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Abstract

We investigate the stability of equilibrium-induced optimal values with respect to reward
functions f and transition kernels @) for time-inconsistent stopping problems under nonexpo-
nential discounting in discrete time. First, with locally uniform convergence of f and @ equipped
with total variation distance, we show that the optimal value is semi-continuous with respect to
(f,Q). We provide examples showing that continuity may fail in general, and the convergence
for @ in total variation cannot be replaced by weak convergence. Next we show that with the
uniform convergence of f and @, the optimal value is continuous with respect to (f, Q) when
we consider a relaxed limit over e-equilibria. We also provide an example showing that for such
continuity the uniform convergence of (f, @) cannot be replaced by locally uniform convergence.
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1 Introduction

Consider the optimal stopping problem

sup B, [6(7) f(X7)], (1.1)
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where X = (X;)i=0,1,... is a time-homogeneous Markov process taking values in some state space
X, T is the set of all stopping times, § is a discount function and f is a reward function. It is
well known that when ¢ is not exponential, the problem (1.1) may be time-inconsistent. That is,
a stopping strategy that is optimal from today’s point of view may no longer be optimal from a
future’s perspective. A popular approach to address this time-inconsistency is to look for a subgame
perfect Nash equilibrium instead of solving (1.1): a strategy such that once it is imposed over the
planning horizon, the current self has no incentive to deviate from the strategy, given all future
selves will follow it.

There have been a lot of works on equilibrium strategies for time-inconsistent control problems,
and we refer to [4, 5, 18, 11] and the references therein. The development for theory of time-
inconsistent stopping is more recent, and we refer to [14, 12, 13, 15, 17, 7, 6, 3, 21, 2, 1, 16]. Let
us also mention the work [19] which analyzes a time-inconsistent Dynkin game, and [20] which
considers a time-inconsistent controller-stopper problem. It is worth to mention that most of the
papers on time-inconsistent control and stopping focus on the characterization of equilibria. A few
exceptions include [16, 17, 14, 22] where the optimality and selection of equilibria are first analyzed
in the presence of multiple equilibria. In particular, it is shown in settings of these papers that
there exists an optimal equilibrium which pointwisely dominates all other equilibria in terms of the
associated value functions; moreover, this optimal equilibrium is given by the intersection of all
equilibria and thus is the smallest equilibrium.

The focus of this paper differs from those in the existing literature on time-inconsistent problems:
we consider the stability of the smallest optimal equilibrium as well as the optimal values induced
by these equilibria (or by the smallest optimal equilibrium). More specifically, we investigate the
continuity of the optimal equilibrium and optimal value with respect to (w.r.t.) the reward function
f and the transition kernel @) of the Markov process X. We assume the discount function is log-
subadditive and we consider pure strategies (i.e., not mixed strategies). Our first main result,
Theorem 3.1, states that, with the local convergence of f and () which is equipped with the total
variation distance, the smallest optimal equilibrium (in terms of inclusion) is lower semicontinuous,
and the optimal value function is upper semicontinuous w.r.t. (f, Q). We provide examples showing
that the exact continuity w.r.t. (f,Q) for either the optimal equilibrium or the optimal value
function may fail. Moreover, we also construct an example in which the semi-continuity fails
if the convergence of () in total variation is changed to weak convergence. Let us emphasize
that our first main result contrasts with the stability of the optimal value w.r.t. (f,Q) under
time-consistent stopping (i.e., with exponential discounting): the continuity indeed holds for time-
consistent stopping in our setup, as indicated in Remark 3.2.

In our second main result, Theorem 4.1, we recover the continuity (under a relaxation) of
the optimal value function w.r.t. (f,@Q) by relaxing the equilibrium concept and including e-
equilibria: Specifically, we show that as (f™, Q") uniformly converges to (f,Q), it holds that
limes o limy, o0 VSQR(',f”) = V()Q(-,f), where VEQTL(-,f") is the optimal value induced by all e-
equilibria w.r.t. (f™, Q™). The two limits in € and n cannot be changed due to the first main result;
see Remark 4.2. To prove the second main result, we introduce the notion of pseudo e-equilibrium
which captures the idea of penalizing the possible deviation in the continuation region but not in
the stopping region; see Definition 4.2. It turns out that pseudo e-equilibria have better properties
than e-equilibria: One can embed the set of pseudo-e-equilibria to pseudo equilibria corresponding
to a perturbed reward function; see Lemma 4.5. A remarkable observation is that the smallest
optimal pseudo equilibrium is actually the smallest optimal equilibrium; see Proposition 4.2. In
Example 4.1, we demonstrate that the continuity in our second main result may fail if we replace
the uniform convergence of (f, Q) with locally uniform convergence. In Proposition 4.1, however,
we show that if the relaxation is over the pseudo € equilibria, then the uniform convergence can be



loosened.

Stability analysis is an important topic in control and optimization problems. For the stability
of equilibria, the very recent works [9, 10] consider the stability of equilibria w.r.t. position/path
(and time) in Nash games. Let us also mention the study in [8, Section 5] for the stability of
mixed equilibrium strategies in time-inconsistent stopping problems w.r.t some “myopic adjust-
ment” procedure which is used to produce a sequence of mixed strategies that may convergence
to a mixed equilibrium. To the best of our knowledge, there is no literature so far studying the
stability of equilibria w.r.t. the reward function and the dynamics of the underlying process for
time-inconsistent (stopping) problems. In this regards, our paper provides very novel and concep-
tual contributions to the stability analysis in the topic of time-inconsistent problems. Our results
also give a theoretical guidance for the numerical computation of optimal equilibrium values for
time-inconsistent stopping. In reality the reward function f and transition kernel () may not be
fully known and may be obtained via estimation (@) can be obtained by statistical analysis of the
state variables and reward function could be determined from a survey). A natural question is how
the equilibrium-induced optimal value V?(-, f) is estimated based on the approximated (f",Q")
for the reward function and transition kernel. Our results indicate that, when (f™, Q") are close
to (f,Q), using the optimal value V&" (-, f*) induced by perfect equilibria w.r.t. (f*, Q") to esti-
mate VQ(-, f) can still lead to a large error. Instead, one should look for the value induced by all
e-equilibria w.r.t. (f”, Q") to get a good estimation for V(-, f).

The rest of the paper is organized as follows. The setup and main assumptions are introduced
in Section 2, together with several preliminary lemmata. In Section 3, we present our first main
result, the proof of which is given in Section 3.1. In Section 4, we provide the second main result
by introducing (pseudo) e-equilibria. The proof of this result is collected in Section 4.1. Appendix
gathers the proofs of lemmata in Section 2.

