GRAPHON PARTICLE SYSTEM: UNIFORM-IN-TIME CONCENTRATION
BOUNDS

ERHAN BAYRAKTAR AND RUOYU WU*

ABSTRACT. In this paper, we consider graphon particle systems with heterogeneous mean-
field type interactions and the associated finite particle approximations. Under suitable
growth (resp. convexity) assumptions, we obtain uniform-in-time concentration estimates,
over finite (resp. infinite) time horizon, for the Wasserstein distance between the empirical
measure and its limit, extending the work of Bolley—Guillin—Villani [9].
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1. INTRODUCTION

In this work we study the uniform-in-time exponential concentration bounds related to the
graphon particle system and its finite particle approximations. This is a continuation of our
work [2,4] on the large population and long time behavior for these systems. The interaction
in the graphon particle system is of mean-field type and characterized by a (directed) graphon
G, which is a measurable function from [0, 1] x [0, 1] to [0, 1] (see e.g. [27] for the theory of

graphons). More precisely, denoting by X, (¢) the state of the particle indexed by u € [0,1]
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at time ¢t > 0,

%)= %0+ [ (100 + [ [ 66601600 sy ) s+ B0, (1)

where i, s is the probability distribution of the R?-valued random variable X, (s) for each
v € [0,1] and s > 0, f are b are suitable functions, {B,, : u € [0, 1]} are d-dimensional standard
Brownian motions, and {X,(0), B, : u € [0, 1]} are mutually independent. Due to the general
form of G, the system (1.1) consists of uncountably many heterogeneous particles X, the
evolution of whose probability distributions fi,; are fully coupled. Indeed, {(X,(0),B,) :
u € [0, 1]} are not necessarily identically distributed and may not be measurable in u € [0, 1].
Although the system (1.1) of nonlinear McKean—Vlasov type processes X, (t) is well-posed [2],
we will be only interested in the concentration of finite particle empirical measures around the
probability laws fi, ;, and hence one may alternatively treat (1.1) as an informal description
and work with equivalent formulations that do not involve uncountable {B, : u € [0,1]};
see Remark 2.2 on more of this point. Still, in general, fi,; and the associated stationary
measure, provided existence under suitable assumptions, may not be tractable (even in the
case of linear f and b; see e.g. [4, Example 3.1]). However, the system (1.1) arises naturally as
the limit (see e.g. [2,4]) of the associated finite particle system with heterogeneous interactions
given by

X0 = X0+ [ SO0 + 1 @A X)) | ds+By) (12)
j=1

for i € {1,...,n} and t > 0, where {{J; : 1 < i < j < n} is a collection of independent
[0, 1]-valued random variables sampled from the graphon G. The study of uniform-in-time
exponential concentration bounds will provide useful quantitative non-asymptotic estimates
of the fluctuations for the convergence of the empirical measures of (1.2) to the probability
laws of (1.1).

When G =1 and &j; = 1, the above systems (1.1) and (1.2) reduce to the classic McKean-
Vlasov processes and associated weakly interacting diffusions. The study of this homogeneous
setup dates back to works of Boltzmann, Vlasov, McKean and others (see [25,29, 35] and
references therein). Besides large population asymptotics such as law of large numbers (LLN)
on the finite time horizon, there have been an extensive collection of results on concentration
estimates and uniform-in-time LLN (see e.g. [8,9,11,20,37] and references therein).

In recent ten years, there has been a growing interest in the mean-field inhomogeneous
particle system, where G = 1 (or block-wise constant) and the interaction between particles
is governed by their own types and/or random graphs (see e.g. [1,3,7,12,18,19,21,26]). The
inhomogeneity arises from random interactions §;; while the limiting system is still homoge-
neous, as opposed to uncountable heterogeneous processes in graphon particle systems (1.1)
with general graphon G.

The study of graphon particle systems and associated finite particle models with mean-
field heterogeneous interactions emerged recently ([2,4,6,16,17,28,33]). There is also a
growing number of applications of graphons in game theory; see e.g. [5,13-15,23, 34, 36] for
the study of graphon mean field games in static and dynamic settings. These works focus
on large population convergence over finite time horizon, except for [4,17] on uniform-in-time
convergence, where the limit is homogeneous in [17] while heterogeneous in [4]. Deterministic
dynamical systems on graphons over finite time horizon are also studied (see [22,30-32] and
references therein).
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The analysis of the continuum limit (1.1) is motivated by physical or biological applications
such as in [16-18,28,30-33], by numerical questions as in [9], or by game theory applications
such as in [13-15,23,34,36]. In this work we are interested in the approximation errors of
(1.1) by (1.2) by obtaining non-asymptotic exponential concentration results for quantities
like

P(sup Wi(vfju) > ) and  supP(WL (0}, ) > )
0<t<T >0

for ¢ > 0, in Theorem 2.1 (resp. Theorem 2.2) under suitable growth (resp. convex-
ity) condition. Here Wj is the Wasserstein-1 distance, v}' is the empirical measure of
{XPr(t) : i =1,...,n}, and fi is the averaged law of {X,(t) : u € [0,1]}. As an appli-
cation, we also obtain in Corollary 2.1 an exponential concentration bound for numerical
reconstruction of the invariant measure of {X,(¢) : v € [0,1]}. Concentration estimates are
shown in [8,9, 11] for mean-field (type) systems over infinite time horizon and in [20] for
mean-field games over finite time horizon. Theorems 2.1 and 2.2 provide for the first time
quantitative non-asymptotic exponential error bounds for graphon particle systems. To the
best of our knowledge, there are no results on concentration bounds in either inhomogeneous
or heterogeneous regime, over either finite or infinite time horizon. Our results are consistent
with those in [9] when the system is mean-field (namely G =1 and & = 1), and actually im-
prove pre-exponential estimates in the infinite time horizon (see Remark 2.4). Although only
the dissipative regime is considered for the infinite time horizon, the results here suggest that
it is indeed possible to obtain concentration bounds with asymptotic independence instead
of the usual assumption on homogeneity or exchangeability of the limiting system, and leave
the door open for future study of more general non-dissipative regimes.

The proofs of Theorems 2.1 and 2.2 start by reducing the analysis of Wy (v}, fi;) to that of
W1(7f, jir), where " is the empirical measure of {X;/,(t) : i = 1,...,n}. In the homogeneous
setup [9, Proposition 6.1], this reduction is done by a classic coupling argument. However, due
to the heterogeneity of the stochastic processes {X; /n} and the presence of random interactions
{finj}, such a coupling argument does not provide the desired reduction any more. Instead, we
carefully bound Wi (v, fir) by Wi(7}, i) in a different way in Proposition 3.1, with certain
new error terms consisting of {)_(i/n,ffj} and requiring new treatments. Such new terms
are further estimated in the exponential scale in Proposition 3.2. In particular, the key
ingredients for such estimates are exponential bounds obtained in Lemmas 3.7, 3.9 and 3.10,
using concentration inequalities and sub-Gaussian properties. The distance W1 (77, fi) is
analyzed in Lemma 3.11 using exponential concentration bounds, for empirical measures of
independent (but not necessarily identically distributed) random variables, established in
Proposition C.1 which is a heterogenous version of [9, Theorem 2.1] where the i.i.d. setup is
analyzed.

1.1. Organization. The paper is organized as follows. In Section 2 we state the space of
graphons, the standing assumptions, and well-posedness of systems (1.1) and (1.2). The main
results on concentration bounds are stated in Theorems 2.1 and 2.2. Proofs of these two
results are given in Section 3, with the key exponential estimates provided in Section 3.3.
Finally Appendices A—C collect proofs of some auxiliary results.

We close this section by introducing some frequently used notation.

1.2. Notation. Given a Polish space S, denote by B(S) the Borel o-field. Let P(S) be the
space of probability measures on S endowed with the topology of weak convergence. Denote by
C([0,T] : R%) the space of continuous functions from [0, 7] to R¢, endowed with the topology
of uniform convergence. We will use C,C1,C5, ..., to denote various positive constants in
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the paper and C'(m) to emphasize the dependence on some parameter m. The probability
law of a random variable X will be denoted by £(X). Expectations under P will be denoted
by E. To simplify the notation, we will usually write E[X*] as EX*. For vectors z,y € RY,
denote by |z| the Euclidean norm and z - y the inner product. Denote by W), p € N, the
Wasserstein-p distance (cf. [38, Chapter 6]) on P(R9):

™

1/p
W (i, ma) e (inf / rm—y|pw<dzdy>> | i ms € PRI,
R xRd

where the infimum is taken over all probability measures m € P(R? x RY) with marginals m;
and mg, that is, 7(- x R?) = m1(-) and 7(R? x -) = ma(-).

