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Supermartingale Brenier’s Theorem with full-marginals constraint∗
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Abstract

We explicitly construct the supermartingale version of the Fréchet-Hoeffding coupling in the
setting with infinitely many marginal constraints. This extends the results of Henry-Labordère et
al. [41] obtained in the martingale setting. Our construction is based on the Markovian iteration
of one-period optimal supermartingale couplings. In the limit, as the number of iterations
goes to infinity, we obtain a pure jump process that belongs to a family of local Lévy models
introduced by Carr et al. [22]. We show that the constructed processes solve the continuous-
time supermartingale optimal transport problem for a particular family of (path-dependent)
cost functions. The explicit computations are provided in the following three cases: the uniform
case, the Bachelier model and the Geometric Brownian Motion case.
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3.3 Optimality of the local Lévy process . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Examples 20
4.1 Uniform distribution with bounded support . . . . . . . . . . . . . . . . . . . . . 20
4.2 Bachelier dynamics with negative drift . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Geometric Brownian motion with decreasing average . . . . . . . . . . . . . . . . 29

A Brenier’s Theorem 32
A.1 Brenier’s Theorem in Optimal Transport (OT) . . . . . . . . . . . . . . . . . . . 32
A.2 Brenier’s Theorem in Martingale Optimal Transport (MOT) . . . . . . . . . . . . 33

∗The authors are grateful to Xiaolu Tan for fruitful discussions.
†Deptartment of Mathematics, University of Michigan, Ann Arbor, Email: erhan@umich.edu. E.B. is partially

supported by the National Science Foundation under grant DMS-2106556 and by the Susan M. Smith chair.
‡Deptartment of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong

Kong. Email: masdeng@ust.hk. S.D. is partially supported by the Start-up Grant of HKUST.
§Deptartment of Mathematics, University of Michigan, Ann Arbor. Email: dnorgila@umich.edu.

1

http://arxiv.org/abs/2212.14174v1


B One-period Supermartingale Optimal Transport 34
B.1 Solution to the primal SMOT problem and related properties . . . . . . . . . . . 34
B.2 Optimal dual strategy for decreasing SMOT . . . . . . . . . . . . . . . . . . . . . 37

1 Introduction

The classical optimal transport (OT) problem, first introduced by Monge, and then relaxed by
Kantorovich, has the following formulation: given two probability measures µ0, µ1 on R and
a cost (or payoff) function c : R × R → R, the goal is to minimize (or maximize) the value
E
P[c(X0, X1)] among all probability measures P such that P ◦ X−1

0 = µ0 and P ◦ X−1
1 = µ1.

Under the Spence-Mirrlees condition cxy > 0, the maximizing transport plan is characterized
by the Brenier’s Theorem (see Brenier [18] and Rachev and Rüschendorf [61]) and corresponds
to the Fréchet-Hoeffding (or quantile) coupling πFH .

Motivated by the applications in financial mathematics, the Martingale Optimal Transport
(MOT) problem was introduced by Beiglböck et al. [8] (in the disrete-time setting) and Galichon
et al. [36] (in the the continuous-time setting), and has been widely studied since then. Given
two probability measures µ0, µ1 which are increasing in convex order, the problem consists in
minimizing (or maximizing) EP[c(X0, X1)] among all martingale measures P such that P◦X−1

0 =
µ0 and P ◦ X−1

1 = µ1. Under the so-called martingale Spence-Mirrlees condition cxyy > 0,
the maximizer corresponds to the so-called left-curtain martingale coupling πlc, introduced by
Beiglböck and Juillet [12]. πlc was explicitly constructed by Henry-Labordère and Touzi [42]
using ODE arguments (and under some technical assumptions). The general construction was
later obtained by Hobson and Norgilas [48] using geometric arguments and properties of the
potential functions of marginals.

The financial motivation of MOT comes from the robust sub/super-replication of financial
derivatives in a market where the underlying asset and the corresponding vanilla options with
certain maturities are available for trading. From the well-known Breenden-Litzenberger formula
(see [17]), the marginal distributions of the underlying asset can be then obtained using the
prices of vanilla options. Each sensible pricing model should be calibrated to the given market
data, and thus should produce the same marginal distributions at fixed times. The search of
a model that produces the highest no-arbitrage price of an exotic claim, among all calibrated
models, then naturally corresponds to the MOT problem. For more recent developments of
MOT problems, see for example Acciaio et al. [1], Backhoff-Veraguas et al. [2, 3], Beiglböck et
al. [6, 16, 7, 9, 10, 11], Beiglböck and Juillet [12, 13], Brückerhoff et al. [20], Campi et al. [21],
De Marco and Henry-Labordère [30], Dolinsky and Soner [31], Fahim nad Huang [34], Gaoyue
et al. [39], Hobson and Neuberger [46], Hobson and Klimmek [45], Hobson and Norgilas [47],
Nutz et al. [58], Wiesel [63].

The problem of finding the models that give robust no-arbitrage bounds for the prices of
exotic derivatives was initially studied in the seminal work of Hobson [49] by means of the
Skorokhod Embedding Problem (SEP). SEP consists in finding a stopping time τ of a Brownian
motion B, such that Bτ has a prescribed law. This approach generated developments in many
(probabilistic and financially motivated) directions, see, for example, Brown et. al [19], Madan
and Yor [56], Cox et al. [23, 27], Cox and Ob lój [25, 26], Davis et al. [29]. See also the survey
papers on SEP by Ob lój [59] and Hobson [44].

More recently, the Supermartingale Optimal Transport(SOT) problem was introduced by
Nutz and Stebegg [57]. Given two probability measures µ0, µ1 which are increasing in convex-
decreasing order, the problem consists in minimizing (or maximizing) E

P[c(X0, X1)] among
all supermartingale measures P such that P ◦ X−1

0 = µ0 and P ◦ X−1
1 = µ1. In particular,

the authors of [57] introduced two canonical supermartingale couplings, namely the increasing
supermartingale coupling πI and the decreasing supermartingale coupling πD. These transport
plans are canonical in the sense that they can be equivalently characterised by any, and then all

2



of the following properties: the optimality (in terms of minimization or maximization problem)
for a large class of cost functions, the monotonicity of the support, and the order-theoretic
minimality. (The optimal couplings in the OT and MOT settings have similar characterizations.)

In this paper, we shall focus on the continuous-time case, which corresponds to a suitable
limit of the multi-marginal SOT problem. Given a continuous family of marginal distributions
(µt)t∈[0,1], which is non-decreasing in convex-decreasing order, we call a stochastic process that
is calibrated to all marginals (µt)t∈[0,1] a PCOCD(“Processus Croissant pour l’Ordre Convexe
Décroissant” in French). Notice that in the martingale case such process is baptized as a peacock
(PCOC for short) and is extensively studied in the book of Hirch et al. [43].

We will closely follow Henri-Labordère et al. [41]: in the martingale setting, by considering a
Markovian iteration of the one-period left-curtain martingale couplings πlc, the authors obtained
a pure jump process in the spirit of the local Lévy models introduced by Carr et al. [22] and
showed that it solves a particular continuous-time MOT problem. Our main goal is to extend
the results of Henri-Labordère et al. [41] to the supermartingale setting.

In the supermartingale case, the construction is different in the following aspects. First, in
the martingale case, the left-curtain and the right-curtain transport plans are symmetric, see
Henry-Labordr̀e et al. [41, Remark 3.12]. More precisely, the limiting process, associated to
the left-curtain coupling, is driven by downward jumps and upward drift, while in the right-
curtain case it is the upward jumps and downward drift that drive the limiting process. On
the other hand, in the supermartingale case, the increasing supermartingale transport plan and
the decreasing supermartingale transport plan demonstrate different behaviour see Bayraktar
et al. [4], [5]. In the increasing case, the limiting process is a martingale in the interior of the
support of marginals, and possesses strict supermartingale characteristics when it escapes to
the upper boundary of the support (it jumps from the upper all the way down to the lower
boundary). In the case of the decreasing supermartingale coupling, there are martingale and
supermartingale regions in the interior of the support. Once the boundary curve (that separates
these two regions) is hit, the process becomes deterministic and follows a decreasing (w.r.t.
time) curve.

Second, in case of the the decreasing supermartingale coupling, there might exist multiple
phase transition curves for the limiting process, that divide the martingale and strict super-
martingale regions. To obtain explicit solutions, in this article we will impose certain conditions
that will guarantee the uniqueness of the phase transition curve. On the other hand, if the in-
creasing supermartingale coupling is used for construction, then the regime switching boundary
is unique, and is always given by the upper boundary of the support of the marginal distribu-
tions.

In financial terms, the dual SOT problem corresponds to the super-replication of an exotic
payoff using semi-static strategies with no short-selling constraints. In order to prove the op-
timality of the limiting process, we will modify the arguments of Henry-Labordère et al. [42]
and explicitly construct a candidate optimal dual strategy, for a large (but very particular)
class of cost functions. The choice of dual variables is closely related to the martingale and
strict supermartingale regions of a a candidate optimal transport plan. In the case of the de-
creasing supermartingale coupling, the dual methods are related to those of the dual MOT
problem when the right-curtain martingale coupling is optimal, and also the classical OT dual-
ity when the quantile coupling is an optimizer. The strategies must be modified accordingly, if
the construction of the limiting process is based on the increasing supermartingale coupling.

The rest of the paper is organized as follows. In Section 2, we recall the formulation of
the discrete-time supermartingale transport problem and introduce the continuous-time SOT
problem. In Section 3, we provide the convergence theorem which gives the characterization of
the limiting process, and the optimality theorem which shows that the limiting process solves a
continuous-time SOT problem for a class of costs functions. In Section 4, we explicitly obtain
the limiting process when the marginals correspond to uniform measures on bounded support,
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Normal distributions with decreasing means (Brownian motion with drift) and log-Normal dis-
tributions (geometric Brownian motion). In Appendix A and B we collect some important
results regarding one-period OT, MOT and SOT problems.

2 Supermartingale optimal transport problem

2.1 Discrete-time supermartigale optimal transport

Let M (resp. P) be the set of finite (resp. probability) Borel measures on R with finite first
moments. The support of η ∈ M, denoted by supp(η), is the smallest closed set I ⊆ R with
η(I) = η(R). We set ℓη := inf{k ∈ supp(η)} ∈ [−∞,∞) and rη := sup{k ∈ supp(η)} ∈
(−∞,∞]. The mean of η ∈ M is denoted by η, so that the barycenter of η is given by η/η(R).

Throughout the paper, for any random variable ξ, the expectation of ξ is defined as E[ξ] :=
E[ξ+]− E[ξ−] with the convention ∞−∞ = −∞.

The canonical process on R
2 is denoted by (X0, X1), so that, for i = 0, 1, Xi(x0, x1) = xi

for all (x0, x1) ∈ R
2. For µ0, µ1 ∈ P , let P(µ0, µ1) be the set of (Borel) probability measures on

R
2 with first and second marginals µ0 and µ1, respectively. (Each P ∈ P(µ0, µ1) is often called

a transport plan or coupling of µ0 and µ1.) Then X0 ∼P µ0, X1 ∼P µ1 for all P ∈ P(µ0, µ1).
We also introduce the set of supermartingale couplings of µ0 and µ1:

S2(µ0, µ1) := {P ∈ P(µ0, µ1) : E
P[X1|X0] ≤ X0 P-a.s.}.

By the classical result of Strassen [62], S2(µ0, µ1) is non-empty if and only if µ0 ≤cd µ1, i.e.,
µ0 is smaller than µ1 in convex-decreasing order. Recall that µ0 ≤cd µ1 if µ0(φ) ≤ µ1(φ) for all
convex and non-increasing φ : R → R, where for a measurable f : R → R and η ∈ M we write
η(f) =

∫

R
fdη. Note that µ0 ≤ µ1 whenever µ0 ≤cd µ1. On the other hand, if µ0 ≤cd µ1 and

µ0 = µ1, then S2(µ0, µ1) reduces to the set of martingale couplings of µ0 and µ1. Indeed, every
supermartingale with constant mean is a martingale.

For a (Borel) measurable reward (or cost) function c : R2 → R, a two-marginal supermartin-
gale transport problem is defined by

P2(µ0, µ1) := sup
P∈S2(µ0,µ1)

E
P [c(X0, X1)] . (2.1)

Suppose that there exists a0, a1 : R → R that are µ0 and µ1-integrable, respectively, and such
that |c(x, y)|≤ a0(x)+a1(y), x, y ∈ R. Then in the case c satisfies the following supermartingale
Spence-Mirrlees condition

c(x′, ·)− c(x, ·) is decreasing and convex for all x < x′,

Nutz and Stebegg [57] proved that the supremum in (2.1) is attained by the so-called increasing
supermartingale coupling πI . Note that, in the case c is smooth, supermartingale Spence-
Mirrlees condition can be equivalently stated in terms of cross-derivatives: cxy ≤ 0 and cxyy ≥ 0.
On the other hand, if −c is supermartingale Spence-Mirrlees, then the optimizer is given by the
decreasing supermartingale coupling πD. The main focus of this paper is on πD (see Appendix
B.1).

We now describe the dual problem that is associated to (2.1). We write (φ, ψ, h) ∈ D2(µ0, µ1)
if φ, ψ, h : R → R are (Borel) measurable functions such that (

∫

R
(φ∨0)dµ0)∨(

∫

R
(ψ∨0)dµ1) < ∞,

h ≥ 0 and
c(x, y) ≤ φ(x) + ψ(y) + h(x)(y − x), x, y ∈ R.

Then the weak duality holds

P2(µ0, µ1) ≤ D2(µ0, µ1) := inf
(ϕ,ψ,h)∈D2(µ0,µ1)

{µ0(ϕ) + µ1(ψ)}. (2.2)
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Nutz and Stebegg [57] showed that the strong duality (i.e., equality in (2.2)) holds under some
additional assumptions (for example, if µ0 ≤cd µ1 are irreducible). In general (and without
the irreducibility condition), the strong duality and the existence of dual optimizers can still be
obtained, provided one agrees to switch from a point-wise to a quasi-sure formulation of the dual
problem. An explicit construction of optimal dual variables is (under some further assumptions)
provided in Appendix B.2.

The problem (2.1) can be easily extended to a T -period (or (T + 1)-marginal) setting if

we restrict to cost functions c : R
T+1 → R of the form c(x0, . . . , xT ) =

∑T
i=1 ci(xi−1, xi),

(x0, . . . , xT ) ∈ R
T+1, for a collection of one-period (Borel) cost functions ci : R → R, i = 1, ..., T .

More precisely, we are given a sequence of probability measures µ0, . . . , µT ∈ P satisfying
µ0 ≤cd . . . ≤cd µT , and the goal is to maximize

E
P[c(X0, . . . , XT )] =

T
∑

i=1

E
P[ci(Xi−1, Xi)] (2.3)

over all (Borel) probability measures P on R
T+1 such that Xi ∼P µi, i = 0, ..., T , and satisfying

E
P[Xi|X0, . . . , Xi−1] ≤ Xi−1 P-a.s., for all i = 1, ..., T . (For the martingale version with general

cost functions c : R
T+1 → R, see Nutz et al. [58], while a corresponding continuous-time

extension is given by Juillet et al. [20].) Then, if each ci (or −ci) is supermartingale Spence-
Mirrlees, the optimal supermartingale coupling (with fixed T + 1 marginals) can be obtained
by a Markovian iteration of the increasing (or decreasing) one-period supermartingale transport
plans.

2.2 Continuous-time supermartigale optimal transport

In this section we introduce a continuous-time supermartingale optimal transport problem under
full marginals constraint, as the limit of the multi-period supermartingale optimal transport
introduced at the end of Section 2.1.

Let Ω := D([0, 1],R) be the canonical space of all càdlàg paths on [0, 1], X the canonical
process and F = (Ft)0≤t≤1 the canonical filtration generated byX , i.e. Ft := σ({Xs, 0 ≤ s ≤ t}).
We denote by S∞ the collection of all supermartingale measures on Ω, i.e., under each P ∈ S∞
the canonical processX is a supermartingale. We equip S∞ with the weak convergence topology
throughout the paper. By the calssical results (see, for example, Karandikar [54]), there is a non-
decreasing process ([X ]t)t∈[0,1], defined on Ω, and which coincides with the P-quadratic variation
of X , P-a.s. for every supermartingale measure P ∈ S∞. Denote by [X ]c. the continuous part of
[X ]..

Given a family of (integrable) probability measures µ = (µt)0≤t≤1, we denote by S∞(µ) ⊂ S∞
the collection of all supermartingale measures on Ω such that Xt ∼P µt for all t ∈ [0, 1]. In
particular, from Ewald and Yor [33], we know that S∞(µ) is non-empty if and only if the family
(µt)0≤t≤1 is non-decreasing in convex-decreasing order and t 7→ µt is right-continuous.

For all t ∈ [0, 1], we denote by −∞ ≤ ℓt := ℓµt
≤ rµt

=: rt ≤ ∞ the left and right
extreme boundaries of supp(µt). Suppose that µs ≤cd µt for all 0 ≤ s ≤ t ≤ 1. Then since
x 7→ pk(x) := (k−x)+ is convex and non-increasing for all k ∈ R, we have that µs(pk) ≤ µt(pk)
for k ∈ R. In particular, µs((−∞, k)) > 0 implies that µt((−∞, k)) > 0, from which it follows
that t 7→ ℓt is non-increasing. Note that, in general, t 7→ rt may fail to be non-decreasing. In
addition, if µt admits a density function for all t ∈ [0, 1] and t 7→ µt is continuous w.r.t. the
weak convergence topology, then t 7→ lt and t 7→ rt are continuous (see Henry-Labordère and
Touzi [42, p. 2805]).

As in Henry-Labordère et al. [41] (see also Hobson and Klimmek [45]), our continuous-time
SOT problem arises as a limit of the multi-period SOT problems, by considering the limit of
the reward function

∑T
i=1 ci(xti−1 , xti) as in (2.3), where (ti)0≤i≤T is a partition of [0, 1] with

max1≤i≤T |ti−ti−1|→ 0 as T → ∞. To obtain the convergence we need the pathwise Itô calculus.
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Definition 2.1 (Föllmer [35]). Let πn = (0 = tn0 < · · · < tnn = 1), n ≥ 1 be partitions of [0, 1]
with |πn| := max1≤k≤n |tnk − tnk−1| → 0 as n → ∞. A càdlàg path x : [0, 1] → R has a finite
quadratic variation along (πn)n≥1 if the sequence of measures on [0, 1],

∑

1≤k≤n

(xtn
k
− xtn

k−1
)2δ{tk−1}(dt),

converges weakly to a measure [x]F on [0, 1]. For each t ∈ [0, 1], set [x]Ft := [x]F ([0, t]), and let
[x]F,c

. ([0, t]) be the continuous part of this non-decreasing path.