2 Setup and preliminaries

Consider a measurable space (€2, F) and let X = (X;);=0,1,... be a time-homogeneous Markov process
in discrete time, taking values in some polish space X. Let F be the filtration generated by X and
T be the set of F-stopping times. Denote B the class of Borel sets of X, and N := {0,1,2,...},
N:=NU{co}, Ry := [0,00). Let f: X — Ry be a reward function that may be discontinuous.
Denote ||f||oc = sup,ex |f(x)]. Let 6 : N +— [0,1] be a discount function that is decreasing with
5(0) =1, (1) < 1 and lim;_, d(t) = 0. We further make the following assumption on the discount
function 6(-).

Assumption 2.1. 6(-) is log sub-additive, i.e.,
O(t+s)>0d(t)o(s), Vs, t>0. (2.1)

Remark 2.1. Typical discount functions, including exponential, hyperbolic, generalized hyperbolic
and pseudo-exponential discounting, satisfy Assumption 2.1.

Given the transition kernel Q(z,dy) for X and a stopping time 7, define
v@(x, 7, f) = EZ[6(r) F(X7)],
where EY is the expectation w.r.t. @ given Xy = z. For S € B, denote

p(S) :==inf{t > 1, X; € S},



and
J(x, 8, f) =EL[0(p(S) f (X)) - Liagsy + f(@) - 1ipesy, Vo eX
We provide the definition of equilibria and optimal equilibria in the following.

Definition 2.1 (Equilibria and optimal equilibria). Fiz a reward function f and a transition kernel
Q. A Borel set S C X is called an equilibrium (w.r.t. f and Q) if

{ﬂ@gEﬁaman@n@n,Vm¢&
f(@) 2 EZ[5(p(5))f (X)), Va € 5.

Denote EQ(f) the set of equilibria w.r.t. f and Q. S € EQ(f) is called an optimal equilibrium
(w.r.t. f and Q), if for any T € EX(f),

IOz, 8, f) > J9x, T, f), VeeX

(2.2)

Let
Ve, f):= sup J9x,S, f), zeX, (2.3)
SeEQ(f)

which represents the optimal value generated over all equilibria. As indicated by results in [16] (also
see Lemma 2.1) there exists an (smallest) optimal equilibrium and thus the supremum for V< (z, f)
is attained universally at this optimal equilibrium for all z € X. In this paper, we investigate the
stability of VQ(z, f) w.r.t. the transition kernel @ and reward function f. To begin with, recall
the total variation distance between two measures p and v,

= vlly = sup {/gdu—/gdu},
geB(X;[—1,1]) X X

where B(X;[—1,1]) is the set of Borel measurable functions on X taking values in [—1,1]. We will
use the following notions of convergence for f and @ for the stability analysis of V(z, f).

Definition 2.2. Let (f"), . be a sequence of functions on X. We say f" converges to f* locally
uniformly if for any compact set K C X,

lim sup |f"(z) — f>(x)] = 0.

n—oo zeK

Recall that f™ converges to f°° uniformly if || f™ — f*|lec — 0 as n — oo.

Definition 2.3. Let (Q"), . be a sequence of transition kernels. We say Q" converges to Q>
locally uniformly in total variation, if for any compact set K C X,

lim sup ||Q"(x, ) — Q% (z,-)||7v = 0.
n—oo zcK
We say Q" converges to Q° uniformly in total variation, if
lim sup||Q"(z, ) — Q(x,")||7v = 0.
n—o0 zeX

Remark 2.2. When X is countable and under the discrete topology, locally uniform convergence
of (Q™(%,Y)),cx in total variation is the same as the pointwise weak convergence.

When X is uncountable (e.g., the process under Q™ is a time-discretized diffusion), then the
locally uniform convergence of (Q"(w,y)),cx in total variation can be implied by the following
condition: There exist a reference measure p such that any Q™(x,-) has a probability density q"(x, -)
w.r.t. w, i.e., Q"(x,dy) = ¢"(x,y)u(dy), and for any compact set K C X,

lim sup/xlq”(:c,y) — q>(x,y)|du(y) = 0.

n—oo reK
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Now we present three lemmata that will be used in later sections, and their proofs are collected
in Appendix A. The first lemma is an analogue of [3, Theorem 2.5 for the discrete-time setting,
which provides the existence of an optimal equilibrium, as well as an iterative approach for its
construction. To this end, define

S*(f, Q) = Ngega(s)S- (2.4)
We have the following.

Lemma 2.1. Let Assumption 2.1 hold. Suppose f is bounded and non-negative, and Q is a tran-
sition kernel. Define So =0 and for k=1,2,...,

Sk+1::SkU{x€X\Sk:f(:1:)> sup vQ(m,T,f)}.

1<7<p(Sk)
Then UkenSk = S*(f, Q). Moreover, S*(f,Q) is an optimal equilibrium, and thus
Ve(z,f) = J9x,5"(f,Q), f), VreX

Remark 2.3. Lemma 2.1 indicates that there exists a “smallest” equilibrium, which is also an
optimal one. The supremum for VO (x, f) is achieved by the same equilibrium S*(f, Q). Moreover,
If the discount function is exponential, i.e., when the stopping problem (1.1) is time-consistent, a
similar discussion as that in [3] would show that S*(f, Q) and V9 (x, f) would coincide with the
optimal stopping region and value respectively in the classical sense.

Lemma 2.2. Let (Q"), o be transition kernels.

(a) Suppose Q™ converges to Q> locally uniformly in total variation. Then for any x € X and
T e N,

lim sup ES" g(X1, Xs, ..., X7) —E? 7 g(X1,Xo,... . X1)| = 0.
0 ge B(XT5[-1,1])

(b) In addition to the condition in part (a), assume that, for any compact set K and e > 0, there
exists a compact set K' such that sup,c Q> (x,K') > 1 —¢e. Then for any compact set K
and T € N,

lim sup ‘Egng(X17X27 aXT)_]E:Cgoog(Xl’XQ"“ ’XT)| =0.
N0 peK,ge B(XT;[-1,1])

(c) Suppose Q™ converges to Q> uniformly in total variation. Then for any T € N,

lim sup ‘E?ng(XhX%.” ,X7) —EF (X1, Xa, ... Xr)[ =0.
"0 1eX,geB(XT5[-1,1])

Remark 2.4. Suppose under Q*°,
Xey1 = W(Xt, &),

where &, &1, ... are i.i.d. random variables taking values in R® and h : X x R? — X is continuous.
Then the additional assumption in Lemma 2.2(b) is satisfied. Indeed, fix compact set K C X and e >
0. There exists constant C' > 0 such that P(|§o| < C) = 1—¢. Let C" := sup, e pg [h(2, )| < 00

and K' := Bor C X, where B, is the ball centered at zero with radius r. Then sup,cx Q> (z, K') >
P([éo| <C)>1—e.