2. MODEL, ASSUMPTIONS, RESULTS

We follow the notation used in [27, Chapters 7 and 8]. Let I := [0,1]. Denote by G the
space of all bounded measurable functions G: I x I — R. A (directed) graphon G is an
element of G with 0 < G < 1.

Given a graphon G' € G and a collection of initial distributions f(0) := (fi,(0) € P(RY) :
u € I), recall the graphon particle system (1.1) and the finite particle system (1.2). The
following assumptions will be made throughout the paper.

Standing Assumptions:

e The map I 3> u +— L(ji,(0)) € P(R?) is measurable, and sup,¢; [pa efolal? fu0(dz) <
oo for some 6y > 0.

e The drift functions f and b are Lipschiz with Lipschitz constants Ky and K}, respec-
tively, namely

|f(z1) — f22)| < Ky|wy — 22|, Va1,z9 € RY,

b1, 91) = b(w2, yo)| < Ky(Jo1 — 22| + [y1 — y2|), Vi, w2,91,92 € RY
e G € G is a directed graphon and fl-"j is the sampled graphon, namely
(i) either % = G(5;,2) for i,5 € {1,...,n},
(ii) or &> = Bernoulli(G(;;, %)) independently for 7,5 € {1,...,n}, and independent
of {X,(0),By :u eI}
e There exist some Kg € (0,00) and a finite collection of disjoint intervals {I; : i =
1,...,N} for some N € N, such that UY,I; = I and
Wo(fin, (0), fin,(0)) < Kgluy — ua|, up,us € I;; i€{l,...,N},
|G(u1,v1) — G(u2,v2)| < Kg(|lur — ua| + |v1 — val), (u1,v1), (u2,v2) € I;; x I, i,5 € {1,...,N}.
We note that, since f is Lipschitz, the quantity
o f — (@1 —x9) - (f(z1) — f(22))

z1,22€RY,x1 F#ao |$l - 932|2

is well-defined, and |co| < K¢. From this we have

(x1 —x2) - (f(z1) — f(x2)) < —colay — x2)?, Vay,z0 € RL (2.1)
Let
K :=co — 2Kp. (2.2)
For several long-time results the following dissipativity assumption will be made.

Condition 2.1. The coefficient f is dissipative, in the sense that k > 0.



GRAPHON PARTICLE SYSTEM: CONCENTRATION BOUNDS 5

Remark 2.1. A common example of b and f satisfying Condition 2.1 is linear (as in the
study of linear quadratic graphon mean-field games in, e.g., [23]) and mean-reverting:

fl@x)+b(x,y) = —c1z + coy, for some c1 > cg > 0.

In particular, the choice of f(x) = —(c1 + c2)x and b(x,y) = ca(z + y) satisfies Condition
2.1 since cg = ¢1 + co > 2c9 = 2Ky. For a more general linear mean-reverting example, see
[4, Example 3.1].

The following result gives well-posedness of systems (1.1) and (1.2). The proof is standard
(see e.g. the homogeneous setup [35] and the heterogeneous setup [2] for part (i), and [24,
Theorems 5.2.5 and 5.2.9] for part (ii)) and hence is omitted.

Proposition 2.1. (i) There exists a unique pathwise solution to (1.1). For every T < oo,
the map I > u > i, € P(C([0,T] : RY)) is measurable and

sup sup E [[Xu(t)|4] < 00.
uel te[0,T]

(i1) There exists a unique pathwise solution to (1.2). Also for every T < oo,
max sup E[|XP()[*] < .
lzl""’”tG[O,T]

Remark 2.2. The formulation (1.1) with Brownian motions {By, : u € I} is used to describe
the nonlinear McKean—Vlasov type stochastic processes {X, : uw € I} and emphasize their
independence. However, results in this work are on measures of {X, : u € I'}. Therefore, one
may work with the following equivalent formulation with a single Brownian motion {B(t) :
t >0}

t 1
%0 = %000+ [ (50 + [ [ 060060 0) alae) ) ds + B,
0 0 JRd
with fi,s = L(X,(s)) and these laws are independent for v € I; see e.g. [5,6,28]. In fact,

one may just work with the spatially extended law fi(du dz) = fi,+(dx) du and the nonlinear
Fokker—Planck equations

(Haty h) = (fiu,0, h) + /Ot <uu,S,Vh(.) : (f(.) +/I

t 1
+ / <ﬂu,sa Ah> dS
0 2

for u € I and regular test functions h; see e.g. [6,28].

b(-, )G (u, v) fis(dv da:)) > ds

xRd

Let
1 n 1 n
VUt = =D Oxp, M) = =) O, D) = /Iﬁu,t du.
i=1 i=1 "
We first have the following result on the trajectory of Wasserstein distances over finite time
horizon. Note that Condition 2.1 is not used.

Theorem 2.1. Fiz T € (0,00). Then there exists some K € (0,00) such that for any d' > d,
there exist C = Cp € (0,00) and Ny € N such that

P( sup Wi(vl, fig) > ¢) < C(1 + e 2) exp(—K+/ne) (2.3)
0<t<T
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for all e > 0 and n > Nymax(e~ 42 1), If in addition

= G(i, l) or b(-,0) is bounded, (2.4)

ij
then \/ne in (2.3) could be improved to ne?.

Remark 2.3. The technical assumption (2.4) will be used in Lemma 3.7 to derive certain sub-
Gaussian bounds. The assumption on b holds in particular if b(z,y) = b(y) is x-independent
or if b is bounded.

When the convexity property in Condition 2.1 is satisfied, the following uniform-in-time
marginal concentration bound holds.

Theorem 2.2. Suppose Condition 2.1 holds. Then there exists some K € (0,00) such that
for any d' > d, there ezist C € (0,00) and Ny € N such that

sup (W1 (] ir) > €) < Cexp(—K y/ne) (2.5)
>0

for all e > 0 and n > Nomax(e~@*2) 1), If in addition (2.4) holds, then \/ne in (2.5) could

be improved to ne?.

Remark 2.4. In the classic mean-field regime, namely when G = 1, one has & =1 so that

the condition (2.4) holds and the exponential rates in (2.3) and (2.5) are ne?. From this we
observe that Theorems 2.1 and 2.2 are consistent with the mean-field results in [9, Theorems
2.9 and 2.12]. In fact, the pre-exponential term C in (2.5) does not depend on &, while the
corresponding term in [9, Theorem 2.12] is C'(1+¢&~2). This improvement is due to a different
argument (Proposition 3.2) that does not use time discretization as in [9, Section 7.2].

Using Theorem 2.2 we could obtain an exponential concentration bound for numerical
reconstruction of the invariant measure.

Corollary 2.1. Suppose Condition 2.1 holds. Then there exist a unique probability measure
fiso € P(RY) and some ey, Ty, K € (0,00) such that for any d' > d, there exist C € (0,00) and
Ny € N such that

sup  P(Wi(1f', fico) > €) < Cexp(—Kv/ne) (2.6)
t>Tolog(eo/e)

for all e > 0 and n > Nomax(e~@*2) 1), If in addition (2.4) holds, then \/ne in (2.6) could

be improved to ne?.

Proof. By the exponential ergodicity of ji, shown in [4, Theorem 3.1], there exist a unique
probability measure fio, € P(R?) and some C € (0,00) such that

Wa(jit, fioe) < Ce™ /2 1> 0.
Now let Ty = 2/k and gy = 2C. Then for ¢ > Tp log(ep/e), we have
Wl(ﬂtvﬂoo) S WZ(/lt,,aoo) S ée_ﬁt/2 S 8/2

and hence
P(W1(v), o) > €) < P(W1 (V] fir) > €/2).
The result then follows from Theorem 2.2. [ |
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3. PROOFS

In this section we prove Theorems 2.1 and 2.2 on the concentration inequalities of
Wi (v, ). We first state some properties of the limiting system in Section 3.1. Using these,
in Section 3.2, we reduce the analysis of W1 (v}, ji¢) to that of Wy (7, i) and other quantities
only involving independent but heterogeneous processes. Such quantities are carefully ana-
lyzed in Section 3.3. In Section 3.4 we obtain the concentration bounds for Wi (7, i) and
complete the proofs of Theorems 2.2 and 2.1.

