is the total consumption over the time interval [0, t ]. Then, her

wealth process W = {W(t)}t≥0 satisfies

dW(t)
dt

= r W(t) – C(t), (2.1)

for t ≥ 0, with W(0) = w > 0.
For a given consumption process C = {C(t)}t≥0, we define the individual’s habit process (that is, con-

sumption habit) as the process Z = {Z(t)}t≥0 given by

Z(t) = e–ρ t
(

z +
∫ t

0
ρ eρ uC(u)du

)
; t ≥ 0, (2.2)

which has the following equivalent differential form,
dZ(t)

dt = –ρ
(
Z(t) – C(t)

)
; t ≥ 0,

Z(0) = z .
(2.3)

Here, ρ > 0 is a constant, and z > 0 represents the initial consumption habit of the individual. The
parameter ρ determines how much current habit is influenced by the recent rate of consumption relative to
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the consumption rate farther in the past. As ρ increases, more weight is given to recent consumption. In
the limiting cases, ρ = 0 implies Z(t) = z for all t ≥ 0, and ρ = ∞ implies Z(t) = C(t) for all t ≥ 0.

For t > 0, the consumption habit Z(t) given by (2.2) is the exponentially-weighted moving average of
past consumption C(s), s < t . To see this, assume the individual lived (and consumed) over the time period
(–∞, t). Let z be the exponentially-weighted average of her consumption rate before time zero, that is,
z =

∫ 0
–∞ ρ eρuC(u)du. (Note that

∫ 0
–∞ ρ eρudu = 1.) By substituting for z in (2.2), we obtain

Z(t) =
∫ 0

–∞
ρ e–ρ(t–u)C(u)du +

∫ t

0
ρ e–ρ(t–u)C(u)du

=
∫ t

–∞
ρ e–ρ(t–u)C(u)du,

with
∫ t
–∞ ρ e–ρ(t–u)du = 1. Thus, Z(t) is the exponentially-weighted moving average of C(s), s < t , as

claimed.
We consider a consumption habit formation for the individual by assuming that, at any time t ≥ 0, she is

unwilling to consume at a rate that is below a certain proportion of her habit Z(t ). In particular, we impose
the following constraint on the individual’s consumption process

C(t) ≥ αZ(t); t ≥ 0, (2.4)

in which α ∈ (0, 1] is a constant that measures the individual’s tolerance for her current consumption to
drop below her habit. The larger the value of α, the less tolerant the individual is in allowing her current
consumption to fall below her habit. Note that the consumption habit process {Z(t)}t≥0, depends on z and
on the consumption process {C(t)}t≥0. To ease the notational burden, however, we write Z(t ) instead of
the more accurate notation Zz ,C(·)(t).

We assume that the individual consumes in such a way to avoid bankruptcy. The following lemma
provides the corresponding necessary and sufficient condition, namely, that the wealth-to-habit ratio must
be above a “safe level ” xs given by

xs = xs(α) :=
α

r + ρ(1 – α)
, (2.5)

for α ∈ [0, 1]. Note that xs(α) is strictly increasing in α, xs(0) = 0, and xs(1) = 1/r .

Lemma 2.1. Assume that C : R+ → R+ is a measurable function satisfying (2.4), in which {Z(t)}t≥0 is
given by (2.2). Define the wealth process {W(t)}t≥0 by (2.1). Then, W(t) > 0 for all t ≥ 0 if and only if

W(t)
Z(t)

≥ xs , (2.6)

for all t ≥ 0.

Proof. See Appendix A.

We can interpret (2.6) by observing how it changes with respect to the parameters α, ρ, and r . First, xs
increases with α, which means that to avoid ruin, the individual’s wealth-to-habit ratio needs to be larger
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with increasing α. This relationship makes sense because as α increases, the individual is less tolerant about
allowing her current consumption to fall relative to her habit. Second, xs decreases with increasing ρ, and
increasing ρ means that more weight is given to recent consumption in measuring the habit. Thus, as ρ
increases, past consumption has less effect on current consumption via the habit, and the wealth-to-habit
ratio does not need to be as large to avoid ruin. Third, xs decreases with increasing r , and increasing r
means that the individual can earn more money in the riskless asset to fund her consumption; thus, it makes
sense that increasing r implies that the wealth-to-habit ratio does not need to be as large to avoid ruin.

Inequality (2.6) implies that the highest initial consumption habit that the individual can afford with an
initial wealth w is z = w/xs . Equivalently, (2.6) tell us that the minimum initial wealth that the individual
needs to afford an initial consumption habit of z is w = xs z . In other words, (2.6) characterizes affordable
consumption habits given the individual’s wealth.

Note that as α → 0+, the requirement for consumption (2.4) becomes C(t) ≥ 0, and inequality (2.6)
becomes moot, which we expect because this limiting case is the setting considered by Merton (1969). It is
also worth noting that, in the special case of α = 1, the requirement for consumption (2.4) becomes C(t) ≥
Z(t), and inequality (2.6) becomes rW(t) ≥ Z(t), which is consistent with the feasibility condition adapted
by Dybvig (1995), namely, that rW(t) ≥ C(t–). Note, also, that although both of the aforementioned studies
consider risky investment in addition to the riskless investment, their no-bankruptcy conditions compares
with ours because these conditions are derived using arguments that rely solely on riskless investments.

We define the set of admissible investment and consumption policies as those that avoid bankruptcy
while satisfying the individual’s consumption habit-formation constraint.

Definition 2.1. Let Ã(w , z ) be the set of all measurable functions C : R+ → R+ such that conditions (2.4)
and (2.6) hold, namely, C(t) ≥ αZ(t), and W(t) ≥ xsZ(t) for all t ≥ 0, in which W and Z are given by (2.1)
and (2.2), respectively.

Next, we formulate the individual’s lifetime consumption and investment problem as a control problem.
For any admissible consumption policy C ∈ Ã, let us introduce the wealth-to-habit process

X(t) :=
W(t)
Z(t)

; t ≥ 0, (2.7)

and note that, by (2.1) and (2.3),

X(t) = x +
∫ t

0

[
(r + ρ)X(u) –

(
1 + ρX(u)

)
c(u)

]
du; t ≥ 0, (2.8)

in which we have defined the consumption-to-habit process c = {c(t)}t≥0 by c(t) := C(t)/Z(t). We define
the set of admissible consumption-to-habit policies as follows.

Definition 2.2. Let A(x ) be the set of all measurable functions c : R+ → [α, +∞) such that X(t) ≥ xs for
all t ≥ 0, in which X(t) is given by (2.8).

As the following proposition states, our two definitions of admissible policies are equivalent in the sense
that any admissible consumption policy corresponds to an admissible relative consumption policy and vice
versa. Its proof is elementary and, thus, omitted.
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Proposition 2.1. Let w , z > 0 be the initial wealth and habit, respectively, and define x := w/z . Assume
that C ∈ Ã(w , z ) and let Z be given by (2.2). Then, we have c := C/Z ∈ A(x ). Conversely, assume that
c ∈ A(x ), and let W be the solution of

dW(t)
dt

= W(t)
(

r –
c(t)
X(t)

)
; t ≥ 0,

W(0) = w ,

in which X is given by (2.8). We, then, have C := cW/X ∈ Ã(w , z ).

We assume that the individual values her consumption relative to her habit. In particular, for a given
consumption process C, the expected utility of her lifetime consumption is given by2

E

(∫ τd

0

1
1 – γ

(
C(t)
Z(t)

)1–γ
e–δ̃ t dt

)
=
∫ +∞

0

1
1 – γ

(
C(t)
Z(t)

)1–γ
e–(δ̃+λ) t dt , (2.9)

in which δ̃ > 0 is the individual’s subjective time preference, γ > 0 (with γ ̸= 1) is her (constant) relative
risk aversion, and τd is the random time of her death, which we assume is exponentially distributed with
mean 1/λ > 0. In light of Proposition 2.1, the individual’s optimal investment-consumption problem is,
thus, formulated by the following control problem:

V(x ) := sup
c(·)∈A(x)

∫ +∞

0
e–δt

(
c(t)

)1–γ
1 – γ

dt ; x ≥ xs . (2.10)

in which δ = δ̃ + λ.

3 The optimal consumption policy

The Hamilton-Jacobi-Bellman (HJB) equation corresponding to the control problem in (2.10) is as follows

–δv(x ) + (r + ρ)xv ′(x ) + sup
c≥α

{
c1–γ

1 – γ
– (1 + ρx )cv ′(x )

}
= 0; x ≥ xs . (3.1)

In the rest of this section, we construct a classical solution of this differential equation; then, in the proof of
Theorem 3.1, we verify that the constructed solution equals the value function V in (2.10). In Subsection
3.1, we provide sharp conditions for presence of consumption hump in our model. In Subsection 3.2, we solve
the case of logarithmic utility function. In Subsection 3.3, we investigate the effect of adding a constant rate
of income to our model.

To construct a candidate solution, we hypothesize that the optimal consumption policy has the following
form. There exists a critical level of wealth-to-habit ratio xα ≥ xs such that:

(a) If xs ≤ X(t) ≤ xα, it is optimal to consume at the minimum rate c(t) = α,

(b) If X(t) > xα, it is optimal to consume more than the minimum rate.
2Such a multiplicative habit-formation preference is common in the literature. See, for instance, Abel (1990). See page 322

of Kraft et al. (2017) for a more complete list of references.
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Next, we drive a set of conditions by assuming that a solution v(x ) of (3.1) is consistent with the ansatz
(a) and (b) above. Note that the optimizer c∗ in (3.1) is given by3

c∗(x ) :=


α; (1 + ρx )v ′(x ) ≥ α–γ ,(
(1 + ρx )v ′(x )

)– 1
γ ; 0 < (1 + ρx )v ′(x ) < α–γ .

(3.2)

For ansatz (a) and (b) to be true, we must have
(1 + ρx )v ′(x ) ≥ α–γ ; xs ≤ x ≤ xα,

0 < (1 + ρx )v ′(x ) < α–γ ; x > xα.
(3.3)

Under these conditions, (3.1) becomes the free-boundary problem (FBP)

–α
(

x
xs

– 1
)

v ′(x ) + δv(x ) =
α1–γ

1 – γ
; xs ≤ x ≤ xα,

–(r + ρ)xv ′(x ) + δv(x ) =
γ

1 – γ
(
(1 + ρx )v ′(x )

)1– 1
γ ; x > xα,

(1 + ρxα)v ′(xα) = α–γ ,

(3.4)

in which xα ≥ xs is an unknown free boundary.

Remark 3.1. It is possible to directly provide the solution of the FBP (3.4). Here, we have chosen an indirect
approach through the Legendre transform (3.5) below. We have three reasons for doing this. Firstly, the
analysis of (3.4) is more natural after applying the Legendre transform, since the verification argument relies
on several properties of the solution which are expressed in terms of the derivative of the value function
at certain boundaries. For instance, for the case 0 < δ < r + ρ(1 – α), we have V′(x+

s ) = +∞; while
V′(xs) = α–γ/(1 + ρxs) if δ > r + ρ(1 – α). By applying the Legendre transform, the derivative V′(x ) = y
becomes the independent variable and it will be easier to see these conditions. By working directly with FBP
(3.4), one still needs to establish these additional properties which will require equivalent argument as those
presented for the dual value function below. Secondly, our current arguments are parallel to the arguments
in our companion work Angoshtari et al. (2022). Therein, using the Legendre transform is necessary for
linearizing the terms involving the second derivative of the value function. Our current presentation makes
it easier to compare the two papers. Finally, we have found that the auxiliary ODEs (3.11) and (3.13) are
numerically more stable than their counterparts obtained by directly working with (3.4). Although there
are ways to properly deal with the numerical instability of such ODEs, this further highlights the fact that
applying the Legendre transform is appropriate here.

To solve FBP (3.4), we define the convex conjugate u given by

u(y) := sup
x≥xs

{
v(x ) – xy

}
; 0 < y ≤ y := lim

x→x+
s

v ′(x ) ∈ R ∪ {+∞}, (3.5)

3Here, we are assuming that v ′(x) > 0, which is verified by Proposition 3.3.
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in which we have assumed that v is strictly increasing and concave, an assumption that will be verified in
Proposition 3.3. Assume that I(·) is the inverse of v ′(·), that is, v ′(I(y)

)
= y , 0 < y ≤ y . We, then, have

v
(
I(y)

)
= u(y) – yu ′(y), I(y) = –u ′(y), and v ′′(I(y)

)
= –

1
u ′′(y)

, (3.6)

for 0 < y ≤ y . By using these relationships and substituting x = –u ′(y), the FBP (3.4) becomes the following
FBP: (

r + ρ(1 – α) – δ
)
yu ′(y) + δu(y) =

α1–γ

1 – γ
– αy ; yα ≤ y ≤ y , (3.7)(

r + ρ – δ
)
yu ′(y) + δu(y) =

γ

1 – γ
(
y – ρyu ′(y)

)1– 1
γ ; 0 < y < yα, (3.8)

lim
y→y –

u ′(y) = –xs , (3.9)

and

yα – ρyαu ′(yα) = α–γ , (3.10)

in which y = limx→x–
s v ′(x ) and yα = v ′(xα) are unknown free boundaries. Here, we include the possibility

of y = +∞. Our goal is to find a decreasing and strictly convex u satisfying (3.7)–(3.10) which, by inverting
(3.5), yields an increasing and strictly concave v satisfying (3.4). Specifically, v is given by v(x ) = u(y) –
yu ′(y), in which 0 < y ≤ y uniquely solves x = –u ′(y) for x ≥ xs .