Lemma 2.3. Let (Q"), x be transition kernels, and (f"), .5 be non-negative reward functions

such that sup, . | f"|lco < 00. Suppose Assumption 2.1 holds.

(a) Suppose Q™ converges to Q> locally uniformly in total variation and f™ converges to f>
locally uniformly. Then

lim sup [v9" (z,7, ) — 09 (x,7, )| =0, VreX.

nN—=0 rcT

(b) In addition to the conditions in part (a), assume that for any compact set K and e > 0, there
exists a compact set K' such that sup,c i Q> (x, K') > 1 —¢€. Then for any compact set K,

lim  sup |09 (z,7, f") — 0 (x,7, fF)| = 0.
=0 pc K, reT

(c) Suppose Q™ converges to Q° uniformly in total variation and ||f™ — f*°|lcc — 0. Then

lim sup \in(x,T, 1y =@ (z,7, )| =0.
n—=00 reX,reT

3 Semi-contintuity of the smallest optimal equilibrium and its as-
sociated value

In this section, we present the first main result: the semi-continuity of V% (x, f) and S*(f>°, Q)
w.r.t. f and Q. The proof is collected in Section 3.1. Examples for discontinuity are also provided.

Theorem 3.1. Suppose Assumption 2.1 holds. Let (Q"), 5 be transition kernels, and (f"), x5
be non-negative reward functions with sup,, g | f"[lc < 00. Suppose Q" converges to Q> locally
uniformly in total variation, and f™ converges to f°° locally uniformly. Then

S*(f°, Q™) C lirginfS’*(f", Q"), (3.1)
and
VO (x, £°) > limsup V9" (z, f*), VzeX. (3.2)
n—oo

Remark 3.1. We also have the semi-continuity in terms of the equilibria sets: under the conditions
in Theorem 3.1,
limsup £ (f*) c £97(f>).

n—oo

Indeed, for S € limsup,,_,., E9"(f"), there exists a subsequence (ny)i such that S € "% (™),
and thus

{fnk () < EQ[5(p(S) f™ (X)) Y ¢ S;
frr(x) = EQ [5(p(S) ™ (Xps)))],  Va € 5.

By Lemma 2.5(a), letting k — oo we can conclude that S € E97 ().

Remark 3.2. If 0 is exponential, i.e., 6(t + s) = 0(t)d(s) for any s,t > 0, then by a similar
discussion as that in [3], we have that

V@ (2, f1) = SEBESH [6(7) f™(X-)]. (3.3)



By Lemma 2.3(a), (3.3) implies that

lim VO (z, f7) = V9 (z, ), VreX, (3.4)

n—o0

which is the continuity of the optimal value function. However, we still only have the semi-continuity
for the “smallest” optimal stopping region S*(f™, Q™).

We now present three examples of discontinuity. The first two examples show that the strict
inequalities in (3.1) and (3.2) can happen. Example 3.1 is for discontinuity w.r.t. the transition
kernel, and Example 3.2 is for discontinuity w.r.t. the reward function. Then we provide a dis-
continuity example under weak convergence of transition kernels, which indicates that the locally
uniform convergence in total variation for transition kernels is the right assumption.

Example 3.1. Let X = {a,b,c} CR with ¢ <b < a, §(1) =1/2 and §(2) = 1/3. Define

Q":Q"(¢c,b) =1, Q"(b,a)=p,=1—4, Q") =%, VneN,
flay=2, fb)=1, f(c) =73,

1 . ; ; ; — — — ;
where — := 0, and with a bit of abuse of notation Q(x,y) := P(X| = y|Xo = x). It is easy to check
that Q™ converges to Q°° uniformly in total variation.
Note that any equilibrium must contain the global mazimum of the reward function. By compu-
tation

JO (b {a}, f) =1=f(b) and J?(c,{a},[) =2/3> f(o),
which imply that S*(f,Q>) = {a}. Moreover, since for n < oo,
F0) > I (b, {a}, ) = T (b, {a,c}, ),

any equilibrium w.r.t. Q" for n < oo must contain {a,b}. As f(c) > 6(1)f(b), {a,b} is not
equilibrium w.r.t. Q™ for n < oo. Consequently, EQ"(f) = {X} for n < co. Hence,

SU(f,Q%) ={c} S X=5°(},Q"), Vn <o,

and

Vi (e, f) = fle) < I (e, {a}) = VI (e, ).
Example 3.2. Let X = {a,b,c} CR with ¢ <b < a, §(1) =1/2 and 6(2) = 1/3. Define
Q(C7 b) = 17 Q(bv a’) = 17 Q(a7a) = 17
fr@)=2, frO)=1+2% fc)=3+01+61)%, vVnel

Obviously, || f™ — f*|lecc — 0.
We can compute that

JOUbAa}, £2) =1 = f*0), JUe{a}, %) =2/3> f¥(c),
and thus S = {a}. Meanwhile,
JQ(b7 {a}a fn) = JQ(bv {CL, C}, fn) =1< fn(b)a
so neither {a} nor {a,c} belongs to EL(f™) for n < co. By

1

£ = 5+ (L 8()2 > 2+ 6(1) =61 (B),
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{a,b} is not equilibrium for all f for n < co. Therefore, X is the only equilibrium w.r.t. f™ for
n < co. Hence,
SH(f*,Q) ={c £ X=5(,Q"), Vn <oo,
and 1 9
limsup V¥(c, f) = limsup f(c¢) = = < = = VO(¢, f>).

When X is finite, convergence locally uniformly in total variation is equivalent to weak con-
vergence. When X is not finite, we provide below an example showing that the semi-continuity in
Theorem 3.1 fails when only weak convergence is assumed. Hence, weak convergence is too weak
to establish the semi-continuity in Theorem 3.1.

Loo

@4‘1 Let

Example 3.3. Let X = {y, 2,21, 22,...} C R, where 0 < z, N 2o and y =
f(z) = x. Define for n < oo,
o Q" (i, xy) =1, for i#n, Q™ (i, x00) =1, for Vi,

' Qn(xoowxn) = van(xnay) = 17Qn(yay> =1, Qoo(xoow%'oo) = 17Qoo(y7y) =L

It can be shown that Q™ (z, -) weakly converges to Q> (z,-) for any z € X. However, since Q" (z1, {0 }) =
0 for n < oo while Q> (x1,{xx}) =1, the locally uniform convergence in total variation fails.

and Q> : {

, x
For n < oo, since y > ——~—, we have that

(2)’

§(2)y, i€ N\ {n}

> Too 2 Xje
sy, i=n e

EZ [0(p({y}) f (Xpqu)] = {
This implies S*(f, Q™) = {y} for n < oco. On the other hand, denote

Sy = {x eX: f(x) > supono(x,T,f)}.