3.1. Properties of the limiting system. In this section we state some properties of the
limiting system that will be used later. Proofs will be given in Appendix A.

Lemma 3.1. [2, Theorem 2.1] For every T' € (0,00), there exists some C(T) € (0,00) such
that

sup  Wa(fiu, (), fluy (t)) < C(T')|ur — ug|
te[0,T

whenever uy,ug € I; for somei € {1,...,N}.
Lemma 3.2. [4, Proposition 3.1 and Corollary 3.1] Suppose Condition 2.1 holds. Then

supsup E [| X, (t)|*] < oo.
uel >0

Moreover, there exists some C' € (0,00) such that

Sgg W (ﬂm (t)v Hug (t)) < C|U1 —u2
t>

whenever uy,uy € I; for some i € {1,...,N}.

The following result on the square exponential moments of X, is a generalization of [9,
Proposition 4.1] and [11, Proposition 4.3]. The proof is provided in Appendix for completeness.
Recall 0 in the standing assumption and « in (2.2).

Lemma 3.3. (i) For every T € (0,00), there exists some 0 € (0,00) such that

sup E[ sup eeT‘X“(t)P] < 0.
uel  t€[0,7)]

(ii) Suppose Condition 2.1 holds. Then for any 6 € (0, (k A 6p)/4), we have

sup sup]E[eolX“(t”Z] < 0.
>0 uel

The following two lemmas on the time-regularity of X,, jt and 7" are generalizations of
results in [9, Section 5| and [11, Section 4.3.3]. We provide the proofs in Appendix for
completeness.

Lemma 3.4. For every T € (0,00), there exist some C(T),0r € (0,00) such that, for all
s,t,to, A € [0,T]) andu € 1,

E[Xu(t) = Xu(s)[* < C(DIt — s,

E sup  exp (00| Xu(t) — Xu(s)?) | <1+ C(D)A.
to<s<t<to+A
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Lemma 3.5. For every T € (0,00), there exist some C(T), 07 € (0,00) such that

P < sup Wi (wl,p)) > 5) <exp (—n [0re* — C(T)A])
to<s,t<to+A

for allto € [0, T], A €]0,T] and € € (0,00).
The following result is an immediate consequence of Lemma 3.4.

Lemma 3.6. For every T € (0,00), there exists some C(T) € (0,00) such that
Wi(fis, fis) < C(T)[t — s['/?, Vs,t €[0,T).

3.2. Bounds in terms of empirical measures of independent variables. The following
proposition is a generalization of [9, Proposition 6.1] and reduces the analysis of W1 (v, fit)
to quantities only in terms of independent processes.

Proposition 3.1. Let

. 1< _ _ _ i
R = =3 (E6(XL (0, X2 (0) — [ oK), )G
22 (05,0 [ uE 0060

(i) For every T € (0,00), there exists some C(T) € (0,00) such that

> =N ! —K(t—s 1 - n,i 1 v
Wiy ) < W7 i) + O(T) (/ 0= 3R 4+~ (141X ()

0 i=1

) 1/2
ds)
for all t € [0,T].
(ii) Suppose Condition 2.1 holds. Then there exists some C € (0,00), independent of t > 0,

such that
t 1 n 1 2 1/2
Wi(vy', i) < W7}, fir) + C (/ ey IR+ (1 + ]X%-(s)|> ds)

0 i=1

for allt > 0.
Proof. We first prove part (ii). From (1.1) and (1.2) we have
_ 2
d ‘X{L(t) e ‘

—2(X7() - X: (1) - (F(X7@) - f(X

3.



GRAPHON PARTICLE SYSTEM: CONCENTRATION BOUNDS 9

By adding and subtracting terms, we have

(xr) - X)) ( Z xX0) - [ [ o006, mvt(dx)dv)
= (x7(t) - X:.(1) [1 > (X0, X7(0) = (X1 (1), X, (1))
j=1
n . L (oo . > _
+ (xr() - X.(0) E > (smbmz 0.5, 0) = [ HE0.06( mi,t(dx))]

mt) — X L X.(t),z Ly, x) — X, (t),x ivftxv
+ (X0 - X2 0) n;/]Rdb(Xé“)’ G Dy (o) = [ [ 00,060 il >d)
—. ﬁ?,z 1 + R?,zﬂ + ﬁ?,i,?)‘

For R;""!  using the Lipschitz property of b, we have

R < Z ‘X” X t)‘ (‘Xi"(t) e
For R;""? from (3.1) we have
R < | X2 () - X ()] [R24)
For R}""* using Lemma 3.2, we have
~n,i n( S 1 |nvul|., _ i
Ry = (x0(0 - X,0) - [ [ o (G<, 1) () — G(E 0
Rd n n
o i i
< —|XTt) — X i .
< ZHXP() - Ko ()] (1+ 1X5<t>|)

n

Taking the average over i and using (2.2), we get

TED 3 DT 0 RS TR
n 1/2
+2<Z‘Xﬁ(t)—Xé(t)‘2> ( Z |+—(1+|X ()|) 2) .
=1 i=1
So

R+ (11X )

2) 1/2
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From this we have

13 _ 2 1/2 t i 1 ‘ oy ) o\ 1/2
<n;‘X?(t)—X;(t)‘> S/O ) (nz; \RZJ:Z|+?(1+|X%(5)\) ) ds
t n 9 1/2
<Oy (/0 e_”(t_s)i; IRgﬂ'|+%<1+]X%(s)|) d5> ,

(3.2)

where the last line follows from Holder’s inequality and Condition 2.1. Noting that

n -
=1

n 1/2
n =n n =n 1 n \ 2
Way, o) < Wa(y', i) < (Z ‘Xi (t) _X%(t)‘ )

and
Wl(ytna,at) < W1(171?7ﬂt) + Wl(l/?alj?)a

we have the desired result for part (ii).

The proof of part (i) is the same as that of part (ii), except that Lemma 3.2 and all the
relevant constants (such as C) are to be replaced by Lemma 3.1 and T-dependent constants
(such as C1(T)). [ |

3.3. Exponential estimates. Recall R} introduced in (3.1). In this section we will provide
an exponential bound for the probability

n

t
1
t,e) =P —r(t=s) Z
p(n,t,e) (/0 e - )

) 1 _
RE 4+~ (141X (s)])
=1

2
ds > 5) (3.3)

for t > 0 and € € (0, 00).
Proposition 3.2. (i) There exist some C(T), K1 € (0,00) and Nr € N such that

sup p(n,t,e) < C(T)e Krvne (3.4)
t€[0,T]

for alle > 0 and n > Np/\/e. If in addition (2.4) holds, then \/ne in (3.4) could be
improved to ne.

(ii) Suppose Condition 2.1 holds. Then there exist some C, K € (0,00) and Ny € N such
that

sup p(n, t,e) < Ce KVre (3.5)
>0

for all e > 0 and n > Ny/+\/e. If in addition (2.4) holds, then \/ne in (3.5) could be

improved to ne.
Proof. We first prove part (ii). Using the union bound, we have
2
ds > 6) .

n t
p(n,t,e) < ZIP’ </0 RG]
i=1

RE 4+ (141%.(5)))
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Now we fix 7 € N. Writing Rg” = 7?” + 7;””', where

7= 13 (g - 6 ) ok, 0.0, (3.9)
j=1
T = 23 (- 6 D)) (X, (90, () = 8 (9.0))

EICCACE AR T AC T ARTE) |

we have

IRE 4 1 (1415, 9]

2
~ . ) 1 1 _
Tt 2 T2 _ 2
S4<|sl| +|sl| +n2+n2|X;(S)|>
Therefore

t 2
P (/ e r(t=s) ds > E)
0

t ~ . t .
<P </ e—n(t—s)|7~sn,z‘2ds > 6/16) +P (/ e—ﬁ(t—s)‘ﬂn,z
0 0

t 1 t 1, -
+P (/ e =) —ds > 5/16) +P </ e ) | X i (s)[ ds > 5/16>
0 n 0 n n
=:p(n,t,e,i,1)+p(n,t,e,i,2) + p(n,t,e,i,3) + p(n,t, e i,4),

RE+ = (141X (5))

2ds > 6/16)

and hence
n
p(n7 t’ 8) S Z [p(na t? E7 Z.7 1) + p(n7 ta 87 i? 2) + p(n7 ta 87 i? 3) + p(”? tv 57 i? 4)] . <38)
i=1