Note that if δ = r + ρ(1 – α), then, by (3.7),

u(y) =
α1–γ

δ(1 – γ)
–
α

δ
y ; yα < y ≤ y .

However, this u is not strictly convex and contradicts (3.5) unless yα = y (meaning that (3.7) is moot).
If yα = y , then (3.9) and (3.10) yield yα = α–γ/(1 + ρxs). In the following proposition, we show that, if
δ ≥ r + ρ(1 – α), there exists a decreasing and convex solution of (3.8)–(3.10) with y = yα = α–γ/(1 + ρxs).

Proposition 3.1. Assume δ ≥ r + ρ(1 – α). Then:
(i) There is a strictly increasing function y : (0,α–γ ] →

(
0,α–γ/(1 + ρxs)

]
satisfying

y ′(ψ) =

ρ
r+ρ

(
r+ρ–δ
ρ – ψ– 1

γ

)
y(ψ)

y(ψ) – δ
r+ρψ

; 0 < ψ ≤ α–γ ,

y (α–γ) =
α–γ

1 + ρxs
.

(3.11)

Furthermore, 0 < y(ψ) < δψ/(r + ρ) for 0 < ψ < α–γ .
(ii) A strictly decreasing and strictly convex solution of the FBP (3.8)–(3.10) is given by y = yα = α–γ

1+ρxs ,
and

u(y) =
1
δ

[
γ

1 – γ
(
ψ(y)

)1– 1
γ +

r + ρ – δ
ρ

(
ψ(y) – y

)]
, (3.12)

for 0 < y ≤ α–γ

1+ρxs , in which ψ = ψ(y) is the (strictly increasing) inverse of y = y(ψ) in (i).
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Proof. See Appendix B.

Next, we consider the FBP (3.7)–(3.10) when 0 < δ < r + ρ(1 – α). For this case, we find that 0 < yα <
y = +∞. The following proposition provides the solution for this case.

Proposition 3.2. Assume 0 < δ < r + ρ(1 – α). Define the constants ψ0 :=
(

r+ρ–δ
ρ

)–γ
∈ (0,α–γ) and

y0 := δψ0
r+ρ ∈

(
0, α–γ

1+ρxs
)
. Then:

(i) There exist a constant yα ∈
(
y0, α–γ

1+ρxs
)

and a strictly increasing function y : (0,α–γ ] →
(
0, yα

]
satisfying4


y ′(ψ) =

ρ
r+ρ

(
r+ρ–δ
ρ – ψ– 1

γ

)
y(ψ)

y(ψ) – δ
r+ρψ

; 0 < ψ ≤ α–γ ,

y (α–γ) = yα.

(3.13)

Furthermore, max

(
0,ψ – ρ

r+ρψ
1– 1

γ

)
< y(ψ) < δ

r+ρψ for 0 < ψ < ψ0, and δ
r+ρψ < y(ψ) < ψ – ρ

r+ρψ
1– 1

γ

for ψ0 < ψ < α–γ .
(ii) A strictly decreasing and strictly convex solution of the FBP (3.7)–(3.10) is given by y = +∞, yα as in
(i),

u(y) =
r + ρ(1 – α) – δ

δρ

(
α–γ – yα(1 + ρxs)

)( y
yα

)– δ
r+ρ(1–α)–δ

– xsy +
α1–γ

δ(1 – γ)
; y > yα, (3.14)

and

u(y) =
γ

δ(1 – γ)
(
ψ(y)

)1– 1
γ +

r + ρ – δ
ρδ

(
ψ(y) – y

)
; 0 < y ≤ yα, (3.15)

in which ψ = ψ(y) is the (strictly increasing) inverse of y = y(ψ) in (i).

Proof. See Appendix C.

Propositions 3.1 and 3.2 yield a decreasing and convex solution
(
y , yα, u(y)

)
of the FBP (3.7)–(3.10). By

reversing the transformation in (3.5), we obtain an increasing and concave solution
(
xα, v(x )

)
of the FBP

(3.4). We state this result as the following proposition.

Proposition 3.3. Let y, yα, ψ, and u be as in Proposition 3.1 (if δ ≥ r + ρ(1 – α)) or Proposition 3.2 (if
0 < δ < r + ρ(1 – α)). Let J : (–∞, –xs) → (0, y) be the inverse of u ′, that is, u ′(J(ξ)

)
= ξ for ξ < –xs .

Define

xα := –u ′(yα) =
α–γ

ρyα
–

1
ρ
,

v(x ) := u
(
J(–x )

)
+ xJ(–x ); x > xs ,

v(xs) = lim
x→x+

s

(
u
(
J(–x )

)
+ xJ(–x )

)
,

4This statement is non-trivial since we are looking for a strictly increasing solution on (0,α–γ ]. See Figure 11.
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and

c∗(x ) :=


α; xs ≤ x ≤ xα,(
ψ
(
J(–x )

))– 1
γ ; x > xα.

(3.16)

Then, xα, v , and c∗ satisfy (3.2), (3.3), and (3.4). In particular, v = v(x ) is increasing and strictly concave
with respect to x . Furthermore, xα = xs (resp. xs < xα < r+ρ–δ

δρ ) if δ ≥ r+ρ(1–α) (resp. 0 < δ < r+ρ(1–α)).

Proof. We, first, prove that J(·) is an increasing function such that limξ→–∞ J(ξ) = 0 and limξ→–x–
s

J(ξ) = y .
By Propositions 3.1 and 3.2, u(·) is convex and thus, u ′(·) is strictly increasing. Therefore, its inverse
J(ξ) exists and is strictly increasing. That limξ→–x–

s
J(ξ) = y follows from limy→y – u ′(y) = –xs by (3.9).

Finally, to show limξ→–∞ J(ξ) = 0, it suffices to show limy→0+ u ′(y) = –∞. On the contrary, suppose
that limy→0+ u ′(y) ̸= –∞. Because u ′(·) is strictly increasing, we must have limy→0+ u ′(y) = K for some
constant K < –xs = limy→y – u ′(y). Note that for a sufficiently small ε > 0, we have in both Propositions
3.1 and 3.2 that u ′(y) = 1

ρ – ψ(y)
ρy for 0 < y < ε. Therefore, we must have

lim
y→0+

ψ(y)
y

= 1 – ρK > 1. (3.17)

On the other hand, since limy→0+ ψ(y) = 0, by L’Hôpital’s rule, (B.6), and (C.7), one obtains that

lim
y→0+

ψ(y)
y

= lim
y→0+

ψ′(y) = lim
y→0+

1 – δ
r+ρ

ψ(y)
y

ρ
r+ρ

(
r+ρ–δ
ρ –

(
ψ(y)

)– 1
γ

) = 0,

which contradicts (3.17). Thus, lim
y→0+

u ′(y) = –∞ which, in turn, yields that lim
ξ→–∞

J(ξ) = 0.

It is, then, straightforward to prove that xα, v , and c∗ satisfy (3.2), (3.3), and (3.4) by reversing the
transformation (3.5) and by using the fact that y , yα, and u solve FBP (3.7)–(3.10). That v is increasing and
strictly concave follows from (3.6) since u is decreasing and strictly convex as established by Propositions 3.1
and 3.2. Finally, the statement about xα follows from the properties of yα in Propositions 3.1 and 3.2.

We now state the main result of this section regarding the solution of the control problem (2.10).

Theorem 3.1. Let v and c∗ be as in Proposition 3.3. We, then, have V(x ) = v(x ) for x ≥ xs . Furthermore,
an optimal consumption-to-habit policy is given by

{
c∗
(
X∗(t)

)}
t≥0, in which X∗ =

{
X∗(t)

}
t≥0 solves

d
dt

X∗(t) = (r + ρ)X∗(t) –
(
1 + ρX∗(t)

)
c∗
(
X∗(t)

)
; t ≥ 0,

X∗(0) = x .
(3.18)

Proof. We complete the proof in two steps. In the first step, we show that v(x ) ≥ V(x ). In the second step,
we prove that t 7→ c∗

(
X∗(t)

)
is admissible and that v(x ) =

∫+∞
0 e–δ tc∗

(
X∗(t)

)1–γ/(1 – γ)dt , which implies
that v(x ) ≤ V(x ). The statement of the theorem, then, follows from these two steps.
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Step 1: Let c(·) ∈ A0, and let {X(t)}t≥0 be the corresponding wealth-to-habit process given by (2.8). We,
then, have

e–δTv
(
X(T)

)
+
∫ T

0
e–δt c(t)1–γ

1 – γ
dt = v(x ) +

∫ T

0
e–δtLc(t)v

(
X(t)

)
dt ; T > 0, (3.19)

in which we have defined the operator Lc , for any c ≥ α, by

Lcv(x ) := –δv(x ) + (r + ρ)xv ′(x ) +
c1–γ

1 – γ
– (1 + ρx )cv ′(x ).

Because v(·) satisfies the HJB equation (3.1), we have Lc(t)v
(
X(t)

)
≤ 0 for all t ≥ 0. Therefore, from (3.19),

it follows that

e–δT v
(
X(T)

)
+
∫ T

0
e–δt c(t)1–γ

1 – γ
dt ≤ v(x ); T ≥ 0. (3.20)

By letting T → +∞ in (3.20) and using Lemma D.1 in Appendix D, we obtain that v(x ) ≥
∫∞
0 e–δt c(t)1–γ

1–γ dt .
Finally, by taking the supremum over all c(·) ∈ A0, we obtain that v(x ) ≥ V(x ).

Step 2: First, we show that (3.18) has a solution X∗ : [0,+∞) → [xs , +∞). Note that if x = xs , the unique
solution of (3.18) is X∗ ≡ xs . Similarly, by using Lemma D.2(ii) in Appendix D, if 0 < δ < r + ρ(1 – α) and
if x = x0 := r+ρ–δ

δρ , then the unique solution of (3.18) is X∗ ≡ x0. Next, consider the case x /∈ {xs , x0}, for
which (3.18) has a non-constant solution. We consider three sub-cases:

(a) Suppose δ ≥ r + ρ(1 – α) and x > xs . For T > 0, define the region D(T) := {(t , X∗) : 0 ≤ t ≤ T, xs ≤
X∗ ≤ x}. By the classical existence and uniqueness theorem for first-order ODEs, (3.18) has a unique
solution in D(T) because the ODE is Lipschitz with respect to x over D(T); denote this solution by
X∗ : [0, T1] → [xs , x ] for some T1 ∈ (0, T]. By Lemma D.2(i), X∗(·) is strictly decreasing:

d
dt

X∗(t) = (r + ρ)X∗(t) –
(
1 + ρX∗(t)

)
c∗
(
X∗(t)

)
< 0; 0 ≤ t ≤ T1.

We claim that the solution that starts from the top-left corner can only exit from the right edge of D(T),
that is, T1 = T. Indeed, the solution cannot exit from the top boundary since it starts from the top
left corner and is strictly decreasing in D(T); therefore, X∗(t) < x for all 0 ≤ t ≤ T1. Furthermore,
we must have X∗(T1) > xs because X∗(T1) = xs contradicts the uniqueness of the solution of the
following terminal-value problem:

d
dt

X̃
∗
(t) = (r + ρ)X̃

∗
(t) –

(
1 + ρX̃

∗
(t)
)
c∗
(
X̃
∗
(t)
)
; 0 < t ≤ T1,

X̃
∗
(T1) = xs ,

which has the unique solution X̃
∗ ≡ xs . So, the solution has to exit from the right boundary of D(T),

which implies that T = T1 and xs < X∗(t) < x . Because the choice of T is arbitrary, we can conclude
that, for this sub-case, (3.18) has a unique decreasing solution X∗ : [0,+∞) → (xs , x ].

(b) Suppose 0 < δ < r + ρ(1 – α) and x > x0. For T > 0, define the region D(T) := {(t , X∗) : 0 ≤ t ≤
T, x0 ≤ X∗ ≤ x}. As in the argument for sub-case (a), we deduce that (3.18) has a unique decreasing
solution X∗ : [0,+∞) → (x0, x ].
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(c) Suppose 0 < δ < r + ρ(1 – α) and xs < x < x0. For T > 0, define the region D(T) := {(t , X∗) : 0 ≤ t ≤
T, x ≤ X∗ ≤ x0}. As in the arguments for sub-cases (a) and (b), we deduce that (3.18) has a unique
increasing solution X∗ : [0,+∞) → [x , x0).