1<t
Obviously, {x,y} C S1. By Lemma 2.1, we have that {x,y} C S*(f, Q). Hence,

n—oo

3.1 Proof of Theorem 3.1
Proof of Theorem 3.1. For n € N, define S§ = () and

Spy1 = Sp U {x eX\SP: f(x)> sup ¥ (z,7, f")} . (3.5)

1<7<p(SE)
By Lemma 2.1, S*(f™, Q™) = UpSP = limy_00 S, Vn € N. We show by induction that
i Climinf Sp, k=01,..., (3.6)

which in particular implies that S*(f*°, Q) C liminf, . S*(f™, Q™).
Obviously, (3.6) holds for £ = 0. Suppose it holds for k¥ = i and consider the case k = i + 1.
Take z € S7¢,. If x € S7°, then by induction hypothesis

x € liminf Sj* C liminf S, ;.
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Now assume z ¢ S2°. Then

o= f%(x)— sup 09 (z,7,f%)>0. (3.7)
1<7<p(52°)

Denote the probability measure P induced by Q™. By induction hypothesis,

p(SZ ) =P <1<7%J<oo <n<jrloo,sl>> nh—g)lop <n<?<ooSZ> ’ Px a5

Therefore, there exists N € N such that for any n > N,

B p(st) > s < ¥ oo 87) > 0t < 5o (33)

n<j<oo

where M :=sup, . || f"||oc < 00. Then for any 7" with 1 < 7" < p(S}*), we have that

’UQOO(.T,T/,fOO) < @~ (2, 7" A p(S5°), £°°) + % < sup @™ (z,7, )+ @

1< <p(55°) 2’
and thus o
sup 097 (2,7, )< sup 09 (2,7, f°)+ =, VYn>N.
1<r<p(S7) 1<r<p(52°) 2
This together with (3.7) implies that
o) Q> 00 a
fC(x)— sup % (x,7,f°)>=>0. (3.9)
1<7<p(SP) 2
By Lemma 2.3 part (a), for n large enough, we have that
sup 097 (x,7,f)— sup in(az,T, M < sup ‘UQOO (z,7, ) — in(x,T, f")‘
1<r<p(S}) 1<r<p(S}) 1<r<p(S})
< sup ‘va(x7Tv foo) - in(x7Ta fn)‘ < g
TET 3
(3.10)
Meanwhile, we can choose N’ such that for all n > N’ (3.10) holds and
a
/(@) = f* ()] < 35 (3.11)

Thus, for all n > max{N, N'}, combine (3.9), (3.10) and (3.11),

fia) = sup oz 1) = (@) = f0) + f0(x) = sup 0@ (7, f)

1<7<p(S™) 1<7<p(ST)
+  sup v~ (x, 7, f*)— sup in(x,T, M)
1<7<p(S7) 1<7<p(S})

>- 42 250
- 12 2 3 )
Consequently, for n large enough, no matter z is in S or not, we always have x € S, |, and thus
r € liminf,, ;o S ;. By the arbitrariness of x, (3.6) holds for £ =i + 1. We have proved (3.1).
Now let € > 0 and x ¢ S*(f*°, Q). Following the argument in (3.8), we can show that there
exists N € N such that for any n > N,
o . €
PE™ [(S*(f", Q™) > p(S™(£,Q))] <

e (3.12)



Then there exists N’ > N such that for any n > N’,
5

o9 (@, p(S (£, Q%)) 2097 (2, p(S* (£, Q) U S™(f*, Q™)) 2 v¥™ (2, p(S* (", QM) — 5
>v9" (2, p(S*(f", Q™)) — e,

where the first inequality follows from [17, Lemma 3.1] (or Lemma 4.2), the second inequality
follows from (3.12), the third inequality follows from Lemma 2.3 part (a). As a result,

V2 (ap(S°(£,Q™))) = limsupv?™ (&, p(S" (", Q")) ~ &

By the arbitrariness of ¢, we have (3.2) holds. O

4 Continuity under a relaxed limit

As shown in the previous section, V@(z, f) is not continuous w.r.t. Q or f in general. To achieve
the stability, we need to relax the equilibrium set over which we take supremum.

Definition 4.1. Fiz a reward function f and a transition kernel Q. Take € > 0. A Borel set S is
called an e-equilibrium (w.r.t. f and Q), if

{f(x) <EZ[5(p(S) [ (Xps))] + &, Va ¢S,

F(@) +¢ 2 E2(p(S) f(Xs)], Ve € S. 1)

Define
EQ(f,e) :=={S is an e-equilibrium w.r.t. f and Q}.

When € = 0, we still call S an equilibrium and may use the notation E(f) instead of EX(f,0).

We also need the following notion of pseudo e-equilibria, which loosens the criterion of &-
equilibrium by giving up the condition in (4.1) when z € S.

Definition 4.2. Fiz a reward function f and a transition kernel Q). Take e > 0. A Borel set S C X
is called a pseudo e-equilibrium (w.r.t. f and Q), if

f(z) SEZB(p(S)f (Xps)] +e, Vo s. (4.2)

Define
G9(f,e) :={S is a pseudo e-equilibrium w.r.t. f and Q}.

When € = 0, we simply call S is a pseudo equilibrium, and write GR(f) short for G2 (f,0). We say
S € G(f) is an optimal pseudo equilibrium (w.r.t. f and Q), if for any T € G2(f),

J(x, S, f) > J(x,T, f), YreX

Remark 4.1. There are three (pure) equilibrium concepts in the continuous-time setting, including
mild equilibria, weak equilibria, and strong equilibria (see [2, 1]). The definition of mild equilibria
is simply replacing p(S) :={t > 1, Xy € S} with p(S) := {t > 0, Xy € S} in Definition 2.1. [2, 1]
provide a detailed comparison for these different types of equilibria, and show that under certain
conditions an optimal mild equilibrium is also weak and strong. In the discrete-time setup, the
notions of mild, weak, and strong equilibria are all equivalent.

In continuous time when the process is reqular enough, e.q., if X is a one-dimensional diffusion
determined by a SDE: dX; = b(X;)dt + o(X;)dW,; with |o| > 0, we have p(S) = 0, P*-a.s. and
f(x) = J9x,S, f) for all z € S, and thus the condition for x € S in the definition of mild
equilibrium trivially holds. In this case, any pseudo equilibrium is automatically a mild equilibrium.
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Now define

WE(z, f)== sup J9S.f); VOz.f)= sup J,S, f). (4.3)
SEGR(f,e) ScEQ(fe)

When ¢ = 0 we write W% (z, f) instead of W(?(:c, f), and we keep using the notation V¥(z, f) in
(2.3) instead of VOQ(x, f)-

Pseudo e-equilibria have better properties than e-equilibria. As we will see in Lemma 4.5 below
one can embed the set of pseudo-e-equilibria to pseudo equilibria corresponding to a perturbed
reward function. We will also observe that the smallest optimal pseudo equilibrium is actually the
smallest optimal equilibrium in Proposition 4.2. These two results form the backbone of the proof
of the second main result which we state below. The proof of this result is provided in Section 4.1.