The following will be one of our standing assumptions.

Assumption 2.2. The cost function c : R2 → R is in C3((l1,max0≤t≤1 rt)× (l1,max0≤t≤1 rt))
and satisfies

c(x, x) = cy(x, x) = 0, cxyy < 0, cxy > 0, (x, y) ∈ (l1, max
0≤t≤1

rt)× (l1, max
0≤t≤1

rt).

Following Hobson and Klimmek [45] we then have (in fact, a weaker assumption on c would
suffice; see Touzi et al. [42])

Lemma 2.3. Let Assumption 2.2 hold ture. Then for every path x ∈ Ω with finite quadratic
variation [x]F along a sequence of partitions (πn)n≥1, we have

n−1
∑

k=0

c(xtn
k
,xtn

k−1
) → 1

2

∫ 1

0

cyy(xt,xt)d[x]
F,c
t +

∑

0≤t≤1

c(xt−,xt).

The non-decreasing process [X ]·, as in Karandikar [54], is defined for every càdlàg path x
and coincides P-a.s. with both, the quadratic variation and [x]F , for every P ∈ S∞. This and
Lemma 2.3 motivates us to define the following continuous-time reward function:

C(x) :=
1

2

∫ 1

0

cyy(xt,xt)d[x]
c
t +

∑

0≤t≤1

c(xt−,xt), for all x ∈ Ω,

where the integral and the sum are defined using positive and negative parts with a convention
∞−∞ = −∞.

The continuous-time supermartingale optimal transport problem is now given by

P∞(µ) := sup
P∈S∞(µ)

E
P [C(X)] . (2.4)

Note that
∑

0≤t≤1 c(Xt−, Xt) < ∞ P-a.s. for all P ∈ S∞; see Henry-Labordèrè et al. [41,
Remark 2.5].

We now follow Henry-Labordèrè et al. [41] and introduce the dual formulation of the problem
(2.4). First we introduce the set of admissible semi-static trading strategies. Let H0 be the class
of F-predictable and locally bounded processes H : [0, 1]×Ω → R, i.e., there exists an increasing
family of F-stopping times (τn)n≥1 taking values in [0, 1] ∪ {∞} such that H·∧τn is bounded
for all n ≥ 1 and τn → ∞ as n → ∞. Then for all H ∈ H0 and under every supermartingale
measure P ∈ S∞, one can define the integral, denoted by H · X , see Jacod and Shiryaev [51,
Chapter I.4]. Define

H := {H ∈ H0 : H ≥ 0 and H ·X is a P-supermartingale for every P ∈ S∞}.

For the static strategy, we denote by M([0, 1]) the space of all finite signed measures on [0, 1]
which is a Polish space under the weak convergence topology, and by Λ the class of all measurable
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maps λ : R → M([0, 1]) which admit a representation λ(x, dt) = λ0(t, x)γ(dt) for some finite
non-negative measure γ on [0, 1] and some measurable function λ0 : [0, 1] × R → R which is
bounded on [0, 1]×K for all compact K of R. We then denote

Λ(µ) := {λ ∈ Λ : µ(|λ|) < ∞}, where µ(|λ|) :=
∫ 1

0

∫

R

|λ0(t, x)|µt(dx)γ(dt).

We also introduce a family of random measures δX = (δXt )0≤t≤1, associated to the canonical
process X , by setting δXt (dx) := δXt

(dx). In particular, one has

δX(λ) =

∫ 1

0

λ(Xt, dt) =

∫ 1

0

λ0(t,Xt)γ(dt).

The set of admissible superhedging strategies with no short-selling constraint is defined by

D∞ := {(H,λ) ∈ H × Λ(µ) : δX(λ) + (H ·X)1 ≥ C(X·),P-a.s., ∀P ∈ S∞},

and then the dual problem is given by

D∞(µ) := inf
(H,λ)∈D∞(µ)

µ(λ). (2.5)

Furthermore, the weak duality holds: P∞(µ) ≤ D∞(µ).

3 Main results

Our contribution splits into three parts. First we construct a continuous-time supermartingale
with given marginals (µt)t∈[0,1]. This is achieved as an accumulation point of a sequence (Pn)n
of solutions of n-period supermartingale transport problems. We then characterize the limiting
law further and show that it corresponds to the distribution of a local Lévy process. Finally
we prove that this limit solves the continuous-time supermartingale optimal transport problem
(2.4). The last point is achieved by proving the strong duality P∞(µ) = D∞(µ), and explicitly
constructing an optimal superhedging strategy.

3.1 Convergence of the sequence (Pn)
n≥1

For every t ∈ [0, 1], we denote by R ∋ x 7→ F (t, x) and [0, 1] ∋ u 7→ F−1(t, u) the cumulative
distribution function and the corresponding right-continuous inverse (w.r.t. the x-variable) of
the probability measure µt. For t ∈ [0, 1), ǫ ∈ (0, 1− t] and x, y ∈ R let

δǫF (t, x) := F (t+ ǫ, x)− F (t, x)

and define
E := {(t, x) : t ∈ [0, 1], x ∈ (lt, rt)}.

Assumption 3.1. (i) The marginal distributions µ = (µt)t∈[0,1] belong to P, are non-decreasing
in convex-decreasing and t 7→ µt is continuous w.r.t. the weak convergence topology.

(ii) F ∈ C4
b (E). In particular, for all t ∈ [0, 1], the measure µt has a density function f(t, ·)

such that f(t, ·) > 0 on (ℓt, rt).

(iii) There exists ǫ1 ∈ (0, 1] such that for all t ∈ [0, 1) and 0 < ǫ ≤ ǫ1 ∧ (1 − t), µt and µt+ǫ

satisfy the Dispersion Assumption:

• There exists mǫ(t) < mǫ(t) such that ℓt+ǫ ≤ ℓt ≤ mǫ(t) < mǫ(t) ≤ rt ≤ rt+ǫ, with
ℓt+ǫ < ℓt ∧mǫ(t) and mǫ(t) ∨ rt < rt+ǫ.
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• Furthermore, f(t + ǫ, ·) < f(t, ·) on (mǫ(t),m
ǫ(t)), f(t + ǫ, x) = f(t, x) for x ∈

{mǫ(t),m
ǫ(t)}, and f(t+ ǫ, ·) > f(t, ·) on (ℓt+ǫ,mǫ(t)) ∪ (mǫ(t), rt+ǫ).

Note that Assumption 3.1(iii) is precisely Assumption A.3, and thus all the results of Ap-
pendix B are valid.

Remark 3.2. Under Assumption 3.1 several further implications follow. First, since, for all
t ∈ [0, 1], f(t, ·) > 0 on (ℓt, rt), we have that infx∈[−K,K]∩(ℓt,rt) f(t, x) > 0 for all K > 0.
Furthermore, due to the Dispersion Assumption (see Assumption 3.1(iii)), for every t ∈ [0, 1)
and sufficiently small ǫ ∈ (0, 1 − t], the function x 7→ δǫF (t, x) attains the (unique) maximum
and minimum at mǫ(t) and mǫ(t), respectively. It is also easy to see that, for all x ∈ (ℓt, rt),
∫∞
x

(y − x)δǫF (t, dy) > 0. In particular, Assumption 3.1 implies Henry-Labordère et al. [41,
Assumption 3.1].

In the rest of this paper we will always work with (µt)t∈[0,1] satisfying Assumption 3.1.
Fix t ∈ [0, 1) and ǫ ∈ (0, 1 − t], and consider a pair of marginals (µt, µt+ǫ). Then the

corresponding decreasing supermartingale coupling can be determined by a pair of functions
(T ǫ

d(t, ·) = T̂
µt,µt+ǫ

d (·), T ǫ
u(t, ·) = T̂

µt,µt+ǫ
u (·)), where (T̂ µt,µt+ǫ

d (·), T ǫ
u(t, ·)) are as in Appendix B.1.

Furthermore, set xǫ
1(t) := x

µt,µt+ǫ

1 and yǫ1(t) := y
µt,µt+ǫ

1 , where x
µt,µt+ǫ

1 is defined by (B.50),
while y

µt,µt+ǫ

1 is given by (B.51).
Recall that the canonical space of càdlàg paths Ω := D([0, 1]R), is a Polish space equipped

with the Skorokhod topology, while X denotes the canonical process. Let (πn)n≥1 be a sequence
of partitions of [0, 1], so that each πn = (tnk )0≤k≤n is such that 0 = tn0 < · · · < tnn = 1. Suppose
in addition that |πn| := max1≤k≤n(t

n
k − tnk−1) → 0 as n → ∞. Then for every partition πn, by

considering the marginal distributions (µtn
k
)0≤k≤n, one obtains an (n+1)-marginal (or n-period)

SOT problem, where the goal is to maximize

E





∑

0≤k≤n−1

c(X̃n
k , X̃

n
k+1)





among all discrete-time supermartingales X̃n = (X̃n
k )0≤k≤n satisfying marginal constraints.

Under Assumptions 2.2 and 3.1, the iterated n-period decreasing supermartingale coupling is
the solution to the above supermartingale transport problem. Let Ω∗,n := R

n+1 be the canonical
space of discrete-time process, and Xn = (Xn

k )0≤k≤n be the canonical process on Ω∗,n. Then
under the optimal supermartingale measure P

∗,n, Xn is a discrete-time supermartingale and

at the same time a Markov chain, characterized by T
∆tnk+1
u (tnk , ·), T

∆tnk+1

d (tnk , ·) with ∆tnk+1 :=
tnk+1 − tnk , induced by the two marginals (µtn

k
, µtn

k+1
); see Appendix B.1. We then extend the

Markov chain Xn to a continuous-time càdlàg process X∗,n = (X∗,n
t )0≤t≤1 defined by

X∗,n
t :=

n
∑

k=1

Xn
k−11[tn

k−1,t
n
k
)(t), t ∈ [0, 1],

and define the probability measure P
n := P

∗,n ◦ (X∗,n)−1 on Ω.
We further denote by m(δǫF (t, ·)) (resp. m(∂tF (t, ·))) the set of all local minimizers of

functions δǫF (t, ·)) (resp. ∂F (t, ·))). Let M(∂tF (t, ·)) be the set of local maximizers of ∂F (t, ·)).
Note that, by Assumption 3.1, m(δǫF (t, ·)) = {mǫ(t)} and M(δǫF (t, ·)) = {mǫ(t)} for all
0 < ǫ ≤ ǫ1 ∧ (1− t).

Assumption 3.3. (i) There is a constant ǫ2 > 0 such that, for all t ∈ [0, 1] and 0 < ǫ ≤
ǫ2 ∧ (1 − t), we have m(∂tF (t, ·)) = {mt} and M(∂tF (t, ·)) = {m̃t}.

(ii) Let m0(t) = mt. Then the map (t, ǫ) 7→ mǫ(t) is continuous (and hence uniformly contin-
uous with continuity modulus ρ0) on {(t, ǫ) : 0 ≤ ǫ ≤ ǫ2, 0 ≤ t ≤ 1− ǫ}.

8



Proposition 3.4. Suppose that Assumptions 3.1 and 3.3 are valid. Then the sequence (Pn)n≥1

is tight w.r.t. the Skorokhod topology on Ω. Moreover, every limit point P0 satisfies P0 ∈ S∞(µ).

The proof of Proposition 3.4 requires two additional lemmas.

Lemma 3.5. Let (µt)t∈[0,1] be a family of probability measures in P which are increasing in
convex-decreasing order. Then (µt)t∈[0,1] is uniformly integrable, i.e.

lim
K→+∞

sup
0≤t≤1

∫

|x|1{|x|≥K}µt(dx) = 0.

Proof. Using the inequality |x|1{|x|≥K} ≤ 2(|x| − K
2 )1{|x|≥K

2 }, we have that

sup
0≤t≤1

∫

|x|1{|x|≥K}µt(dx) = sup
0≤t≤1

∫

2(|x| − K

2
)1{|x|≥K

2 }µt(dx)

≤ 2 sup
0≤t≤1

∫

(x− K

2
)1{x≥K

2 }µt(dx) + 2 sup
0≤t≤1

∫

(−x− K

2
)1{x≤−K

2 }µt(dx)

= 2 sup
0≤t≤1

Cµt
(
K

2
) + 2 sup

0≤t≤1
Pµt

(−K

2
)

= 2Cµ̃(
K

2
) + 2Pµ1(−

K

2
) → 0, when K → ∞,

where µ̃ is some probability measure on R with the same mass and mean with µ0. We now
explain the last equality. First, x 7→ (−x − K

2 )
+ is convex and non-increasing, and thus using

the convex-decreasing ordering of (µt)t∈[0,1] we obtain that sup0≤t≤1 Pµt
(−K

2 ) = Pµ1(−K
2 ). On

the other hand, sup0≤t≤1 Cµt
(K2 ) = Cµ̃(

K
2 ) follows from the fact that the point-wise supremum

of a family of convex functions is convex, and lim|x|→∞{sup0≤t≤1 Cµt
(x)−{µ0 −µ0(R)x}} = 0.

Therefore, there exists some probability measure µ̃, such that µ̃(R) = µ0(R), µ0 = µ̃ and
Cµ̃ = sup0≤t≤1 Cµt

.

Recall that (µt)t∈[0,1] satisfies Assumption 3.1. Now for fixed t ∈ [0, 1), ǫ ∈ (0, 1 − t] and
x ∈ (rt,m

ǫ(t)) denote by qǫ(t, x) the conditional probability of the (martingale) upward jump

under the decreasing supermartingale coupling, so that qǫ(t, x) =
x−T ǫ

d(t,x)
T ǫ
u(t,x)−T ǫ

d
(t,x) . Note that, for

x ≤ xǫ
1(t), T

ǫ
u(t, x) = ∞ and therefore qǫ(t, x) = 0.

Furthermore, define Jǫ
d(t, ·), Jǫ

u(t, ·) by

Jǫ
d(t, x) = x− T ǫ

d(t, x), Jǫ
u(t, x) = T ǫ

u(t, x) − x, x ∈ (ℓt, rt),

so that Jǫ
d(t, ·), Jǫ

u(t, ·) correspond to the downward and upward distance each particle travels
(between times t and t+ǫ) under the decreasing supermartingale coupling, conditioned it started
at x. (Note that Jǫ

u(t, x) = ∞ for x ≤ xǫ
1(t), but this happens with zero probability.)

Lemma 3.6. Suppose Assumptions 3.1 and 3.3 hold. Then

(i) For every K > 0, there is a constant C1, independent of (t, x, ǫ) such that

Jǫ
d(t, x) + qǫ(t, x) ≤ C1ǫ, ∀x ∈ [−K,K] ∩ (lt, rt) ∩ (xǫ

1(t),m
ǫ
t).

(ii) For every K > 0, there is a constant C2, independent of (t, x, ǫ) such that

Jǫ
d(t, x) ≤ C2ǫ, ∀x ∈ [−K,K] ∩ (lt, x

ǫ
1(t)].
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Proof. (i) Since µt|[xǫ
1(t),rt)

≤c µt+ǫ|[yǫ
1(t),rt+ǫ) and the decreasing supermartingale coupling P̂µt,µt+ǫ

coincides with the right-curtain coupling of µt|[xǫ
1(t),rt)

≤c µt+ǫ|[yǫ
1(t),rt+ǫ) (see Appendix B.1),

the result follows immediately from Henry-Labordère and Touzi [42, Lemma 6.4] applied to the
right-curtain coupling.

(ii) For x ≤ xǫ
1(t), T

ǫ
d(t, x) = F−1(t+ ǫ, F (t, x)) and therefore

Jǫ
d(t, x) = F−1(t+ ǫ, F (t+ ǫ, x))− F−1(t+ ǫ, F (t, x))

=
1

f(t+ ǫ, F−1(t+ ǫ, ξ))
δǫF (t, x),

for some ξ between F (t + ǫ, x) and F (t, x), by the mean value theorem. Now one draws the
desired conclusion from the fact that |δǫF | ≤ Cǫ, for some constant C > 0.

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. Recall that P
n is a supermartingale measure on the canonical space

Ω, induced by the continuous-time supermartingale X∗,n under the probability P
∗,n. The su-

permartingale X∗,n jumps only at discrete time points relative to the partition πn = (tnk )0≤k≤n.
Moreover, at time tnk+1, on {xǫ

1(t
n
k ) ≤ Xtkn

}, the upward jump size is Jǫ
u(t

k
n, Xtkn

) and downward

jump size is Jǫ
u(t

k
n, Xtkn

), where ǫ := tnk+1− tnk . In addition, at time tnk+1 and on {xǫ
1(t

n
k ) ≥ Xtkn

},
the downward jump size is Jǫ

d(t
k
n, Xtkn

) with probability 1.
For given positive constants C, θ, we introduce

En(C, θ) := inf{Πk−1
i=j (1− C(tni+1 − tni )) : for some s ∈ [0, 1) and

0 ≤ j ≤ k ≤ n such that s ≤ tnj ≤ tnk+1 ≤ s+ θ}.

(i) First, using Jacod and Shiryaev [51, Thoerem VI.4.5], we show that (Pn)n≥1 is tight. Let
τ := 1∧inf{s : |Xs| ≥ K}, and τ is a stopping time w.r.t. the canonical filtration generated
by (Xs)0≤s≤1. In addition,

KP
n

[

sup
0≤t≤1

|Xt| ≥ K

]

≤ E
P
n

[|Xτ |]

= E
P
n [

Xτ + 2X−
τ

]

≤ E
P
n [

X0 + 2X−
τ

]

≤ E
P
n [

X0 + 2X−
1

]

≤ E
P
n

[|X0|] + 2EP
n

[|X1|] < +∞,

where on the above, the first inequality comes from Markov inequality, P∗,n ◦ (X∗,n)−1 =
P
n ◦X−1, and that fact that X∗,n

t is piecewise constant. The third inequality comes from
optional stopping theorem and the fact that X− is a submartingale. Let η > 0 be an
arbitrary small real number, then there is some K > 0 such that

P
n[ sup

0≤t≤1
|Xt| ≥ K] ≤ η, for all n ≥ 1.

We can assume w.l.o.g. that K satisfies −K < mt < K for all t ∈ [0, 1]; recall Assumption
3.3.

The remaining proof is almost identical to the proof of [41, Proposition 3.2]. However, in
few places the supermartingale transitions appear (which are not present in [41]) and thus
we sketch the arguments.