We have, thereby, shown that (3.18) has a solution X∗(t) ≥ xs . Because c∗(x ) ≥ α, it follows that c∗
(
X∗(·)

)
∈

A0 and X∗(·) is the corresponding wealth-to-habit process.
It only remains to show that v(x ) =

∫+∞
0 e–δ tc∗

(
X∗(t)

)1–γ/(1 – γ) dt . To this end, we repeat the
argument in Step 1 of the proof with c(·) and X(·) replaced by c∗

(
X∗(·)

)
and X∗(·), respectively. In

particular, because v and c∗ satisfy (3.2), (3.3), and (3.4), we have

Lc∗(x)v(x ) := –δv(x ) + (r + ρ)xv ′(x ) +
c∗(x )1–γ

1 – γ
– (1 + ρx )c∗(x )v ′(x ) = 0,

for x > xs . Equation (3.19), then, becomes

v(x ) = e–δTv
(
X∗(T)

)
+
∫ T

0
e–δ t c∗

(
X∗(t)

)1–γ
1 – γ

dt ; T > 0.

Finally, by taking the limit as T → +∞ and by using Lemma D.1, we obtain v(x ) =
∫+∞
0 e–δ t c∗(X∗(t))1–γ

1–γ dt .

In the proof of Theorem 3.1, we also established the following results regarding the behavior of the
optimal wealth-to-habit and consumption-to-habit processes. In its statement, x0 and c0 are the constants
defined in Lemma D.2 of Appendix D, namely,

x0 :=
r + ρ – δ

δρ
, and c0 :=

r + ρ – δ
ρ

. (3.21)

Corollary 3.1. The optimal wealth-to-habit process {X∗(t)}t≥0 and the optimal consumption-to-habit pro-
cess

{
c∗
(
X∗(t)

)}
t≥0 satisfy the following properties.

(i) If x = xs , then X∗(t) = xs and c∗
(
X∗(t)

)
= α for all t ≥ 0.

(ii) If δ ≥ r + ρ(1 – α) and x > xs , then X∗(t) is a decreasing function, lim
t→+∞

X∗(t) = xs , and

lim
t→+∞

c∗
(
X∗(t)

)
= α.

(iii) If 0 < δ < r + ρ(1 – α) and x > x0, then X∗(t) is a decreasing function, lim
t→+∞

X∗(t) = x0, and

lim
t→+∞

c∗
(
X∗(t)

)
= c0.

(iv) If 0 < δ < r + ρ(1 – α) and x = x0, then X∗(t) = x0 and c∗
(
X∗(t)

)
= c0 for all t ≥ 0.

(v) If 0 < δ < r + ρ(1 – α) and xs < x < x0, then X∗(t) is an increasing function, lim
t→+∞

X∗(t) = x0, and

lim
t→+∞

c∗
(
X∗(t)

)
= c0.
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Remark 3.2. The monotonic patterns of the consumption-to-habit and wealth-to-habit ratios are a conse-
quence of our multiplicative habit-formation utility function of (2.9). They are present even if we remove
the habit-formation constraint. To see this, let α → 0+ in our model and note that c0 and x0 in Corollary
(3.1).(iii) – (v) do not depend on α. Thus, as α → 0+, the limiting behavior (at t = +∞) of the optimal
consumption policy should be the same as what is stated in Corollary 3.1.(iii)–(v). In particular, if w/z > x0

(i.e. the initial wealth-to-habit ratio is above x0), then the individual starts with an initial consumption-to-
habit c∗(w/z ) > c0 and, as t → +∞, reduces her consumption-to-habit (respectively, wealth-to-habit) to its
limiting value of c0 (respectively, x0). Similarly, if w/z < x0 (i.e. the initial wealth-to-habit ratio is below
x0), then the individual starts with a initial consumption-to-habit c∗(w/z ) < c0 and, as t → +∞, increases
her consumption-to-habit (respectively, wealth-to-habit) to its limiting value of c0 (respectively, x0). Finally,
if w/z = x0, then the optimal consumption policy is to consume at a rate such that c∗t = C∗

t /Z
∗
t ≡ c0. Thus,

the monotoneicity of X∗(t) and c∗
(
X∗(t)

)
follows from the multiplicative habit-formation utility rather than

the habit formation constrain (2.4).

Remark 3.3. The previous remark also shed more light on the difference between patient and impatient
optimal consumption patterns. Consider an individual with α = 0. As discussed in the previous remark, she
optimally consumes to attain long-term consumption-to-habit level of c0 and investment-to-habit level of x0.
Now, let us increase her α above 0 while keeping all the other parameters fixed. By Lemma 2.1, a non-zero
α would impose a safe level Wt/Zt ≥ xs in order to keep wealth positive. Then, the question is whether
the individual can still attain her long-term consumption-to-habit c0 and investment-to-habit x0 now that
she is subject to the habit-formation constraint. The answer depends on whether or not x0 > xs , that is,
if the long-term investment-to-habit ratio is sustainable under the habit-formation constraint. By (2.5) and
(3.21), we have that xs ≤ x0 ⇐⇒ δ < r +ρ(1–α). Thus, patient individuals can reach their long term goals
(i.e. the wealth-to-habit ratio of x0 and the consumption-to-habit ratio of c0). If their initial wealth-to-habit
ratio is above x0 (i.e. w/z ≥ x0), then their consumption policy will be identical to the individual without
habit-formation constraint (i.e. α = 0). If w/z < x0, then they still optimally consume in a way to reach
their long-term goals (x0, c0) as in Corollary 3.1.(v ). However, their consumption policy is different from the
case α = 0 in that if their wealth is low (W∗

t /Z
∗
t < xα), they keep consuming at the minimum rate C∗

t = αZ∗
t .

while impatient individuals cannot. Finally, for impatient individual, δ > r + ρ(1 –α) which implies x0 < xs .
Thus, these individual cannot attain their long-term goals of reaching a wealth-to-habit ratio of x0 and a
consumption-to-habit ratio of c0. Since they have to start with a wealth-to-habit ratio w/z > xs > x0, it is
expected for them to try to reach the lowest possible wealth-to-habit ratio of xs (instead of their lower ideal
goal x0). This explains their optimal policy as in Corollary 3.1.(ii).

In the following three subsection, we provide sharp conditions for presence of consumption hump, consider
the case of logarithmic utility, and investigate the effect of adding a constant rate of income to our model.

3.1 Necessary and sufficient condition for consumption hump

As discussed in the introduction, several empirical studies have observed that the consumption spending of
individuals has a hump pattern, that is, the (absolute) consumption rate first increases until it reaches a
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maximum at about the age of 50, and it decreases during the remaining life of the individual.
In this subsection, we provide necessary and sufficient conditions for the presence of such a consumption

hump in our model. In particular, as the following proposition states, a consumption hump can only exist
if the wealth-to-habit ratio is either (i) larger than a threshold xh > max{x0, xs}; or (ii) smaller than a
threshold x ′

h ∈ (xα, x0). In the statement of the proposition, let C∗(t) := c∗
(
X∗(t)

)
Z∗(t) be the optimal

absolute consumption rate at time t ≥ 0, in which the habit process Z∗(t), t ≥ 0, solves
dZ∗(t)

dt = –ρZ∗(t)
[
1 – c∗

(
X∗(t)

)]
; t ≥ 0,

Z(0) = z .
(3.22)

Proposition 3.4. The optimal absolute consumption rate t 7→ C∗(t) is hump-shaped if and only if one of
the following two cases hold:

(i) r < δ and w > xhz , in which xh is the unique constant in the interval
[
max{x0, xs}, +∞

)
satisfying

the equation

1 +
δ

γ

xh – x0
1 + ρxh

– c∗(xh) = 0. (3.23)

In this case, t 7→ C∗(t) is hump-shaped and attains its maximum at time t = τh , in which τh > 0 is
the unique time such that X∗(τh) = xh.

(ii) r < δ < r + ρ(1 – α), 1 + δ
γ

xα–x0
1+ρxα – α < 0, and xαz < w < x ′

hz , in which x ′
h is the unique constant in

the interval (xα, x0) satisfying

1 +
δ

γ

x ′
h – x0

1 + ρx ′
h

– c∗(x ′
h) = 0. (3.24)

In this case, t 7→ C∗(t) is also hump-shaped and attains its maximum at time t = τ ′h , in which τ ′h > 0
is the unique time such that X∗(τ ′h) = x ′

h.

In particular, Conditions (i) and (ii) fail if δ ≤ r, and Condition (ii) fails if γ > 1 – δ–r
ρ(1–α) .

Proof. See Appendix E.

Kraft et al. (2017) provided a nice interpretation for the presence of a consumption hump in a habit-
formation model such as ours. At the initial time, the individual likes to increase her habit if she can afford it.
However, starting with a high initial rate of consumption would lead to a high consumption habit and would
diminish her utility of consumption (relative to habit). Instead, the individual starts with a lower rate of
consumption and puts aside wealth for her future consumption. As time passes, less wealth is needed to fund
future consumption, allowing the individual to increase her rate of consumption. At a certain age, however,
the individual’s impatience outweighs her concern for future habit, meaning that she prefers consuming
more at that point, even if it leads to higher level of habit (and lower level of utility) later. In our model,
as Proposition 3.4 indicates, such a scenario applies to all individuals if they have a large enough initial
wealth. Additionally, an individual with low level of initial wealth behaves in this way if the conditions in
Proposition 3.4.(ii) hold, which can only be the case if γ < 1 – δ–r

ρ(1–α) < 1.
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Remark 3.4. Kraft et al. (2017) provided a sufficient condition, in the form of three inequalities, for presence
of consumption hump in their model. The first inequality (i.e. (24) therein) is r < δ. The third inequality
(i.e. (26) therein) requires the initial wealth to be larger than some threshold (see equation (29) in Kraft
et al. (2017) and their discussion thereafter). The remaining inequality (i.e. (25) therein) is β – δ–r

γ > α > 0,
in which β (respectively α) corresponds to ρ (respectively, αρ) in our model.5 Therefore, Condition (25)
of Kraft et al. (2017) becomes ρ – δ–r

γ > αρ or, equivalently, γ > δ–r
ρ(1–α) . Thus, the sufficient conditions in

Kraft et al. (2017) are similar to Condition (i) of Proposition 3.4 in that they both require r < δ and that
the initial wealth w be larger than some threshold. Our Condition (i) is a weaker condition, however, since
we don’t require the extra lower bound on the risk-aversion parameter γ as in Condition (25) of Kraft et al.
(2017).6

Condition (ii) of Proposition 3.4 has a different nature from those provided by Kraft et al. (2017). Firstly,
it requires a “moderate” level of wealth, that is, a wealth that is not too small (i.e. w > xαz ) nor too large
(i.e. w < x ′

hz ). This is in contrast to condition (26) of Kraft et al. (2017) that only imposes a lower threshold
for wealth. Secondly, our Condition (ii ) only holds for small values of the risk-aversion parameter γ, as the
last statement of Proposition 3.4 states that Condition (ii) implies that 0 < γ < 1 – δ–r

ρ(1–α) < 1. This is in
contrast with Condition (25) of Kraft et al. (2017) that imposes a lower bound on γ, namely, that γ > δ–r

ρ(1–α) .
The numerical examples in Section 4 highlight another distinction between the two conditions. Condition

(i) (and those in Kraft et al. (2017)) show consumption hump for rich and risk-averse individuals, while
Condition (ii) is relevant for poor and more risk-seeking (but patient) individuals. As Figure 9 in Section
4 indicates (see also Figure 2 in Kraft et al. (2017)), Condition (i) holds for an wealth-to-habit ratio of
w/z = 370/3.92 = 94.4, and risk-aversion γ = 4. In contrast, Figure 5 of Section 4 shows that Condition
(ii) holds for an initial wealth-to-habit ratio of w/z = 2.6 and risk-aversion γ = 0.05.

Finally, note that our conditions are necessary and sufficient, while Kraft et al. (2017) only provided
sufficient conditions for consumption hump in their model. Thus, the fact that Condition (ii) in Proposition
3.4 does not reconcile with those provided by Kraft et al. (2017) does not mean that there is an inconsistency
between our results and theirs. Indeed, there may still be scenarios in Kraft et al. (2017) with hump-shaped
consumption that is not included in their sufficient conditions. Furthermore, the utility functions between
the two models are different (we use a multiplicative utility while Kraft et al. (2017) used a classical habit-
formation utility), which may also lead to different conditions for presence of consumption hump.

3.2 The logarithmic utility function

In this subsection, we consider the following stochastic control problem,

Vlog(x ) := sup
c(·)∈A(x)

∫ +∞

0
e–δt log

(
c(t)

)
dt ; x ≥ xs . (3.25)

5The habit process h(t) in Kraft et al. (2017) satisfies dh(t) = [αc(t) – βh(t)]dt . The counterpart of h(t) in our model is
Z̃(t) = αZ(t). From (2.3), we obtain that dZ̃t = αdZt = –αρ(Z(t) – C(t))dt =

(
αρC(t) – ρZ̃(t)

)
dt . So, β (respectively, α) in

Kraft et al. (2017) is ρ (respectively, αρ) in our model.
6Note that Kraft et al. (2017) did not provide any economic explanation for Condition (25). It seems that this condition is

adapted to simplify their arguments.
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That is, we replace the power utility function in (2.10) with a logarithmic utility function. As we will show,
Vlog and the corresponding optimal consumption policy are obtained from our earlier results by taking the
limit γ → 1.