Next we analyze each term. For p(n,t,e,i,4), applying Markov’s inequality and Jensen’s
inequality, we have

t 1 _
p(n,t,e,i,4) < e /1R [exp (0/ e_ﬁ(t_s)—Q]Xi (s)[? ds)}
0 n-oon

—0:/16 ! —k(t—s) G0, 5 2
<e E Cie exp ( —5-|X.i(s)]" ) ds
0 n n

for each > 0. Taking § = n?(k A 6p)/8C; and using Lemma 3.3(ii), we have
p(n,t,e,i,4) < Cge_c3"25.
For p(n,t,e,i,3), we have
p(n,t,e,1,3) =0
whenever n > Cy/+/e. For p(n,t,e,i,2), we will show in Lemma 3.10(ii) below that
p(n,t,e,i,2) < CyeC6ne,
Combining these with (3.8) and Lemma 3.7(ii) below gives
p(n,t,e) < Cne GV < e~ Crovne,

namely (3.5) holds, for n > C11/+/e. It also follows from Lemma 3.7(ii) that if in addition
(2.4) holds, then the above \/ne could be improved to ne. This gives part (ii).
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The proof of part (i) is the same as that of part (ii), except that Lemmas 3.3(ii), 3.7

3.10(ii) and all the relevant constants (such as C) are to be replaced by Lemmas 3.3(i), 3.
3.10(i), and T-dependent constants (such as C1(T)).

(ii),
7(1),

|
In the following lemma we estimate the probability p(n,t,¢e,4,1). Recall that
t ~ .
p(n,t,e,i,1) =P </ e HE=) | T 2ds > 6/16) )
0

where 7. was introduced in (3.6).
Lemma 3.7. (i) For every T € (0,00), there exist some C(T), Ky € (0,00) such that

‘max sup p(n,t,e,i,1) < C(T)e_KT‘/%, VneN, > 0. (3.9)

Z=1,...,TL tG[O,T]

If in addition (2.4) holds, then \/ne in (3.9) could be improved to ne.
(ii) Suppose that Condition 2.1 holds. Then there exist some C, K € (0,00) such that

max sup p(n, t,e,i,1) < Ce*K\/’TE, VneN, e>0.
i=

(3.10)
----- n >0
If in addition (2.4) holds, then \/ne in (3.10) could be improved to ne.
Proof. We first prove part (ii). Fix n,t,e,i. Applying Markov’s inequality, we have
2
t 1 — i -

tei,1) =P —lt=s) | n—G(—, %) ) b(Xi(s),0)| ds>e/16 3.11

pntieit) =2 | [ e 2 2 (8- 6 U 0.0) s> (3.11)

$e-at D) [

(s),O)‘st > VE/4

for each @ > 0. Since e/l < e + e~ %, we have

1o i j ! . 2
— n _ _ L —k(t—s) ;
E |exp | 6 ”;1 (% G(n,n)>\//0 e b(XE(s),O)‘ ds

0~ ( .n i j tottes) | % 2
<Elow |36 -GG )y [ et X6, 0 ds
j=1

0 (. i S
+E Jexp | ——> (& —G(-.2) /Oe‘“( =)
j=1

BN

_ 2
b(X i (s), 0)\ ds
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Since 0 < &% < 1 and E {5{; —G(%,%) ])_(i] = 0, we can condition on Xi/n and apply
Hoeffding’s lemma to obtain that

ds X

Il
=
—=
=
@
M
ko)
}_F
7 N
S8
|
Q
S|
3 <.
N~
\
ml
2
T
&
=
<
S
=
[\]
|

3.

[ 92 t
<E |exp </ e Hi(t=s)
L 8n
2 2
<E /Cle w(t— s)exp<019 ‘b i )‘ >d8:|
<E /cle “exp((’;f (1+1.(5) >)ds],

where the second inequality follows from Jensen’s inequality, and the last line uses the linear
growth property of b. Combining these three estimates gives

t 2
p(n,t,e i, 1) < 2e VR {/ Cre "9 exp <0829 1+ |X1(S)‘2)> ds] :
0 n "

Taking 6 = \/n(k A 0y)/Cs and using Lemma 3.3(ii), we have the desired result (3.10).

Now we prove the strengthened version of (3.10) under the extra assumption that (2.4)
holds, namely ¢ G(L, f) or b(-,0) is bounded. If & = G(%,%), from (3.11) we have
p(n,t,e,i,1) = O and the desired result clearly holds. If b(-,0) is bounded, from (3.11) we
have

2

. 1 « i
p(n7t7€77»,1) S P ﬁ - < ,Z - G(n,n)> > 035

J
2

_ 1 i J
< 9C’3EE fl= v J
€ exp n E gzg (na n)

J=1

for each 6§ > 0. Letting Z be an independent standard normal random variable, we have
2

B low (o]0 (g -act. D) )| =8lew (2223 (g -6 )

=1



14 BAYRAKTAR AND WU

where the last line uses Hoeffding’s lemma again. It then follows from the formula of the
moment generating function of Z? that
2

B e (025 (- a2 || < (1= 2)
OXP n g n’'n - 2n '

Jj=1

Taking 6 = n gives the strengthened version of (3.10).

The proof of part (i) is the same as that of part (ii), except that Lemma 3.3(ii) and all
the relevant constants (such as Cp) are to be replaced by Lemma 3.3(i) and T-dependent
constants (such as C1(T)). [ |

For the analysis of p(n,t, e,i,2), we will need the following standard property of sub-
Gaussian random vectors. A proof is provided in Appendix B for completeness.

Lemma 3.8. Let Y be an R%-valued random variable with EY = 0 and E[e‘YP/“] < 2 for
some a € (0,00). Then for any A € RY,

E[eMY] < exp (52a|>\2> .
Recall 7" defined in (3.7). Let
7= (6= 60, 2)) (46X, (00.X, 0) - 0%, (0,0)
I (e 6500 — | b e s (e
60D (X, 0. X, 0) - [ X, @0 00my ). (312

Note that 7;'” = %Z?:l ’771” We will estimate p(n,t,e,i,2) by proving the following

sub-Gaussian bounds of 7;""7.

Lemma 3.9. (i) For every T € (0,00), there exists some C(T') € (0,00) such that

2 C(T)s —d/2 n
<(1- v — N.

)}_( - > , Vs € O’C(T) ,n e
(ii) Suppose Condition 2.1 holds. Then there exists some C € (0,00) such that

1 2 Cs\ ~? n

_ 2y < . —

“max supIE[exp(s‘ngﬁﬂ )] < <1 n> ,VSE(O,C>,n6N.
JF

i=1,...,n t>0
Proof. We first prove part (ii). Fix t,n,i and j # i. Using the Lipschitz property of b and
Lemma 3.3(ii), we have

1 .
‘max sup E[exp (3’— g 7,
i=1,...,n te[0,7) n i

TR < Cil+ X ()]).
It then follows from Lemma 3.3(ii) that
E[exp (1T P/Cs) | X

i
n

(t)} <2

Using this and the fact that E [7;'“] | X (t)] = 0, we can apply Lemma 3.8 to get

E [oxp(r 77) | X, 0] < exo (55207)
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for each A € R Let Z be an independent d-dimensional standard normal random vector.
Using the independence of (Z, {¢]}}, {X (t)}), we have that for any s > 0,

[exp( ‘ ZT“’ g

N=slew (227 )

J#i el
{TTe[ (2 27) | 2,0]}
J#i
<E |exp 5702 \/zSZ (n—1)

It then follows from the formula of the moment generating function of |Z|? that

elen (S < (1- %)™

forallt >0,neN,i=1,...,n, s <n/Cs. This gives part (ii).

The proof of part (i) is the same as that of part (ii), except that Lemma 3.3(ii) and all
the relevant constants (such as C) are to be replaced by Lemma 3.3(i) and T-dependent
constants (such as C1(T)). [

Now we show the following estimate for p(n,t,¢,1,2). Recall that

t
p(n,t,e,4,2) =P (/ e =) | T 2 ds > 5/16) ,
0

where 77" was introduced in (3.7).

