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Abstract

We investigate the stability of the equilibrium-induced optimal value in a one-dimensional
diffusion setting for a time-inconsistent stopping problem under non-exponential discounting.
We show that the optimal value is semi-continuous with respect to the drift, volatility, and
reward function. An example is provided showing that the exact continuity may fail. With
equilibria extended to ε-equilibria, we establish the relaxed continuity of the optimal value.
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1 Introduction

The study of time-inconsistent stopping has attracted considerable attention recently. See [14,
13, 15, 17, 8, 7, 4, 19, 3, 1, 16] and the references therein. Among them, [13] provides a general
framework for time-inconsistent stopping in continuous time. The notion of equilibria in [13] (called
mild equilibria since [4]) is further investigated in e.g., [14, 15, 17]. In particular, it is shown in
[14, 17] that there exists an optimal mild equilibrium which pointwisely dominates any other mild
equilibrium. Another concept of equilibria (called weak equilibria in [4]) is proposed using a first
order condition in [7]. Such kind of equilibria are typically characterized by some extended HJB
equation system. See. e.g., [8, 7, 19]. In [4], a third notion of equilibria, called strong equilibria, is
proposed, which better captures the economic meaning of being “equilibria”. A further description
of mild, weak and strong equilibria is relegated to Appendix A. In [4] it is shown that an optimal mild
equilibrium is also weak and strong in a continuous Markov chain setting under non-exponential
discounting. Recently, [1] extends such result to the one-dimensional diffusion case. Let us also
mention that pure strategies are studied in [13, 19, 1, 4, 14, 15, 17], while mixed-type equilibria are
investigated in [8, 9, 5].

In this paper, in the one-dimensional diffusion infinite-horizon setting under weighted (and thus
non-exponential) discounting, we consider the stability of the optimal value induced by all pure
mild equilibria (denote as V µ,σ(·, f)) with respect to (w.r.t.) the drift µ, volatility σ and reward
function f . We show that the optimal value w.r.t. (µ, σ, f), i.e., (µ, σ, f) 7→ V µ,σ(·, f), is upper
semi-continuous. We provide an example showing that the exact continuity may fail. In order to
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recover the continuity, we relax the equilibrium set and consider ε-mild equilibria. Thanks to this
relaxation, we establish the continuity in the sense that limε↘0 limn→∞ V

µn,σn
ε (·, fn) = V µ,σ(·, f)

when (µn, σn, fn) → (µ, σ, f) in certain sense, where V µn,σn
ε (·, fn) is the optimal value generated

by all ε-mild equilibria w.r.t. (µn, σn, fn).
Our paper extends the results in [2] to the one-dimensional diffusion case. Compared to [2], a

major difference is the mathematical approach: in this paper we need to apply different methods
to establish intermediate results, including a PDE approach for the uniform convergence of some
stopping value functions. Another difference is related to the semi-continuity for the smallest mild
equilibrium (which is an optimal one). In [2] it is shown that the smallest mild equilibrium is
lower semi-continuous w.r.t. the law of the underlying process and the reward function in discrete
time, while in this paper we provide an example showing that such semi-continuity may fail in the
diffusion framework.

The literature on stability analysis for Nash games is very sparse. Let us mention the very
recent works [11] and [12] on this topic. In the research of time-inconsistent stopping, to the best of
our knowledge, only [2, 9] have studied the stability before, yet the notion of stability in [9] differs
from that in our paper. Given the difference between this paper and [2], and limited literature in
this topic, we believe our results are novel and significant.

The rest of the paper is organized as follows. Section 2 provides the setup. The main results are
introduced in Section 3, including the semi-continuity of the optimal value function w.r.t (µ, σ, f ),
and the stability of the value function when relaxing the equilibrium set. In Section 4, we provide
two examples, one for the strict semi-continuity of (µ, σ, f ) 7→ V µ,σ(·, f), the other for the failure of
the semi-continuity for the smallest mild equilibrium w.r.t (µ, σ, f). Appendix A provides a brief
introduction of mild, weak and strong equilibria.

2 Setup and Preliminaries

Let (Ω,P, (Ft)t,F) be a filtered probability space supporting a 1-dimensional Brownian motion W .
Let X ⊂ R be an open interval and B be the class of Borel measurable subsets of X. For A ∈ B,
denote by A the closure of A (w.r.t. the Euclidean topology induced by X). R+ (resp. N) denotes
the set of non-negative real numbers (resp. all positive integers), and set N := N ∪ {∞}. By
convention 1

∞ = 0. For a function g : X→ R, set ‖g‖∞ := supx∈X |g(x)|. We further set Q := (µ, σ)
for two functions µ, σ : X 7→ R such that a 1-dimensional diffusion X given by

dXt = µ(Xt)dt+ σ(Xt)dWt, (2.1)

is supported on X for any X0 = x ∈ X.