For γ ∈ (0, 1) ∪ (1, +∞), define the value function

Ṽγ(x ) := sup
c(·)∈A(x)

∫ +∞

0
e–δt

(
c(t)

)1–γ – 1
1 – γ

dt ; x ≥ xs . (3.26)

Note that Vlog = limγ→1 Ṽγ . By comparing Ṽγ with V given by (2.10), we obtain that

Ṽγ(x ) = V(x ) –
∫ +∞

0

e–δt

1 – γ
dt = V(x ) –

1
δ(1 – γ)

; x ≥ xs , (3.27)

and that the consumption policy c∗ in (3.16) is also the optimal policy for (3.26). Let ũγ (respectively, ulog)
be the convex conjugate of Ṽ (respectively, Vlog), namely,

ũγ(y) := sup
x≥xs

{Ṽγ(x ) – xy}; 0 < y < lim
x→x+

s

Ṽ
′
(x ) = lim

x→x+
s

V′(x ) = y ,

and

ũlog(y) := sup
x≥xs

{Vlog(x ) – xy}; 0 < y < y log := lim
x→x+

s

V′
log(x ) = lim

γ→1
y .

Recall that, by Propositions 3.1 and 3.2, we have y = α–γ

1+ρxs (respectively, y = +∞) for impatient (respec-
tively, patient) individuals. From (3.27), it follows that

ũγ(y) = sup
x≥xα

{V(x ) – xy} –
1

δ(1 – γ)
= u(y) –

1
δ(1 – γ)

, 0 < y ≤ y , (3.28)

in which u is the convex conjugate of V. We then obtain the following Corollary of Proposition 3.1 for an
impatient individual with logarithmic utility.

Corollary 3.2. Assume δ ≥ r + ρ(1 – α). There is a strictly increasing function y : (0,α–1] →
(
0,α–1/(1 +

ρxs)
]

satisfying 
y ′(ψ) =

ρ
r+ρ

(
r+ρ–δ
ρ – ψ–1

)
y(ψ)

y(ψ) – δ
r+ρψ

; 0 < ψ ≤ α–1,

y
(
α–1) =

α–1

1 + ρxs
= 1

α – ρ
r+ρ .

Furthermore, 0 < y(ψ) < δψ/(r + ρ) for 0 < ψ < α–1. Finally,

ulog(y) =
1
δ

[
– log

(
ψ(y)

)
+

r + ρ – δ
ρ

(
ψ(y) – y

)]
, 0 < y ≤ y :=

α–1

1 + ρxs
, (3.29)

in which ψ = ψ(y) is the (strictly increasing) inverse of y = y(ψ).
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Proof. Existence of y(ψ) and its properties is obtained by setting γ = 1 in Proposition 3.1.(i) (note that the
proof of Proposition 3.1.(i) is valid for γ = 1). From (3.28) and Proposition 3.1.(ii), it then follows that

ũγ(y) =
1
δ

[
γ

1 – γ
(
ψ(y)

)1– 1
γ +

r + ρ – δ
ρ

(
ψ(y) – y

)]
–

1
δ(1 – γ)

=
1
δ

–
(
ψ(y)

)1– 1
γ – 1

1 – 1
γ

+
r + ρ – δ

ρ

(
ψ(y) – y

) ,

for 0 < y ≤ α–γ

1+ρxs . Taking the limit γ → 1 then yields (3.29).

With a similar argument, we obtain the following corollary of Proposition 3.2 for a patient individual
with logarithmic utility function. Its proof is omitted since it is similar to the previous proof.

Corollary 3.3. Assume 0 < δ < r + ρ(1 –α). Define the constants ψ0 := ρ
r+ρ–δ ∈ (0,α–γ) and y0 := δψ0

r+ρ ∈(
0, α–1

1+ρxs
)
. There exist a constant yα ∈

(
y0, α–1

1+ρxs
)

and a strictly increasing function y : (0,α–1] →
(
0, yα

]
satisfying 

y ′(ψ) =
ρ

r+ρ

(
r+ρ–δ
ρ – 1

ψ

)
y(ψ)

y(ψ) – δ
r+ρψ

; 0 < ψ ≤ α–1,

y
(
α–1) = yα.

Furthermore, max
(
0,ψ – ρ

r+ρ

)
< y(ψ) < δ

r+ρψ for 0 < ψ < ψ0, and δ
r+ρψ < y(ψ) < ψ – ρ

r+ρ for
ψ0 < ψ < α–1. Finally,

ulog(y) =
r + ρ(1 – α) – δ

δρ

(
α–1 – yα(1 + ρxs)

)( y
yα

)– δ
r+ρ(1–α)–δ

– xsy +
1
δ
log(α); y > yα,

and

ulog(y) = –
1
δ
log
(
ψ(y)

)
+

r + ρ – δ
ρδ

(
ψ(y) – y

)
; 0 < y ≤ yα.

in which ψ = ψ(y) is the (strictly increasing) inverse of y = y(ψ).

With ulog at hand, we may then obtain Vlog by inverting the as in Proposition 3.3. The verification
argument is very similar to the proof of Theorem 3.1. We thus get the following result.

Theorem 3.2. If δ ≥ r + ρ(1 – α)), let y = yα = α–1

1+ρxs and let ψ and ulog be as in Corollary 3.2. If
0 < δ < r + ρ(1 – α)), let y = +∞ and let yα, ψ and ulog be as in Corollary 3.3. Furthermore, define
J : (–∞, –xs) → (0, y) to be the inverse of u ′

log, that is, u ′
log

(
J(ξ)

)
= ξ for ξ < –xs . Then, the value function

Vlog in (3.25) is

Vlog(x ) =


ulog

(
J(–x )

)
+ xJ(–x ); x > xs ,

lim
x→x+

s

(
ulog

(
J(–x )

)
+ xJ(–x )

)
; x = xs .
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Furthermore, define xα := –u ′
log(yα) = α–1

ρyα – 1
ρ and

c∗(x ) :=


α; xs ≤ x ≤ xα,

1
ψ
(
J(–x )

) ; x > xα.

Then, an optimal consumption-to-habit policy is given by
{
c∗
(
X∗(t)

)}
t≥0, in which X∗ =

{
X∗(t)

}
t≥0 solves

d
dt X

∗(t) = (r + ρ)X∗(t) –
(
1 + ρX∗(t)

)
c∗
(
X∗(t)

)
, t ≥ 0, with X∗(0) = x .

3.3 Optimal consumption policy under constant income and borrowing limit

In this subsection, we investigate the effect of adding a fixed lifetime income and a fixed borrowing limit to
our model. In the setting of Section 2, assume that the individual receives a fixed income rate η ≥ 0. Let
Ŵ(t) denote the individual’s wealth at time t ≥ 0. Given a consumption process {C(t)}t≥0, we then have

dŴ(t)
dt

= r Ŵ(t) – C(t) + η, (3.30)

for t ≥ 0, with Ŵ(0) = ŵ denoting the individual’s initial wealth. Assume further that the individual
can borrow against her future income. Since the present value of her future income at time t is η/r =∫+∞
t ηe–r(s–tds , it makes sense to set the borrowing limit to η/r . In other words, to avoid bankruptcy, we

must have

Ŵ(t) ≥ –
η

r
, t ≥ 0. (3.31)

Let us first see how the addition of income and borrowing limit changes the safe level given by Lemma 2.1. To
this end, consider a new process, which we call “effective wealth”, given by W(t) := Ŵ(t)+ η/r , t ≥ 0. From
(3.30), it follows that {W(t)}t≥0 satisfy (2.1) with W(0) = w := ŵ + η/r . Furthermore, the no-bankruptcy
condition (3.31) yields that W(t) ≥ 0 for t ≥ 0. Therefore, by the change-of-variable W(t) := Ŵ(t) + η/r ,
we recover the setting of Section 2. In other words, all of our results are applicable to the above setting
once we replace wealth Ŵ with effective wealth W ≡ Ŵ + η/r . For instance, Lemma 2.1 yields the following
corollary.

Corollary 3.4. Assume that C : R+ → R+ is a measurable function satisfying (2.4), in which {Z(t)}t≥0 is
given by (2.2). Define the wealth process {Ŵ(t)}t≥0 by (3.30). Then, Ŵ(t) > η/r for all t ≥ 0 if and only if

Ŵ(t) ≥ xsZ(t) –
η

r
,

for all t ≥ 0, with xs given by (2.5).

As expected, the addition of income and borrowing limit reduces the safe level of wealth. We then define
the set of admissible investment and consumption policies as those that avoid bankruptcy while satisfying
the individual’s consumption habit-formation constraint.

Definition 3.1. Let Â(ŵ , z ) be the set of all measurable functions C : R+ → R+ such that C(t) ≥ αZ(t)
and Ŵ(t) ≥ xsZ(t) – η/r for all t ≥ 0, in which Ŵ and Z are given by (3.30) and (2.2), respectively.
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Next, we derive the optimal consumption policy by considering the value function

V̂(ŵ , z ) := sup
C∈Â(ŵ ,z )

∫ +∞

0
e–δt 1

1 – γ

(
C(t)
Z(t)

)1–γ
dt ; z > 0, ŵ ≥ xsz –

η

r
.

The following corollary of Theorem 3.1 yields the solution of this stochastic control problem.

Corollary 3.5. Let V and c∗ be as in Theorem 3.1. We have V̂(ŵ , z ) = V
(

ŵ+η/r
z

)
for z > 0 and

ŵ ≥ xsz – η
r . Furthermore, an optimal consumption policy is given by C∗(t) := Z∗(t)c∗

(
Ŵ

∗
(t)+η/r
Z∗(t)

)
, t ≥ 0,

in which
{
Ŵ

∗
(t)
}
t≥0 and

{
Z∗(t)

}
t≥0 are the solution of the ODE system

dŴ
∗
(t)

dt
= r Ŵ

∗
(t) – c∗

(
Ŵ

∗
(t) + η/r
Z∗(t)

)
+ η, t > 0

dZ∗(t)
dt

= –ρ

(
Z∗(t) – c∗

(
Ŵ

∗
(t) + η/r
Z∗(t)

))
, t > 0

for t ≥ 0, and with the initial conditions Ŵ
∗
(0) = ŵ and Z∗(0) = z .

In particular, assuming a wealth w and habit z , the addition of income and borrowing limit increases
consumption rate from zc∗(w/z ) to zc∗

(
(w + η/r)/z

)
. Impatient and patient consumption patterns still

exist and are identified by whether or not δ ≥ r +ρ(1–α). However, consumption levels are generally higher.
For instance, a patient individual requires a smaller wealth to increase her consumption above it minimum
αZ(t) (i.e. W(t) > xαZ(t) – η/r instead of W(t) > xαZ(t)). Their long term consumption-to-habit ratio
is unchanged limt→+∞ C∗(t)/Z∗(t) = c0 = r+ρ–δ

ρ , while their long term wealth is generally lower since

limt→+∞
Ŵ

∗
(t)+η/r
Z∗(t) = x0 = r+ρ–δ

δρ .

4 Properties of the optimal solution

We end this paper with a discussion of the behavior of the optimal consumption and wealth functions. To
prepare for this discussion, observe that, by (2.8), if c(t) = (r+ρ)X(t)

1+ρX(t) , then the agent’s wealth-to-habit

ratio remains fixed. Similarly, if c(t) > (r+ρ)X(t)
1+ρX(t) (resp. <), then the wealth-to-habit ratio decreases (resp.

increases).
We can interpret the optimal policy function c∗ as follows. If δ ≥ r + ρ(1 – α), then the individual is

“impatient” and, by Corollary 3.1(ii), she wishes to consume more now rather than later, that is, she chooses
a consumption-to-habit ratio of c∗(X(t)) > (r+ρ)X(t)

1+ρX(t) , which implies that her wealth-to-habit ratio decreases
with the eventual limit (that is, as t → +∞) of xs . The top plot of Figure 1 illustrates this scenario.

Assume, on the other hand, that the individual is “patient,” meaning 0 < δ < r+ρ(1–α). Then, Corollary
3.1(iii)-(v) implies that she “aspires” to achieve a wealth-to-habit ratio of x0 := r+ρ–δ

δρ and the consumption-
to-habit ratio of c0 := r+ρ–δ

ρ in the following sense: If X(t) < x0, then her optimal consumption-to-habit is

c∗(X(t)) < (r+ρ)X(t)
1+ρX(t) . In other words, because her wealth-to-habit ratio is low enough, it is optimal for her
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Figure 1: Top: The optimal consumption-to-habit function c∗(x ) (solid line) for an impatient individual,
namely, one for whom δ ≥ r+ρ(1–α). In this case, c∗(x ) > (r+ρ)x

1+ρx for all x ≥ xs because an impatient person
prefers to consume more now rather than later. The effect is that it is optimal to consume in such a way
that to the wealth-to-habit ratio continually decreases and eventually reaches the lowest possible ratio of xs .
Bottom: The optimal consumption-to-habit function c∗(x ) (the solid line) for a patient individual, namely,
one for whom 0 < δ < r +ρ(1–α). Note that, by (2.8), if c(t) > (r+ρ)X(t)

1+ρX(t) (resp. <), then the wealth-to-habit

ratio decreases (resp. increases). Since c∗(x ) < (r+ρ)x
1+ρx for xs ≤ x < x0, the optimal consumption causes

the wealth-to-habit ratio to increase. If, on the other hand, x > x0, then c∗(x ) > (r+ρ)x
1+ρx , which causes the

wealth-to-habit ratio to decrease. In other words, the optimal consumption policy of a patient individual
moves towards the consumption-to-habit ratio of c0, which corresponds to a wealth-to-habit ratio of x0. We
use the following set of values for the parameters: r = 0.02, ρ = 0.18, δ = 0.125, and γ = 2. We have chosen
α = 0.6 for the case 0 < δ < r + ρ(1 – α), and α = 0.2 for the case δ > r + ρ(1 – α).

to consume less, which thereby increases that ratio. Conversely, if X(t) > x0, her optimal consumption-to-
habit ratio is c∗(X(t)) > (r+ρ)X(t)

1+ρX(t) , which causes her wealth-to-habit ratio to decrease. Finally, if X(t) = x0,

then the optimal consumption-to-habit ratio equals c∗(x0) = c0 = (r+ρ)x0
1+ρx0

, which maintains the level of
wealth-to-habit ratio at x0. In other words, the individual is content with the wealth-to-habit ratio of x0 in
this scenario. See the bottom plot of Figure 1 for an illustration of this scenario.