Denote in addition that rK(t) := rt ∧ K and ℓK(t) := ℓt ∨ (−K). Let δ > 0, then it
follows from Lemma 3.6 that Jǫ

d(t
k
n, Xtkn

) is uniformly bounded by Cǫ for some constant

C on DK
δ := {(t, x) : lK(t) + δ/2 ≤ x ≤ mt}. Let θ > 0 satisfy θ ≤ δ

2C and |lK(t + θ) −
lK(t)| + |rK(t + θ) − rK(t)| ≤ δ/2. Let S, T be two stopping times w.r.t. the filtration
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generated by X∗,n such that 0 ≤ S ≤ T ≤ S+ θ ≤ 1. Since, by Lemma 3.6, the big jumps
of X∗,n correspond to Jǫ

u(t
k
n, Xtkn

), and not to Jǫ
d(t

k
n, Xtkn

), using the same arguments as in
the proof of [41, Proposition 3.2], we have that

P
∗,n[ sup

0≤t≤1
|X∗,n

t | ≤ K, |X∗,n
T −X∗,n

S | ≥ δ] ≤ 1− En(C, θ).

It follows that

lim sup
θ→0

lim sup
n→∞

P
∗,n[|X∗,n

T −X∗,n
S | ≥ δ]

≤ lim sup
θ→0

lim sup
n→∞

P
∗,n[ sup

0≤t≤1
|X∗,n

t | ≤ K, |X∗,n
T −X∗,n

S | ≥ δ] + P
∗,n

[

sup
0≤t≤1

|X∗,n
t | ≥ K

]

≤ lim sup
θ→0

lim sup
n→∞

(1− En(C, θ)) + η = η.

Since η > 0 can be arbitrarily small, we conclude that

lim sup
θ→0

lim sup
n→∞

P
∗,n[|X∗,n

T −X∗,n
S | ≥ δ] = 0.

Finally, Jacod and Shiryaev [51, Thoerem VI.4.5] shows that (Pn)n≥1 is tight.

(ii) Let P
0 be a limit of (Pn)n≥1. Then repeating the arguments of the second part of the

proof of [41, Proposition 3.2] (which relies on the continuity of F (t, x)), we obtain that
P
0 ◦X−1

t = µt.

(iii) In the last step, we show that X is still a supermartingale under P
0. For every K > 0,

we first define the auxiliary process XK
t := (−K) ∨ Xt ∧K. Given s < t and ϕ(s,X·) a

bounded continuous, Fs-measurable function, it follows from weak convergence that

lim
n→+∞

E
P
n

[ϕ(s,X·)(X
K
t −XK

s ))] = E
P
0

[ϕ(s,X·)(X
K
t −XK

s ))].

As X is a P
n-supermartingale, we have that

E
P
n

[ϕ(s,X·)(X
K
t −XK

s ))] ≤ −E
P
n

[ϕ(s,X·)(Xt1{|Xt|≥K} −Xs1{|Xs|≥K})]

≤ |EP
n

[ϕ(s,X·)(Xt1{|Xt|≥K} −Xs1{|Xs|≥K})]|

≤ 2|ϕ|∞ sup
0≤t≤1

∫

|x|1{|x|≥K}µt(dx)

→ 0, as K → ∞,

where the last inequality follows from Lemma 3.5 and the above convergence is uniformly
in n. Finally, by the dominated convergence theorem, we have that

E
P
0

[ϕ(s,X·)(Xt −Xs))] = lim
K→∞

E
P
0

[ϕ(s,X·)(X
K
t −XK

s ))]

= lim
K→∞

lim
n→+∞

E
P
n

[ϕ(s,X·)(X
K
t −XK

s ))]

≤ 0.

As ϕ is arbitrary, we conclude that X is a P
0-supermartingale.
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3.2 Characterization of the limiting process

To further analyse the limiting process of the previous section, we consider the decreasing su-
permartingale coupling (see Appendix B) of two marginals µt and µt+ǫ. Recall that xǫ

1(t)
denotes the unique phase transition point which divides the martingale region (to the right
of xǫ

1(t)) and the supermartingale region (to the left of xǫ
1(t)). In the supermartingale re-

gion, the mass at x ≤ xǫ
1(t) is transported (through the quantile coupling) to the destination

T ǫ
d(t, x) = F−1(t+ ǫ, F (t, x)). In the martingale region, the two supporting maps T ǫ

u and T ǫ
d are

characterized in Proposition B.4.
Set ǫ0 := ǫ1 ∧ ǫ2, where ǫ1, ǫ2 are as in Assumptions 3.1 and 3.3, respectively.

Assumption 3.7. (i) The map (t, ǫ) 7→ xǫ
1(t) is uniformly continuous (with continuity mod-

ulus ρ1) and also uniformly bounded on {(t, ǫ) : 0 < ǫ ≤ ǫ0, 0 ≤ t ≤ 1− ǫ}.
(ii) For every t ∈ [0, 1], rt = r ∈ (−∞,∞].

(iii) For every t ∈ [0, 1], we have ∂txf(t,mt) > 0.

Lemma 3.8. Suppose that Assumptions 3.1, 3.3, 3.7(i) and (ii) hold. Then the limit limǫ→0 x
ǫ
1(t)

exists. Moreover, if we denote the limit by x1(t), then t 7→ x1(t) is continuous and uniquely
determined by the equation

∫ +∞

x1(t)

(x1(t)− ξ)∂tf(t, ξ)dξ = 0, t ∈ [0, 1].

Proof. It follows from Lemma B.3 that xǫ
1(t) is unique for all t ∈ [0, 1), ǫ ∈ (0, ǫ0]. From

Assumption 3.7 (i), using the Arzelà-Ascoli theorem, we have that xǫ
1(t) converges when ǫ → 0,

and the limit remains a continuous function.
Using the properties of the decreasing supermartingale coupling (see Appendix B), we have

that xǫ
1(t) and yǫ1(t) satisfy the mean and mass preservation conditions:
∫ rt

xǫ
1(t)

f(t, x)dx =

∫ rt+ǫ

yǫ
1(t)

f(t+ ǫ, x)dx,

∫ rt

xǫ
1(t)

xf(t, x)dx =

∫ rt+ǫ

yǫ
1(t)

xf(t+ ǫ, x)dx.

Rearranging, and using that rt = rt+ǫ, gives

∫ rt

xǫ
1(t)

(f(t, x)−f(t+ǫ, x))dx =

∫ xǫ
1(t)

yǫ
1(t)

f(t+ǫ, x)dx,

∫ +∞

xǫ
1(t)

x(f(t, x)−f(t+ǫ, x))dx =

∫ xǫ
1(t)

yǫ
1(t)

xf(t+ǫ, x)dx.

Using Taylor’s expansion f(t+ ǫ, x)− f(t, x) = ∂tf(t, x)ǫ +
1
2∂ttf(ξ1, x)ǫ

2 (with ξ1 ∈ (t, t + ǫ))
in the first equation above and applying the mean value theorem for definite integrals, we get
that

−ǫ

∫ +∞

xǫ
1(t)

∂tf(t, x)dx− 1

2
ǫ2

∫ +∞

xǫ
1(t)

∂ttf(ξ1, x)dx = (xǫ
1(t)− yǫ1(t)) f(t, ξ2),

where ξ2 lies in [yǫ1(t), x
ǫ
1(t)]. Letting ǫ tend to 0 on both sides, the l.h.s. tends to 0, and

consequently r.h.s. also tends to 0. It follows that limǫ→0 x
ǫ
1(t) = limǫ→0 y

ǫ
1(t). Dividing both

sides by ǫ we get

−
∫ +∞

xǫ
1(t)

∂tf(t, x)dx =
xǫ
1(t)− yǫ1(t)

ǫ
f(t, ξ2) + O(ǫ), (3.6)

Similarly,

−
∫ +∞

xǫ
1(t)

x∂tf(t, x)dx =
xǫ
1(t)− yǫ1(t)

ǫ
ξ2f(t, ξ2) +O(ǫ). (3.7)

Note that Assumption 3.7(ii) ensures that x 7→ ∂tf(t, x) is not a constant.
Combining (3.6) and (3.7), and letting ǫ tend to 0, we get that

∫ +∞

x1(t)

(x− x1(t))∂tf(t, x)dx = 0.
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Remark 3.9. The Assumption 3.7(ii) can be relaxed. For example, if t 7→ rt is differentiable,
then the equation that characterizes x1(t), as in Lemma 3.8, can be shown to be of the following
form:

∫ rt

x1(t)

(x1(t)− ξ)∂tf(t, ξ)dξ = −f(t, rt)(x1(t)− rt)
drt
dt

, t ∈ [0, 1].

Consequently, the subsequent arguments would have to be adjusted. Since our main motivation
is the examples that satisfy Assumption 3.7(ii), we do not include the details.

We also introduce Tu through the following integral equation:

∫ Tu(t,x)

x

(x− ξ)∂tf(t, ξ)dξ = 0, (3.8)

Proposition 3.10. Suppose that Assumptions 3.1, 3.3, 3.7(i) and (ii) hold. For x ∈ (x1(t),mt),
(3.8) has the unique solution Tu(t, x) on (mt, rt).

Proof. Define G(t, x, y) :=
∫ y

x
(x − ξ)∂tf(t, ξ)dξ, as y 7→ G(t, x, y) is continuous, it is enough to

show that, for x ∈ [x1(t),mt), y 7→ G(t, x, y) is decreasing on y ∈ [mt,∞), G(t, x,mt) > 0 and
G(t, x,+∞) < 0.

We first show that for x ∈ [x1(t),mt], y 7→ G(t, x, y) is decreasing on y ∈ [mt,∞). Indeed,
for mt ≤ y1 < y2, we have

G(t, x, y2)−G(t, x, y1) =

∫ y2

y1

(x − ξ)∂tf(t, ξ)dξ < 0,

where the last inequality follows from the fact that ξ > y1 ≥ mt ≥ x and ∂tf(t, ξ) > 0 on [y1, y2]
(as x 7→ ∂tF (t, x) is increasing on (mt,∞)).

Notice that the equation ∂tF (t, x) = 0 has a unique solution under Assumption 3.3, and we
denote it by x̄(t). Now let us show that x 7→ G(t, x,+∞) is decreasing on (x1(t), x̄(t)), and
increasing on (x̄(t),mt). Indeed,

∂xG(t, x,+∞) =

∫ +∞

x

∂tf(t, ξ)dξ = ∂tF (t,+∞)− ∂tF (t, x) = −∂tF (t, x),

which is negative on (x1(t), x̄(t)), and positive on (x̄(t),mt). To show G(t, x,+∞) < 0 for all
x1(t) < x < mt, it is enough to show that G(t, x1(t),+∞) ≤ 0 and G(t,mt,+∞) ≤ 0. Notice
that from Lemma 3.8, x1(t) satisfies that

∫ +∞

x1(t)

(x1(t)− ξ)∂tf(t, ξ)dξ = 0,

i.e., G(t, x1(t),+∞) = 0. Moreover, as G(t,mt,mt) = 0 and y 7→ G(t,mt, y) is strictly decreas-
ing on y ∈ [mt,∞] which is shown above, it follows that G(t,mt,+∞) < 0.

In addition, x 7→ G(t, x,mt) is decreasing on the interval (x1(t),mt):

∂xG(t, x,mt) =

∫ mt

x

∂tf(t, ξ)dξ = ∂tF (t,mt)− ∂tF (t, x) < 0.

It follows that G(t, x,mt) > G(t,mt,mt) = 0.

We further define ju and jd for t ∈ [0, 1], x ∈ (x1(t),mt) by ju(t, x) := Tu(t, x) − x and

jd(t, x) :=
∂tF (t,x)−∂tF (t,Tu(t,x))

f(t,x) . The following lemma analyzes the asymptotic behaviour of T ǫ
d ,

T ǫ
u and qǫ(t, x) in the martingale region, and when ǫ is small. The proof is analogous to the

proof of Henry-Labordère et al. [41, Lemma 6.6] when applied to the right-curtain coupling,
and thus omitted.
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Lemma 3.11. Suppose that Assumptions 3.1, 3.3, 3.7(i) and (ii) hold.
For 0 < δ < K < ∞, let Eδ,K := {(t, x) : t ∈ [0, 1], (mt −K) ∨ x1(t) < x ≤ mt − δ}. Define

jǫd(t, x) :=
∂tF (t,x)−∂tF (t,T ǫ

u(t,x))
f(t+ǫ,x) . Then T ǫ

u(t, x) and T ǫ
d(t, x) admit the following expansions:

T ǫ
u(t, x) − x := Jǫ

u(t, x) = ju(t, x) + (ǫ ∨ ρ0(ǫ))e
ǫ
u(t, x),

and
x− T ǫ

d(t, x) := Jǫ
d(t, x) = ǫjǫd(t, x) + ǫ2eǫd(t, x),

with eǫd(t, x) and eǫu(t, x) bounded on Eδ,K. Consequently, there exists a constant Cδ,K such that
the probability of the upward jump qǫ admits the asymptotic expansion:

qǫ(t, x) =
Jǫ
d(t, x)

Jǫ
u(t, x) + Jǫ

d(t, x)
= ǫ

jd(t, x)

ju(t, x)
+ Cδ,Kǫ (ǫ ∨ ρ0(ǫ)) , for (t, x) ∈ Eδ,K . (3.9)

The next lemma considers the asymptotic expansion of Jǫ
d in the supermartingale region.

Lemma 3.12. Suppose that Assumptions 3.1, 3.3, 3.7(i) and (ii) hold.
For 0 < K < ∞, let EK := {(t, x) : t ∈ [0, 1], (x1(t) − K) ∨ lt ≤ x ≤ x1(t)}. Then,

x − T ǫ
d(t, x) = Jǫ

d(t, x) = ǫjǫd(t, x) + ǫ2eǫd(t, x), with jǫd(t, x) := 1
f(t+ǫ,x)∂tF (t, x), and eǫd(t, x)

bounded on EK .

Proof. For Jǫ
d(t, x), applying Taylor’s expansion to the first order, we have that

Jǫ
d(t, x) = x− T ǫ

d(t, x) = F−1(t+ ǫ, F (t+ ǫ, x))− F−1(t+ ǫ, F (t, x))

=
∂F−1

∂x
(t+ ǫ, F (t+ ǫ, x)) [F (t+ ǫ, x)− F (t, x)] +

1

2

∂2F−1

∂x2
(t+ ǫ, c) [F (t+ ǫ, x)− F (t, x)]2

=
1

f(t+ ǫ, x)
[F (t+ ǫ, x)− F (t, x)] +

1

2
(−1)

f ′(t+ ǫ, ξ)

f3(t+ ǫ, ξ)
[F (t+ ǫ, x)− F (t, x)]

2
,

where on the above, c is between F (t, x) and F (t + ǫ, x), and ξ = F−1(t + ǫ, c). Applying
further second-order Taylor’s expansion to the first F (t+ ǫ, x)−F (t, x) and first-order Taylor’s
expansion to the second F (t+ ǫ, x)− F (t, x), we have

Jǫ
d(t, x) =

1

f(t+ ǫ, x)

[

∂tF (t, x)ǫ +
1

2
∂ttF (ξ1, x)ǫ

2

]

− 1

2

f ′(t+ ǫ, ξ)

f3(t+ ǫ, ξ)
[∂tF (ξ2, x)ǫ]

2

=
∂tF (t, x)

f(t+ ǫ, x)
ǫ+

[

∂ttF (ξ1, x)

2f(t+ ǫ, x)
− f ′(t+ ǫ, ξ)

2f3(t+ ǫ, ξ)
(∂tF (ξ2, x))

2

]

ǫ2,

with ξ1, ξ2 between t and t+ ǫ. Hence the expansion of Jǫ
d is valid, with

|eǫT (t, x)| ≤ sup
t≤s≤t+ǫ,F−1(t+ǫ,F (t,x))≤ξ≤x

∣

∣

∣

∣

∂ttF (s, ξ)

2f(s, ξ)
− f ′(s, ξ)

2f3(s, ξ)
(∂tF (s, ξ))

2

∣

∣

∣

∣

.

For t ∈ [0, 1], extend the definition of jd to (ℓt, x1(t)], by setting jd(t, x) :=
1

f(t,x)∂tF (t, x).

For the main result of this section we need one additional result.

Lemma 3.13. Suppose that Assumptions 3.1, 3.3 and 3.7 hold.

(i) Tu is strictly decreasing in x on (x1(t),mt).

(ii) jd(t, x)1{x1(t)<x<mt}, ju(t, x)1{x1(t)<x<mt},
jd
ju
(t, x)1{x1(t)<x<mt} and jd(t, x)1{x≤x1(t)} are

all locally Lipschitz in (t, x) ∈ {0 ≤ t ≤ 1, (−K ∨ lt) ≤ x ≤ (K ∧ rt)}.
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Proof. (i) Differentiating both sides of (3.8) with respect to x ∈ (x1(t),mt), we get that

∂xTu(t, x) (x− Tu(t, x)) ∂tf(t, Tu(t, x)) +

∫ Tu(t,x)

x

∂tf(t, ξ)dξ = 0.

Hence

∂xTu(t, x) =
∂tF (t, Tu(t, x))− ∂tF (t, x)

(x− Tu(t, x)) ∂tf(t, Tu(t, x))
< 0, (3.10)

where the last inequality follows from ∂tF (t, Tu(t, x)) > ∂tF (t, x).

(ii) Using Assumption 3.3 and repeating the arguments of the proof of [41, Lemma 3.6] (applied
to the right-curtain coupling case) we get that all jd(t, x)1{x1(t)<x<mt}, ju(t, x)1{x1(t)<x<mt},
jd
ju
(t, x)1{x1(t)<x<mt} are locally Lipschitz. It is left to verify the regularity of the func-

tion jd(t, x)1{x≤x1(t)}. But Assumption 3.1 and the definition jd(t, x) = 1
f(t,x)∂tF (t, x)

immediately imply the local Lipschitz property.

In the following, we provide a characterization of the limit of the sequence (Pn)n≥1. The lim-
iting process is a pure-jump process that is similar in spirit to the local Lévy models introduced
by Carr, Geman, Madan and Yor [22]. (See also [41] for the related martingale case.)

Theorem 3.14. Suppose that Assumptions 3.1, 3.3, 3.7 hold. Then P
n → P

0, where P
0 is the

unique weak solution to the SDE:

Xt = X0 +

∫ t

0

ju(t,Xs−)(dNs − νsds)1{x1(s)<Xs−<ms} −
∫ t

0

1{Xs−≤x1(s)}jd(t,Xs−)ds, (3.11)

and (Ns)0≤s≤1 is a unit size jump process with predictable compensated process (νs)0≤s≤1 given
by:

νs :=
jd
ju

(s,Xs−)1{x1(s)<Xs−<ms};

here x1(t) is given by Lemma 3.8, ju(t, x) := Tu(t, x) − x and jd(t, x) :=
∂tF (t,x)−∂tF (t,Tu(t,x))

f(t,x)

for x ∈ (x1(t),mt), jd(t, x) :=
1

f(t,x)∂tF (t, x) for x ∈ (ℓt, x1(t)], and Tu is characterized by (3.8)

on x ∈ (x1(t),mt).