Theorem 4.1. Suppose Assumption 2.1 holds. Let (Q"), 5 be transition kernels, and (f"), 5
be bounded and non-negative reward functions. Suppose Q™ converges to Q°° uniformly in total

variation, and || f* — f*|lcc — 0. Then

lim (limicgf Vo' (a, f")) — lim <1inn_1>i£f Wg?"(x,f"))

eNo0 \ n— e\0
T . Qr ) 1 . Qr n
—il\% (llrillsolép‘/; (x, f )) = ;1\13% (hgsolcl)p Wz (z, f ))

=V (2, %), VzreX

Letting f™ = f and Q"™ = Q for n € N in Theorem 4.1, we achieve the following corollary, which
shows that VQ(a:, f) is indeed the limit of the supremum value over all e-equilibria as € N\, 0.

Corollary 4.1. Suppose Assumption 2.1 holds. Given a bounded reward function f > 0 and a
transition kernel Q, we have that

;%w@nigmww=W@ﬁvwx
Remark 4.2. Combining Theorem 5.1 and Corollary 4.1, we have

lim sup (lim Ve (z, f")) = limsup V" (z, f*) < V9 (2, f*), VreX
n—o0 eNo n—o0

Recall that the strict inequality above can be achieved as shown in Examples 3.1 and 3.2. Hence,

together with Theorem j.1, we see that the order of taking € \, 0 and taking n — oo cannot be

exchanged.

Moreover, the main results in this paper provide a guideline for numerical approximation for
VO (z, f): With good approzimations of the transition kernel Q> and reward function f>,
taking supremum only over equilibria may not provide good estimation for the target optimal value.
Instead, one should take supremum over all e-equilibria.

Remark 4.3. Analogous to Remark 3.1, if the same conditions in Theorem /.1 hold, then

ii\r‘% (hminf&?n(f”)) = il\r‘% <limsup SaQn(f”)> = E97 ().

n—00 n—00

Proof. By a similar argument as in Remark 3.1, we can show that

lim (limsupggn(f")> c EQT(f>).

eNo n—o00
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It remains to show that
Q% [ roo . .. Q" en
£97 () € lim (Timinf £2" (")) (4.4)

For S € £97 (), we have

{f“’(fc) <EQ[5(p(S)F>® (X)), VxS,
F(@) = EQ78(p(8) F (X)), Va € S.

Then for any € > 0, Lemma 2.3 implies that, for n big enough,

{f”(w)—ééEQ"[é(p(S)f”( Xp)), Vo ¢ S;
fr(@) +e > EL[B(p(S) fM (X)), Ve €S

Consequently, S € liminf,, Ean( f™) for any € > 0, which implies (4.4). O

The following example shows that the continuity result in Theorem 4.1 may fail if the conver-
gence of (Qn)nen in total variation is only assumed to be locally uniform instead of uniform.

Example 4.1. Let X = {y, xg,x1,x2,...} C R. Define

Qn(‘riaxi—i—l) = %7Qn(xi7y) - %7 0<1 <n,
Q" : ¢ Q"(wi,y) =1, i>n ;
Qn(l‘n’xn) =1 Qn(y7 ) L.
QOO . Q (x’taxl-f—l) 27 Q ($27 ) %7 VZ 2 07
Q> (y,y) = 1.
One can easily see that Q™ converges to Q> locally uniformly, but not uniformly. Let f(x;) =1 for

i €N, f(y) =2.99, and 6(k) = 1J1rk for k € N.
We have $5(1)(1+ f(y)) = 22 < 1, and

ié(k:) (;)kf(y) > kid(k) <;>kf(y) —2.99 ( + i + 312> > 1.

k=1

That is,

k
;5()(1+f <1<Za () (). (4.5)

Take € with 0 < e < 1—36(1)(1 + f(y)). For anyn < oo and S € E9"(f,e), it is easy to check
that y,z, € S. For any 1 § n, if x; € S, then by the first inequality in (4.5), z;—1 € S. Hence, for
any n < 00,

{x0, 21, ..,tn} C S, VS €&V (f,e).

As the above holds for any e with 0 < e <1 —26(1)(1 + f(y)), we have that

limsup V*(zg) = f(z0), Vn < oo,

n—oo

which leads to
lim sup lim sup V" (z¢) = f(zo). (4.6)

e\0 n—oo
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On the other hand, the second inequality in (4.5) indicates J*°(x;,{y}) > f(x;) for anyi € N. This
together with J>®(y,{y}) < f(y) implies that

~ > k
S® ={y} and V=(x9) = J®(x0,{y}) = Zé < ) (y).
k=1

Then by (4.6) and the second inequality in (4.5),

lim sup lim sup V*(zo) < V(o).
e\0 n—oo

However, if we use Wan(.,f") (instead of VaQn(.,f”)) to approximate V™ (., £>°), then we
can weaken the uniform convergence in total variation condition to locally uniform convergence as
shown in the following proposition.

Proposition 4.1. Suppose the conditions for ("), .5 and 6 in Theorem j.1 hold, and Q™ converges
to Q locally uniformly in total variation. Assume that for any compact set K and € > 0, there
ezists a compact set K' such that sup,cp Q°(z, K') > 1 —¢. Then

lim (hmmf We" (x ,f”)) = h\r‘% (hmsup wo" (x, f”)) VO (x, ), VreX

eN0 \ n—oo n—00

The proof of Proposition 4.1 is presented in Section 4.1

4.1 Proofs of Theorem 4.1 and Proposition 4.1

To prepare for the proofs of Theorem 4.1 and Proposition 4.1, we first provide some auxiliary results
for (pseudo) e-equilibria.

Lemma 4.1. Fiz a bounded reward function f and a transition kernel Q. We have that
E9(f,2) € G(f.e), Ve20,

and
VO(x, f) < WEL(x, f), VzeX,Ve>0.

Proof. The result directly follows from Definitions 4.1 and 4.2. O

Lemma 4.2. Let Assumption 2.1 hold. Let f > 0 be a bounded reward function and @ be a
transition kernel.