Next, we illustrate the optimal consumption and wealth as a function of time. Figure 2 shows the sample
paths for an impatient individual. The top left plot shows the optimal wealth-to-habit function t 7→ X∗(t),
that is, the solution of (3.18). Note that X∗ is a decreasing function and approaches xs as t → +∞. The
top right plot shows the corresponding consumption-to-habit path t 7→ c∗

(
X∗(t)

)
, which decreases to α as

t → +∞. The bottom plots show the corresponding optimal wealth paths t 7→ W∗(t) and t 7→ C∗(t) that
are found by setting c ≡ t 7→ c∗

(
X∗(t)

)
in Proposition 2.1.

For a patient individual, the relative wealth and habit have two different regimes. If the initial wealth-
to-habit ratio is sufficiently large, namely x > x0 := (r + ρ – δ)/(δρ), then the optimal wealth-to-habit ratio
decreases to x0 as t → +∞, while the optimal consumption-to-habit ratio decreases to c0 := (r + ρ – δ)/ρ
as t → +∞. Figure 3 shows this scenario. If, on the hand, x < x0 := (r + ρ – δ)/(δρ), then the optimal
wealth-to-habit (resp. consumption-to-habit) ratio increases to x0 (resp. c0 := (r + ρ – δ)/ρ) as t → +∞. In
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Figure 2: Sample paths of the optimal relative and absolute wealth and consumption for an impatient
individual, that is, δ > r + ρ(1 – α). Top left: The optimal wealth-to-habit ratio X∗(t), t ≥ 0, is decreasing
and approaches its minimum value xs as t → +∞. Top right: The consumption-to-habit ratio is c∗

(
X∗(t)

)
,

t ≥ 0 is decreasing and approaches its minimum value α as t → +∞. Bottom left: Path of the optimal
wealth W∗. Bottom right: Paths of the optimal consumption rate C∗ (solid line) and the corresponding
habit Z∗ (the dashed line). Note that there is a consumption hump at about 15 years. The shaded region
represent infeasible consumption rates, that is, values below αZ∗. We have chosen w = 370 and z = 3.92.
The remaining parameters are as in Figure 1.
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Figure 3: Sample paths of the optimal relative and absolute wealth and consumption for a patient individual,
that is, 0 < δ < r + ρ(1 – α), with an initial wealth-to-habit ratio x > x0 := (r + ρ – δ)/(δρ).
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Figure 4: Counterpart of Figure 3 for an initial wealth-to-habit ratio x < xα.
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Figure 5: An example for presence of a consumption hump with low level of wealth-to-habit ratio, according
to Proposition 3.4.(ii). As the bottom right plot indicates, there is a consumption hump at about 2 years.
The values of the parameters are as follows: r = 0.02, ρ = 0.18, α = 0.2, δ = 0.125, γ = 0.05, z = 3.92, and
w = 2.6z = 10.2. For this case, xα = 2.5371 and x0 = 3.3333. Therefore, 1 + δ

γ
xα–x0
1+ρxα – α = –0.567 < 0. By

numerically solving (3.24), we obtain x ′
h = 2.90145. Thus, the conditions of Proposition 3.4.(ii) hold as long

as w/z ∈ [xα = 2.5371, x ′
h = 2.90145), and we have chosen w/z = 2.6.
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Figure 6: Sensitivity of the optimal consumption-to-habit function c∗(x ) to the risk aversion parameter γ.
The case γ = 1 corresponds to the logarithmic utility function as discussed in Subsection 3.2. Top: For
impatient individuals (those with δ > r + ρ(1 – α)), higher risk aversion decreases optimal consumption at
all levels of wealth-to-habit ratio. Bottom: For patient individuals (those with 0 < δ < r +ρ(1 –α)), higher
risk aversion decreases (resp. increases) optimal consumption if wealth-to-habit ratio is above (resp. below)
x0. Note, that xα is decreasing in γ.
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Figure 7: Sensitivity of the optimal consumption and wealth to the habit-formation parameter ρ. Top
left: Paths of optimal consumption C∗(t) for various values of ρ. Higher ρ amplify the consumption hump.
Top right: The corresponding paths of of the optimal wealth W∗(t). Higher ρ leads to higher spending.
Bottom right: The consumption-to-habit optimal feedback policy function c∗(x ) for various ρ. Note that
the safe level xs = α/(r + ρ(1 – α)) is decreasing in ρ. Thus, the consumption function shifts to left as ρ
increases. Bottom left: Values of the free-boundary xα as a function of ρ and assuming α = 1 and δ < r
(for a patient individual). Note that for this case, the safe level xs = 1/r = 50 is independent of ρ. The
free-boundary xα however depends on ρ since ρ is still present in the dynamics (2.8).
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particular, if x < xα, then the optimal consumption-to-habit ratio is kept at α while X∗(t) < xα. Figure 4
illustrates this second scenario. The bottom plots of Figures 3 and 4 show the paths of the optimal (absolute)
wealth and consumption obtained by Proposition 2.1.

The bottom right plots in Figures 2 and 3 show consumption humps for high levels of wealth-to-habit
ratios according to Proposition 3.4.(i). Figure 5 illustrate a numerical example of a consumption hump
for low level of wealth-to-habit ratio according to Proposition 3.4.(ii). For this case, we have chosen a
low level of risk aversion γ = 0.05, as Condition (ii) requires it. Other values of the parameters are as
follows: r = 0.02, ρ = 0.18, α = 0.2, δ = 0.125, z = 2.253, and w = 2.6z . For this case, we find that
xα = 2.5371 and x0 = 3.3333. Therefore, 1 + δ

γ
xα–x0
1+ρxα – α = –0.567 < 0. Furthermore, we obtain that

x ′
h = 2.90145 by numerically solving (3.24). Thus, the conditions of Proposition 3.4.(ii) holds as long as

w/z ∈ [xα = 2.5371, x ′
h = 2.90145). Note that we have chosen w/z = 2.6.

Figure 6 shows the dependence of the optimal relative consumption policy on the risk aversion parameter
γ. The top plot indicates that, for impatient individuals, the optimal relative consumption decreases as γ
increases. In other words, more risk averse impatient individuals optimally consume less. The bottom plot
shows a different story for patient individuals. If their wealth-to-habit ratio is above x0, the more risk averse
they are, the less they consume. However, for wealth-to-habit ratio below x0, the opposite is true: more risk
aversion increases consumption. The bottom plot also shows that xα is decreasing in γ. Note that, for both
cases, we have included the logarithmic utility function (i.e. γ = 1), which was discussed in subsection 3.2.

Figure 7 shows dependence of the optimal consumption and wealth to the habit-formation parameter ρ
in (2.2). As the top plots illustrates, increasing ρ amplifies the consumption hump and increases spending.
The bottom left plot illustrates that increasing ρ shifts the optimal relative-consumption feedback function
c∗(x ) to left. That is, for a given level of the wealth-to-habit ratio x , increasing ρ increases the optimal
consumption-to-habit c∗(x ). These effects are expected since increasing ρ strengthens the individual’s habit-
formation, and all the aforementioned effects are a consequence of habit-formation. Note that for α = 1, the
safe level becomes xs = 1/r , and is independent of ρ. The threshold xα for patient individuals (which in this
case is when δ < r), however, still depends on ρ, as the bottom right plot of Figure 7 illustrates. The reason
is that, even for α = 1, the parameter ρ still effects the dynamics of (Xt )t≥0 in (2.7).

Next, we investigate how the optimal consumption-to-habit function x 7→ c∗(x ) depends on the parameter
α, assuming other parameters are fixed. Figure 8 illustrates this dependence. First, note that the domain of
c∗ depends on α. Specifically, by Lemma 2.1, c∗(x ) is only defined for values of x ≥ xs := α/(r + ρ(1 – α))
with c∗(xs) = α. Thus, the graph of x 7→ c∗(x ) starts at the point (xs ,α = (r + ρ)xs/(1 + ρxs)). The
function xs 7→ (r + ρ)xs/(1 + ρxs) is represented by the red dashed-dotted line in Figure 8. Second, note
that, depending on the values of δ, ρ, and r , we can identify the following three scenarios:

(i) If 0 < δ < r , then 0 < δ < r + ρ(1 – α) for all α ∈ (0, 1). Thus, the individual is patient for all values
of α. The top plot of Figure 8 illustrates this case.

(ii) If δ > r + ρ, then δ > r + ρ(1 – α) for all α ∈ (0, 1). Thus, the individual is impatient for all values of
α. The bottom plot of Figure 8 illustrates this case.

(iii) If r < δ < r + ρ, then δ < (resp. >) r + ρ(1 – α) for α < (resp. >) 1 – (δ – r)/ρ. Thus, the individual is
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impatient when α is near 1 and patient when α is near 0. The middle plot of Figure 8 illustrates this
case.

Figure 8 highlights that the dependence of the optimal consumption-to-habit function to α is quite
different between patient and impatient individuals. For impatient individuals, increasing α decreases c∗(x ).
In contrast, c∗(x ) is a non-decreasing function of α for patient individuals. In particular, if x > xα, then
c∗(x ) does not change with a small change in α. If, on the other hand, x < xα, then c∗(x ) = α is increasing
in α.

We end this section by comparing the optimal paths of consumption and wealth in our model with two
other models. The first model is the classical infinite-horizon consumption problem in Merton (1969) with
only risk-free assets. In this model, the value function is

VM(w) := sup
C(·)∈Ã0

∫ +∞

0
e–δt

(
C(t)

)1–γ – 1
1 – γ

dt ; w ≥ 0, γ ∈ (0, 1) ∪ (1, +∞),

in which Ã0 is the set of consumption policies that avoid bankruptcy (i.e. set α = ρ = 0 in Definition 2.1).
It can be shown that the value function is VM(w) =

(
γ

δ+r(γ–1)

)γ w1–γ

1–γ – 1
δ(1–γ) ,w > 0; that the optimal

consumption feedback function is cM(w) = δ+r(γ–1)
γ w ,w > 0; and that the optimal wealth WM(t) and

consumption CM(t) are given by

WM(t) = we
r–δ
γ

t , CM(t) =
δ + r(γ – 1)

γ
w e

r–δ
γ

t , (4.1)

for t ≥ 0, in which w > 0 is the initial wealth. For this model, if δ > r , then the wealth and consumption
are decreasing. This is impatient consumption, as the individual has larger δ and prefers to consume more
now than in the future. If δ = r , then the wealth and consumption are constant. If δ < r , then the wealth
and consumption are increasing. This patient consumption. Note that to have a finite value function, we
must have δ > r(1 – γ), otherwise, the value function VM explodes.

The second model is the infinite horizon optimal consumption policy in Kraft et al. (2017), which uses the
classical habit formation utility. For T = +∞, equations (20) and (21) therein yield the following dynamics
for the optimal consumption path c̃(t) and habit h̃(t)c̃ ′(t) – h̃ ′(t) = –κ

(
c̃(t) – h̃(t)

)
,

c̃ ′(t) + (β – α)c̃(t) – (β – κ)
(
c̃(t) – h̃(t)

)
= 0,

for t ≥ 0 and with c̃(0) = c0 and h̃(0) = h0 the initial values of consumption and habit. Note that Kraft
et al. (2017) provide the feedback form of the optimal consumption policy in terms of wealth (see equation
(11) therein), which can be used to obtain c0. Solving these ODEs yields explicit formulas for the optimal
consumption path c̃(t) and habit h̃(t), namely,c̃(t) = c0e(α–β)t – β–κ

κ+α–β (c0 – h0)
(
e–κt – e(α–β)t

)
,

h̃(t) = c̃(t) – (c0 – h0)e–κt ,
(4.2)
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Figure 8: The optimal consumption-to-habit function x 7→ c∗(x ) for various values of α ∈ (0, 1) and with
other parameters fixed. Top: For 0 < δ < r , the individual is patient for all values of α ∈ (0, 1). Middle:
For r < δ < r + ρ, the individual is patient (resp. impatient) for α near 0 (resp. 1). Bottom: For δ > r + ρ,
the individual is impatient for all values of α ∈ (0, 1). For patient individuals, the optimal wealth-to-habit
threshold xα is increasing in α. Furthermore, for patient individuals with only different α, the optimal
consumption-to-habit function x 7→ c∗(x ) coincide for sufficiently large x . For impatient individuals, c∗(x )
is decreasing in α.
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Figure 9: Top: The red doted line CM(t) is the optimal consumption in infinite horizon Merton’s model
with only riskless investments given by (4.1)). The gray line (respectively, the gray dashed line) is the optimal
consumption c̃(t) (respectively, optimal habit h̃(t)) in the infinite horizon model of Kraft et al. (2017) given
by (4.2). The black line (respectively, the dashed black line) is the optimal consumption C∗(t) (respectively,
the optimal habit reference αZ∗(t)). Bottom: The corresponding paths of the optimal wealth in the three
models. Kraft et al. (2017)’s policy spends the most wealth after 40 years, while our policy spends almost
the same amount of wealth as Merton’s (although not at a constant rate as Merton’s). Parameter values:
r = 0.02, ρ = 0.174, α = 0.575, δ = 0.1, γ = 4, w = 370, and z = 3.92. Except for values of α and z , these
values are taken from Table 1 of Kraft et al. (2017) for singles. As explained in Remark 3.4, the parameter α
(respectively, initial habit h0) in Kraft et al. (2017) corresponds to αρ (respectively αz ) in our model. Thus,
the values α = 0.1 and h0 = 2.253 in Kraft et al. (2017) translate to α = 0.1

0.174 = 0.575 and z = 2.253
0.174 = 3.92

in our model.
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for t ≥ 0. The optimal wealth w̃(t) satisfies w̃ ′(t) = rw̃(t)–c̃(t), which yields w̃(t) = ert
(
w +

∫ t
0 e–rs c̃(s)ds

)
.