Proof. By Proposition 3.4, the sequence of supermartingale measures (Pn)n≥1 induced by the
decreasing supermartingale transport plan is tight. We shall prove that any limit of (Pn)n≥1 pro-
vides a weak solution to (3.11). Our strategy is identical to that of Henry-Labordère and Touzi
[42, Theorem 3.7], and thus we only present the steps that are affected by the supermartingale
feature of our construction.

For all x ∈ Ω := D([0, 1],R) and ϕ ∈ C1
b (R), we define

Mt(ϕ,x) := ϕ(xt)−
∫ t

0

jd(s,xs−)Dϕ(xs−)1{x1(s)<xs−<ms}ds−
∫ t

0

[[ϕ(xs− + ju(s,xs−))

− ϕ(xs−)]
jd
ju

(s,xs−)]1{x1(s)<xs−<ms}ds−
∫ t

0

jd(s,xs−)Dϕ(xs−)1{xs−≤x1(s)}ds.

The process M(ϕ,X) is progressively measurable w.r.t. the canonical filtration F. For every
constant p > 0, we introduce an F-stopping time and the corresponding stopped canonical
process

τp := inf{t ≥ 0 : |Xt| ≥ p or |Xt−| ≥ p}, Xp
t := Xt∧τp .
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Denote further J(x) := {t > 0 : ∆x(t) 6= 0}, V (x) := {a > 0 : τa(x) < τa+(x)} and

V ′(x) := {a > 0 : τa(x) ∈ J(x) and |x(τa(x))| = a}.

By extracting a subsequence, we can suppose w.l.o.g. that Pn → P
0 weakly. To prove that P0 is

a weak solution to SDE (3.11), it is enough to show that (Mt(ϕ,X))t∈[0,1] is a local martingale
under P

0 for every ϕ ∈ C1
b (R). Since the functions jd and ju are locally Lipchitz, but not

necessarily uniformly bounded, as in the proof of Henry-Labordère and Touzi [42, Theorem 3.7],
we need to adapt the localization technique in Jacod and Shiryaev [51].

First, since P
n is induced by the Markov chain (Xn,P∗,n) for all n ≥ 1, we have

E
P
n

tn
k
[ϕ(Xtn

k+1
)− ϕ(Xtn

k
)] = αu + αd + αd̃,

where

αu := E
P
n

tn
k
[{ϕ(Xtn

k
+ J

ǫnk
u (tnk , Xtn

k
))− ϕ(Xtn

k
)} J

ǫnk
d

J
ǫn
k

d + J
ǫn
k

u

1
{xǫn

k
1 (tn

k
)<Xtn

k
<m

ǫn
k (tn

k
)}
],

αd := E
P
n

tn
k
[{ϕ(Xtn

k
− J

ǫnk
d (tnk , Xtn

k
))− ϕ(Xtn

k
)} J

ǫnk
u

J
ǫn
k

d + J
ǫn
k

u

1
{xǫn

k
1 (tn

k
)<Xtn

k
<m

ǫn
k (tn

k
)}
],

αd̃ := E
P
n

tn
k
[{ϕ(Xtn

k
− J

ǫnk
d (tnk , Xtn

k
))− ϕ(Xtn

k
)}1

{Xtn
k
≤x

ǫn
k

1 (tn
k
)}
],

with ǫnk := tnk+1 − tnk (also recall that, under the present assumptions (Dispersion Assumption

in particular), x
ǫnk
1 (tnk ) is the unique regime-switching boundary).

By the continuity of (ǫ, t) 7→ (mǫ(t), xǫ
1(t)) and noticing that the density f(t, x) ∈ C3

b (E),
we have that for ǫnk small and for all s ∈ [tnk , t

n
k+1],

|EP
n

tn
k
[1

{xǫn
k

1 (tn
k
)<Xtn

k
<m

ǫn
k (tn

k
)}
− 1{x1(s)<Xs<ms}]|

≤|
∫ x1(s)

x
ǫn
k

1 (tn
k
)

f(t, x)dx| + |
∫ ms

m
ǫn
k (tn

k
)

f(t, x)dx| = O(ρ0(ǫ
n
k ) ∨ ρ1(ǫ

n
k )).

Then using Lemma 3.11 and the arguments of [41, Theorem 3.7] we have that

αu = E
P
n

tn
k

[

∫ tnk+1

tn
k

[ϕ(Xs + ju(s,Xs))− ϕ(Xs)]
jd
ju

(s,Xs)1{x1(s)<Xs<ms)}ds

]

,

αd = −E
P
n

tn
k
[

∫ tnk+1

tn
k

jd(s,Xs)Dϕ(Xs)1{x1(s)<Xs<ms}ds] +O(ǫnk (ǫ
n
k ∨ ρ0(ǫ

n
k ) ∨ ρ1(ǫ

n
k ))).

Similarly, using Lemma 3.12 we have that

αd̃ = −E
P
n

tn
k

[

∫ tnk+1

tn
k

jd(s,Xs)Dϕ(Xs)1{Xs≤x1(s)}ds

]

+O(ǫnk (ǫ
n
k ∨ ρ0(ǫ

n
k ) ∨ ρ1(ǫ

n
k ))).

Now let 0 ≤ s < t ≤ 1, p ∈ N, φs(X·) be a Fs-measurable bounded random variable on Ω
such that φ : Ω → R is continuous under the Skorokhod topology. Then

E
P
n

[φs(X·)(Mt∧τp(ϕ,X)−Ms∧τp(ϕ,X))] ≤ Cp(|πn| ∨ ρ0(|πn|) ∨ ρ1(|πn|)).

for some constant Cp > 0. The remaining arguments are those of [41, Theorem 3.7], and thus
omitted.
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3.3 Optimality of the local Lévy process

In this section, we establish the optimality of the previously obtained limiting process to the
continuous-time primal problem P∞.

We will need the optimal dual strategy (in discrete time one-period case) which is given in

Lemma B.5; in the following, we denote hǫ := ĥµt,µt+ǫ , ϕǫ := ϕ̂µt,µt+ǫ , ψǫ := ψ̂µt,µt+ǫ .
Now let us introduce the optimal dual strategies for the continuous-time transport problem.

First, we define the dynamic strategy h∗ by

h∗(t, x) = 0, when x ≤ x1(t),

∂xh
∗(t, x) =

cx(x, Tu(t, x)) − cx(x, x)

ju(t, x)
, x1(t) < x < mt,

lim
x↓x1(t)

h∗(t, x) = 0,

h∗(t, x) = h∗(t, T−1
u (t, x)) − cy(T

−1
u (t, x), x), when x ≥ mt.

We remark that from the above definition, for all t ∈ [0, 1], x 7→ h∗(t, x) is continuous both
at x1(t) and mt. In addition, ψ∗ is defined, up to a constant, by

∂xψ
∗(t, x) := −h∗(t, x), (t, x) ∈ E = {(t, x) : t ∈ [0, 1], x ∈ (lt, rt)}.

Now using the same arguments as [41, Corollary 3.10] together with the fact that h∗(t, x) = 0
for t ∈ [0, 1] and x ≤ x1(t), we have that ψ∗ ∈ C1,1(E).

For the (static part of the) dual limiting strategy, let γ∗(dt) := δ{0}(dt) + δ{1}(dt) +Leb(dt)
be a finite measure on [0, 1], where Leb denotes the Lebesgue measure on [0, 1].

One further defines λ∗
0 and λ̄∗

0 by λ∗
0(0, x) := ψ∗(0, x), λ∗

0(1, x) := ψ∗(1, x), λ̄∗
0(0, x) :=

|ψ∗(0, x)|, and λ̄∗
0(1, x) := supt∈[0,1] |ψ∗(t, x)|; and for all (t, x) ∈ (0, 1)× R,

λ∗
0(t, x) := ∂tψ

∗(t, x) + 1{x1(t)<x≤mt} (∂xψ
∗jd + ν[ψ∗ − ψ∗(·, Tu) + c(·, Tu)])

+ 1{x≤x1(t)}∂xψ
∗jd,

λ̄∗
0 := |∂tψ∗(t, x) + 1{x1(t)<x<mt} (∂xψ

∗jd + ν[ψ∗ − ψ∗(·, Tu)]) |+ 1{x1(t)<x<mt}ν[|c(·, Tu)|]
+ 1x≤x1(t)|∂xψ∗jd|.

Finally we define λ∗(x, dt) := λ∗
0(t, x)γ

∗(dt) and λ̄∗(x, dt) := λ̄∗
0(t, x)γ

∗(dt).
The next result shows that the limiting process of the previous sections solves the continuous-

time supermartingale optimal transport problem. Let H∗ be the F-predictable process on Ω
defined by

H∗
t := h∗(t,Xt−), t ∈ [0, 1].

Theorem 3.15. Suppose that Assumptions 2.2, 3.1, 3.3, 3.7 hold, and that

µ(λ̄∗) =

∫ 1

0

∫

R

λ̄∗
0(t, x)µt(dx)γ

∗(dt) < ∞. (3.12)

Then the supermartingale transport problem (2.4) is solved by the local Lévy process (3.11).
Moreover, we have that (H∗, λ∗) ∈ D∞(µ) and the following duality is valid:

E
P
0

[C(X·)] = P∞(µ) = D∞(µ) = µ(λ∗),

and the optimal value is given by

µ(λ∗) =

∫ 1

0

∫ mt

x1(t)

jd(t, x)

ju(t, x)
c(x, x+ ju(t, x))f(t, x)dxdt.
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In order to prove Theorem 3.15, we consider the following partition of [0, 1]: πn = (tnk )0≤k≤n,
where tnk := kǫ with ǫ = 1

n
. In the following, we shall simplify the notation tnk to tk. Remind

that under every P
n, we have the following super-replication inequality:

n−1
∑

k=0

(

ϕǫ(tk, Xtk) + ψǫ(tk, Xtk+1
)
)

+

n−1
∑

k=0

hǫ(tk, Xtk)(Xtk+1
−Xtk) ≥

n−1
∑

k=0

c(Xtk , Xtk+1
). (3.13)

We further define Ψ∗ : Ω → R by

Ψ∗(x) := ψ∗(1,x1)− ψ∗(0,x0)−
∫ 1

0

(∂tψ
∗(t,xt) + jd(t,xt)1{xt<mt}∂xψ

∗(t,xt))dt

+

∫ 1

0

jd(t,xt)

ju(t,xt)
1{x1(t)<xt<mt} (ψ

∗(t,xt)− ψ∗(t,xt + ju(t,xt)) + c(xt,xt + ju(t,xt))) dt.

To prove Theorem 3.15, we need several auxiliary results. The proof of the following lemma
relies on Lemmas 3.11 and 3.12, but otherwise is the same as the proof of [41, Lemma 6.7], and
thus we omit the details.

Lemma 3.16. Under Assumptions 2.2, 3.1, 3.3, we have that

T ǫ
u1{xǫ

1(t)<x<mǫ
t} → Tu1{x1(t)<x<mt}, hǫ → h∗, ∂tψ

ǫ → ∂tψ
∗, ψǫ → ψ∗

locally uniformly on E = {(t, x) : t ∈ [0, 1], x ∈ (lt, rt)}.
Lemma 3.17. Suppose Assumptions 2.2, 3.1, 3.3 hold. Then for every càdlàg path x ∈
D([0, 1],R) taking value in (l1, r1), we have

lim
n→∞

n−1
∑

k=0

(

ϕǫ(tk,xtk) + ψǫ(tk,xtk+1
)
)

→ Ψ∗(x), as ǫ → 0.

Proof. The arguments are almost identical to those of [41, Lemma 6.9], and thus we only briefly
sketch them. First note that

n−1
∑

k=0

(

ϕǫ(tk,xtk) + ψǫ(tk,xtk+1
)
)

=
n−1
∑

k=0

(ϕǫ(tk,xtk) + ψǫ(tk,xtk)) + ψǫ(tn−1,x1)

+

n−1
∑

k=1

(ψǫ(tk−1,xtk)− ψǫ(tk,xtk))− ψǫ(0,x0).

Then by Lemma 3.16 and the arguments of [41, Lemma 6.9], as ǫ → 0, we have that ψǫ(tn−1,x1) →
ψ∗(1,x1),

n−1
∑

k=1

(ψǫ(tk−1,xtk)− ψǫ(tk,xtk)) → −
∫ 1

0

∂tψ
∗(t,xt)dt,

and
∑n−1

k=0 (ϕ
ǫ(tk,xtk) + ψǫ(tk,xtk)) 1{xǫ

1(tk)<xtk
<mǫ(tk)} converges to

∫ 1

0

−∂xψ
∗(t,xt)jd(t,xt)dt

+

∫ 1

0

jd(t,xt)

ju(t,xt)
1{x1(t)<xt<mt} (ψ

∗(t,xt)− ψ∗(t,xt + ju(t,xt)) + c(xt,xt + ju(t,xt))) dt.

Finally, using similar arguments, and noting that c(x, x) = 0 for all x ∈ R, we have that

n−1
∑

k=0

(ϕǫ(tk,xtk) + ψǫ(tk,xtk))1{xtk
≤xǫ

1(tk)} → −
∫ 1

0

jd(t,xt)1{xt≤x1(t)}∂xψ
∗(t,xt)dt,

which concludes the proof.
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Lemma 3.18. Suppose that Assumptions 2.2, 3.1, 3.3, 3.7 hold and µ(λ̄∗) < ∞. Then for the
probability measure P

0 given in Theorem 3.14, we have that

E
P
0

[C(X·)] = E
P
0

[Ψ∗(X·)] = µ(λ∗) =

∫ 1

0

∫ mt

x1(t)

jd(t, x)

ju(t, x)
c(x, x + ju(t, x))f(t, x)dxdt.

Proof. The arguments are almost identical to those of [41, Lemma 6.10] (adapted to the right-
curtain coupling situation). We only need to adapt various definitions to include the seuper-
martingale regions governed by t 7→ x1(t).

By Itô’s formula, the following process is a local martingale:

ψ∗(t,Xt)− ψ∗(0, X0)−
∫ 1

0

(∂tψ
∗(t,Xt) +

(

jd(t,Xt)1{x1(t)<Xt<mt} + jd(t,Xt)1{Xt≤x1(t)}
)

∂xψ
∗(t,Xt))dt+

∫ 1

0

jd(t, xt)

ju(t, xt)
1{x1(t)<Xt<mt} (ψ

∗(t,Xt)− ψ∗(t,Xt + ju(t,Xt))) dt.

Moreover, using the fact that µ(λ̄∗) < ∞ together with the dominated convergence theorem, we
have that

E
P
0

[Ψ∗(X·)] =

∫ 1

0

∫ mt

x1(t)

jd(t, x)

ju(t, x)
c(x, x + ju(t, x))f(t, x)dxdt.

To compute E
P
0

[C(X·)], noticing that [X ]ct = 0, P0-a.s., and the process

Yt :=
∑

s≤t

|c(Xs−, Xs)| −
∫ t

0

|c(Xs−, Xs− + ju(t,Xs−)|
jd(t,Xs−)

ju(t,Xs−)
1{x1(t)<Xt<mt}dt

is a local martingale. The remainder of the proof follows the arguments of [42, Lemma 6.10].

In the following lemma, we establish the continuous limit of the dynamic part. The proof
relies on Lemma 3.16, but otherwise is identical to the proof of [41, Lemma 6.11], and thus
omitted.

Lemma 3.19. Suppose Assumptions 3.1, 3.3, 3.7 hold. Then the following convergence in
probability (as ǫ → 0) holds under every supermartingale measure P ∈ S∞:

n−1
∑

k=1

hǫ(tk, X)(Xtk+1
−Xtk) →

∫ 1

0

h∗(t,Xt−)dXt.

Finally, we provide the proof of Theorem 3.15.

Proof of Theorem 3.15. Using the discrete superhedging duality (3.13), together with the con-
vergence results Lemma 2.3, 3.17, 3.19, we have that under every P ∈ S∞, (Ψ∗, h∗) superhedges
the continuous-time cost C(X·):

Ψ∗(X·) +

∫ 1

0

h∗(t,Xt−)dXt ≥
∫ 1

0

1

2
cyy(Xt, Xt)d[X ]ct +

∑

0≤t≤1

c(Xt−, Xt), P-a.s.

By the weak duality,

E
P
0

[C(X·)] ≤ P∞(µ) ≤ D∞(µ) ≤ µ(λ∗).

Then Lemma 3.18 concludes the proof.
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4 Examples

In this section, we will consider three examples of supermartingales matching a given PCOCD. In
contrary to the martingale case of [52, 41](that covers left-curtain and right-curtain couplings),
in the supermartingale context, the increasing and decreasing couplings provide significantly
different dynamics in continuous-time.

4.1 Uniform distribution with bounded support

In this section the family of marginal distributions (µt)t∈[0,1] satisfies

µt =
1

et + e2t
λ[−e2t,et], t ∈ [0, 1]. (4.14)

(This example was also considered in the martingale case by Juillet [52].) Our goal is to explicitly
determine the quantities that define the SDE given in Theorem 3.14.

Note that ℓt = −e2t and rt = et for all t ∈ [0, 1]. Furthermore, (µt)t∈[0,1] satisfies Assumption
3.1 with mǫ(t) = ℓt and mǫ(t) = rt, for each t ∈ [0, 1) and ǫ ∈ (0, 1 − t]. Recall that mǫ,m

ǫ

maximizes and minimizes, respectively, the function x 7→ F (t + ǫ, x) − F (t, x). Observe that
mǫ,m

ǫ are independent of ǫ > 0. By direct computation we have that, for all t ∈ (0, 1), ∂tF (t, ·)
is minimized and maximized at mt = et and m̃t = −e2t. Then m0(t) := mt = limǫ↓0 mǫ(t) = et

for all t ∈ [0, 1]. It is now easy to see that (µt)t∈[0,1] satisfies Assumption 3.3. However, since
t 7→ rt is not constant and mt = rt, Assumption 3.7 does not hold. For this reason, most of the
results of Section 3.2 (that lead to Theorem 3.14) cannot be applied, and thus we will prove the
relevant statements by direct calculations.

Now fix t ∈ [0, 1) and ǫ ∈ (0, 1 − t], and consider the decreasing supermartingale coupling

P̂
µt,µt+ǫ of µt and µt+ǫ (see Appendix B.1). Since, Assumption 3.1 is satisfied, the phase

transition point, that separates the martingale and supermartingale regions, is unique; see
Lemma B.3. The transition threshold is denoted by

xǫ
1(t) := x

µt,µt+ǫ

1 ,

see (B.50).