Definition 2.1. Q = (µ, σ) is said to be regular, if µ, σ are Lipschitz continuous and |σ(·)| > 0.

Throughout this paper, we always assume Q is regular and such that X given by (2.1) is
supported on X. Denote by EQx [·] (resp. PQx (·)) the expectation (resp. probability) associated with
Q and X0 = x.

Let δ : R+ 7→ [0, 1] be a discount function that is strictly decreasing and limt→∞ δ(t) = 0. We
make the following assumption on δ.

Assumption 2.1. δ(·) is a weighted discount function of the form: δ(t) =
∫∞
0 e−rtF (dr), where

F (r) : [0,∞)→ [0, 1] is a cumulative distribution function.
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Remark 2.1. Most commonly used discount functions obey the weighted discounting form. See e.g.,
[10] for a detailed discussion. Moreover, [10, Proposition 1] indicates that all weighted discount
functions satisfy the following decreasing impatience property:

δ(t+ s) ≥ δ(t)δ(s) ∀ t, s ≥ 0, (2.2)

In addition, pure and mixed weak equilibria and the corresponding smooth fit property under weighted
discounting have been investigated in [19] and [5] respectively.

For A ∈ B, let ρA := inf{t > 0 : Xt ∈ A}. Given Q = (µ, σ), a reward function f : X 7→ R+,
and A ∈ B, define

JQ(x,A, f) := EQx [δ(ρA)f(XρA)] ∀x ∈ X.

Recall the notion of mild equilibria and optimal mild equilibria defined in [1] as follows.

Definition 2.2 (Mild equilibria and optimal mild equilibria). A closed set S ⊂ X is said to be a
mild equilibrium (w.r.t. f and Q), if

f(x) ≤ JQ(x, S, f) ∀x /∈ S. (2.3)

Denote by EQ(f) the set of mild equilibria w.r.t. (f,Q). A mild equilibrium S is said to be optimal,
if for any other mild equilibrium R ∈ EQ(f),

JQ(x, S, f) ≥ JQ(x,R, f) ∀x ∈ X.

Remark 2.2. |σ| > 0 implies that ρ{x} = 0,Px-a.s. for any x ∈ X. Thus, ρA = ρA for any A ∈ B.

This is why we restrict equilibria to be closed. Moreover, this also indicates that f(x) = JQ(x,A, f)
for any x ∈ A. Consequently, there is no need to consider the condition

f(x) ≥ JQ(x, S, f), ∀x ∈ S

as being part of the requirement for mild equilibria. We refer to Appendix A for a detailed discussion.

Remark 2.3. It is shown in [17, Theorem 4.1] that the smallest mild equilibrium is optimal. We
rewrite this result as a lemma in the following, since it will be used later in the paper. It is proved
in [1, 4] that under mild assumptions an optimal mild equilibrium is also weak and strong.

Lemma 2.1. Let Assumption 2.1 (or (2.2)) hold. Suppose Q = (µ, σ) is regular and f is non-
negative, continuous and ‖f‖∞ <∞. Then

S∗(f,Q) := ∩S∈EQ(f)S

is an optimal mild equilibrium.

Let V Q(x, f) be the optimal value generated over all mild equilibria, i.e.,

V Q(x, f) := sup
S∈EQ(f)

JQ(x, S, f) ∀x ∈ X. (2.4)

Under the assumption in Lemma 2.1, we have V Q(x, f) = JQ(x, S∗(f,Q), f).
To elicit our stability results, we need the following definition of ε-mild equilibria.
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Definition 2.3 (ε-mild equilibrium). Let ε ≥ 0. A closed set S ⊂ X is called an ε-mild equilibrium
(w.r.t. f and Q), if

f(x) ≤ JQ(x, S, f) + ε ∀x /∈ S. (2.5)

Denote by EQ(f, ε) the set of ε-mild equilibria w.r.t. (f,Q). When ε = 0, we still call S a mild
equilibrium and may use the notation EQ(f) instead of EQ(f, 0).

We also denote
V Q
ε (x, f) := sup

S∈EQ(f,ε)

JQ(x, S, f) ∀x ∈ X,

and we keep using the notation V Q(x, f) in (2.4) instead of V Q
0 (x, f) when ε = 0.

3 Main results

Consider a sequence (fn, Qn)n∈N, where (fn)n∈N are reward functions, and (Qn = (µn, σn))n∈N are

regular coupled functions such that, for each n ∈ N, X governed by

dXt = µn(Xt)dt+ σn(Xt)dWt,

is supported on X for any X0 ∈ X.