The top plot in Figure 9 compares the paths of the optimal consumption in our model (the black lines),
the Merton (1969) model with only riskless investments (the red dotted line), and the infinite-horizon model
in Kraft et al. (2017) (the gray lines). We have used parameter values as in Table 1 of Kraft et al. (2017) for
singles (see the caption in Figure 9 for details). Merton’s policy has the highest initial consumption rate and
the lowest rate after 40 years, and it is a monotonically decreasing policy (i.e. it has no hump). Both ours
and Kraft et al. (2017)’s consumption are hump-shaped, but, Kraft et al. (2017)’s consumption rates are
generally higher than ours. The dashed lines show consumption habit reference levels in Kraft et al. (2017)’s
(i.e. h̃(t) in (4.2)) and our model (i.e. αZ∗(t)), which more or less match between the two model. Finally,
the bottom plot in Figure 9 shows the corresponding paths of the optimal wealth in the three models. Kraft
et al. (2017)’s policy spends almost all wealth after 40 years. Merton’s policy spends wealth at a constant
rate, with almost half of wealth remaining at the end. Our policy spends almost the same amount of wealth
as Merton’s, although not at a constant rate (more wealth is spend at the second half of the time period).

5 Conclusion

We considered an optimal consumption model for an individual who is unwilling to consume below a certain
proportion α ∈ (0, 1] of her consumption habit, in which α controls the degree of addictiveness. Assuming
a risk-free market, we formulated and solved a deterministic control problem to maximize the discounted
CRRA utility of the individual’s consumption-to-habit process subject to the habit-formation constraint.
We derived the optimal consumption policies explicitly in terms of the solution of a nonlinear free-boundary
problem, which we analyzed in detail. Impatient individuals (or, equivalently, those with more addictive
habits) always consume above the minimum rate; thus, they eventually attain the minimum wealth-to-habit
ratio. Patient individuals (or, equivalently, those with less addictive habits) consume at the minimum rate
if their wealth-to-habit ratio is below a threshold, and above it otherwise. By consuming patiently, these
individuals maintain a wealth-to-habit ratio that is greater than the minimum acceptable level. Additionally,
we proved that the optimal consumption path is hump-shaped if the initial wealth-to-habit ratio is either:
(1) larger than a high threshold; or (2) below a low threshold and the agent is more risk seeking (that is,
less risk averse).

This paper complements Angoshtari et al. (2022) where we considered a similar model with the agent
investing in a risky asset as well as the risk-free asset. The results presented herein for is not a special case
of our other paper, however. The analysis in the stochastic case relies on randomness of the model and does
not extend to the deterministic case considered here. Furthermore, there are structural differences between
the consumption policies in the two settings. For instance, in the random setting, the individual consumes
patiently (i.e. xα > xs) for all values of the parameters, while impatient consumption (i.e. xα = xs) can be
optimal in the deterministic setting.

One way to extend our model is to allow bankruptcy by adapting the objective
∫ τ0
0

1
1–γ

(
C(t)
Z(t)

)1–γ
e–δ t dt

in which τ0 is the time of bankruptcy (i.e. the first time t where W(t) = 0). Along the same direction, it
will be interesting to consider a habit-formation constraint in the optimal dividend problem similar to how
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Albrecher et al. (2022) adapted the drawdown constraint to this problem. Another future research direction
is to extend the setting of Subsection 3.3 by considering non-constant income schedule. For instance, one
may consider a (possibly random) retirement time τr such that the individual receives income η > 0 over
[0, τr ] and zero thereafter.
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A Proof of Lemma 2.1

The following lemma establishes a lower bound for the consumption habit process and is of use in later
arguments.

Lemma A.1. Let C = {C(t)}t≥0 be a consumption process satisfying (2.4), in which Z is given by (2.2).
We, then, have

Z(t) ≥ Z(s)e–ρ(1–α)(t–s), (A.1)

for all 0 ≤ s ≤ t. In particular, Z(t) ≥ ze–ρ(1–α)t for all t ≥ 0.

Proof. For a fixed s ≥ 0, consider the consumption process C̃ = {C̃(t)}t≥0, that coincides with C over [0, s),
followed by consuming at the lowest rate allowed by (2.4). In other words, C̃(t) = C(t) for 0 ≤ t < s, and
C̃(t) = αZ̃(t) for t ≥ s. Here, {Z̃(t)}t≥0 is the consumption habit process corresponding to C̃, which satisfiesdZ̃(t) = –ρ

(
Z̃(t) – C̃(t)

)
dt ; t ≥ 0,

Z̃(0) = z .
(A.2)

By definition, Z̃(t) = Z(t) for 0 ≤ t < s. For t ≥ s, on the other hand, (A.2) yields
dZ̃(t)

dt = –ρ(1 – α)Z̃(t); t ≥ s,

Z̃(s) = Z(s).
(A.3)

The solution to this initial-value problem is Z̃(t) = Z(s)e–ρ(1–α)(t–s).
Next, we prove (A.1), that is, Z(t) ≥ Z̃(t) for t ≥ s. For k ∈ {1, 2, . . . }, define the process Z(k) by the

recursive equation

eρtZ(k)(t) := eρsZ(s) +
∫ t

s
αρeρuZ(k–1)(u)du; t ≥ s, (A.4)

in which we have defined Z(0)(t) := Z(t) for t ≥ s. Note, also, that

eρtZ(t) = eρsZ(s) +
∫ t

s
ρeρuC(u)du; t ≥ s, (A.5)

by (2.2). From (2.4), (A.4) (for k = 1), and (A.5), we obtain Z(t) ≥ Z(1)(t) for t ≥ s. By using (A.4),
we deduce Z(k)(t) ≥ Z(k+1)(t), for k ∈ {1, 2, . . . }. Furthermore, by definition, Z(k)(t) ≥ 0 for t ≥ s and
k ∈ {1, 2, . . . }. It, then, follows from the monotone convergence theorem that there exists a process Z(+∞)

such that, for t ≥ s, Z(+∞)(t) = limk→∞ Z(k)(t) ≤ Z(t), and

eρtZ(+∞)(t) = eρsZ(s) +
∫ t

s
αρeρuZ(+∞)(u)du; t ≥ s.

The last integral equation is equivalent to (A.3). Therefore, Z̃(t) = Z(+∞)(t) ≤ Z(t) for t ≥ s, which proves
(A.1). The last statement of the lemma follows trivially by setting s = 0 in (A.1).
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Proof of Lemma 2.1: Because z > 0, it follows from Lemma A.1 that Z(t) > 0 for t ≥ 0. Condition (2.6),
then, implies that W(t) > 0 for all t ≥ 0 (recall that we assumed α ∈ (0, 1]). To show the reverse statement,
assume that, at time t ≥ 0, the individual’s wealth is W(t) and her consumption habit is Z(t). Assume that,
thereafter, she consumes at the lowest rate, that is, C(s) = αZ(s) for s ≥ t . From the proof of Lemma A.1,
it follows that the consumption habit equals the lower bound in (A.1), that is, Z(s) = Z(t)e–ρ(1–α)(s–t), for
s ≥ t . Note that we have exchanged the role of t and s. From (2.1), we obtain

W(s) = W(t) +
∫ s

t

(
rW(u) – αZ(t)e–ρ(1–α)(u–t)

)
du; s ≥ t ,

which yields

W(s) = er(s–t)
(

W(t) –
αZ(t)

r + ρ(1 – α)

)
+

αZ(t)
r + ρ(1 – α)

e–ρ(1–α)(s–t); s ≥ t .

The first term on the right dominates the second term as s → +∞. Thus, if (2.6) holds, the individual
can avoid bankruptcy by setting C(s) = αZ(s) for all s ≥ t . If (2.6) does not hold, any consumption and
investment policy leads to bankruptcy in finite time.

B Proof of Proposition 3.1

The following lemma is used in the proof of Proposition 3.1.

Lemma B.1. Let δ ≥ r + ρ(1 – α), and let y be the solution of (3.11). We, then, have

y(ψ) > ψ –
ρ

r + ρ
ψ

1– 1
γ ; 0 < ψ < α–γ . (B.1)

Proof. Define the function w(ψ) := ψ – ρ
r+ρψ

1– 1
γ for 0 < ψ ≤ α–γ . We want to show that w(ψ) < y(ψ) for

0 < ψ < α–γ . Let P be the defect of the ODE in (3.11), that is, Pϕ(y) = ϕ′(y) – f
(
y ,ϕ(y)

)
, in which f (y ,ϕ)

is given by (B.2) and ϕ(y) is an arbitrary function such that
(
y ,ϕ(y)

)
is in the domain of f . We have

Pw(ψ) = w ′(ψ) – f
(
ψ,w(ψ)

)
= 1 –

ρ

r + ρ

(
1 –

1
γ

)
ψ

– 1
γ –

ρ
r+ρ

(
r+ρ–δ
ρ – ψ– 1

γ

)(
ψ – ρ

r+ρψ
1– 1

γ

)
ψ – ρ

r+ρψ
1– 1

γ – δ
r+ρψ

= 1 –
ρ

r + ρ

(
1 –

1
γ

)
ψ

– 1
γ – 1 +

ρ

r + ρ
ψ

– 1
γ =

1
γ
ψ

– 1
γ > 0 = Py(ψ),

for 0 < ψ < α–γ . Furthermore, w(α–γ) = α–γ
(
1 – ρ

r+ρα
)

= α–γ

1+ρxs = y(α–γ). Inequality (B.1), then, follows
from the comparison theorem for first-order ODEs.

Proof of Proposition 3.1: (i) Let us first analyze the sign of the right side of the differential equation in
(3.11) for values of y and ψ in the region 0 < y < α–γ

1+ρxs and 0 < ψ ≤ α–γ . To this end, define

f (ψ, y) :=

ρ
r+ρ

(
r+ρ–δ
ρ – ψ– 1

γ

)
y

y – δ
r+ρψ

; 0 < ψ ≤ α–γ , 0 < y <
α–γ

1 + ρxs
. (B.2)
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Figure 10: The direction fields and the solutions y = y(ψ) of (3.11) for the cases δ > r + ρ(1 – α) (on the
right) and δ = r + ρ(1 – α) (on the left). The shaded areas are the domain D0 defined in (B.4) where the
right side of the differential equation in (3.11) is positive. Note that any integral curve of the differential
equation in the shaded regions approaches (0, 0).

Since δ ≥ r + ρ(1 – α) and 0 < ψ ≤ α–γ , we have

r + ρ – δ
ρ

≤ α ≤ ψ
– 1
γ . (B.3)

Thus, the numerator of f is non-positive, and it follows that f is non-negative in its domain if and only if
y ≤ δ

r+ρψ. Thus, we look for a solution of (3.11) in the domain

Dε =
{

(ψ, y) : 0 < ψ < α–γ + ε, 0 < y <
δψ

r + ρ

}
, (B.4)

for ε > 0. The shaded regions in Figure 10 represent the limiting domain D0. Consider the case δ > r+ρ(1–α)
(the right plot in Figure 10). In this case, for a sufficiently small ε, f is positive and locally Lipschitz (with
respect to y) in Dε. Since the terminal value

(
α–γ , α–γ

1+ρxs
)

is in Dε, it follows that (3.11) has a unique
solution that extends to the left of Dε. However, by the comparison theorem for first-order ODEs, we must
have 0 < y(ψ) < δψ/(r + ρ) for 0 < ψ < α–γ . Thus, (3.11) has a unique increasing solution satisfying
0 < y(ψ) < δψ/(r + ρ) for 0 < ψ < α–γ . Finally, we obtain the result for the case δ = r + ρ(1 – α) (see the
left plot of Figure 10) by letting δ →

(
r + ρ(1 – α)

)+ and by using continuous dependence of the solution of
(3.11) with respect to δ for the case δ > r + ρ(1 – α).