Lemma 4.1. If (µt)t∈[0,1] is given by (4.14), then the phase transition xǫ
1(t) is given by

xǫ
1(t) =

et(e2(t+ǫ) − et+ǫ + et) + e2t(et − 2et+ǫ)

et+ǫ + e2(t+ǫ) − et − e2t
. (4.15)

Furthermore, the limit x1(t) := limǫ↓0 xǫ
1(t) exists and is given by

x1(t) =
−et

1 + 2et
∈ (−e2t, et), t ∈ [0, 1]. (4.16)

Proof. To determine xǫ
1(t) ∈ (ℓt, rt) we use the fact that under the decreasing supermartingale

coupling P̂µt,µt+ǫ , µ|[xǫ
1(t),rt)

is mapped to ν|[yǫ
1(t),rt+ǫ) in a martingale way, where yǫ1(t) = y

µt,µt+ǫ

1

(see (B.51)). In particular, the pair (xǫ
1(t), y

ǫ
1(t)) is uniquely determined by the mass and mean

preservation condition
∫ rt

xǫ
1(t)

ziµt(dz) =

∫ rt+ǫ

yǫ
1(t)

ziµt+ǫ(dz), i = 0, 1. (4.17)

Direct computation leads to

et − xǫ
1(t)

et + e2t
=

et+ǫ − yǫ1(t)

et+ǫ + e2(t+ǫ)
,

e2t − (xǫ
1(t))

2

et + e2t
=

e2(t+ǫ) − (yǫ1(t))
2

et+ǫ + e2(t+ǫ)
.
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Solving the above equations gives

xǫ
1(t) =

et(e2(t+ǫ) − et+ǫ + et) + e2t(et − 2et+ǫ)

et+ǫ + e2(t+ǫ) − et − e2t
, yǫ1(t) = xǫ

1(t)− et+ǫ + et.

By letting ǫ ↓ 0, direct calculation (using the L’Hôpital’s rule) gives that x1(t) =
−et

1+2et (note
that limǫ↓0 yǫ1(t) = x1(t)), which concludes the proof.

Even though not all the Assumptions 3.1, 3.3, 3.7 are satisfied in the case of (4.14), the
following result shows that the statement of Theorem 3.14 remains true.

Proposition 4.2. If (µt)t∈[0,1] is given by (4.14), then the statement of Theorem 3.14 holds,
and the corresponding SDE is explicitly given by

Xt = X0 +

∫ t

0

1{Xs−>x1(s)}ju(s,Xs−)(dNs − νsds)−
∫ t

0

1{Xs−≤x1(s)}ν̃sds,

where (Ns)0≤s≤1 is a unit size jump process with predictable compensated process (νs)0≤s≤1 given

by νs :=
jd
ju
(s,Xs−), with jd(s, x) =

1
2
es−x
1+es

(1 + 2es), ju(s, x) = es − x, and ν̃s :=
e2s−x(1+2es)

1+es
.

In addition, if Assumption 2.2 and the integrability condition (3.12) are satisfied, then the
above process is the optimal solution for the primal problem (2.4) and the conclusion of Theorem
3.15 holds.

Proof. Since, for t ∈ [0, 1], we have that mt = rt, it follows that 1{x1(t)<Xt−<mt} = 1{Xt−>x1(t)}
a.s. We now determine (jd, ju).

For t ∈ [0, 1) and ǫ ∈ (0, 1 − t], we consider the one-period decreasing supermartingale

coupling P̂
µt,µt+ǫ , which is supported on the graphs of two functions T ǫ

u(t, ·) = T
µt,µt+ǫ
u (·),

T ǫ
d(t, ·) = T

µt,µt+ǫ

d (·); see Appendix B.1. On (xǫ
1(t),m

ǫ(t) = rt), (T
ǫ
d(t, ·), T ǫ

u(t, ·) can be deter-
mined from the mass and mean preservation condition

∫ T ǫ
u(t,x)

x

ziµt(dz) =

∫ T ǫ
u(t,x)

T ǫ
d
(t,x)

ziµt+ǫ(dz), i = 0, 1.

Note that, since T ǫ
u(t, x) ≥ mǫ(t) = rt for x ≤ rt, we have that

∫ T ǫ
u(t,x)

x
ziµt(dz) =

∫ rt

x
ziµt(dz)

for i = 0, 1. Then direct calculation gives that

et − x

et + e2t
=

T ǫ
u(t, x) − T ǫ

d(t, x)

et+ǫ + e2(t+ǫ)
, T ǫ

u(t, x) = x+ et − T ǫ
d(t, x), x ∈ (xǫ

1(t), e
t).

It follows that

x− T ǫ
d(t, x) =

1

2

et − x

et + e2t

[

et+ǫ − et + e2(t+ǫ) − e2t
]

, x ∈ (xǫ
1(t), e

t).

This further leads to

jd(t, x) := lim
ǫ↓0

jǫd(t, x) := lim
ǫ↓0

x− T ǫ
d(t, x)

ǫ
=

1

2

et − x

1 + et
(1 + 2et), x ∈ (x1(t), e

t),

ju(t, x) := lim
ǫ↓0

(T ǫ
u(t, x)− x) = et − x, x ∈ (x1(t), e

t).

Then also
jd
ju

(t, x) =
1

2

1 + 2et

1 + et
, x ∈ (x1(t), e

t).
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If we define Tu by Tu(t, x) := limǫ↓0 T ǫ
u(t, x), then Tu(t, x) = et for x ∈ (x1(t), e

t), which is
clearly non-decreasing and continuous.

The definition of jd on [0, 1)× (ℓt, x1(t)] remains the same:

jd(t, x) := lim
ǫ↓0

jǫd(t, x) = lim
ǫ↓0

x− T ǫ
d(t, x)

ǫ
, x ∈ (−e2t, x1(t)].

The explicit form is recovered by using the fact that T ǫ
d(t, x) = F−1(t+ ǫ, F (t, x)) for x ≤ xǫ

1(t).
Direct computation gives that

jd(t, x) =
e2t − x(1 + 2et)

1 + et
, x ∈ (−e2t, x1(t)].

It follows that the statements of Lemmas 3.11, 3.12, 3.13(ii) (and consequently Theorem
3.14) hold, which proves the first part of the present proposition.

The second claim is established by following the arguments of the proof of Theorem 3.15.
In particular we need continuity of Tu, Lemmas 3.13(ii) and 3.16. However, these results (by
direct computation) also hold in the present setting,

Increasing supermartingale coupling Let (µt)t∈[0,1] be as in (4.14). Fix t ∈ [0, 1) and
ǫ ∈ (0, 1− t], and denote by P̄

µt,µt+ǫ the increasing supermartingale coupling of µt and µt+ǫ (see
Nutz and Stebegg [57] and Bayraktar et al. [4]).

The main difference between P̄
µt,µt+ǫ and the decreasing supermartingale coupling P̂

µt,µt+ǫ

is that P̄µt,µt+ǫ is constructed by working from left to right and mapping µt|(−∞,x] to the shadow

measure Sµt+ǫ(µt|(−∞,x]), for each x ∈ R. The construction of P̂µt,µt+ǫ is similar, but works from
right to left and thus considers the measures (µt|[x,∞))x∈R and their corresponding ‘shadows’ in
µt+ǫ.

The main feature of P̄µt,µt+ǫ is that there exists the unique point xǫ
1(t) ∈ (ℓt, rt) such that

P̄
µt,µt+ǫ is a martingale on (−∞, xǫ

1(t)]×R and strict supermartingale elsewhere. In particular,

• on (−∞, xǫ
1(t)]×R, P̄µt,µt+ǫ coincides with the left-curtain martingale coupling of µt|(−∞,xǫ

1(t)]

and Sµt+ǫ(µt|(−∞,xǫ
1(t)]

);

• the support of (µt−µt|(−∞,xǫ
1(t)]

) is strictly to the right of the support of (µt+ǫ−Sµt+ǫ(µt|(−∞,xǫ
1(t)]

));

• on (xǫ
1(t),∞)×R, P̄µt,µt+ǫ coincides with the antitone coupling of (µt −µt|(−∞,xǫ

1(t)]
) and

(µt+ǫ − Sµt+ǫ(µt|(−∞,xǫ
1(t)]

));

see Bayraktar et al. [4] for details. (In fact, these properties hold for any measures µ ≤cd ν, and
not necessarily µt ≤cd µt+ǫ as in (4.14).) The left-curtain martingale coupling was introduced
by Beiglböck and Juillet [12] (it is the symmetric counterpart of the right-curtain martingale
coupling; see Appendix A.2). The aforementioned antitone coupling of two measures η, χ (with
η(R) = χ(R) and atom-less η) is denoted by πa,η,χ and given by

πa,η,χ(dx, dy) = η(dx)δF−1
χ (χ(R)−Fη(x))

(dy).

Note that πa,η,χ is supported on a graph of a decreasing funtion x 7→ F−1
χ (χ(R) − Fη(x)).

Lemma 4.3. If (µt)t∈[0,1] is defined by (4.14), then the phase transition xǫ
1(t) is given by

xǫ
1(t) =

e3t(1− e2ǫ) + et(2eǫ + et(1 + eǫ))

1 + eǫ + et(1 + e2ǫ)
, t ∈ [0, 1), ǫ ∈ (0, 1− t]. (4.18)

In particular, under P̄
µt,µt+ǫ , µt|(ℓt,xǫ

1(t)]
is mapped to µt+ǫ|[yǫ

1(t),rt)
in a martingale way, where

yǫ1(t) = xǫ
1(t)− et+ǫ − e2t,
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while µt|(xǫ
1(t),∞)) is mapped to µt+ǫ|(−∞,yǫ

1(t))
in a strict supermartingale way.

Furthermore, the limit x1(t) := limǫ↓0 xǫ
1(t) exists and is given by

x1(t) = et = rt, t ∈ [0, 1]. (4.19)

Proof. To determine xǫ
1(t) ∈ (ℓt, rt) we use the fact that x

ǫ
1(t) is the largest x ∈ (ℓt, rt) for which

µt|(ℓt,x]≤c S
µt+ǫ(µt|(ℓt,x]) and that rSµt+ǫ (µt|(ℓt,xǫ

1
(t)]) = sup{k ∈ supp(Sµt+ǫ(µt|(ℓt,xǫ

1(t)]
))} = rt.

Using that (µt)t∈[0,1] are given by (4.14) and te properties of the shadow measures, it follows
that µt|(ℓt,xǫ

1(t)]
≤c Sµt+ǫ(µt|(ℓt,xǫ

1(t)]
) = µt+ǫ|[yǫ

1(t),rt+ǫ) for some (unique) yǫ1(t) ∈ (ℓt+ǫ, ℓt). In
particular, the pair (xǫ

1(t), y
ǫ
1(t)) is uniquely characterized by the mass and mean preservation

condition
∫ xǫ

1(t)

ℓt

ziµt(dz) =

∫ rt+ǫ

yǫ
1(t)

ziµt+ǫ(dz), i = 0, 1. (4.20)

Direct computation leads to

xǫ
1(t) + e2t

et + e2t
=

et+ǫ − yǫ1(t)

et+ǫ + e2(t+ǫ)
,

(xǫ
1(t))

2 − e4t

et + e2t
=

e2(t+ǫ) − (yǫ1(t))
2

et+ǫ + e2(t+ǫ)
.

Solving the above equations gives

xǫ
1(t) =

e3t(1 − e2ǫ) + et(2eǫ + et(1 + eǫ))

1 + eǫ + et(1 + e2ǫ)
, yǫ1(t) = xǫ

1(t)− et+ǫ − e2t.

Letting ǫ ↓ 0 gives that x1(t) = et and yǫ1(t) = −e2t, which concludes the proof.

It is well-known (see Henry-Labordr̀e and Touzi [42]) that the left-curtain martingale cou-
pling (of two measures in convex order) is supported on the graphs of two functions that can be
computed explicitly. The following gives an explicit representation of P̄µt,µt+ǫ in terms of the
supporting functions:

Lemma 4.4. Let (µt)t∈[0,1] be given by (4.14). Fix t ∈ [0, 1) and ǫ(0, 1− t]. Let xǫ
1(t) be as in

Lemma 4.3.
Then P̄

µt,µt+ǫ is given by

P̄
µt,µt+ǫ(dx, dy) = µ(dx)1[xǫ

1(t),e
t)(x)δT̄ ǫ

d
(t,x)(dy)

+ µ(dx)1(−e2t,xǫ
1(t))

{

T̄ ǫ
u(t, x)− x

T̄ ǫ
u(t, x) − T̄ ǫ

d(t, x)
δT̄ ǫ

d
(t,x)(dy) +

x− T̄ ǫ
d(t, x)

T̄ ǫ
u(t, x) − T̄ ǫ

d(t, x)
δT̄u(x)(dy)

}

,

where

T ǫ
u(t, x) =

1

2

{

eǫ(1 + et+ǫ)(x + e2t)

1 + et
+ x− e2t

}

, x ∈ (−e2t, xǫ
1(t)),

T ǫ
d(t, x) = x− e2t − T ǫ

u(t, x), x ∈ (−e2t, xǫ
1(t)),

T ǫ
d(t, x) =

(

et+ǫ + e2(t+ǫ)
)

(

1− x+ e2t

et + e2t

)

− e2t x ∈ [xǫ
1(t), e

t).

Proof. Since, on (ℓt, x
ǫ
1(t)) × (yǫ1(t), rt+ǫ), P̄

µt,µt+ǫ coincides with the left-curtain martingale
coupling of µt|(ℓt,xǫ

1(t))
and µt+ǫ|(yǫ

1(t),rt+ǫ), the supporting functions (T ǫ
d(t, ·), T ǫ

u(t, ·)) can be
determined from the mass and mean preservation condition

∫ x

−e2t
ziµt(dz) =

∫ T ǫ
u(t,x)

T ǫ
d
(t,x)

ziµt+ǫ(dz), i = 0, 1.
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The direct computation gives that

x+ e2t

et + e2t
=

T ǫ
u(t, x)− T ǫ

d(t, x)

et+ǫ + e2(t+ǫ)
, T ǫ

d(t, x) = x− e2t − T ǫ
u(t, x), x ∈ (−e2t, xǫ

1(t)).

Solving for T ǫ
u(t, x) (which is easy) gives the required representations of the supporting functions

on (−e2t, xǫ
1(t)).

To obtain T ǫ
d(t, ·) on [xǫ

1(t), rt), we use that P̄
µt,µt+ǫ coincides with the antitone coupling

π
a,µt|[xǫ

1
(t),rt)

,µt+ǫ|(ℓt+ǫ,y
ǫ
1
(t)] of µt|[xǫ

1(t),rt)
and µt+ǫ|(ℓt+ǫ,y

ǫ
1(t),rt+ǫ]. It follows that

T ǫ
d(t, x) = F−1(t+ ǫ, 1− F (t, x)), x ∈ [xǫ

1(t), rt),

with F (t, x) = (x+ e2t)/(et + e2t), which proves the claim.

Now define Jǫ
d(t, x) = x−T ǫ

d(t, x) for x ∈ (ℓt, rt) and Jǫ
u(t, x) = T ǫ

u(t, x)−x for x ∈ (ℓt, x
ǫ
1(t)).

Then direct computation gives that

jd(t, x) := lim
ǫ↓0

Jǫ
d(t, x) = e2t + lim

ǫ↓0
T ǫ
u(t, x) = e2t + x, x ∈ (ℓt = −e2t, x1(t) = rt = et) (4.21)

and

ju(t, x) := lim
ǫ↓0

Jǫ
u(t, x)

ǫ
=

1 + 2e2t

2

x+ e2t

1 + et
, x ∈ (−e2t, et). (4.22)

Proposition 4.5. Let (µt)t∈[0,1] be as in (4.14). For each n ≥ 1, let Pn := P
∗,n ◦ (X∗,n)−1,

where P
∗,n is the n-period supermartingale coupling (w.r.t. partition πn), obtained through the

Markovian iteration of one-period increasing supermartingale couplings P̄
µtn

k
,µtn

k+1 . (Here X∗,n

is the piece-wise constant canonical process; see Section 3.)
Then the sequence (Pn)n≥1 is tight w.r.t. the Skorokhod topology on Ω.
Moreover, any accumulation point of (Pn)n≥1, denoted by P

0, is the law of the following
SDE:

Xt = X0 −
∫ t

0

jd(t,Xs−)(dNs − νsds)−
∑

s≤t

1{Xs−=es}(e
s + e2s),

where (Ns)0≤s≤1 is a unit size jump process, with predictable compensator νs := ju
jd
(s,Xs−),

with jd, ju as in (4.21), (4.22).
Finally, if Assumption 2.2 holds with cxyy > 0 and cxy < 0, then P

0 solves P∞(µ) and the
strong duality P∞(µ) = D∞(µ) holds.

Proof. The tightness of (Pn)n≥1 is guaranteed by Proposition 3.4.
The proof of the SDE characterization of P0 and its optimality use similar arguments as in

Theorems 3.14 and 3.15. Some notable difference arise due to the fact that the construction is
based on the one-period increasing supermartingale coupling (and not on he decreasing one).
For example, the drift part of X is determined by ju (and thus by the upward transitions of
the increasing supermrtingale coupling), while the jumps of X are governed by jd (and thus
arise from the downward transitions of the increasing coupling). In particular, the terms αu, αd

(which are defined as in the proof of Theorem 3.14) will determine the integral part of the SDE.
This does not introduce new arguments and thus we omit the details.

In order to explain the summation term that appears in the SDE, we turn to the term αd̃

(see the proof of Theorem 3.14):

αd̃ = E
P
n

tn
k
[{ϕ(Xtn

k
− J

ǫnk
d (tnk , Xtn

k
))− ϕ(Xtn

k
)}1

{xǫn
k

1 (tn
k
)≤Xtn

k
<e

tn
k }

],
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where ǫnk = tnk+1 − tnk . Note that in the present setting xǫ
1(t) → et, and thus in the limit, the

supermartingale region [xǫ
1(t), rt) becomes a single point. Using this together with the fact that

Jǫ
d(t, x) → e2t + x, we obtain that

αd̃ = E
P
n

tn
k





∑

tn
k
≤s≤tn

k+1

[

ϕ(−e2s)− ϕ(es)
]

1{Xs=es}



+O(ǫnk (ǫ
n
k ∨ ρ1(ǫ

n
k ))),

which, in the limit, determines the summation term
∑

s≤t 1{Xs−=es}(e
s + e2s) of the SDE.

For the optimality, the arguments are similar to those of Theorem 3.15. The candidate
optimal dual strategies should be redefined to reflect the fact that we are working with the
increasing supermartingale coupling (or the left-curtain martingale coupling in the martingale
region). In the limit, we have that X is a martingale on (ℓt, rt), t ∈ [0, 1], and has a strict
supermartingale transition (a jump down to the lower boundary ℓt) only if it escapes to the
upper boundary rt at time t. Hence the dual strategies (see Section 3.3) in fact can be defined
as in Henry-Labordère et al. [41, Eq. (3.9), (3.10), (3.11)]:

∂xh
∗(t, x) =

cx(x, x) − cx(x, Td(t, x))

jd(t, x)
, x ∈ (ℓt, rt),

lim
x↑x1(t)=et

h∗(t, x) = 0 = h∗(t, et).