Theorem 3.1. Suppose Assumption 2.1 and the following hold:

(i) (Qn)n∈N are regular, and satisfy

sup
n∈N

(‖µn‖∞ + ‖σn‖∞) <∞ and inf
n∈N,x∈X

|σn(x)|2 =: L > 0; (3.1)

(ii) fn ≥ 0 is continuous for any n ∈ N, and ‖f∞‖∞ + supx,y∈X
|f∞(x)−f∞(y)|

|x−y| =: K <∞;

(iii) ‖µn − µ∞‖∞ + ‖σn − σ∞‖∞ + ‖fn − f∞‖∞ → 0, as n→∞.

Then

lim
ε↘0

(
lim inf
n→∞

V Qn

ε (x, fn)
)

= lim
ε↘0

(
lim sup
n→∞

V Qn

ε (x, fn)
)

= V Q∞(x, f∞) ∀x ∈ X.

Theorem 3.2. Suppose the assumptions in Theorem 3.1 hold. Then

lim sup
n→∞

V Qn(x, fn) ≤ V Q∞(x, f∞) ∀x ∈ X. (3.2)

Remark 3.1. Exact continuity in (3.2) may fail in general. See the example in Section 4.1.

Remark 3.2. By an argument similar to that in [2, Remark 4.2], we have that1

EQ∞(f∞) = lim
ε↘0

(
lim inf
n→∞

EQnε (fn)
)

= lim
ε↘0

(
lim sup
n→∞

EQnε (fn)
)
.

1The lower/upper limit of a sequence of sets is defined in a usual way. That is, for a sequence of sets (An)n∈N,

lim inf
n→∞

An := ∪
n∈N

∩
k≥n

Ak and lim sup
n→∞

An := ∩
n∈N

∪
k≥n

Ak.

We say the sequence of sets (An)n∈N is lower (resp. upper) semi-continuous if A∞ ⊂ lim infn→∞An (resp. A∞ ⊃
lim supn→∞An).
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3.1 Proofs of Theorems 3.1 and 3.2

To begin with, we first fix an arbitrary (f,Q) and study the relation between V Q
ε (·, f) and V Q(·, f).

Proposition 3.1. Suppose that f is continuous with ‖f‖∞ <∞ and Q = (µ, σ) is regular. Then

V Q(x, f) = lim
ε↘0

V Q
ε (x, f) ∀x ∈ X. (3.3)

Proof. We prove (3.3) by contradiction. For any ε > 0, EQ(f) ⊂ EQε (f) implies that V Q(·, f) ≤
V Q
ε (·, f). Suppose there exists x0 ∈ X such that

lim sup
ε↘0

V Q
ε (x0, f)− V Q(x0, f) = α > 0. (3.4)

Then there exists a sequence (εk, Sk)k∈N such that εk ↘ 0, Sk ∈ EQεk(f) are closed, and

JQ(x0, Sk, f)− V Q(x0, f) ≥ α

2
∀k ∈ N. (3.5)

For any k ∈ N, we have x0 /∈ Sk, for otherwise JQ(x0, Sk, f) = f(x0) ≤ V Q(x0, f), which contradicts
(3.5). Define

lk := sup{y < x0 : y ∈ Sk}, rk := inf{y > x0 : y ∈ Sk}, ∀k ∈ N.

Now consider the sequence (lk)k∈N. If (lk)k∈N is bounded, then we take a subsequence (lkj )j∈N
such that limj→∞ lkj = l for some constant l ≤ x0. Otherwise, we take a subsequence (lkj )j∈N that
tends to l = −∞. Similarly, for the subsequence (rkj )j∈N, find a further subsequence, which we
still denote as (rkj )j∈N, such that rkj either converges to a constant or tends to ∞, and we use r
to denote the limit no matter which case it is. Hence, we find a sequence of intervals ((lkj , rkj ))j∈N
that converges to interval (l, r). Notice that (lkj )j∈N, (rkj )j∈N can be chosen to be monotone, so for
any y ∈ (l, r),

y ∈ (lkj , rkj ), and JQ(y, Skj , f) = JQ(y,X \ (lkj , rkj ), f), for j large enough.

Now fix y ∈ (l, r). By Skj ∈ E
Q
εkj

(f) and the dominated convergence theorem, we have that

JQ(y,X \ (l, r), f) = lim
j→∞

(
JQ(y,X \ (lkj , rkj )) + εkj

)
≥ f(y) ∀y ∈ (l, r).

Hence, X \ (l, r) ∈ EQ(f). Then it follows from l ≤ x0 ≤ r that

V Q(x0, f) ≥ JQ(x0,X \ (l, r), f) = lim
j→∞

JQ(x0,X \ (lkj , rkj ), f) = lim
j→∞

V Q
εkj

(x, f),

which contradicts (3.4).