Lemma 3.10. (i) For every T € (0,00), there exist some C(T'), K1 € (0,00) such that

‘max sup p(n,t,e,i,2) <C(T)e K™ vYneN, e>0.
i=L..m 4e(0,T]

(ii) Suppose Condition 2.1 holds. Then there exist some C, K € (0,00) such that

max supp(n,t,e,i,2) < Ce K" VneN, e>0.
i=1,...,n >0

Proof. We first prove part (ii). Fix n,t,e,7. Applying Markov’s inequality and Jensen’s
inequality, we have
2ds>}

t
p(n,t,e,1,2) < e 0e/10F {exp (0/ e~
0

t
e 0e/10F {/ Cre %) exp (010|7;"’i\2) ds}
0
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for each 6 > 0. Recall ;"7 in (3.12). Using Holder’s inequality and Lemma 3.9(ii), we have
- 2
, 1 & o
) 727
E [exp <010|7;” ZP)] =E |exp | C10 - 27?1 J
]:

[ 12 1 X o ’
<E |exp 2010‘7;“7’ +2C10 =) T
n n ~—=
J#i
- - T 2
1 ]2 1 X o
E |exp (4019 =T ) E |exp | 4C10 —Zﬁ“’w
n n

\ _ %

I 2\ ] —d/2
< ,|E |exp <4C19 17;”’” ) (1 — 029> .
n

n

IN

Now taking 6 = dn for small enough § > 0 and using Lemma 3.3(ii), we have
p(n,t,e,i,2) < Cae™C1me,

This gives part (ii).

The proof of part (i) is the same as that of part (ii), except that Lemmas 3.3(ii), 3.9(ii)
and all the relevant constants (such as Cp) are to be replaced by Lemmas 3.3(i), 3.9(i) and
T-dependent constants (such as C1(7T)). [

3.4. Proofs of Theorems 2.1 and 2.2. Finally we need the following result on the concen-
tration estimates of the distance Wi (#{, fi;) in Proposition 3.1.

Lemma 3.11. (i) For every T € (0,00), there ezists some Kt € (0,00) such that for any
d > d, there exists some Nt € N such that

sup P (Wi(7], fir) > ¢) < exp (—KTn52) ,
0<t<T
for alle >0 and n > Npmax(e~(@+2) 1),
(ii) Suppose Condition 2.1 holds. Then there exists some K € (0,00) such that for any
d > d, there exists some Ny € N such that

sup P (W1 (7", fir) > ) < exp (—Kne?),
>0

for all e > 0 and n > Nymax(e~(¢+2) 1),

Proof. We first prove part (ii). Let g :== 23" | fi; ,. From Lemma 3.3(ii) we know that

sup sup max / eclel? fi (dr) < oo
>0 neN#=1,..n JRd n’

for some o > 0. Then there is some A > 0 such that g} satisfies the Talagrand (transport)

T1()) inequality (see (C.1) in Proposition C.1) for each n € N and ¢ > 0 (by e.g. [10, Corollary

2.4]). Tt then follows from Proposition C.1 that for any d’ > d, there exists some Ny € N such

that

sup P (W1 (7", i) > €/2) < exp (—4 ne?) ,
>0
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for all € > 0 and n > Nymax(e~(?*+2) 1). From Lemma 3.2 we know that

sup W (fg', i) < €/2
>0

for all n > C4/e. Combining these two estimates with the triangle inequality gives the desired
result.
The proof of part (i) is the same as that of part (ii), except that Lemmas 3.2, 3.3(ii) and all

the relevant constants (such as C1) are to be replaced by Lemmas 3.1, 3.3(i) and T-dependent
constants (such as C1(T)). [ |

Now we are ready to prove Theorem 2.2.
Proof of Theorem 2.2. Using Proposition 3.1(ii) and recalling (3.3), we have

P(Wi (v, fir) > ) < PWi(T}', fir) > €/2) + p(n,t, Cic?).

The result then follows on combining this with Lemma 3.11(ii) and Proposition 3.2(ii). W
Finally we prove Theorem 2.1.

Proof of Theorem 2.1. Fix T,e € (0,00) and d’ > d. We will suppress the dependency of
constants C(7T")’s on T'. From Proposition 3.1(i) we have

9 1/2
— X, ds>

n

T
. Wl (T— —n(T—s) L
S Wl(ﬂf,,ut) + C1e| ‘(T t)/2 </0 (& (T TL E

=1

Wy i) < Wi (50, fie) + O (/

Therefore

P ( sup Wi(v{', fur) > 5)

0<t<T
€ T (s 1 n 2
o0 —rk(T—s n,i 9
SP(UE?ETW1(V“M)>2>+P</O ¢ EZ Ry + — (1+!X (s )’) ds>C'2€>
o =1
= p(n,T,e,1) +p(n,T,¢,2). (3.13)

We first analyze p(n,T,e,1). Let A > 0 (to be chosen later) and M := [%] Decompose
the interval [0,7] as

[0,7) = [0, A] U[A, 2A] U--- U [(M — 1)A, T] € UM RA, (h + DA
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Then, by triangle inequality, we have

N[ ™

ﬁ(n7T7€7 1) < P sup sup Wl (Dl’fnh&t) >3
h=0,....M -1 hA<t<(h+1)A

3
<P[ sup sup  Wi(9', pa) > -
h=0,...M—~1 hA<t<(h+1)A 6

. €
-HP’( sup  Wi(Zpa, fina) > )
h=0,...M—1 6
o €
+P sup sup  Wilfna, fu) > = |- (3.14)
h=0,...M—1 hA<t<(h+1)A 6
For the first term on the right hand side of (3.14), from Lemma 3.5 we have
P sup Wi (D, vpa) > ° < exp (—n (C3e® — C4A))
hA<t<(h+1)A 6
forall h=0,...,M — 1. So
=N =N € 2
P sup sup Wi (7], vpa) > — | < Mexp (—n (Cse” — C4A)) .
h=0,...M—1 hA<t<(h+1)A 6
Taking A < C3e2/2Cy, we have M < C5(T/e? + 1) and
T C
P sup sup Wi(og, vpa) > ° <Cs <2 + 1) exp (—3n52) . (3.15)
h=0,...,M—1 hA<t<(h+1)A 6 € 2

For the second term on the right hand side of (3.14), by Lemma 3.11(i), there exist some
K € (0,00) and Ny € N such that

B(W1 (7R, fina) > €/6) < ™K
for all £ > 0 and n > Ny max(e~(@+2) 1), Hence

M-1
n € o
P sup  Wi(Upas fina) > = | < Z P(Wi(Vha, ftna) > €/6)
h=0,...,M—1 6 =

T
< Me 57e* < ¢y <2 + 1> exp (—Kne?). (3.16)
5

For the last term on the right hand side of (3.14), taking A < Cge? for some Cg € (0,00)
small enough, from Lemma 3.6 we have

hA <t < (h+ 1A = Wy (fu, fina) < /6,

and hence

. €
P ( sup sup Wi (fna, fit) > 6) =0. (3.17)
h=0,....M—1 hA<t<(h+1)A
Combining (3.14)—(3.17) and taking A = min(C3e2/2Cy, Cge?), we have
T
p(n,T,e, 1) < 2C5 (82 + 1> exp (—C7n52) (3.18)

for all € > 0 and n > Ny max(e~(¥+2) 1),



GRAPHON PARTICLE SYSTEM: CONCENTRATION BOUNDS 19

Next we analyze p(n,T,¢,2) in (3.13). Using (3.3) and Proposition 3.2(i) we have
p(n,T,e,2) = p(n, T, Cae?) < CgeCovne, (3.19)

for all e > 0 and n > Cgp/e.
Combining (3.13), (3.18) and (3.19), we have the desired result

T
P ( sup Wi(v)', fir) > E> <Cip (82 + 1> e~ Cr2vne (3.20)

0<t<T

for all € > 0 and n > max(Ny, C1o) max(e~(¥*2),1). If in addition (2.4) holds, then using
Proposition 3.2(i) we can improve /ne in (3.19) and (3.20) to ne?. This completes the proof.
|
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APPENDIX A. PROOFS OF RESULTS IN SECTION 3.1

Proof of Lemma 3.3. The proof is similar to that of [11, Proposition 4.3] and hence we only
provide a sketch.