We remark that from the above definition, for all t ∈ [0, 1], x 7→ h∗(t, x) is continuous. In
addition, ψ∗ is defined, up to a constant, by

∂xψ
∗(t, x) := −h∗(t, x), (t, x) ∈ E = {(t, x) : t ∈ [0, 1], x ∈ (lt, rt)}.

The limiting arguments that prove optimality of (h∗, ψ∗) are as in the decreasing case, and thus
we omit the details.

‘

4.2 Bachelier dynamics with negative drift

In this section we consider the marginals (µt)t∈(0,1] such that each µt has the density

f(t, x) =
1√
2πt

e−
(x+t)2

2t , t ∈ (0, 1]. (4.23)

Note that Assumption 3.1 is almost satisfied; indeed µ0 is left undefined. We could overcome
this by introducing δ > 0 and then working with t ∈ [δ, 1]. Alternatively, we could specify µ̃t to
have density f(t+ δ, ·) for each t ∈ [0, 1]. For the convenience of notation we choose to work on
(0, 1].

Fix t ∈ (0, 1) and ǫ ∈ (0, 1− t]. Since mǫ(t) and mǫ(t), as in Assumption 3.1, correspond to
two unique crossing points of the densities f(t, ·), f(t + ǫ, ·), by direct computation one easily
obtains that

m2 =
t(t+ ǫ)

ǫ
ln

t+ ǫ

t
+ (t+ ǫ)t, m ∈ {mǫ(t),m

ǫ(t)}.

On the other hand, straightforward calculations show that mt (resp. m̃t), the minimizer (resp.
maximizer) of ∂tF (t, ·), is given by mt = −m̃t =

√

t(t+ 1). Note that mt = limǫ↓0 mǫ(t), m̃t =
limǫ↓0mǫ(t), for each t ∈ (0, 1). It follows that Assumption 3.3 holds.

Our next goal is to show that (µt)t∈(0,1] also satisfies Assumption 3.7. Since, rt = ∞ for all
t ∈ (0, 1], Assumption 3.7(ii) is immediate. For Assumption 3.7 (iii), simple calculations lead to

∂txf(t, x) = t−
5
2Φ′

(

x+ t√
t

)[

x+ t+
1

2
(t− x)

(

(x + t)2

t
− 1

)]

,
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where Φ(x) :=
∫ x

−∞
1√
2π

e−
t2

2 dt is the c.d.f. of the standard normal random variable. Now using

that mt =
√

t(t+ 1), we consequently have that ∂txf(t,mt) = t−2
√
t+ 1Φ′(

√
t+

√
t+ 1) > 0.

It is left to verify Assumption 3.7(i). Let xǫ
1(t) be the unique phase transition point of the

decreasing supermartingale coupling of µt and µt+ǫ; see Section B.1.

Lemma 4.6. Let (µt)t∈(0,1] be specified by (4.23). Then, xǫ
1(t) is uniquely determined by the

equation

1− Φ

(

xǫ
1(t) + t√

t

)

=
1

ǫ
(
√
t+ ǫ−

√
t)Φ′

(

xǫ
1(t) + t√

t

)

, t ∈ (0, 1), ǫ ∈ (0, t− 1].

Furthermore, the limit x1(t) := limǫ↓0 xǫ
1(t) exists, and is uniquely determined by the equation

2
√
t

(

1− Φ

(

x1(t) + t√
t

))

= Φ′
(

x1(t) + t√
t

)

. (4.24)

The proof of Lemma 4.6 requires the following auxiliary result.

Lemma 4.7. For each t ∈ (0, 1], the equation 2
√
t(1 − Φ(x)) = Φ′(x) admits a unique (real-

valued) solution x∗
t ∈ (−∞, 2

√
t).

Proof. The proof is an application of the intermediate value theorem. Let us consider the
function F (x) := 2

√
t(1 − Φ(x)) − Φ′(x). First, as F ′(x) = Φ′(x)(x − 2

√
t), it is clear that

x 7→ F (x) is continuous on R, decreasing on (−∞, 2
√
t], increasing on [2

√
t,∞). Furthermore,

limx→−∞ F (x) = 2
√
t > 0 and limx→∞ F (x) = 0. It follows that the equation F (x) = 0 admits

a unique solution in the interval (−∞, 2
√
t).

Proof of Lemma 4.6. To determine xǫ
1(t) ∈ (ℓt, rt) we use the fact that under the decreasing

supermartingale coupling P̂
µt,µt+ǫ , µ|[xǫ

1(t),rt)
is mapped to ν|[yǫ

1(t),rt+ǫ) in a martingale way,

where yǫ1(t) = y
µt,µt+ǫ

1 (see (B.51)). In particular, the pair (xǫ
1(t), y

ǫ
1(t)) is uniquely determined

by the mass and mean preservation condition

∫ rt=∞

xǫ
1(t)

ziµt(dz) =

∫ rt+ǫ=∞

yǫ
1(t)

ziµt+ǫ(dz), i = 0, 1. (4.25)

Note that due to the Dispersion Assumption (see Assumption 3.1), we must have that yǫ1(t) ≤
xǫ
1(t) < mǫ(t).

Now apply the change of variables: x̂ǫ
1(t) =

xǫ
1(t)+t√

t
, ŷǫ1(t) =

yǫ
1(t)+t+ǫ√

t+ǫ
. Then (4.25) with

i = 0 reads
Φ(x̂ǫ

1(t)) = Φ(ŷǫ1(t)). (4.26)

For (4.25) with i = 1, we first re-write it as

∫ ∞

xǫ
1(t)

(x+ t)f(t, x)dx + ǫ

∫ ∞

xǫ
1(t)

f(t, x)dx =

∫ ∞

yǫ
1(t)

(x+ t+ ǫ)f(t+ ǫ, x)dx,

by adding (t + ǫ) times the equation (4.25) with i = 0 on both sides. Then direct calculation
leads to √

tΦ′(x̂ǫ
1(t)) + ǫ(1− Φ(x̂ǫ

1(t))) =
√
t+ ǫΦ′(ŷǫ1(t)). (4.27)

From (4.26), we get x̂ǫ
1(t) = ŷǫ1(t), or equivalently

xǫ
1(t)+t√

t
=

yǫ
1(t)+t+ǫ√

t+ǫ
. By plugging this

relation x̂ǫ
1(t) = x̂ǫ

2(t) into (4.27), we obtain that

1− Φ(x̂ǫ
1(t)) =

1

ǫ
(
√
t+ ǫ−

√
t)Φ′(x̂ǫ

1(t)), (4.28)

26



which is precisely the required algebraic equation that characterizes xǫ
1(t).

We now deal with the limit x1(t) := limǫ↓0 xǫ
1(t).

Recall that ǫ0 := ǫ1 ∧ ǫ2, where ǫ1, ǫ2 are as in Assumptions 3.1 and 3.3, respectively.
For each (small) δ > 0, define F = F δ : R3 → R on {(t, ǫ) : 0 ≤ ǫ ≤ ǫ0, δ ≤ t ≤ 1− ǫ}×R by

F (t, ǫ, x) := (1− Φ(x)) −
√
t+ ǫ −

√
t

ǫ

1√
2π

e−
x2

2 , (t, ǫ, x) ∈ [δ, 1− ǫ]× (0, ǫ0]× R (4.29)

and

F (t, 0, x) := (1 − Φ(x))− 1

2
√
t

1√
2π

e−
x2

2 , (t, x) ∈ [δ, 1]× R. (4.30)

Note that, by (4.28), F (t, ǫ, x̂ǫ
1(t)) = 0 for all ǫ ∈ (0, ǫ0] and t ∈ [δ, 1− ǫ].

Using Lemma 4.7, we define x̂0
1(t), for all t ∈ (0, 1], to be the unique solution to F (t, 0, x) = 0.

Then x0
1(t) is defined as x0

1(t) :=
√
tx̂0

1(t)− t, for each t ∈ (0, 1]. Note that x0
1(·) is continuous if

and only if x̂0
1(·) is. Now since x̂0

1(t) uniquely satisfies F (t, 0, x) = 0, we immediately have that
limǫ↓0 x̂ǫ

1(t) exists, for all t ∈ (0, 1], and uniquely satisfies (4.24).

Lemma 4.8. For ǫ ∈ [0, ǫ0] and t ∈ (0, 1], let xǫ
1(t) be given by Lemma 4.6 with x0

1(t) := x1(t) =
limǫ↓0 xǫ

1(t).
Then, for each (small) δ > 0, the map (t, ǫ) 7→ xǫ

1(t) is continuous on {(t, ǫ) : 0 ≤ ǫ ≤
ǫ0, δ ≤ t ≤ 1− ǫ} × R.

Proof. Let F be defined as in (4.29) and (4.30). To prove the continuity of (t, ǫ) 7→ xǫ
1(t) :=√

tx̂ǫ
1(t)− t, we will use the implicit function theorem and show that (t, ǫ) 7→ x̂ǫ

1(t) is continuous,
where F (t, ǫ, x̂ǫ

1(t)) = 0.
We claim that (t, ǫ, x) 7→ F (t, ǫ, x) is continuously differentiable.
First, for 0 < ǫ ≤ ǫ0, we have that

∂F

∂ǫ
(t, ǫ, x) = − 1√

2π
e−

x2

2

1
2 (t+ ǫ)−

1
2 ǫ− (

√
t+ ǫ−

√
t)

ǫ2
,

and it follows that limǫ→0
∂F
∂ǫ

(t, ǫ, x) = −Φ′(x)14 t
− 3

2 . On the other hand,

∂F

∂ǫ
(t, 0, x) = lim

ǫ→0

F (t, ǫ, x)− F (t, 0, x)

ǫ
= lim

ǫ→0
− 1√

2π
e−

x2

2

1
2 t

− 1
2 ǫ− (

√
t+ ǫ−

√
t)

ǫ2
= −Φ′(x)

1

4
t−

3
2 ,

and hence ∂F
∂ǫ

is continuous. The continuity of ∂F
∂t

and ∂F
∂x

follow similarly by the direct com-
putations.

Now we check that ∂F
∂x

(t, ǫ, x)|F (t,ǫ,x)=0 6= 0. For ǫ ∈ [0, ǫ0], direct calculations show that

∂F

∂x
(t, ǫ, x)|F (t,ǫ,x)=0 = Φ′(x)

[

x
1 − Φ(x)

Φ′(x)
− 1

]

< 0,

where for the inequality we use the fact that 1−Φ(x)
Φ′(x) < 1

x
when x > 0 (for x ≤ 0 the inequality

is trivially satisfied).
By the implicit function theorem, we get that (t, ǫ) 7→ x̂ǫ

1(t) is continuously differentiable on
a compact set {(t, ǫ) : 0 ≤ ǫ ≤ ǫ0, δ ≤ t ≤ 1 − ǫ}, and consequently uniformly bounded and
continuous. The regularity of (t, ǫ) 7→ xǫ

1(t) follows from the regularity of (t, x) 7→ x̂ǫ
1(t).

Since all the assumption required for Theorems 3.14 and 3.15 hold we have the following.
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Proposition 4.9. Let (µt)t∈(0,1] be specified by (4.23) and consider t 7→ x1(t) as in Lemma 4.6.
Then the SDE as in Theorem 3.14 is explicitly given by

Xt = X0 +

∫ t

0

ju(s,Xs−)(dNs − νsds)1{x1(s)<Xs−<ms} −
∫ t

0

1{Xs−≤x1(s)}jd(s,Xs−)ds,

where ms =
√

s(s+ 1), νs(s,Xs−) := jd
ju
(s,Xs−) with ju(t, x) = Tu(t, x) − x, and jd(t, x) =

1
2
√
t
(T̃u(t, x) − 2

√
t)e

x̂2

2 − T̃u(t,x)2

2 − x̂

2
√
t
+ 1, for x ∈ (x1(s),ms), and jd(s,Xs−) := s−x

2s for

x ∈ (ℓs, x1(s)]; here x̂ := x+t√
t

and T̃u(t, x) :=
√
tTu(t, x) − t is uniquely determined by the

equation

(T̃u(t, x) − x̂)(T̃u(t, x)− 2
√
t)Φ′(T̃u(t, x)) + 2

√
t
(

Φ(T̃u(t, x)) − Φ(x̂)
)

= Φ′(x̂)− Φ′(T̃u(t, x)).

In addition, if Assumption 2.2(ii) and the integrability condition (3.12) are satisfied, then
the law P

0 of the above process is the optimal solution for the primal problem (2.4), and the
strong duality

E
P
0

[C(X·)] = P∞(µ) = D∞(µ)

holds.

Proof. As it has been verified that Assumptions 3.1, 3.3, 3.7 are valid (up to t = 0), using
Theorems 3.14 and 3.15 we obtain the validity of the SDE and the optimality of P0. It is left
to derive the explicit expressions of the terms Tu, ju, jd that define the SDE.

In the supermartingale region, i.e., for x ∈ (ℓt, x1(t)], we have that

jd(t, x) =
1

f(t, x)
∂tF (t, x) =

√
t

Φ′(x+t√
t
)
∂tΦ(

x+ t√
t
) =

t− x

2t
.

In the martingale region, i.e., for x ∈ (x1(t),mt), using (3.8) we have that Tu(t, x) is uniquely
determined by

∫ Tu(t,x)

x

(x− ξ)
∂

∂t

(

1√
2πt

e−
(ξ+t)2

2t

)

dξ = 0.

By a change of variables T̃u(t, x) :=
√
tTu(t, x)− t, we obtain that T̃u(t, x) satisfies

(T̃u(t, x) − x̂)(T̃u(t, x)− 2
√
t)Φ′(T̃u(t, x)) + 2

√
t
(

Φ(T̃u(t, x)) − Φ(x̂)
)

= Φ′(x̂)− Φ′(T̃u(t, x)).

Finally, for x ∈ (x1(t),mt),

jd(t, x) =
∂tF (t, x) − ∂tF (t, Tu(t, x))

f(t, x)
=

1

2
√
t
(T̃u(t, x)− 2

√
t)e

x̂2

2 − T̃u(t,x)2

2 − x̂

2
√
t
+ 1,

as required.

Remark 4.10. Let (µt)t∈(0,1] be specified by (4.23) and for t ∈ (0, 1) and ǫ ∈ (0, 1 − t], con-
sider the increasing supermartingale coupling of µt and µt+ǫ. Then there exists the unique
threshold xǫ

1(t), such that (ℓt, x
ǫ
1(t)] is a martingale region, while (xǫ

1(t), rt) corresponds to the
supermartingale region.

By changing variables x̂ǫ
1(t) =

xǫ
1(t)+t√

t
and using similar arguments as in Lemma 4.6, we

have that xǫ
1(t) uniquely solves

ǫΦ(x̂ǫ
1(t)) =

√
tΦ′(x̂ǫ

1(t)) +
√
t+ ǫΦ′(−x̂ǫ

1(t)).
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Then letting ǫ ↓ 0 we have that x̂ǫ
1(t) → +∞ (provided the limit exists). It follows that xǫ

1(t) →
+∞, and therefore one could expect that the supermartingale transitions of the limiting SDE
correspond to jumps from ∞ to −∞.

This is in-line with our observations in Proposition 4.5 obtained in the uniform case. In
particular, when the increasing supermartingale coupling is used in construction, and in the
case of unbounded support of marginals, the convergence results may fail in general. We will
consider these issues in our future research.

4.3 Geometric Brownian motion with decreasing average

In this section we consider the marginals (µt)t∈(0,1] such that each µt has the density

f(t, x) =
1

x
√
2πt

e−
(ln x+t)2

2t , t ∈ (0, 1]. (4.31)

Similarly to the previous Bachelier case (see Section 4.2), we can introduce δ > 0 and then work
with t ∈ [δ, 1] (or t ∈ [δ, 1 + δ]). For the convenience of notation we shall work on (0, 1].

Assumption 3.1 is clearly satisfied. Fix t ∈ (0, 1) and ǫ ∈ (0, 1− t]. For mǫ(t) and mǫ(t) (as
in Assumption 3.1), direct computation leads to

(lnm)2 =
t(t+ ǫ)

ǫ
ln

t+ ǫ

t
+ (t+ ǫ)t, m ∈ {mǫ(t),m

ǫ(t)}.

On the other hand, straightforward calculations show that mt (resp. m̃t), the minimizer (resp.
maximizer) of ∂tF (t, ·), is given by lnmt = − ln m̃t =

√

t(t+ 1). It follows that Assumption 3.3
is also valid.

We now show that (µt)t∈(0,1] also satisfies Assumption 3.7. First, Assumption 3.7(ii) is
immediate, as rt = ∞ for all t ∈ (0, 1]. For Assumption 3.7 (iii), simple calculations lead to

∂txf(t,mt) = t−
3
2

√
t+ 1Φ′(

√
t+

√
t+ 1)e−2

√
t(t+1) > 0.

It is left to verify Assumption 3.7(i). Let xǫ
1(t) be the unique phase transition point of the

decreasing supermartingale coupling of µt and µt+ǫ; see Section B.1.

Lemma 4.11. Let (µt)t∈(0,1] be specified by (4.31). Then, xǫ
1(t) is uniquely determined by the

equation

1− Φ(
ln xǫ

1(t)√
t

) = e−
1
2 ǫ[1− Φ(

ln xǫ
1(t) + t√

t
−
√
t+ ǫ)], t ∈ (0, 1), ǫ ∈ (0, t− 1].

Furthermore, the limit x1(t) := limǫ↓0 xǫ
1(t) exists, and is uniquely determined by the equation

1√
t
Φ′(

lnx1(t)√
t

) = 1− Φ(
ln x1(t)√

t
). (4.32)

The proof of Lemma 4.11 requires the following auxiliary result.

Lemma 4.12. For each t ∈ (0, 1], the equation
√
t(1− Φ(x)) = Φ′(x) admits the unique (real-

valued) solution x∗
t ∈ (−∞,

√
t).

Proof. The proof is similar to Lemma 4.7 and is an application of the intermediate value theorem.
Hence we omit the details here.
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Proof of Lemma 4.11. To determine xǫ
1(t) ∈ (ℓt, rt) we use the fact that under the decreasing

supermartingale coupling P̂
µt,µt+ǫ , µ|[xǫ

1(t),rt)
is mapped to ν|[yǫ

1(t),rt+ǫ) in a martingale way,

where yǫ1(t) = y
µt,µt+ǫ

1 (see (B.51)). In particular, the pair (xǫ
1(t), y

ǫ
1(t)) is uniquely determined

by the mass and mean preservation condition

∫ rt=∞

xǫ
1(t)

ziµt(dz) =

∫ rt+ǫ=∞

yǫ
1(t)

ziµt+ǫ(dz), i = 0, 1. (4.33)

Note that due to the Dispersion Assumption (see Assumption 3.1), we must have that yǫ1(t) ≤
xǫ
1(t) < mǫ(t).