(a) Given S,T € G2(f), we have that SN'T € GO(f).
(b) Let S, R € B such that S € G2(f) and R D> S. Then
IOz, 8, f) > J9x, R, f), VzeX

Proof. Part (a): We can use the same argument as that in the proof of [16, lemma 4.1] to get that
J(x,SNT) > J(x,S)VJ(z,T) > f(x), VegSNT,

which implies SN T € G9(f).
Part (b): Notice that J?(x,S,f) = f(z) = J9(z,R, f), for all z € S. For x ¢ S, same
discussion in the proof of [17, Lemma 3.1] (or [14, Lemma 4.1] ) can be applied to reach that

J9(x, S, f) > J9x, R, f).
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Define
Si(f, Q) = Ngegep)S-
Recall the smallest optimal equilibrium, S*(f,Q) = Nyega(s)S defined in (2.4). The following
proposition shows that S.(f, Q) is optimal among all pseudo equilibria and also coincides with

S*(f,Q)-

Proposition 4.2. Let Assumption 2.1 hold. Given a bounded reward function f > 0 and a tran-
sition kernel Q, we have that

Su(f,Q) = S*(f,Q) and WOz, f) = J% =, S:(f,Q), f) =V (z,f), Vz e X.

Proof. By Lemma 4.1, E9(f) € G9(f) and thus S,(f, Q) C S*(f, Q). We show S*(f,Q) C S.(f,Q)
by the iterative construction for S*(f,@). Recall S*(f, Q) = UpenSy in Lemma 2.1, where (Sy,)nen
is an increasing sequence defined as Sy = (), and

Spy1 i ={z e X\ S, : f(zx) > sup J9(x,S, f)}, mneN.
S:8, CSCX\{z}

For any R € G9(f), we prove by induction that
Sp, CR, VnelN (4.7)
We have Sy = () C R. Suppose S,, C R, then for any z ¢ R,

flx) <J9, R, f)<  sup  JYz,S,f),
S:SpCSCX\{z}

and thus « ¢ S, 41. Therefore, S,+1 C R.
By (4.7), S*(f,Q) = Un>0S, C R for any R € G?(f), which implies S*(f,Q) C S«(f,Q).
Hence, S,(f,Q) = S*(f, Q). Moroever, for any S € G2(f), by Lemma 4.2 part (b),

Iz, 8.(f,Q), ) > J%x,S, f), VzeX,
so JR(.,S.(f,Q), f) = W?(., f). Together with Lemma 2.1, we have that
WOz, f) = J%x, S.(£,Q), f) = J%z, S*(£,Q), f) =V (=, f), VazeX.

O
Lemma 4.3. Suppose Assumption 2.1 holds. For any 0 < g1 < &9, we have that
GU(f —e1) V0) € GU(f —e2) V0). (4.8)
Therefore,
Su((f —e1) V0,Q) 2 Sil(f —e2) V0,Q). (4.9)
Proof. Let S € GO(f —¢e1). For any = ¢ S,
79,8, (f —e1) V0) = Iz, 8,(f — £2) V 0)]
=E” [3(p(5)) ((f (Xp(5)) = 1) vV 0) = ((f (Xp(5)) = £2) vV 0))]
<E[5(p(S))(e2 — 1)] < &2 — 1.
If f(x) > €9, then
J(x, 8, (f —e2) VO) > J9x, S, (f —e1) VO) — (e2 — £1)
2f(x) —e1—(e2 —e1) = f(x) — e,
where the second inequality follows that S € G@(f —e1). If f(z) < &2, then J%(z, S, (f —e2) V0) >
0= (f(z) —e2) V0. Hence, S € GO(f — e2). O
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Lemma 4.4. Suppose Assumption 2.1 holds. Given a bounded reward function f > 0 and a
transition kernel Q, we have that

SU(f—2)v0,Q) =S5((f —2) v 0,Q) T 5:(f,Q) = 57(f,Q), ase\0, (4.10)

and
li\r%VQ(a:, (f—e)V0)=V9a, f), VzeX (4.11)

Proof. We first consider (4.10). By Lemma 4.3, S,((f — ) V 0, Q) increases as £ \, 0, so
"= Ues0S.((f =€) V0,Q) C S.(f, Q).
Given z ¢ §',
E*[8(p(S)F (Xp(s)] = lim E7[5(p(S-((f = ) v 0, @)((f (Xp(s. (s-apvo.n) =) V 0]
= lim 7@, S.((f =€) V0,Q),(f =€) V 0) > lim(f(2) =) V.0
=f(x),

where the second line follows that = ¢ S.((f —¢) vV 0,Q). Hence, S’ € G2(f) and S.(f,Q) C S,
which implies S = S,(Q, f). Then by Proposition 4.2,

SY(f=2)v0,Q) =S((f —2) V0,Q) T 5.(f,Q) =57(f,Q), ase\0.

Now we prove (4.11). By (4.10), for z € S*(f,Q), x € S*((f —¢) V 0,Q) for ¢ small enough,
and thus

lim VO(x, (f =€) v0) = lim(f(x) =€) VO = f(2) =VO(w. f), Vo€ S.(£,Q).

For = ¢ S.(f,Q), by (4.10), p(S*(f — &) vV 0,Q) — p(S*(f,Q)) a.s. and (f —e) VO — fase 0.

Then by Dominated Convergence Theorem,
lim VO (a, (f =) v 0) = lim B[3(p(S™((f =) v 0, Q))((f Kp(s=((s-<pv0.0) =) V O)]
=E"[6(p(S* (f, QN (Xpser.)] = V&, ), x ¢ Sulf,Q).
which completes the proof of (4.11). O

Lemma 4.5. Suppose Assumption 2.1 holds. Let f > 0 be a bounded reward function and @Q be a
transition kernel. Then for any € > 0, we have that

G € G9(f -2 V0 < 2.0 < 62 (1= =55 ) V).

Proof. GO(f) € GL((f —¢) v 0) follows from Lemma 4.3.
Let S € GY((f —¢e) v 0). For any = ¢ S, if f(x) > ¢, then

EZ[6(p(9)f (X)) 2 EZ[0(p(S)((f(Xp(5)) =€) VO] = (f(z) =€) VO = f(z) —e.

If f(z) < e, obviously, E2[8(p(S))f(X )] > 0 > f(z) —e. So S € G(f,¢).
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Let S € G¥(f,¢). Take x ¢ S. If f(x) > =57 then by p(S) > 1 we have that

EZ [5(/)(5)) ((f(Xp(s>) —1 _55(1)) v oﬂ >EZ[3(p(9))f (Xp(s))] = 6(1) - 1 _55(1)
é6(l)e €
> 1) =2 = {2 = F@) = =50
where the second line follows from S € G9(f,¢). If f(z) < ﬁ(l), then

2 (350 (100 - =555 ) V)] 20= (00 - =55 ) vo
Hence, S € G9((f — 1=557) V 0).