(i) For each t € [0,7] and u € I, using Proposition 2.1(i) and the linear growth properties
of f and b, we have

[ Xu(®)] < | Xu(0)] +/0 CUT) (1 + [ Xu(s)]) ds + | Bu(t)]-

It then follows from Gronwall’s inequality that

sup | X, (t)] < Co(T) (\Xu<o>\+1+ sup \Buu)).
t€[0,7) t€[0,T

Thus for 6 > 0,

E 01Xu(t)?

sup e
te[0,T)

<E [ecsmeu’fu(m|2603<T)9603<T>0supte[o,ﬂ |Bu<t>|2}

< (& [2cmixoF ) Y2 oo ( [excspmncon 207)) 2

The proof of part (i) follows by choosing # > 0 such that E {6203(T)9‘X“(0)|1 < oo and
E [6203(T)9S“Pte[om 'B“(t)|2] < .

(i) Fix 6 € (0, (x A 6p)/4). Note that for the function ¢(z) := e?1*I°, we have Vo(z) =
20?17 1 and A¢(x) = 20e?1*” (d + 20|x|?). Tt then follows from Itd’s formula that

_ _ 1
de?!IXu Dl = OIXu(®)? [29}@@) : < F(X, () dt + / b(Xu(t), )G, v) fiy s (da) do dt
0 R4

+ dBu(t)> +0 (d+ 20| X (t)[?) dt] (A1)
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Using (2.1) we have
Xu(t) - f(Xu(t)) = (Xu(t) = 0) - (f(Xu(t) = f(0)) + Xu(t) - £(0)
< —col Xu(®)* + C1lXu(t)] < —(co — %Kb)!Xu(t)\Q +Co. (A.2)

Using Lemma 3.2 and the Lipschitz property of b we have

1
(1) - / / B(Ku(t), 2)G (1, v) fios (d) dv < K| Ku(t)]2 + Co| Ku(t)] < 2Ky Ku(t)2 + Ci.
0 JRd 2

(A.3)
Similar to the proof of [11, Proposition 4.3(ii)], one can verify that
t
/ IXu@I’ X, (s) - dBy(s)
0
is a square integrable martingale for all 8 € (0, (k A 6y)/4). Then
to _ B
E/ X 20X, (1) - dByu(t) =0, Vit >t > 0.
t1
Combining this and (A.1)—(A.3) gives
where
A=0C5, B=20%—2x0.
Since 6 < (k A 0p)/4 < K, we have B < 0. Therefore
dE [69|Xu(t)\2:| < 06(9)E [69|Xu(t)\2 (07(0) _ |Xu(t)|2)} dt. (A4)

Decomposing the expectation on the right hand side of (A.4) according to the size of | X, (t)|,
we get

dE [eel)_{u(tﬂ < (08(9) — Cy()E [69|Xu<t>|2]) dt.
Since § < (k A 6y)/4 < 6y, E [69|X"(0)|2] < o0o0. A standard estimate shows that
sup;>o E [e"'X“(t)‘Q} < 00, uniformly in u € I. |

Proof of Lemma 3.4. Fix T € (0,00), 0 < s
dependency of constants C'(7")’s on T'. From (1

Ko(t) — Xuls) = / t ( F(Xulr) + /0 1 /R (Xulr), 2)C ) i () dv) dr + By(t) — Bu(s).

It then follows from the linear growth properties of f and b and Proposition 2.1(i) that

<t < Tand u € I. We will suppress the
.1) we have

t
[ Xu(t) = Xu(s)] < Cl/ (1+[Xu(r)]) dr + [Bu(t) — Bu(s)].
Using Proposition 2.1(i) and Holder’s inequality we have
t
E| X, (t) — Xu(s)[* < Co(t — 5)5/ (1 +E[Xu(r)[*) dr + CoE|By(t) — Bu(s)|*

< O3t — )t + C3(t — 5)%,

This gives the first assertion.
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For the last assertion, fix tg, A € [0,T], to < s <t <tp+ A and u € I. Since

E sup exp (G\Xu ]
to<s<t<to+A
< E[ sup  exp (20| X (t) — Xu(to)[* + 20| Xu(s) — Xu(to)\z)]
to<s<t<to+A

<E [ sup  exp (40| X, (t) — Xu(tO)IQ)]
to<t<to+A

for 6 > 0, it suffices to show that

E
to<t<to+A

sup  exp (O] Xu(t) — Xu(to)IQ)] <1+0(1)A (A.5)

for some 67,C(T) > 0. Let #: [0,7] — R be a non-negative continuously differentiable
function (to be chosen later) and write

Zny(r) = O Xu(r)=Xu(to)?

Using It6’s formula we have

Zy(t) — 1
= M,(t) —i—/t Zy (1) [QQ(T)(XU(T) — Xu(to)) - < / /Rd )G(u,v) fiy r(dx) dv>
+0(r) (d +260(r)| Xu(r) — Xu(to)[?) +6'(r)[ Xu(r) to)] ] dr,
where
M, (1) == /t 27, (1)8(r) (Xu(r) — Xulto)) - dBu(r).

Using Lemma 3.3(i) we can choose some small ¢ € (0,00) such that

sup sup EeSlXu()—Xulto)l® & o (A.6)

uel 0<r<T

The function 6(r) will be chosen below such that supy<,.<7 0(r) < (/2. With such a choice of
0(r), M,(r) is a martingale. By Young’s inequality and the linear growth properties of f and
b, we have that for every n > 0,

20500) = Falto)- (£l + [ /R d )6) o) o )

<l Rulr) — Kulto)? + S0 X

So, by letting

we obtain
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The remaining argument is similar to that in [9, Section 5.1] and so we only give a sketch.
Choose 6(r) to be the solution of the ODE

nf(r) +20%*(r) +0'(r) =0
with 6(0) € (0,¢/2). It is easy to see that the solution is decreasing and strictly positive.
Thus B(r) =0 and 0 < 6(T) < 0(r) < (/2 for every r € [0,T]. As a consequence,
to+A
E sup Z,(t)<1+E sup M,(t) —I—/ EZ,(r)A(r)dr.
to<t<to+A to<t<to+A to

Using the bound in (A.6) one can check exactly as in [9, Section 5.1] that

sup EZ,(r)A(r) <occand E  sup M, (t) < C5A.
0<r<T to<t<to+A

This proves (A.5), with C(T') := Cs+supg<, <7 EZ,(r) A(r) < 0o, and hence the result follows.
n

Proof of Lemma 3.5. Noting that Wy (v, v") < 237" | |X . (t) — X4 (s)], we have
1 n
P sup W@, o) >e| <P| - Vi>el,
(to<s,t<to+A ) n Z '

where Vi := supy, < 1<to+ A |X% (t) — X%(S)\~

By Markov’s inequality and the independence of X, we have

( Zvn > €> < exp (—n sup [ 6 — — ZlogEexp(@Vn)

=1 020 zl

But for any given 6 > 0, with C(7") and 67 as in Lemma 3.4, we have

)

Eexp(6V;") < Eexp (9 + 0 (vi")z‘) < (14+C(T)A) exp <92> .

467 407
Therefore
92
ZV” >e | <exp| —nsup [59 ——— —log(1+C(T )A)]
P 6>0 407
=exp (—n [HTz—: —log(1+ C(T)A)]) < exp (—n [9T52 - C(D)A]).
This completes the proof. |

APPENDIX B. SUB-(GAUSSIAN INEQUALITY
Proof of Lemma 3.8. Since EY = 0, we have

rw [Z A 2\Y\k

[e. 9]

> Bk

k=2

by 2
E*Y]=1+E =1+ ‘2’1@ [|Y|26\AHY|} .
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Since 22 < 2a(1 + %) < 2ae*°/2% and tx < % + % for z,t € R, we have

A2 Y2 A2 Y2
E[erM] <1+ |2|E [2@ exp <|2|> exp <a| | + H)}
a

2 2a

A2 Y|?
-t (45) o (22

A 2
< (1+2a|A]?) exp <a|2|>

< exp (52(1!/\\2) :

where the last line follows on noting that 1 + 2az < €29 for z € R. |

APPENDIX C. BOUNDS OF INDEPENDENT RANDOM VARIABLES

In this section we prove the following heterogeneous version of the result with i.i.d. setup
in [9, Theorem 2.1] . We will keep the use of X, p, etc. as in [9]. These notations are used in
this section only.