Now apply the change of variables: x̂ǫ
1(t) =

ln xǫ
1(t)+t√
t

, ŷǫ1(t) =
ln yǫ

1(t)+t+ǫ√
t+ǫ

. Then (4.33) with

i = 0 reads
Φ(x̂ǫ

1(t)) = Φ(ŷǫ1(t)). (4.34)

For (4.33) with i = 1, it is equivalent to

∫ +∞

x̂ǫ
1(t)

1√
2π

e−
1
2 (y−

√
t)2dy = e−

1
2 ǫ

∫ +∞

ŷǫ
1(t)

1√
2π

e−
1
2 (y−

√
t+ǫ)2dy,

which leads to
1− Φ(x̂ǫ

1(t)−
√
t) = e−

1
2 ǫ[1− Φ(ŷǫ1(t)−

√
t+ ǫ)]. (4.35)

From (4.26), we get x̂ǫ
1(t) = ŷǫ1(t), or equivalently

ln xǫ
1(t)+t√
t

=
ln yǫ

1(t)+t+ǫ√
t+ǫ

. By plugging

x̂ǫ
1(t) = ŷǫ1(t) into (4.35), we obtain that

1− Φ(
ln xǫ

1(t)√
t

) = e−
1
2 ǫ[1− Φ(

ln xǫ
1(t) + t√

t
−
√
t+ ǫ)], (4.36)

which characterizes xǫ
1(t).

We now deal with the limit x1(t) := limǫ↓0 xǫ
1(t).

Recall that ǫ0 := ǫ1 ∧ ǫ2, where ǫ1, ǫ2 are as in Assumptions 3.1 and 3.3, respectively.
For each (small) δ > 0, define G = Gδ : R3 → R on {(t, ǫ) : 0 ≤ ǫ ≤ ǫ0, δ ≤ t ≤ 1− ǫ}×R by

G(t, ǫ, x) :=
1

ǫ

{

(1− Φ(x)) − e−
1
2 ǫ[1− Φ(x+

√
t−

√
t+ ǫ)]

}

, (t, ǫ, x) ∈ [δ, 1− ǫ]× (0, ǫ0]× R

(4.37)
and

G(t, 0, x) := (1− Φ(x)) − 1√
t

1√
2π

e−
x2

2 . (4.38)

Note that, by (4.36), G(t, ǫ, x̂ǫ
1(t)) = 0 for all ǫ ∈ (0, ǫ0] and t ∈ [δ, 1− ǫ].

Using Lemma 4.12, we define x̂0
1(t), for all t ∈ (0, 1], to be the unique solution to F (t, 0, x) =

0. Then x0
1(t) is defined as x0

1(t) := exp
(√

tx̂0
1(t)− t

)

, for each t ∈ (0, 1]. Note that x0
1(·) is

continuous if and only if x̂0
1(·) is. Now since x̂0

1(t) uniquely satisfies F (t, 0, x) = 0, we immediately
have that limǫ↓0 x̂ǫ

1(t) exists, for all t ∈ (0, 1], and uniquely satisfies (4.24).

Lemma 4.13. For ǫ ∈ [0, ǫ0] and t ∈ (0, 1], let xǫ
1(t) be given by Lemma 4.11 with x0

1(t) :=
x1(t) = limǫ↓0 xǫ

1(t).
Then, for each (small) δ > 0, the map (t, ǫ) 7→ xǫ

1(t) is continuous on {(t, ǫ) : 0 ≤ ǫ ≤
ǫ0, δ ≤ t ≤ 1− ǫ} × R.

Proof. Let G be defined as in (4.37) and (4.38). To prove the continuity of (t, ǫ) 7→ xǫ
1(t) :=

exp
(√

tx̂ǫ
1(t)− t

)

, we will use the implicit function theorem and show that (t, ǫ) 7→ x̂ǫ
1(t) is

continuous, where G(t, ǫ, x̂ǫ
1(t)) = 0.
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We claim that (t, ǫ, x) 7→ G(t, ǫ, x) is continuously differentiable. Indeed,

lim
ǫ→0

∂G

∂ǫ
(t, ǫ, x) = −1

8
(1− Φ(x)) +

1

8
Φ′(x)t−

3
2 (2t+ 1) +

1

8
Φ′′(x)t−1

= lim
ǫ→0

G(t, ǫ, x) −G(t, 0, x)

ǫ
,

and hence ∂G
∂ǫ

is continuous. The continuity of ∂G
∂t

and ∂G
∂x

follow similarly by the direct com-
putations.

Now we check that ∂G
∂x

(t, ǫ, x)|G(t,ǫ,x)=0 6= 0. For ǫ ∈ [0, ǫ0], direct calculations show that

∂G

∂x
(t, ǫ, x)|G(t,ǫ,x)=0 = −Φ′(x)+e−

1
2 ǫΦ′(x+

√
t−

√
t+ ǫ) = − Φ′(x)

1− Φ(x)
+

Φ′(x+
√
t−√

t+ ǫ)

1− Φ(x+
√
t−√

t+ ǫ)
,

and the desired conclusion follows.
We now study the monotonicity of the map x 7→ Φ′(x)

1−Φ(x) :

(

Φ′(x)

1− Φ(x)

)′
=

Φ′′(x)(1 − Φ(x)) + (Φ′(x))2

(1− Φ(x))2
= Φ′(x)

Φ′(x)− x(1 − Φ(x))

(1− Φ(x))2
> 0,

where in the last step, in the case x > 0, we use the inequality 1−Φ(x)
Φ′(x) < 1

x
(the case x ≥ 0 is

trivially satisfied). Hence x 7→ Φ′(x)
1−Φ(x) is strictly increasing. It follows that ∂G

∂x
|G(t,ǫ,x)=0 < 0 for

ǫ ∈ (0, ǫ0]. Similarly, for ǫ = 0, we have that

∂G

∂x
(t, 0, x)|G(t,0,x)=0 = −Φ′(x) +

1√
t
Φ′(x)x = −Φ′(x) + x(1 − Φ(x)) < 0.

Finally, from the implicit function theorem, we have that (t, ǫ) 7→ lnxǫ
1(t) is continuously dif-

ferentiable on a compact set {(t, ǫ) : 0 ≤ ǫ ≤ ǫ0, δ ≤ t ≤ 1 − ǫ}, and consequently uniformly
bounded and continuous.

Finally we have the following characterization and the optimality of the limiting process.

Proposition 4.14. Let (µt)t∈(0,1] be specified by (4.31) and consider t 7→ x1(t) as in Lemma
4.11. Then the SDE as in Theorem 3.14 is explicitly given by

Xt = X0 +

∫ t

0

ju(s,Xs−)(dNs − νsds)1{x1(s)<Xs−<ms} −
∫ t

0

1{Xs−≤x1(s)}jd(s,Xs−)ds,

where ms = e
√

s(s+1), νs(s,Xs−) :=
jd
ju
(s,Xs−) with ju(t, x) = Tu(t, x)− x, and

jd(t, x) =
x

2

[

e
(ln x+t)2

2t − (ln(TS(t,x))+t)2

2t (
ln(Tu(t, x))√

t
−
√
t)− (

lnx√
t
−
√
t)

]

,

for x ∈ (x1(s),ms), and jd(s,Xs−) := x s−ln x
2s for x ∈ (ℓs, x1(s)]; here Tu(t, x) is uniquely

determined by the following equation:

(1− x

Tu(t, x)
)e−

(ln(Tu(t,x)))2

2t ln(Tu(t, x)) = t(1− x

Tu(t, x)
)e−

(ln x)2

2t −t
3
2

[

Φ(
ln(Tu(t, x))√

t
)− Φ(

lnx√
t
)

]

.

In addition, if Assumption 2.2(ii) and the integrability condition (3.12) are satisfied, then the
law P

0 of the above process is the optimal solution for the primal problem (2.4), and the strong
duality

E
P
0

[C(X·)] = P∞(µ) = D∞(µ)

holds.
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Proof. As it has been verified that Assumptions 3.1, 3.3, 3.7 are valid (up to t = 0), using
Theorems 3.14 and 3.15 we obtain the validity of the SDE and the optimality of P0. It is left
to derive the explicit expressions of the terms Tu, ju, jd that define the SDE.

The calculations are similar to those of Proposition 4.9, and we omit the details.

A Brenier’s Theorem

A.1 Brenier’s Theorem in Optimal Transport (OT)

Let (X,Y ) be a random vector in R
2 and let P2 be the set of all (Borel) probability measures

on R
2. We denote respectively µ and ν the (integrable) marginal distributions of X and Y .

Let c : R2 → R be a (measurable) cost, or payoff, function. The primal Optimal Transport
problem corresponds to

POT (µ, ν) := sup
P∈P2(µ,ν)

E
P[c(X,Y )], where P2(µ, ν) := {P ∈ P2 : X ∼P µ, Y ∼P ν}.

The above optimisation problem has a dual problem, which is defined by

DOT (µ, ν) := inf
(ϕ,ψ)∈Ds

{µ(ϕ)+ν(ψ)}, where Ds := {(ϕ, ψ) : µ(ϕ∨0)+ν(ψ∨0) < ∞, ϕ⊕ψ ≥ c}.

In the above, ϕ ⊕ ψ(x, y) := ϕ(x) + ψ(y) and χ(f) :=
∫

fdχ, for a (Borel) measure χ on R

and a (Borel) measurable f : R → R. Under mild conditions, it can be proved that the duality
POT (µ, ν) = DOT (µ, ν) holds. (The notation Ds is motivated by the fact that, in financial
terms, (ϕ, ψ) ∈ Ds corresponds to a static hedging strategy.)

The Brenier’s theorem gives the explicit expressions of the optimizers of both the primal
and dual problems. In the case µ is atomless, a candidate primal optimizer is given by the
Fréchet-Hoeffding (or quantile) coupling P∗ defined by

P∗(dx, dy) := µ(dx)δT∗(x)(dy), (A.39)

push-forward map from µ to ν is where T∗ := F−1
ν ◦Fµ. Here F

−1
ν is the right-continuous inverse

of (the c.d.f. of ν) Fν : F
−1
ν (t) := inf{y : Fν > t}.

We further introduce candidate dual optimizers ϕ∗ and ψ∗ (up to a constant) by setting

ϕ∗(x) := c(x, T∗(x)) − ψ∗ ◦ T∗(x), ψ′
∗(y) := cy(T

−1
∗ (y), y), ∀x, y ∈ R. (A.40)

Theorem A.1 (Brenier [18], Rachev and Rüschendorf [61]). Suppose µ has no atoms. Let c
be an upper semi-continuous function with (at most) linear growth. Assume that the partial
derivative cxy exists and satisfies the Spence-Mirrlees condition cxy > 0.

Let P∗ be as in (A.39), (ϕ∗, ψ∗) as in (A.40), and assume that (µ(ϕ∗ ∨ 0)+ ν(ψ∗ ∨ 0)) < ∞.
Then P∗ ∈ P2(µ, ν), (ϕ∗, ψ∗) ∈ Ds and

∫

c(x, T∗(x))µ(dx) = POT (µ, ν) = DOT (µ, ν) = µ(ϕ∗) + ν(ψ∗).

Remark A.2. In the case cxy < 0, then POT = DOT and the optimal coupling is the antitone
coupling which is supported on x 7→ T ∗(x) := F−1

ν ◦ (1 − Fµ(x)). The dual optimizers are still
defined through (A.40), but with T ∗ in place of T∗.
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A.2 Brenier’s Theorem in Martingale Optimal Transport (MOT)

Two (integrable) probability measures µ, ν on R are increasing in convex order, denoted by
µ ≤c ν, if for all convex functions f : R → R, we have that µ(f) ≤ ν(f). By the Strassen’s
classical result [62], µ ≤c ν is equivalent to non-emptiness of the set M2(µ, ν) := {P ∈ P2(µ, ν) :
E
P[Y |X ] = X}.
In this section we suppose that µ and ν have finite first moments, µ ≤c ν, and the following

Dispersion Assumption holds:

Assumption A.3 (Dispersion). µ, ν admit densities fµ, fν that satisfy

1. fµ > 0 on (ℓµ, rµ), fν > 0 on (ℓν , rν), and ℓν ≤ ℓµ < rµ ≤ rν .

2. There exists ℓµ < m := mµ,ν < m := mµ,ν < rµ such that

fµ > fν , on (m,m), fν > fµ on (ℓν ,m) ∪ (m, rν), fµ = fν , on {m,m}.

Remark A.4. Note that if µ = ν and Assumption A.3 holds, then µ ≤c ν. Furthermore,
the difference of distribution functions y 7→ Fν(y) − Fµ(y) attains the (unique) maximum and
minimum at mµ,ν and mµ,ν , respectively.

Given a (measurable) payoff function c : R2 → R, the primal problem of MOT is defined by

PMOT (µ, ν) := sup
P∈M2(µ,ν)

E
P[c(X,Y )].

The MOT problem also has a dual problem:

DMOT (µ, ν) := inf
(ϕ,ψ,h)∈Dss

{µ(ϕ) + ν(ψ)},

where the set of dual variables is defined as:

Dss := {(ϕ, ψ, h) : µ(ϕ ∨ 0) + ν(ψ ∨ 0) < ∞, h : R → R, ϕ⊕ ψ + h⊗ ≥ c}

with ϕ⊕ψ(x, y) := ϕ(x)+ψ(y), and h⊗(x, y) := h(x)(y−x). (The notation Dss is motivated by
the fact that, in financial terms, (ϕ, ψ, h) ∈ Dss corresponds to a semi-static hedging strategy,
where the static part is (ϕ, ψ) and the dynamic part corresponds to h.)

We now introduce candidate optimal quantities. We start with a pair of functions (T µ,ν
d , T µ,ν

u )
that will support the optimal coupling in the case µ ≤c ν satisfy Assumption A.3.

Set
gµ,ν(x, y) := F−1

ν (Fµ(x) + Fν(y)− Fµ(y)), x ∈ (ℓµ, rµ), y ∈ (ℓν , rν). (A.41)

Define
T µ,ν
d (x) = T µ,ν

u (x) = x, x ∈ [mµ,ν , rµ). (A.42)

For x ∈ (ℓµ,m
µ,ν), let T µ,ν

d (x) be the (unique) scalar such that

∫ x

−∞
[F−1

ν (Fµ(ξ))−ξ]fµ(ξ)dξ+

∫ Td(x)

−∞
1(−∞,mµ,ν ](ξ)[g

µ,ν(x, ξ)−ξ](fν (ξ)−fµ(ξ))dξ = 0 (A.43)

and set
T µ,ν
u (x) = gµ,ν(x, T µ,ν

d (x)), x ∈ (ℓµ,m
µ,ν). (A.44)

Remark A.5. The existence and uniqueness of (A.43) is given by Henry-Labordère and Touzi
[42]. Furthermore, Td(x) ≤ x ≤ Tu(x) for all x ∈ (ℓµ, rµ), and, under Assumption A.3, Td, Tu

are both continuous, Td (resp. Tu) is strictly increasing (resp. decreasing) on (ℓµ,m
µ,ν ]. See

Henry-Labordère and Touzi [42, Section 4] (note, however, that [42] constructed the left-curtain
martingale coupling, while in the present paper we are working with the right-curtain coupling.)
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Using the pair (T µ,ν
d , T µ,ν

u ) we now define a candidate martingale coupling through its dis-
integration w.r.t. the first marginal µ. Define a measure P

µ,ν on R
2 by

P
µ,ν(dx, dy) = µ(dx)1[mµ,ν ,rµ)(x)δx(dy)

+ µ(dx)1(ℓµ,mµ,ν)(x)
[

qµ,ν(x)δTµ,ν
u (x)(dy) + (1− qµ,ν(x))δTµ,ν

d
(x)(dy)

]

,
(A.45)

where

qµ,ν(x) :=
x− T µ,ν

d (x)

T µ,ν
u (x) − T µ,ν

d (x)
, x ∈ (ℓµ,m

µ,ν), (A.46)

corresponds to the (conditional) martingale probability of jumping to T µ,ν
u (x) from x.

We now introduce a candidate triple (ϕ∗, ψ∗, h∗) = (ϕµ,ν
∗ , ψµ,ν

∗ , hµ,ν
∗ ) for the dual problem.

To ease the notation we will write (Td, Tu) = (T µ,ν
d , T µ,ν

u ).
Define h∗, up to a constant, by

h∗ = h∗ ◦ T−1
d + cy(·, ·)− cy(T

−1
d , ·) on [mµ,ν , rµ),

h′
∗ =

cx(·, Tu)− cx(·, Td)

Tu − Td

on (ℓµ,m
µ,ν).

(A.47)

(Note that the constant can be chosen such that h∗ is continuous.) The (continuous) function
ψ∗ is then given (also up to a constant) by

ψ′
∗ = cy(T

−1
d , ·)− h∗ ◦ T−1

d on [mµ,ν , rµ),

ψ′
∗ = cy(T

−1
u , ·)− h∗ ◦ T−1

u on (ℓµ,m
µ,ν).

(A.48)

Finally the function ϕ∗ is defined by

ϕ∗(x) = E
P
µ,ν

[c(X,Y )− ψ∗(Y )|X = x], x ∈ (ℓµ, rµ). (A.49)

Theorem A.6 (Henry-Labordère and Touzi [42, Theorems 4.5, 5.1]). Suppose µ ≤c ν satisfies
Assumption A.3. Assume further that

∫

ϕ∗ ∨ 0dµ +
∫

ψ∗ ∨ 0dν < ∞, and that the partial
derivative cxyy exists and cxyy < 0 on R

2. Let P∗ = P
µ,ν be as in (A.45) and (ϕ∗, ψ∗, h∗) as in

(A.49), (A.48), (A.47).
Then P∗ ∈ M2(µ, ν), (ϕ∗, ψ∗, h∗) ∈ Dss and the strong duality holds:

E
P∗ [c(X,Y )] = PMOT (µ, ν) = DMOT (µ, ν) = µ(ϕ∗) + ν(ψ∗).

B One-period Supermartingale Optimal Transport

B.1 Solution to the primal SMOT problem and related properties

Let µ, ν ∈ P be in convex-decreasing order, i.e., µ ≤cd ν (for two measures η, χ on R we also
write η ≤ χ if η(A) ≤ χ(A) for all Borel A ⊆ R). Let S2(µ, ν) := {P ∈ P2(µ, ν) : E

P[Y |X ] ≤ X}
be the set of supermartingale couplings with given marginals µ and ν. The following theorem
defines the decreasing supermartingale coupling P̂ = P̂

µ,ν ∈ S2(µ, ν).