1-6(1)
O
Proof of Theorem /.1. The proof is a combination of the following two steps.
Step 1. We first prove, under assumptions in Theorem 4.1, that
V@ (z, £°) < liminf V" (z, f*) < liminf W2 (z, f*), Ve > 0. (4.12)
n—00 n—00

Let € > 0. Applying Lemma 2.3(c) with 7 = p(S*(f*°,Q°)), there exists N € N such that

sup [v9" (2, p(S* (£, Q%)), f™) — v?™ (z, p(S*(f,Q™)), f*)| < e.

zeX

Then
v (2, p(S*(£°,Q%)), f) > v (x, p(S*(f2,Q%)), ) —e > f(x) —¢, V¢ S*(f<,Q),
v (2, p(S*(£°,Q%)), f) < v (x, p(S*(f2,Q%)), f) + e < f(x) +&, Vo€ S (f~,Q%).

Hence, S*(f>,Q>) € £2" (f™) for all n > N.
Now take z € X. For n > N, by Definition 4.2 and (4.3),

>
<w

V' (, ) 2 T (@, 87 (f%,Q%), ),
which leads to
lirginf VEQn(x,f") > lin_1>inf JOn (2, S*(f°,Q), f) = VT (&, ),
where the second (in)equality follows from Lemma 2.3(a). By Lemma 4.1, we" (x, f) > Ve (x, ™),
and Step 1 is completed.

Step 2. Now we show, under the same assumptions in Theorem 3.1 (which are weaker than the
assumptions in Theorem 4.1), that

lim (limsup VaQn(x,f")) < lim (limsup we" (m,f")) <V (z, %), VzeX (4.13)
e\,0 n—00 e\,0 n—oo

By Theorem 3.1 and Proposition 4.2, for any € > 0,

iV (i (1" 7577 v0) = (o (77 - 55 vo)
Q= o _ €
W (o () o) een
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Meanwhile, for n € N,

Ve (x, ) <WE" (x, ™)
<we" <:r (f” -7 _85(1)) Vv 0) + 1%5(” (4.15)
_yeQ" (:p <f“—1_55(1)>v0>+1_€5(1), vz € X.

where the first line follows from Lemma 4.1, the second line follows from G@" (f™ ) € G9 ((f —
(1)) V 0) implied by Lemma 4.5, and the last line follows from Proposition 4.2. By (4.14) and
( 15), for any £ > 0 and z € X

limsup V2" (z, f*) < limsup W& (z, f*) <limsup V<" <x,< " c )\/O>+ c
msup V' (2, ) < limsup W (2, ) <lim sup Uiy 1 5(1)

() )

Then (4.13) follows by setting @ = Q> in (4.11).

O

Proof of Proposition j.1. Step 1. Let ¢ > 0. We first prove that for any x € X\ S*(f>°,Q),
there exists a set S, and IV € N such that

Sy € G (f"e),  JU(2, S (f2,Q%), f) < JU (2,85, f") +¢ and Vn > N.

Fix o ¢ S*(f*,Q%). Assup, . |f"|lcc =@ M < oo, we can take T' € N such that §(T)M < /2.
Then we apply the same discussion as (A.5) to find a compact set K and N; € N (that may depend
on x) such that

2M (1 -PY" (X, € K, t=0,...,T)) =2M - P (p(X\ K) <T) <e/2, VNi <n<oo. (4.16)
By Lemma 2.3(b),

lim sup |JQOO(y,S*(f°°,QOO),fOO)—JQn@vS*(fOO,QOO)yfn)‘ =0.
0 ye(K\S*(f°,Q>))

This together with the locally uniform convergence of (f"),ecn, we can find No € N (that may
depend on x) such that, for all n > Na, sup,ck [f"(y) — f*(y)| < § and

T (y, S*(f=,Q%)) — = < I (y, S*(f=,Q%), f=), Vy e (K\S*(f*,Q)).

N ™

This imply that for all n > N,
1) —e <P() - 5 < I, 8 (1%,Q%), 1) -
<TV(y. ST (7.Q%), M), Wy € (K\S(f*,Q%)). (4.17)

Let
= S5"(f*, Q%) U (X\ K).
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By (4.17), S, € ngn(f”) for n > Ns. Moreover, for any n > N := N1 V N,
[ (@, 5%, Q%) f7) = T (2, 50, )]
<EZ"[18(p(S* (£, @M F™ (X s+ (r2.0%1)) = 8(p(S2)) F (X (5| - 1x, 5,0 25 (5%.0%).p( ) >T}]
+ES[16(p(S* (£, Q™)) (X pS* foo.Q)) — 0(p(S. ))f"( sl 15,257 (£.Q%) 0(S2)<T}]
<2MS(T) 4 2M -PL" (p(X \ K) <
<e,

where the last line follows from (4.16) and 6(T)M < e/2. Step 1 is completed.
Step 2. For any = ¢ S*(f°°,Q>°), we can find N’ € N (which may depend on x) such that

e * [ £OO [e9) 0 i *( LOO [e'9) ) €
[T, 87(F%,Q%), 1) = T (@, 85 (f,Q%), f¥) < 5, Vn = N
Then from Step 1,

VO (2, ) =J97 (2, 57 (f*°,Q%), ) < J" (2, S*(f*°,Q%), f") + ¢
<J(x, 84, f) +2e < WL (fY) +26, ¥Yn>NVN.

Letting n — oo then € N\ 0, we have that

Q> < Q" n
V& (x, f) il{% (hmlan (x, f )), Vo € X.

Then the rest follows from Step 2 in the proof of Theorem 4.1. O

A Proofs of the lemmata in Section 2

Proof of Lemma 2.1. Set Soo := UgenSk. One can easily check that same arguments for So in the
proof of Theorem 2.5 in [3] is applicable for S,,." More specifically, Lemmas 2.10, 2.12, 2.13, and
the contradiction discussion in the first part of the proof for Theorem 2.5 in [3] can be applied, and
one can obtain an inequality similar as that in [3, Theorem 2.5] as follows:

Ty, R, f) — T% (Yoo, S*(f, Q) ) S EL[3(p(R))]a < 5(1)ax < v,

where the first inequality appears in the proof of [3, Theorem 2.5], and the second inequality follows
our time discrete setting. Hence, the same contradiction is reached as that in first part of the proof
for [3, Theorem 2.5], and we have the following:

(i) Seo C R, VR € EQ(f);

(ii) For any S € £Q(f) and T € B with S C T,

JO2,8,f) > J%=, T, f), VreX

(iii) Seo is an equilibrium.