Proposition C.1. Let {X':i € N} be independent R%-valued random variables. Write
1 ¢ : 1o
i 5:gz5xia pi = L(XY), p" ‘:;Z”l"
i=1 i=1

Suppose Eq = sup;ey [pa eclel® wi(dr) < oo for some o > 0. Let p € [1,2]. Suppose there is
some X\ > 0 such that u" satisfies the Talagrand T,(\) inequality for each n € N, namely

Wlw ") < 1/ S HOvlr) (1)

for any v € P(R?Y), where H(-||-) is the relative entropy. Then, for any d' > d and N < X,
there exists some Ny € N, depending only on N,d,a, E,, such that for any ¢ > 0 and
n > Npmax(e~(@+2) 1),

AT n >\,
P (W,(a", pu") > ¢) < exp <—’7p2n52> )

where

1 ifl1<p<2,
"= N3-2v3, ifp=2.

Remark C.1. The assumption that u" satisfies the T,(\) inequality, for some p € [1,2] and
A > 0, implies the existence of a square-exponential moment of u". However, this is different
from the assumption Eq < 0o which is a uniform bound on the square-exponential moment of
each p;. The latter is not redundant and will be used in the proof of Proposition C.1.

Proof of Proposition C.1. The proof follows the three-step argument in [9, Section 3.1] and
hence we only report what is different. In particular, details are provided for Step 1 and a
part of Step 2 where the heterogeneity requires some additional estimates. Only a sketch is
provided for the remaining part of Step 2 and Step 3.

Step 1 (Truncation) Let R > 0 and Bg := {z € R? : |z| < R}. Truncate y; into
a probability measure p; g on the ball B, namely w; r(-) := 1pui(-)/pi(Br). Let pf =
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Let {Y?:i € N} be independent R%valued random variables such that £(Y?) = p; r, and
{X?:i€eN}and {Y*:i€ N} are independent. Define

i Xt if | X <R,
Y if |[X'| > R.
(X' = XRl =X = Y' N xipr < (X' + B)Lxe5r < 21X°[1xi5R (C.2)
and hence
W ) < L S EIx - xjr < L Zm X 1) = 2 32 /{ ol ).
=1 =1 |a:\>R

If R > \/p/(2ca), then the function r — 7“1”/60”’2 is nonincreasing for r > R, and then

WE( 2° el i (da).
(1", ug) ; Yz /{a:|>R}€ wi(dx)

We conclude that
Wg’(u”, pp) < 2pEOéRpe’°‘R2 for all R > \/p/(2a). (C.3)

On the other hand, the empirical measures

1 & 1 o
2525)0', PR :ﬁzéxg
i=1 1=1
tisf
satisfy _ | | L
WG i) < — | Xh = X< > 7
i=1 i=1

by (C.2), where Z¢ := 2p|Xi|p1|X¢‘>R, i=1,...,n. Then, for any p € [1,2], we can introduce
parameters ¢, > 0, and use Chebyshev’s exponential inequality and the independence of Z*
to obtain

B (W, (i, i) > €] < P

1 <& . n A
— A Pl < —nfe? logE zH . 4
- Z > e ] < exp ( nbel + Z ogEexp(6 )) (C.4)

i=1 i=1
In the case when p € [1,2), for any o) € (0, ), there exists some constant Ry = Ri(a,p)
such that 2POrP < ar? for all # > 0 and r > R192 ». Hence

Eexp (02°) < Eexp (| X' ixip) S 1+E (X105 ) <14 7,

for R > Rﬁﬁ. From this and (C.4) we have
P W, (iR, f") > €] < exp (—n [95—:7’ - Eae(o‘l_o‘)RQD .
From this, (C.3) and the triangle inequality for W), we have
B[, (u", i) > <]
< PWo(u", i) + WKk, i) +
<P [ Wk, i) > ne — 2EL/7Re”

ﬂ) el
+ P Wy ik, i) > (1 = n)e]
+e

Wy (iR,
"
} ( [ (1 —n)Pe? — Eae(al_o‘)RQD . (C.5)

<P [Wp(u% fi) > ne — 2EY/PRe”
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This estimate was established for any given p € [1,2), n € (0,1), €, > 0, a1 € (0,a) and
R > \/p/(2a) vV Rlé’ﬁ, where R is a constant depending only on a1 and p.

In the case when p = 2, we let Z% := | X! — Yi]21|X¢|>R, i=1,...,n. Starting from (C.4)
again, we choose a1 € (0,a) and then 6 := oy /2. By definition of Z* and p; g,

E [oxp (%27)] = /R oxp (Ply — 2P Lygsr) i) i a(dy)

=)+ g [ e (G af?) ) )

1
<1+ (1 - Eae_aR2) / n et i (dy) /| on et iy (dar)
Y= Z|Z

S 1 + 2E26(a1—a)R2
for R > Ry, where Ry = Ra(a, E,) is some constant. From this and (C.4) we have

P[Wa(jig, i") > €] < exp (—n [%52 - 2E§e(°‘1—a)RQD .

So a similar argument as in (C.5) gives
P[Wa(u", i) > ] <P [Wz(u%ﬂ’fa) > e — QEé/QRe*%RQ]

+ exp (—n [%(1 —n)%e? — 2E62Ye(0‘1_°‘)RQD .
This estimate was established for any given n € (0,1), e > 0, ag € (0,) and R > /p/(2a)) V
Rs, where Rjy is a constant depending only on o and F,.

So, apart from some error terms, it will be sufficient to establish the result for the “trun-
cated” law s, whose support lies in the compact set Bp.

Next we prove that p’, satisfies some modified T}, inequality. Let v be a probability measure
on Bpg, absolutely continuous with respect to p (and hence with respect to p'). Then, when
R > Rj for some constant R3 = R3(F,), we can write

n n dv dv
)~ Bl = [ o 32 dv— [ tog 22 av
Br HR 3

= log[u"(Bg)] > log (1 — e o / elal” u"(dw))
> log (1 _ Eae_o‘R2> > 9B,
Since p" satisfies the T),(\) inequality,
n A 2/, n A n n  ny\2
Hw|p") =z SWy (1", v) = 5 (Wplug, v) = Wykg, 1))
by triangle inequality. Combining these two displays, we obtain
n )\ n n n —Q 2
H(v|pg) = 5 (Wp(ph, v) = Wy (i, p"))* = 2Eqe™ .

From this, (C.3) and elementary inequality
Ya € (0,1), 3C, > 0 such that Va,y € R, (z —y)? > (1 — a)x? — C,y?,
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We deduce that for any A; < A there exists some constant K such that

n At n —aR?
H(v||pg) = ?Wg(ﬂR»V) — KR,

Step 2 (Covering by small balls) In this second step we derive quantitative estimates
on [i,. Let ¢ be a bounded continuous function on Bg, and let U be a Borel set in P(Bg). By

Chebyshev’s exponential inequality, the independence of the variables X%, and the concavity
of log(-),

veU

_ ) i -
= exp (—n inf ¢pdv — flogE(e fBRd)d“R)])
n

velU L/Br
_ | i
—n inf dv — — log I (e?(XR)
eXP( n inf /BRqﬁu n;og (e R)
<exp | —n inf ¢ dv — log l ZE <6¢(X1i{))
o velU BR n pa
= exp (—n inf ¢odv — log/ e? d%%]) .
velU L/ Bgr Br

As ¢ is arbitrary, we can show that [9, Equation (30)] holds if U is convex and compact,
namely

P(ak € U) < exp (—n inf / qbdy) E (e”IBR ¢dﬂ%)
Br

P € U) < exp (-1 inf HOA) ).

Following the argument in [9, Pages 557-559], we can show that equations (36) and (37)
therein hold. More precisely, given p € [1,2), Ay < A and a1 < «, there exist some constants

K1, K, K3, Ry € (0,00) such that for all £,¢ > 0 and R > Ry max(1,(77),

R\ f(F) Ao o Y o
P (Wy(a"™, p") >¢) < (K28 \Y 1) exp (—n [25 — KiR%e ¢ ])

+ exp (—n [KgCé‘p - K4e(a1*°‘)R2D (C.6)

for some constant Ky = K4(0, ay); while in the case p = 2,

Y ) R K2<?) )‘2 2.2 2 _—aR?
P (Wa(a™, u") >e) < K2€\/1 exp | —n | e — K1R%¢

+ exp (—n [ (1—mn)%e? - K4e(o‘1_°‘)R2]> (C.7)

for any n € (0,1) and R > Ry.