(ii) Set y = yα = α–γ

1+ρxs . The FBP (3.8)–(3.10), then, reduces to the terminal-value problem
(
r + ρ – δ

)
yu ′(y) + δu(y) =

γ

1 – γ
(
y – ρyu ′(y)

)1– 1
γ ; 0 < y ≤ yα,

u(yα) =
1
δ

(
γ

1 – γ
α1–γ + (r + ρ – δ)yαxs

) {
⇐⇒ u ′(yα) = –xs

}
.

(B.5)
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Let ψ equal the inverse of y obtained in (i); then, ψ solves the terminal-value problem
ψ′(y) =

y – δ
r+ρψ(y)

ρ
r+ρ

(
r+ρ–δ
ρ –

(
ψ(y)

)– 1
γ

)
y

; 0 < y ≤ yα,

ψ (yα) = α–γ ,

(B.6)

and it is straightforward to show that u defined by

u(y) =
1
δ

(
γ

1 – γ
α1–γ + (r + ρ – δ)yαxs

)
–
∫ yα

y

(
1
ρ

–
ψ(y ′)
ρy ′

)
dy ′. (B.7)

solves (B.5).
Next, we show that u in (B.7) can be represented as in (3.12). To that end, define the operator

F(y) = δu(y) –
γ

1 – γ
(
ψ(y)

)1– 1
γ –

r + ρ – δ
ρ

(
ψ(y) – y

)
; 0 < y ≤ yα, (B.8)

in which u is given in (B.7). We want to show that F(y) = 0 for 0 < y ≤ yα. From (B.7) and the boundary
condition in (B.6), we have F(yα) = 0. Thus, it suffices to show that F′(y) = 0 for 0 < y < yα, which we
demonstrate as follows:

F′(y) = δu ′(y) +
(
ψ(y)

)– 1
γ ψ′(y) –

r + ρ – δ
ρ

(
ψ′(y) – 1

)
= δ

(
1
ρ

–
ψ(y)
ρy

)
+
((
ψ(y)

)– 1
γ –

r + ρ – δ
ρ

)
ψ′(y) +

r + ρ – δ
ρ

= δ

(
1
ρ

–
ψ(y)
ρy

)
–

y – δ
r+ρψ(y)
ρ

r+ρy
+

r + ρ – δ
ρ

= 0,

(B.9)

in which we used (B.7) to get the second equation and (B.6) to get the third equation.
We, now, complete the proof of Proposition 3.1 by showing that u = u(y) is decreasing and strictly

convex with respect to y ∈ (0, yα]. By (B.7), we have u ′(y) = 1
ρ – ψ(y)

ρy . By using (B.6), we obtain that, for
0 < y < yα,

u ′′(y) =
1
ρy

(
ψ(y)

y
– ψ′(y)

)
=

1
ρy

ψ(y)
y

–
y – δ

r+ρψ(y)

ρ
r+ρ

(
r+ρ–δ
ρ –

(
ψ(y)

)– 1
γ

)
y



=
(r + ρ)

(
ψ(y) – ρ

r+ρ
(
ψ(y)

)1– 1
γ – y

)
ρ2y2

(
r+ρ–δ
ρ –

(
ψ(y)

)– 1
γ

) .

Note that, by (B.3), we have r+ρ–δ
ρ –

(
ψ(y)

)– 1
γ < 0. Furthermore, it follows from Lemma B.1 that ψ(y) –

ρ
r+ρ

(
ψ(y)

)1– 1
γ – y < 0. See Figure 10 for an illustration. Thus, u ′′(y) > 0 for 0 < y < yα. Finally, u ′(y) < 0

for 0 < y < yα, since u(y) is convex and that u ′(yα) = –xs < 0 by (B.5).
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C Proof of Proposition 3.2

The following lemma is used in the proof of Proposition 3.2. Its proof is similar to the proof of Lemma B.1
and is, thus, omitted.

Lemma C.1. Let δ < r + ρ(1 – α), and let y be as defined in (C.3). For 0 < ψ < ψ0, we have

max

(
0,ψ –

ρ

r + ρ
ψ

1– 1
γ

)
< y(ψ) <

δ

r + ρ
ψ,

and, for ψ > ψ0, we have

δ

r + ρ
ψ < y(ψ) < ψ –

ρ

r + ρ
ψ

1– 1
γ . (C.1)

Proof of Proposition 3.2: (i) We, first, analyze the sign of the right side of the differential equation in
(3.13), that is, the sign of the function f (ψ, y) of (B.2) for y > 0 and 0 < ψ ≤ α–γ . Because 0 < δ <
r + ρ(1 – α), we have r+ρ–δ

ρ – ψ– 1
γ < 0 for 0 < ψ < ψ0 and r+ρ–δ

ρ – ψ– 1
γ > 0 for ψ0 < ψ < α–γ . It follows

that

f (ψ, y) > 0 ⇐⇒ (ψ, y) ∈ D– ∪D+,

in which we have defined

D– =
{

(ψ, y) : 0 < ψ < ψ0, 0 < y <
δψ

r + ρ

}
, and D+ =

{
(ψ, y) : ψ0 < ψ < α–γ , y >

δψ

r + ρ

}
. (C.2)

The shaded region in Figure 11 represents the domain D– ∪D+. It follows that any increasing solution of
the differential equation in (3.13) over the interval [0, α–γ ] must pass through the point (ψ0, y0). This point,
however, is a singularity of the differential equation. Indeed, there are two integral curves passing through
(ψ0, y0), with one an increasing function of ψ and the other a decreasing function. Here, we are interested
in the increasing curve, and we construct it in the following paragraph.

Since f is locally Lipschitz in D–, for ε in a right neighborhood of 0, the terminal-value problemy ′(ψ) = f
(
ψ, y(ψ)

)
; 0 < ψ ≤ ψ0,

y(ψ0) = y0 – ε,

has a unique increasing solution that continuously depends on ε. By taking the limit ε → 0+, we obtain
an increasing left solution y–(ψ) for 0 < ψ < ψ0, such that limψ→ψ–

0
y–(ψ) = y0. By applying a similar

procedure to y ′(ψ) = f
(
ψ, y(ψ)

)
; ψ ≥ ψ0,

y(ψ0) = y0 + ε,

we obtain an increasing right solution solution y+(ψ) for ψ > ψ0, such that limψ→ψ+
0

y+(ψ) = y0. Then, to
get a solution over the whole domain, we define y by

y(ψ) =


y–(ψ); 0 < ψ < ψ0,

y0; ψ = ψ0,

y+(ψ); y > ψ0.

(C.3)
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0 ψ
0

y

y0

ψ0

yα

α−γ

α−γ

1+ρ xs

0 < δ < r + ρ(1− α)

y(ψ)

y = δψ
r+ρ

y = ψ − ρ
r+ρψ

1−1/γ

Figure 11: The direction field and the solution y = y(ψ) of (3.13). The shaded area is the domain D– ∪D+

defined in (C.2) where the right side of the differential equation in (3.13) is positive. Note that any increasing
integral curve over [0,α–γ ] has to pass through the point (ψ0, y0).

To show that (C.3) defines an increasing solution of the differential equation in (3.13) over the interval
(0,α–γ ], it only remains to show: (a) y+(ψ) is defined for all ψ ∈ [ψ0,α–γ ], and (b) y is differentiable at ψ0.

Statement (a) directly follows from (C.1). To prove statement (b), first note that, by Lemma C.1, the
left- and the right-derivatives y ′

–(ψ0) and y ′
+(ψ0) exist. Because y±(·) satisfy y ′

±(ψ) = f
(
ψ, y±(ψ)

)
, we have

by L’Hôpital’s rule

(r + ρ)y ′
±(ψ0)

ρy0
= lim
ψ→ψ±

(r + ρ)y ′
±(ψ)

ρy(ψ)
= lim
ψ→ψ±

r+ρ–δ
ρ – ψ– 1

γ

y±(ψ) – δ
r+ρψ

= lim
ψ→ψ±

1
γψ

–1– 1
γ

y ′
±(ψ) – δ

r+ρ
=

1
γψ

–1– 1
γ

0

y ′
±(ψ0) – δ

r+ρ
,

which, in turn, yields that y ′
±(ψ0) satisfy the quadratic equation:

y ′2± –
δ

r + ρ
y ′
± –

ρy0
(r + ρ)γ

ψ
–1– 1

γ

0 = 0.

This quadratic equation only has one positive solution. Therefore, we must have y ′
–(ψ0) = y ′

+(ψ0), and y
defined by (C.3) is differentiable at ψ0.

Finally, to obtain an increasing solution of the FBP (3.13), we set yα = y(α–γ), in which y is given in
(C.3). The bounds on yα and y directly follow from Lemma C.1.
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(ii) For y = +∞, FBP (3.7)–(3.10) becomes,

(
r + ρ(1 – α) – δ

)
yu ′(y) + δu(y) =

α1–γ

1 – γ
– αy ; y > yα,

(
r + ρ – δ

)
yu ′(y) + δu(y) =

γ

1 – γ

(
y – ρyu ′(y)

)1– 1
γ ; 0 < y ≤ yα,

lim
y→+∞

u ′(y) = –xs ,

yα – ρyαu ′(yα) = α–γ ,

(C.4)

in which yα > 0 is unknown. The general solution of the first differential equation in (C.4) is

u(y) = Cy– δ
r+ρ(1–α)–δ – xsy +

α1–γ

δ(1 – γ)
; y > yα, (C.5)

in which C is an arbitrary constant to be determined. Because 0 < δ < r + ρ(1 – α), we have u ′(y) + xs =

– Cδ
r+ρ(1–α)–δ y

– r+ρ(1–α)
r+ρ(1–α)–δ → 0 as y → +∞. Thus, the first boundary condition in (C.4) holds regardless of the

value of C. The second boundary condition yields that C = r+ρ(1–α)–δ
δρ

(
α–γ – yα(1+ρxs)

)
(yα)δ/(r+ρ(1–α)–δ).

By substituting this value of C in (C.5), we obtain that u equals the expression in (3.14) for y > yα.
Therefore, (C.4) reduces to the following terminal-value problem:

(
r + ρ – δ

)
yu ′(y) + δu(y) =

γ

1 – γ
(
y – ρyu ′(y)

)1– 1
γ ; 0 < y ≤ yα,

yα – ρyαu ′(yα) = α–γ ,{
⇐⇒ u(yα) = r+ρ(1–α)–δ

δρ

(
α–γ – yα(1 + ρxs)

)
– xsy + α1–γ

δ(1–γ)

}
.

(C.6)

Let ψ equal the inverse of y obtained in (i); then, ψ solves the terminal-value problem
ψ′(y) =

y – δ
r+ρψ(y)

ρ
r+ρ

(
r+ρ–δ
ρ –

(
ψ(y)

)– 1
γ

)
y

; 0 < y ≤ yα,

ψ (yα) = α–γ ,

(C.7)

and it is straightforward to show that u defined on (0, yα] by

u(y) =
r + ρ(1 – α) – δ

δρ

(
α–γ – yα(1 + ρxs)

)
– xsyα (C.8)

+
α1–γ

δ(1 – γ)
–
∫ yα

y

(
1
ρ

–
ψ(y ′)
ρy ′

)
dy ′,

solves (C.6).
Furthermore, by defining F(y) as in (B.8) and by repeating (B.9), one can show that F ≡ 0 and, therefore,

(C.8) is equivalent to (3.15). Hence, we have established that a solution of the FBP (3.7)–(3.10) is given by
y = +∞, yα as in part (i), and u given by (3.14) and (3.15).

It only remains to show that u = u(y) is decreasing and strictly convex with respect to y > 0. For
y ≥ yα, these properties readily follow by differentiating (3.14). Consider the case 0 < y < yα. By (C.8),
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we have u ′(y) = 1
ρ – ψ(y)

ρy . By using (C.7), we obtain that, for 0 < y < yα,

u ′′(y) =
1
ρy

(
ψ(y)

y
– ψ′(y)

)
=

1
ρy

ψ(y)
y

–
y – δ

r+ρψ(y)

ρ
r+ρ

(
r+ρ–δ
ρ –

(
ψ(y)

)– 1
γ

)
y



=
(r + ρ)

(
ψ(y) – ρ

r+ρ
(
ψ(y)

)1– 1
γ – y

)
ρ2y2

(
ψ

– 1
γ

0 –
(
ψ(y)

)– 1
γ

) > 0.

To obtain the last inequality, consider the cases 0 < y < y0 and y0 < y < yα separately and apply Lemma
C.1. Finally, u ′(y) < 0 for 0 < y < yα, because u(y) is convex and u ′(yα) < 0, which one can see by
differentiating (3.14).

D Auxiliary lemmas for the proof of Theorem 3.1

The following lemma proves the so-called transversality property of the solution of the HJB equation and is
used in the first step of the proof of Theorem 3.1.

Lemma D.1. Let c(·) ∈ A0, and let {X(t)}t≥0 be the corresponding wealth-to-habit process given by (2.8).
We, then, have

lim
T→+∞

e–δT v
(
X(T)

)
= 0. (D.1)

Proof. We have the following two trivial cases:

• γ > 1: In this case, α1–γ

δ(1–γ) ≤ v
(
x
)

< 0, and (D.1) immediately follows.