Theorem B.1 (Nutz and Stebegg [57]). Suppose µ ≤cd ν and let P̂ ∈ S2(µ, ν) be the decreasing
supermartingale coupling. It satisfies any, and then all, of the following properties

1. P̂ solves (2.1) whenever c satisfies cxyy < 0 and cxy > 0;

2. For each x ∈ R, P̂|[x,∞)×R is the smallest element (w.r.t. ≤cd) of {θ : µ|[x,∞)≤cd θ ≤ ν};
3. There exists Γ ⊆ R

2 and M ⊂ R such that P̂∗ is second-order right-monotone and first-
order left-monotone w.r.t. (Γ,M) in the sense of Definition B.2.
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Definition B.2. Let (Γ,M) ∈ B(R2)×B(R). We say

1. Γ is second-order right-monotone if for all (x, y1), (x, y2), (x
′, y′) ∈ Γ with x′ < x we have

that y′ /∈ (y1, y2);

2. (Γ,M) is first-order left-monotone if for all (x1, y1), (x2, y2) ∈ Γ with x1 < x2 and x2 /∈ M
we have that y1 ≤ y2.

The second property of P̂ in Theorem B.1 implies that, for each x ∈ R, P̂|[x,∞)×R is the
shadow of µ|[x,∞) in ν: given µ0 ≤ µ ≤cd ν, the shadow measure, denoted by Sν(µ0), is the
smallest element (w.r.t. ≤cd) of {θ : µ0 ≤cd θ ≤ ν}.

Furthermore, the set M , that appears in the third property of P̂ in Theorem B.1, corresponds
to the martingale points of P̂ in the sense that P̂|M×R is a martingale. The explicit constructions

of P̂ and M were provided by Bayraktar et. al. [5, Theorem 6.1, Proposition 5.1]. In particular,

there exists (xn)n≥1 in R such that M =
⋃

n≥1[xn+1, xn), so that P̂ alternates between being a
martingale and supermartingale at most countably many times. For each n ≥ 1, the transitions
of P̂ on [xn+1, xn) are of the right-curtain type (see (A.45)), while on R \ M , P̂ mimics the
transitions of the quantile coupling (see (A.39)).

For a measure η on R let Cη : R → R be given by Cη(k) :=
∫

R
(x − k)+η(dx), k ∈ R. Define

cµ,ν : R → R by
cµ,ν(x) = sup

k∈R

{Cµ|[x,∞)
(k)− Cν(k)}, x ∈ R.

Then, provided µ is atom-less, c is non-negative non-decreasing, continuous and

c(x) = µ|[x,∞) − Sν(µ|[x,∞)).

See Bayraktar et. al. [5, Lemmas 3.1, 5.1]. Then the first point (starting from the right,

i.e., rµ, and moving to the left towards ℓµ) where P̂ transitions from being a martingale to
supermartingale is given by

xµ,ν
1 = inf{x ∈ R : cµ,ν(x) = 0} with inf ∅ = rµ. (B.50)

Furthermore, define
yµ,ν1 = ℓSν(µ|[xµ,ν

1 ,∞))
. (B.51)

Note that, since µ|[xµ,ν
1 ,∞)≤cd Sν(µ|[xµ,ν

1 ,∞)), we have that yµ,ν1 ≤ xµ,ν
1 .

Lemma B.3. Suppose that µ ≤cd ν satisfy Assumption A.3. Let P̂ be the decreasing super-
martingale coupling of Theorem B.1.

Then the (µ-a.s. unique) set of martingale points of P̂ is given by M = [xµ,ν
1 , rµ). Further-

more, the second marginal of P̂|M×R is ν|[yµ,ν
1 ,rν).

Proof of Lemma B.3. We assume that µ > ν, since otherwise µ ≤c ν, and there is nothing to
prove. Indeed, if µ = ν, then xµ,ν

1 = ℓµ and P̂ = P
µ,ν is the right-curtain martingale coupling;

see (A.45).
Suppose that xµ,ν

1 ∈ (ℓµ, rµ]. Let m := mµ,ν . Note that µ|[m,rµ)≤ ν and thus µ|[m,rµ)=
Sν(µ|[m,rµ)). It follows that xµ,ν

1 ≤ m. In fact, since µ and ν − µ|[m,rµ) both have strictly
positive densities in the neighbourhood of m and fµ > fν to the left of m, we must have that
xµ,ν
1 < m.
We now argue that Sν(µ|[xµ,ν

1 ,rµ)) = ν|[y1(µ,ν),rν). First, using the associativity of the shadow
measure (see Bayraktar et al. [4]), we have that

Sν(µ|[xµ,ν
1 ,rµ)) = µ|[m,rµ)+Sν−µ|[m,rµ)(µ|[xµ,ν

1 ,m)).
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Thanks to the properties of the shadow measure (Sν−µ|[m,rµ)(µ|[xµ,ν
1 ,m)) has the smallest variance

among all possible target laws of µ|[xµ,ν
1 ,m) within ν − µ|[m,rµ)), we have that

Sν−µ|[m,rµ)(µ|[xµ,ν
1 ,m)) = ν|[y1(µ,ν),m)+(ν − µ|[m,rµ))|(m,r0)

for some r0 ∈ (m, rν ]. But if r0 < rν , then ν−Sν(µ|[xµ,ν
1 ,rµ)) charges [r0, rν). Then, since x

µ,ν
1 <

m < r0 < rν , we can find a small enough x < xµ,ν
1 , such that µ|[x,xµ,ν

1 )≤c S
ν−Sν(µ|[xµ,ν

1
,rµ))(µ|[x,xµ,ν

1 )),

contradicting the minimality of xµ,ν
1 . It follows that r0 = rν .

It is left to show that xµ,ν
1 is the (µ-a.s.) unique regime-switching point. For this we use

the following observations. The transitions of the decreasing supermartingale coupling P̂ is
either those of the right-curtain (see (A.45)) or the quantile coupling (see (A.39)); see Nutz
and Stebegg [57] or Bayraktar et al. [5]. In particular, by the definition of xµ,ν

1 , we must have

that, (locally) to the left of xµ,ν
1 , P̂ corresponds to the quantile coupling of µ|(−∞,x

µ,ν
1 ) and

ν|(−∞,y
µ,ν
1 ), denoted by πq (which is just a restriction of the quantile coupling of µ and ν to

(−∞, xµ,ν
1 )× (−∞, yµ,ν1 )).

Under πq, each x ∈ (ℓµ, x
µ,ν
1 ) is mapped to F−1

ν (Fµ(x)). Note that x 7→ F−1
ν (Fµ(x)) is non-

decreasing, continuous, and by construction (and the supermartingale requirement) we have
that F−1

ν (Fµ(x
µ,ν
1 )) = yµ,ν1 ≤ xµ,ν

1 . Let x̄ be defined by Fµ(x̄) = Fν(x̄). Due to Assumption
A.3, x̄ is unique and satisfies x̄ ∈ (m,m). In particular, Fν > Fµ on (−∞, x̄), while Fν < Fµ on
(x̄,∞).

If xµ,ν
1 ≤ x̄, then F−1

ν (Fµ(x)) < x for all x < xµ,ν
1 , and the quantile coupling provides strict

supermartingale transitions on (−∞, xµ,ν
1 ). Then using characterization of P̂∗ in terms of the

shadow measure, it follows that P̂ = πq on (−∞, xµ,ν
1 ), which proves our claim. On the other

hand, xµ,ν
1 > x̄ cannot happen, since then yµ,ν1 = F−1

ν (Fµ(x
µ,ν
1 )) > xµ,ν

1 , a contradiction.

Finally, provided that µ is atomless and using the construction of Bayraktar et al. [5], we
have that the decreasing supermartingale coupling is supported on the graph of two functions
T̂d = T̂ µ,ν

d , T̂u = T̂ µ,ν
u : (ℓµ, rµ) → (ℓν , rν). If, in addition, the Dispersion Assumption holds, then

using Lemma B.3 and utilising the construction and properties of the right-curtain martingale
coupling Pµ,ν (as in (A.45)) we have that (T̂d, T̂u) satisfies some useful properties.

First,
T̂d(x) ≤ x ≤ T̂u(x) for all x ∈ (ℓµ, rµ), and T̂d = T̂u on [m̄, rµ). (B.52)

Furthermore,
T̂d is continuous and strictly increasing on (ℓµ, rµ),

T̂d(x) = F−1
ν ◦ Fµ on (ℓµ, x

µ,ν
1 )

(B.53)

and
T̂u is continuous on (xµ,ν

1 , rµ), strictly decreasing on (xµ,ν
1 ,m),

T̂u ≡ ∞ on (ℓµ, x
µ,ν
1 ].

(B.54)

In particular, in terms of (T̂d, T̂u), the decreasing supermartingale coupling P
µ,ν is given by

P̂(dx, dy) = µ(dx)1(ℓµ,x
µ,ν
1 ]∪[m,rµ)(x)δT̂d(x)

(dy)

+ µ(dx)1(xµ,ν
1 ,m)

{

T̂u(x)− x

T̂u(x)− T̂d(x)
δT̂d(x)

(dy) +
x− T̂d(x)

T̂u(x)− T̂d(x)
δT̂u(x)

(dy)

}

.
(B.55)

Equivalently, we can express P̂ in terms of the right-curtain coupling P
µ|[xµ,ν

1
,rµ),ν|[yµ,ν

1
rν) of

µ|[xµ,ν
1 ,rµ) and ν|[yµ,ν

1 rν) (see (A.45)):

P̂(dx, dy) = µ(dx)1(ℓµ,x
µ,ν
1 ](x)δF−1

ν (Fµ(x))
(dy) + 1(xµ,ν

1 ,rµ)P
µ|[xµ,ν

1 ,rµ),ν|[yµ,ν
1 rν )(dx, dy). (B.56)
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While the pair (T̂d, T̂u) can be explicitly constructed using potential functions of the un-
derlying measures (see Bayraktar et al. [5]), the following representation is more useful in the
present context.

Recall the definition of g = gµ,ν (see (A.41)).

Proposition B.4. For each x ∈ [xµ,ν
1 ,mµ,ν), T̂u(x) is uniquely characterised by the integral

equation:
∫ ∞

x

[F−1
ν (Fµ(ξ)) − ξ]fµ(ξ)dξ +

∫ ∞

T̂u(x)

1(xµ,ν
1 ,∞)(ξ)[g(x, ξ) − ξ](fν(ξ) − fµ(ξ))dξ = 0,

and T̂d(x) = g(x, T̂u(x)).

Proof. Since µ|[xµ,ν
1 ,rµ)≤c ν|[y1(µ,ν),rν) and the decreasing supermartingale coupling P̂µ,ν of µ ≤cd

ν coincides with the right-curtain coupling of µ|[xµ,ν
1 ,rµ)≤c ν|[y1(µ,ν),rν) on [xµ,ν

1 , rµ), the result
follows immediately from the construction of the latter, which is given in Section A.2 (see (A.43)
and (A.44)).

B.2 Optimal dual strategy for decreasing SMOT

We introduce now the optimal dual strategies to the dual problem (2.5) in the case the decreasing

supermartingale coupling P̂ = P̂
µ,ν (see Theorem B.1) is optimal. Recall that the pair (T̂d, T̂u)

represents the supporting functions of P̂, while x1 = xµ,ν
1 is the unique threshold that separates

martingale and supermartingale regions.
In the following we suppose that µ ≤cd ν satisfy Assumption A.3.
We introduce the following triple (ϕ̂, ψ̂, ĥ) = (ϕ̂(µ, ν), ψ̂(µ, ν), ĥ(µ, ν)), as the candidate

optimal dual strategies for D2(µ, ν) (with D2 defined in (2.2)):

ĥ′(x) :=
cx(x, T̂u(x)) − cx(x, T̂d(x))

T̂u(x) − T̂d(x)
, x1 < x < m;

lim
x↓x1

ĥ(x) = 0;

ĥ(x) := ĥ((T̂u)
−1(x)) − cy((T̂

−1
u (x), x), x ≥ m;

ĥ(x) := 0, x ≤ x1.

(B.57)

Note that, when x = x1, T̂u(x) = ∞ and therefore ĥ′(x) = 0. Furthermore, ĥ is continuous at
x ∈ {x1,m} (note that cy(x, x) = 0 and limx→m(T̂u)

−1(x) = m).

Denoting L−1(x) := (T̂u)
−1(x)1{x≥m}+(T̂d)

−1(x)1{x<m}, we introduce ψ̂, up to a constant,
by

ψ̂′(x) := cy(L
−1(x), x) − ĥ(L−1(x)).

Note that ψ̂ can be chosen to be continuous, which then also makes

c(·, T̂u(·))− ψ̂(T̂u(·)) − c(·, T̂d(·)) + ψ̂(T̂d(·))− (T̂u(·)− T̂d(·))ĥ(·)

continuous.
Finally, we define

ϕ̂(x) := E
P̂[c(X,Y )− ψ(Y )|X = x], x ∈ R.

Note that, for x1 ≤ x ≤ m

ϕ̂(x) =
x− T̂d(x)

T̂u(x) − T̂d(x)

(

c(x, T̂u(x)) − ψ̂(T̂u(x))
)

+
T̂u(x) − x

T̂u(x) − T̂d(x)

(

c(x, T̂d(x)) − ψ̂(T̂d(x))
)

,
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ϕ̂(x) := c(x, x) − ψ̂(x) = −ψ̂(x), x > m

and
ϕ̂(x) := c(x, T̂d(x))− ψ̂(T̂d(x)), x < x1.

From our definitions, we immediately have that EP̂[c(X,Y )] = µ(ϕ̂(X)) + ν(ψ̂(Y )). It is left

to show that the triple (ϕ̂, ψ̂, ĥ) defines a superhedge.

Lemma B.5. Let µ ≤cd ν be such that Assumption A.3 holds. Suppose that the reward function
c : R2 → R satisfy Assumption 2.2. Assume further that

∫

ϕ̂ ∨ 0dµ+
∫

ψ ∨ 0dν < ∞.

We have that (ϕ̂, ψ̂, ĥ) ∈ D2(µ, ν).

Proof. To obtain the proof we need to show that ĥ ≥ 0 and that c(x, y) ≤ ϕ̂(x)+ψ̂(y)+ ĥ(x)(y−
x) for all x, y ∈ R. The second point, however, follows immediately from the arguments of the
classical and martingale versions of Brenier’s theorem (see Theorems A.1 and A.6). We now
verify that h ≥ 0; we will use that c(·, ·) = cy(·, ·) = 0 and cxy > 0.

First, as cxy > 0, we have that when x1 ≤ x < m,

ĥ′(x) :=
cx(x, T̂u(x)) − cx(x, T̂d(x))

T̂u(x) − T̂d(x)
> 0.

Hence, since ĥ(x1) = 0, we have that ĥ(x) ≥ 0 for all x1 ≤ x < m.

For x ≥ m, as x1 ≤ (T̂u)
−1(x) ≤ m, we have that ĥ((T̂u)

−1(x)) ≥ 0. In addition, as
cy(x, x) = 0 and cxy > 0, we have that cy((T̂u)

−1(x), x) ≤ 0. It follows that

ĥ(x) = ĥ((T̂u)
−1(x)) − cy((T̂u)

−1(x), x) ≥ 0.

Since ĥ ≡ 0 on (−∞, x1), the no short-selling constraint is satisfied.
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lévy models. Quantitative Finance, 4(5):581–588, 2004.

[23] Alexander MG Cox, David Hobson, and Jan Ob lój. Pathwise inequalities for local time:
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[37] Paul Gassiat, Harald Oberhauser, and Gonçalo Dos Reis. Root’s barrier, viscosity solutions
of obstacle problems and reflected fbsdes. Stochastic Processes and their Applications,
125(12):4601–4631, 2015.

[38] Gaoyue Guo, Xiaolu Tan, and Nizar Touzi. On the monotonicity principle of optimal
skorokhod embedding problem. SIAM Journal on Control and Optimization, 54(5):2478–
2489, 2016.

[39] Gaoyue Guo, Xiaolu Tan, and Nizar Touzi. Optimal skorokhod embedding under finitely
many marginal constraints. SIAM Journal on Control and Optimization, 54(4):2174–2201,
2016.

[40] Gaoyue Guo, Xiaolu Tan, and Nizar Touzi. Tightness and duality of martingale transport
on the skorokhod space. Stochastic Processes and their Applications, 127(3):927–956, 2017.

[41] Pierre Henry-Labordère, Xiaolu Tan, and Nizar Touzi. An explicit martingale version of
the one-dimensional brenier’s theorem with full marginals constraint. Stochastic Processes
and their Applications, 126(9):2800–2834, 2016.

[42] Pierre Henry-Labordère and Nizar Touzi. An explicit martingale version of the one-
dimensional brenier theorem. Finance and Stochastics, 20(3):635–668, 2016.

[43] Francis Hirsch, Christophe Profeta, Bernard Roynette, and Marc Yor. Peacocks and asso-
ciated martingales, with explicit constructions. Springer Science & Business Media, 2011.

[44] David Hobson. The skorokhod embedding problem and model-independent bounds for
option prices. In Paris-Princeton lectures on mathematical finance 2010, pages 267–318.
Springer, 2011.

40



[45] David Hobson and Martin Klimmek. Model-independent hedging strategies for variance
swaps. Finance and Stochastics, 16(4):611–649, 2012.

[46] David Hobson and Anthony Neuberger. Robust bounds for forward start options. Mathe-
matical Finance: An International Journal of Mathematics, Statistics and Financial Eco-
nomics, 22(1):31–56, 2012.

[47] David Hobson and Dominykas Norgilas. Robust bounds for the american put. Finance and
Stochastics, 23(2):359–395, 2019.

[48] David Hobson and Dominykas Norgilas. A construction of the left-curtain coupling. Elec-
tronic Journal of Probability, 27:1–46, 2022.

[49] David G Hobson. Robust hedging of the lookback option. Finance and Stochastics,
2(4):329–347, 1998.

[50] David G Hobson and Dominykas Norgilas. The left-curtain martingale coupling in the
presence of atoms. The Annals of Applied Probability, 29(3):1904–1928, 2019.

[51] Jean Jacod and Albert Shiryaev. Limit theorems for stochastic processes, volume 288.
Springer Science & Business Media, 2013.

[52] Nicolas Juillet. Martingales associated to peacocks using the curtain coupling. Electronic
Journal of Probability, 23:1–29, 2018.

[53] Sigrid Källblad, Xiaolu Tan, and Nizar Touzi. Optimal skorokhod embedding given full
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