By (i) and (iii), Seoc = Ngege(p)S = S*(Q, f). Then (ii) implies that J9(x,S*(Q, 1), f)
J9(xz,S, f) for any S € EQ(f). As a result, S*(Q, f) is an optimal equilibrium and V@(z, f)
JC(x, 5*(Q, f), )-

'The process X is a continuous-time Markov chain in [3], while in this paper X is a discrete-time Markov process.

O v
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Proof of Lemma 2.2. Denote
QF(z,-) == Q"(x,dz1) ® Q"(x1,dx2) ... ® Q"(xk_1,dx}), =€ X,neN.

Part (a): Let ¢ > 0. For any = € X and compact set Ky C X we have that

Qt(z, (Ko)") = | Q"x.dx1) | Q"(21,dx2)... [ Q"(xp_1,dar)
Ko Ko Ko
> Q" (x,dxy) ... Q" (z7—2,dx7_1) Q> (xp—1,dxr) — sup ||Q"(y,.) — Q™ (v, .)||rv
Ko Ko Ko yeKop
> Q" (x,dxy) ... Q" (xr—3,dxrT_2) Q> (xr—2,dxr_1) Q> (zr—1,dzr)
Ko Ko Ko Ko
—2sup [|Q"(y,.) — Q™ (y, )|lTv
yeKo
> Qoo(l‘,d$1) QOO($T71,diUT) — T sup HQn(y)) _Qoo(y")HTV
Ko Ko yeKop
=QF(z, (Ko)") - T SEUII() 1Q"(y,.) — Q% (v, .)||Tv. (A.1)
) 0

Exchanging Q*°, Q™ in the above inequality and combining with (A.1), we have

|Q(x, (Ko)") — QF (z, (Ko)")| < Tysell[? 1Q"(y,.) — Q% (y, )llrv, VzeX (A.2)

There exists compact subset K’ (that may depend on z) such that
QF(z, (K" >1—¢/2. (A.3)
By (A.2) with Ky = K’, there exists N € N (that may depend on K’) such that

T sup [|1Q(v. )~ Q (v iy <</2, W¥n > N, (A4)
yeK’

This together with (A.3) implies that
Quh(z,(K"T)>1—¢, VN <n<oo. (A.5)
Hence, for any g € B(XT;[-1,1]),
IS [9(X1, Xa, ..., X1)] —ES" [9(X1, X2, ..., X7)  Lixpenrimt,. 1] <€, Yn>N. (A6)
Using a similar argument as that for (A.2), we can show that for any compact set Ky C X,

IES" [9(X1, Xa, ..., X1) - Lixieroiet,. 1) — EY [9(X1, Xo, ..., X7) - Lixieroiat, . 1}]]
<T sup ||Q"(y,.) — Q%(y, )||lTv, VzeX

o (A7)
A7
By (A.7) with Ky = K" and (A.6),
sup  |[E9"g(X1,Xo,..., X7) —E@7 g(X1, Xo, ..., X7)|
9gEB(XT;[~1,1)) (A.8)

<2 +Tsup ||Q"(y,.) — Q¥(,)||lTv, Vn>N.
yeK’
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Then the result follows by sending n — oo and then € — 0.

Part (b): For any x € K, the same discussion from (A.4) to (A.7) can be applied. Notice that
now the compact set K’ in (A.3) does not depend on x and the integer N in (A.4) only depends
on K'. Hence, (A.8) is now rewritten as

sup BS" 9(X1, Xa, ..., Xr) —EZ™ g(X1, Xo, ..., X7)]
r€K,ge B(XT;[-1,1])

<2e+T su};() Q" (y,.) — Q*(y,.)||Tv, Vn>N.
yeK’

Part (c): The same argument from part (a) can be applied and in this case N is independent
of z. Then we can extend (A.8) to
sup BS" 9(X1, Xo, ..., Xr) —EZ ™ g(X1, Xo, ..., X7)]
z€X,ge B(XT;[-1,1])

<2 + Tsug Q" (y,.) — Q% (y, .)||rv, Vn>N.
ye

O

Proof of Lemma 2.3. Part (a): Let € > 0. As M := sup, || /"[lcc < 00, there exists T' € N such
that
sup |UQ (z,7,f") —EY [6(T) f™M (X )lirary] | < €/4. (A.9)
zeX,neN,7eT

Take z € X. By Lemma 2.2(a), there exists N € N (that may depend on z) such that

sup B [6(7)f™(Xo)1r<ry] —EE™ [0(7) /™ (X)lfrery]| < /4, ¥n>N.  (A.10)

meN,7eT

By the locally uniform convergence of (f"), .y, We can first choose a compact set K’ (that may
depend on z) then choose N’ € N (that may depend on K’) such that

QF G, (KN) 21— 25 and sup |17) — S¥W) < 5, v > N

160 o
Then
Sg,I;\Eg?oo [6() (X ) rery]) —EE™ [6(7) 2 (Xo) 1 r<ry]|

< Sllg IES™ [6(7) " (X)L <t and Xoexri<t<r}) — EE [0(T)f (X))l {r<7 and X,e k7 1<t<T} )|
TE
13
16 M

<sup |f"(y) — fZ )|+
yeK'

+2-M

<=, Vn>N"

0l ™
1o

(A.11)
Therefore, by (A.9)-(A.11), for all n > N V N/,

sup W (2,7, f") — 09 (2,7, f)] < sup [v@" (, 7, f) — EZ" [0(7) ™ (Xr)Lr<ry]|
TE TE

+sup [ES" [5(m)f™(X:) Lr<ry] —ES™ [6(7) " (Xo)1r<ry]|

TET
+ Slel,l;. UEg‘X’ [5(T)fn(XT)1{TST}:| - ng [6(T)fOO(XT)1{T§T}] ‘
+ Sle‘l};_ |UQOO (CL’, T, foo) - ng [5(T)fOO(XT)1{T§T}] ‘
<e.
(A.12)
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Part (b): Fix a compact set K. By Lemma 2.2(b), we can apply the steps through (A.10)—
(A.12) by replacing all sup 7 (respectively, SUP, ., c7) With sup,¢ s -7 (vespectively, sup,_ K.meN.r c7)-
Notice that, by assumption on Q°°, the constants N, K’ in this case only depend on K instead of
x. Hence, the result follows.

Part (c): By Lemma 2.2(c), there exists N > 0 such that

sup  [ES" [0(n) (X ) rery] — BT [6(1)f™(Xp)lrery]| S€/4, Yn>N.  (A13)
zeX,meN,7eT

In addition, choose N € N such that || f" — f*||c < § for any n > N’, Then

s [BZ [80) 7 (X)L reny] — B 807X (X ey | S 17" = ¥ oo < 5 Y2 N

(A.14)
Combining (A.9), (A.13) and (A.14), and replacing “sup,c7” with “sup,ex ,c7” in (A.12), we
achieve the desired result. O
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