Step 3 (Choice of the parameters) The argument is the same as that in [9, Pages
559-561]. Therefore we only provide a sketch here. First consider the case p € [1,2). Let
N < A, o <« and dy > d. Using (C.6) one can show that [9, (38)] holds, that is,

Qay
2

!/

P(Wp(a", 1) > ¢) < exp <—/;n62> + exp(—a'ne?) (C.8)
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as soon as

R? > Ry max <1,52,log(612)> . ne@t? > K Rh

for some constants Ry and Kp depending on p" only through A\, a and E,. By choosing
parameters R, n,d’ carefully as in [9, (39)], one can find some Ny = No(N,d', a, E,,) such that
for all ¢ > 0, (C.8) holds as soon as n > Nymax(e~(¥*2) 1), Choosing @ < A/2 gives the
desired upper bound for the right hand side of (C.8).

Finally consider the case p = 2. Given A3 < Ay and ag < «g, using (C.7) one can show
that similar estimates as in (C.8) holds, that is,

o3

5 (1- 77)27152) .

Taking as = A\3/2 and n = /2 — 1 gives the desired result. |

A
P(Wa (", 1) > €) < exp (—237727162) +exp (

REFERENCES

[1] J. Barré, P. Dobson, M. Ottobre, and E. Zatorska, Fast non-mean-field networks: Uniform in time aver-
aging, SIAM Journal on Mathematical Analysis 53 (2021), no. 1, 937-972.
[2] E. Bayraktar, S. Chakraborty, and R. Wu, Graphon mean field systems, The Annals of Applied Probability,
accepted (2022).
[3] E. Bayraktar and R. Wu, Mean field interaction on random graphs with dynamically changing multi-color
edges, Stochastic Processes and their Applications 141 (2021), 197-244.
[4] E. Bayraktar and R. Wu, Stationarity and uniform in time convergence for the graphon particle system,
Stochastic Processes and their Applications 150 (2022), 532-568.
[5] E. Bayraktar, R. Wu, and X. Zhang, Propagation of chaos of forward-backward stochastic differential
equations with graphon interactions, arXiv preprint arXiv:2202.08163 (2022).
[6] G. Bet, F. Coppini, and F. R Nardi, Weakly interacting oscillators on dense random graphs, arXiv preprint
arXiv:2006.07670 (2020).
[7] S. Bhamidi, A. Budhiraja, and R. Wu, Weakly interacting particle systems on inhomogeneous random
graphs, Stochastic Processes and their Applications 129 (2019), no. 6, 2174-2206.
[8] F. Bolley, A. Guillin, and F. Malrieu, Trend to equilibrium and particle approzimation for a weakly selfcon-
sistent vlasov-fokker-planck equation, ESAIM: Mathematical Modelling and Numerical Analysis 44 (2010),
no. 5, 867-884.
[9] F. Bolley, A. Guillin, and C. Villani, Quantitative concentration inequalities for empirical measures on
non-compact spaces, Probability Theory and Related Fields 137 (2007), no. 3-4, 541-593.
[10] F. Bolley and C. Villani, Weighted csiszar-kullback-pinsker inequalities and applications to transportation
inequalities, Annales de la faculté des sciences de toulouse: Mathématiques, 2005, pp. 331-352.
[11] A. Budhiraja and W.-T. L. Fan, Uniform in time interacting particle approxzimations for nonlinear equa-
tions of Patlak-Keller-Segel type, Electron. J. Probab. 22 (2017), 37 pp.
[12] A. Budhiraja, D. Mukherjee, and R. Wu, Supermarket model on graphs, Ann. Appl. Probab. 29 (201906),
no. 3, 1740-1777.
[13] P. E Caines and M. Huang, Graphon mean field games and the GMFG equations, 2018 IEEE Conference
on Decision and Control (CDC), 2018, pp. 4129-4134.
[14] P. E Caines and M. Huang, Graphon mean field games and their equations, SIAM Journal on Control and
Optimization 59 (2021), no. 6, 4373-4399.
[15] R. Carmona, D. B Cooney, C. V Graves, and M. Lauriere, Stochastic graphon games: I. the static case,
Mathematics of Operations Research 47 (2022), no. 1, 750-778.
[16] F. Coppini, A Note on Fokker—Planck Equations and Graphons, Journal of Statistical Physics 187 (2022),
no. 2, 1-12.
[17] F. Coppini, Long time dynamics for interacting oscillators on graphs, The Annals of Applied Probability
32 (2022), no. 1, 360-391.
[18] F. Coppini, H. Dietert, and G. Giacomin, A law of large numbers and large deviations for interacting
diffusions on Erdés—Rényi graphs, Stochastics and Dynamics 0 (2019), no. 0, 2050010, available at https:
//doi.org/10.1142/S0219493720500100.


https://doi.org/10.1142/S0219493720500100
https://doi.org/10.1142/S0219493720500100

28

BAYRAKTAR AND WU

[19] F. Delarue, Mean field games: A toy model on an Erdos-Renyi graph., ESAIM: Proceedings and Surveys

60 (2017), 1-26.

[20] F. Delarue, D. Lacker, and K. Ramanan, From the master equation to mean field game limit theory: Large

deviations and concentration of measure, The Annals of Probability 48 (2020), no. 1, 211 —263.

[21] S. Delattre, G. Giacomin, and E. Lugon, A note on dynamical models on random graphs and Fokker—Planck

equations, Journal of Statistical Physics 165 (2016), no. 4, 785-798.

[22] P. Dupuis and G. S Medvedev, The large deviation principle for interacting dynamical systems on random

graphs, Communications in Mathematical Physics 390 (2022), no. 2, 545-575.

[23] S. Gao, R. F. Tchuendom, and P. E Caines, Linear quadratic graphon field games, arXiv preprint

arXiv:2006.03964 (2020).

[24] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics,

vol. 113, Springer New York, 1991.

[25] V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Mathematics,

vol. 182, Cambridge University Press, 2010.

[26] D. Lacker and A. Soret, A case study on stochastic games on large graphs in mean field and sparse regimes,

Mathematics of Operations Research 47 (2022), no. 2, 1530-1565.

[27] L. Lovész, Large networks and graph limits, Vol. 60, American Mathematical Soc., 2012.
[28] E. Lugon, Quenched asymptotics for interacting diffusions on inhomogeneous random graphs, Stochastic

Processes and their Applications (2020).

[29] H. P. McKean, Propagation of chaos for a class of non-linear parabolic equations, Stochastic differential

equations (Lecture Series in Differential Equations, Session 7, Catholic University, 1967), 1967, pp. 41-57.

[30] G. S Medvedev, The nonlinear heat equation on dense graphs and graph limits, STAM Journal on Mathe-

matical Analysis 46 (2014), no. 4, 2743-2766.

[31] G. S Medvedev, The nonlinear heat equation on w-random graphs, Archive for Rational Mechanics and

Analysis 212 (2014), no. 3, 781-803.

[32] G. S Medvedev, The continuum limit of the Kuramoto model on sparse random graphs, arXiv preprint

arXiv:1802.03787 (2018).

[33] R. Oliveira and G. Reis, Interacting diffusions on random graphs with diverging average degrees: Hydro-

dynamics and large deviations, Journal of Statistical Physics 176 (2019), 1057-1087.

[34] F. Parise and A. E Ozdaglar, Graphon games: A statistical framework for network games and interventions,

Available at SSRN: https://ssrn.com/abstract=3437293 (2019).

[35] A-S. Sznitman, Topics in propagation of chaos, Ecole d’Eté de Probabilités de Saint-Flour XIX—1989,

1991, pp. 165-251.

[36] D. Vasal, R. Mishra, and S. Vishwanath, Sequential decomposition of graphon mean field games, 2021

American Control Conference (ACC), 2021, pp. 730-736.

[37] A'Y. Veretennikov, On ergodic measures for mckean-vlasov stochastic equations, Monte carlo and quasi-

monte carlo methods 2004, 2006, pp. 471-486.

[38] C. Villani, Optimal transport: old and new, Vol. 338, Springer Science & Business Media, 2008.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, 530 CHURCH STREET, ANN ARBOR, MI

48109

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, 411 MORRILL RoAD, AMES, TA 50011
Email address: erhan@umich.edu, ruoyu@iastate.edu



	1. Introduction
	1.1. Organization
	1.2. Notation

	2. Model, assumptions, results
	3. Proofs
	3.1. Properties of the limiting system
	3.2. Bounds in terms of empirical measures of independent variables
	3.3. Exponential estimates
	3.4. Proofs of Theorems 2.1 and 2.2

	4. Acknowledgment
	Appendix A. Proofs of results in Section 3.1
	Appendix B. Sub-Gaussian inequality
	Appendix C. Bounds of independent random variables
	References