• x = xs : In this case the only admissible consumption-to-habit process is c(t) = α, for all t ≥ 0. The
corresponding wealth-to-habit process is X(t) = xs , for all t ≥ 0, which clearly satisfies (D.1).

Let us consider the nontrivial case in which 0 < γ < 1 and x > xs . Since c(t) ≥ α for t ≥ 0, from (2.8) we
obtain

X(T) = x +
∫ t

0

[
(r + ρ)X(u) –

(
1 + ρX(u)

)
c(u)

]
du ≤ x – αT +

∫ T

0
r̃ X(u)du; T ≥ 0,

in which we have defined r̃ = r + ρ(1 – α) > 0. Gronwall’s inequality (for example, see Walter (1970), page
14) yields

X(T) ≤ xs + (x – xs)er̃ T, T ≥ 0.

Define

t0 :=


0; x ≥ xα,
1
r̃
log

(
xα – xs
x – xs

)
; xs < x < xα.
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Note that xs + (x – xs)er̃ t ≤ xα for t < t0, and that xs + (x – xs)er̃ t > xα for t > t0. Since v(·) is increasing
and 0 < γ < 1, we have that, for T ≥ t0,

0 <
α1–γ

δ(1 – γ)
= v(xs) ≤ v

(
X(T)

)
,

and

v
(
X(T)

)
≤ v

(
xs + (x – xs)er̃T

)
= v(x ) +

∫ T

0
v ′
(
xs + (x – xs)er̃ t

)
r̃ (x – xs)er̃ t dt

≤ v(x ) +
∫ t0

0
v ′
(
xs + (x – xs)er̃ t

)
r̃ (x – xs)er̃ t dt +

∫ T

t0

α–γ r̃ (x – xs)er̃ t

1 + ρxs + ρ(x – xs)er̃ t dt

= v(x ) +
∫ t0

0
v ′
(
xs + (x – xs)er̃ t

)
r̃ (x – xs)er̃ t dt +

α–γ

ρ
log

(
1 + ρxs + ρ(x – xs)er̃ T

1 + ρxs + ρ(x – xs)er̃ t0

)
.

To get the second inequality, we used

0 < v ′
(
xs + (x – xs)er̃ t

)
<

α–γ

1 + ρxs + ρ(x – xs)er̃ t ; t > t0,

which follows from (3.3) and the fact that for t > t0, one has xs + (x – xs)er̃ t > xα. Finally, we obtain that

0 < e–δT v
(
X(T)

)
≤ e–δT v(x ) + e–δT

∫ t0

0
v ′
(
xs + (x – xs)er̃ u

)
r̃ (x – xs)er̃ u du

+
α–γe–δT

ρ
log

(
1 + ρxs + ρ(x – xs)er̃ T

1 + ρxs + ρ(x – xs)er̃ t0

)
,

for T ≥ t0 and letting T → ∞ yields (D.1).

The following lemma is used in the second step of the proof of Theorem 3.1.

Lemma D.2. Let c∗ be as in (3.16), and define x0 := r+ρ–δ
δρ and c0 := r+ρ–δ

ρ . The following statements
hold:

(i) If δ ≥ r + ρ(1 – α), then c∗(x ) > (r+ρ)x
1+ρx for x > xs .

(ii) If 0 < δ < r + ρ(1 – α), then

• c∗(x ) < (r+ρ)x
1+ρx for xs ≤ x < x0.

• c∗(x0) = (r+ρ)x0
1+ρx0

= c0.

• c∗(x ) > (r+ρ)x
1+ρx for x > x0.

Proof. (i) For 0 < y < yα, Lemma B.1 yields that y > ψ(y) – ρ
r+ρψ(y)1–

1
γ . Therefore,

ψ(y)–
1
γ >

r + ρ

ρ

(
1 –

y
ψ(y)

)
= –

r + ρ

ρ

y – ψ(y)
ψ(y)

= –
(r + ρ)u ′(y)
1 – ρu ′(y)

; 0 < y < yα,

in which the last equality follows from ψ(y) = y – ρyu ′(y), as can be seen from the proof of Proposition
3.1(ii). Finally, we obtain statement (i) by substituting y = J(–x ) for x > xs .

(ii) The proof is parallel to the proof of part (i) but uses the bounds given in Proposition 3.2(i).
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E Proof of Proposition 3.4

We need the following lemma.

Lemma E.1. For t ≥ 0, we have dC∗(t)
dt = –Z∗(t)f

(
X∗(t)

)
, in which

f (x ) :=

ρα(1 – α); xs ≤ x < xα,

ρc∗(x )
[
1 + δ

γ
x–x0
1+ρx – c∗(x )

]
; x ≥ xα,

(E.1)

with x0 = r+ρ–δ
δρ as in (3.21).

Proof. By (3.18) and (3.22), we have

dC∗(t)
dt

= Z∗(t)c∗′
(
X∗(t)

) d
dt

X∗(t) + c∗
(
X∗(t)

)dZ∗(t)
dt

= –Z∗(t)f
(
X∗(t)

)
; t ≥ 0,

in which

f (x ) := c∗′(x )(1 + ρx )
(

c∗(x ) –
(r + ρ)x
1 + ρx

)
+ ρc∗(x )

(
1 – c∗(x )

)
,

for x ≥ xs . It follows from (3.16) that

f (x ) ≡ ρα(1 – α); xs ≤ x < xα.

For x ≥ xα, by (3.2) and (3.3), we have

v ′(x ) =
c∗(x )–γ

1 + ρx
. (E.2)

Differentiating with respect to x yields

v ′′(x ) = –
c∗(x )–γ

1 + ρx

(
γ

c∗(x )
c∗′(x ) +

ρ

1 + ρx

)
. (E.3)

Furthermore,

–(r + ρ)xv ′(x ) + δv(x ) =
γ

1 – γ
c∗(x )1–γ ,

by (3.2) and (3.4). By differentiating with respect to x and then eliminating v ′(x ) and v ′′(x ) via (E.2) and
(E.3), we then obtain (

c∗(x ) –
(r + ρ)x
1 + ρx

)
c∗′(x ) =

δρ

γ

x – x0
(1 + ρx )2

c∗(x ). (E.4)

By substituting for c∗′(x ) from the last equation into (E.1), it follows that

f (x ) = ρc∗(x )
[
1 +

δ

γ

x – x0
1 + ρx

– c∗(x )
]

; x ≥ xα.
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To prove Proposition 3.4, we first show the sufficiency of Conditions (i) and (ii); then, we show the
necessity of those conditions.

Sufficiency of Condition (i): Assume that δ > r and let x > max{xs , x0}. By (E.1), we have f (x ) =
ρc∗(x )g(x ), in which

g(x ) = 1 +
δ

γ

x – x0
1 + ρx

– c∗(x ). (E.5)

By (E.4), we have

g ′(x ) =
δ

γ

1 + ρx0
(1 + ρx )2

– c∗′(x ) =
δ
(

(1+ρx0)(r+ρ)x
1+ρx + (1 + ρx )c∗(x )

)
γ(1 + ρx )2

(
(r+ρ)x
1+ρx – c∗(x )

) . (E.6)

Since x > x0, Lemma D.2 yields c∗(x ) > (r+ρ)x
1+ρx . Thus, g ′(x ) < 0 by (E.6). Furthermore, g(x0) = 1 – c0 =

(δ – r)/ρ > 0 and limx→+∞ g(x ) = δ
γρ – limx→+∞ c∗(x ) = –∞. It follows that there exists a unique xh > x0

satisfying (3.23) such that g(x ) > 0 (resp. g(x ) < 0) if x ∈ (x0, xh) (resp. x > xh).
Now, assume X∗(0) = w

z > xh. By Corollary 3.1, X∗(t) is a decreasing process such that limt→+∞ X∗(t) =
x0 < xh. Because X∗(t) is continuous and decreasing, there is a unique τh > 0 such that X∗(τh) = xh,
X∗(t) > xh for t ∈ [0, τh), and x0 < X∗(t) < xh for t > τh . From Lemma E.1, it follows that

d
dt

C∗(t) = –Z∗(t)ρc∗
(
X∗(t)

)
g
(
X∗(t)

)
> 0,

for t ∈ [0, τh), and

d
dt

C∗(t) = –Z∗(t)ρc∗
(
X∗(t)

)
g
(
X∗(t)

)
< 0,

for t > τh . In particular, the graph of t 7→ C∗(t) is hump-shaped and attains its maximum at τh , as claimed.

Sufficiency of Condition (ii): Assume r < δ < r + ρ(1 – α), and note that xs < xα < x0 by Proposition
3.3. Let x ∈ (xα, x0), and define g(x ) by (E.5). From Lemma D.2, we have c∗(x ) < (r+ρ)x

1+ρx . Thus, (E.6)
yields g ′(x ) > 0. From g(x0) = (δ – r)/ρ > 0 and g(xα) < 0 (by Condition (ii)), it follows that there exists
a unique constant x ′

h ∈ (xα, x0) satisfying (3.24) such that g(x ) > 0 (resp. g(x ) < 0) if x ∈ (x ′
h, x0) (resp.

x ∈ (xα, x ′
h)).

Next, assume that X∗(0) = w
z ∈ (xα, x ′

h). Since X∗(0) < x0, Corollary 3.1 yields that X∗(t) is increasing
and limt→+∞ X∗(t) = x0 > x ′

h. Since X∗(t) is continuous and increasing, there is a unique τ ′h > 0 such that
X∗(τ ′h) = x ′

h, xα < X∗(t) < x ′
h for t ∈ [0, τ ′h), and x ′

h < X∗(t) < x0 for t > τ ′h . From Lemma E.1, it follows
that

d
dt

C∗(t) = –Z∗(t)ρc∗
(
X∗(t)

)
g
(
X∗(t)

)
> 0,

for t ∈ [0, τ ′h), and

d
dt

C∗(t) = –Z∗(t)ρc∗
(
X∗(t)

)
g
(
X∗(t)

)
< 0,

for t > τ ′h . In particular, the graph of t 7→ C∗(t) is hump-shaped and attains its maximum at τ ′h , as claimed.

42

Electronic copy available at: https://ssrn.com/abstract=4259364



Necessity of Conditions (i) and (ii): By Proposition 3.3, xα = xs ≥ x0 (resp. xs < xα < x0) if
δ ≥ r + ρ(1 – α) (resp. 0 < δ < r + ρ(1 – α)). Therefore, Conditions (i) and (ii) are false if and only if one
of the following six scenarios is true:

(a) r ≥ δ,

(b) δ ≥ r + ρ(1 – α) and xs ≤ w/z ≤ xh,

(c) r < δ < r + ρ(1 – α) and x0 ≤ w/z ≤ xh,

(d) r < δ < r + ρ(1 – α) and xs ≤ w/z ≤ xα,

(e) r < δ < r + ρ(1 – α), 1 + δ
γ

xα–x0
1+ρxα – α < 0, and x ′

h ≤ w/z < x0,

(f) r < δ < r + ρ(1 – α), 1 + δ
γ

xα–x0
1+ρxα – α ≥ 0.

Thus, to show the necessity of Conditions (i) and (ii) for the presence of a consumption hump, it suffices to
show that t 7→ C∗(t) is not hump-shaped in scenarios (a)-(f) above.

Under scenario (a), we have δ ≤ r ≤ r +ρ(1–α). From Corollary 3.1, we know limt→+∞ X∗(t) = x0 > xα
and c∗(x0) = c0 := (r + ρ – δ)/ρ. Therefore, limt→+∞ f

(
X∗(t)

)
= ρc0(1 – c0) = c0(δ – r) ≤ 0 by (E.1). From

Lemma E.1, it follows that there exists a constant T such that dC∗(t)
dt ≥ 0 for t ≥ T. Since t 7→ C∗(t) is

asymptotically non-decreasing, it cannot be hump-shaped.
In scenarios (b) and (c), we can apply the argument used for the proof of sufficiency of Condition (i) to

conclude that t 7→ C∗(t) is decreasing and, thus, not hump-shaped.
In scenario (d), f (x ) = ρα(1 – α) > 0 by (E.1). Lemma (E.1) then yields that d

dt C
∗(0) < 0. Thus,

t 7→ C∗(t) is initially decreasing and cannot be hump-shaped.
Finally, in scenarios (e) and (f), we can apply the argument used for the proof of sufficiency of Condition

(ii) to conclude that t 7→ C∗(t) is decreasing and, thus, not hump-shaped.
To end the proof of Proposition 3.4, it only remains to show its last statement. The first part of the

statement is clear. The second part (that is, Conditions (ii) fails if γ > 1– δ–r
ρ(1–α) ) follows from the inequality

1 +
δ

γ

xα – x0
1 + ρxα

– α > 1 +
δ

γ

xs – x0
1 + ρxs

– α =
1 – α
γ

(
γ – 1 +

δ – r
ρ(1 – α)

)
.

To get the inequality, we used xα > xα and that x–x0
1+ρx is increasing in x . To get the equality, we used the

definitions x0 = r+ρ–δ
δρ and xs = α

r+ρ(1–α) .
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