Next, let us go back to the sequence ((fn, Qn))n∈N, and introduce the following Lemma.

Lemma 3.1. Suppose the assumptions in Theorem 3.1 hold. Then

lim
n→∞

sup
x∈X,S∈B

|JQn(x, S, fn)− JQ∞(x, S, f∞)| = 0.
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Proof. By assumptions, for any S ∈ B,

|JQn(x, S, fn)− JQ∞(x, S, f∞)| ≤‖fn − f∞‖∞ + |JQn(x, S, f∞)− JQ∞(x, S, f∞)|.

To prove the desired result, it is sufficient to show the convergence of the second term above. To
this end, fix ε > 0 and we will find N such that

sup
x∈X,S∈B

|JQn(x, S, f∞)− JQ∞(x, S, f∞)| ≤ ε ∀n ≥ N. (3.6)

Take an arbitrary S ∈ B. For each n ∈ N and r ∈ (0,∞), set vnr (x) := EQ
n

x [e−rρSf∞(XρS )].
Recall the cumulative function F (r) in Assumption 2.1 and the constants K,L in the assumptions
of Theorem 3.1. As limt→∞ δ(t) = 0, F (0) = 0. By the right-continuity of function F , there exists
r0 > 0 such that

F (r0) ≤
ε

4‖f∞‖∞
. (3.7)

We proceed with the rest of the proof in three steps.
Step 1. We first focus on the case 0 < r ≤ r0. Notice that ‖vnr ‖∞ ≤ ‖f∞‖∞ for any n ∈ N,

then by (3.7),∫
[0,r0]
|vnr − v∞r |F (dr) ≤

(
sup

0<r≤r0,n∈N
2‖vnr ‖∞

)
· F (r0) ≤ 2‖f∞‖∞ ·

ε

4‖f∞‖∞
=
ε

2
. (3.8)

Step 2. Pick an arbitrary r > r0. We first construct a bound for supx∈X\S |(vnr )′|+ |(vnr )′′|. The
Lipschitz continuity and boundedness of µn, σn imply Hölder continuity. Then, given an interval
(a, b) ⊂ X \ S with 0 < b − a ≤ 1, it is known (see, e.g. [18, Theorem 9.2.14]) that vnr (x) is twice
continuously differentiable and satisfies

− rvnr (x) + µn(x)(vnr (x))′ +
1

2
(σn)2(x)(vnr (x))′′ = 0 x ∈ (a, b). (3.9)

Write X \ S =: ∪i∈N(θi, θi+1). Take an arbitrary x0 ∈ X \ S. There are two cases: (I) for the case
x0 ∈ (θi, θi+1) with θi+1 − θi ≤ 1, we set a = θi, b = θi+1; (II) for the case x0 ∈ (θi, θi+1) with
θi+1− θi > 1 (notice that θi, θi+1 can be −∞,∞ respectively), we take a, b such that θi ≤ a < x0 <

b ≤ θi+1 with b− a = 1. Let vnr (x) = ũ(φ(x)), where φ(x) :=
∫ x
0 exp(−

∫ l
0

2µn(z)
(σn)2(z)

dz)dl. Then (3.9)

leads to {
−rũ(y) + 1

2 σ̃
2(y)ũ′′(y) = 0 y ∈ (φ(a), φ(b)),

ũ(φ(a)) = vnr (a), ũ(φ(b)) = vnr (b),
(3.10)

where µ̃(y) = µn(φ−1(y)) and σ̃(y) = σn(φ−1(y))φ′(φ−1(y)). The boundedness of supn ‖vnr ‖∞ gives
the uniform boundedness of ũ over n. Then the first line in (3.10) together with (3.1) gives that
|ũ′′| ≤ 2rK

L on (φ(a), φ(b)). Then a direct calculation along with |b − a| ≤ 1 and the uniform
boundedness of (Qn)n∈N shows that

sup
x∈[a,b]

(
|φ′(x)|+ |φ′′(x)|+ |φ′(x)|−1

)
:= M <∞, (3.11)

where the constant M depends on K,L but does not depend on n, r, S. By Mean Value Theorem,
for both cases (I)&(II), the second line in (3.10) together with (3.11) gives that

|ũ′(y0)| =
∣∣∣∣vnr (b)− vnr (a)

b− a
· b− a
φ(b)− φ(a)

∣∣∣∣ ≤ max

{
sup
x,y∈X

|f∞(x)− f∞(y)|
|x− y|

,
2‖f‖∞

1

}
M ≤ 2KM,
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for some point y0 ∈ (φ(a), φ(b)). Hence, as x0 ∈ (a, b) and |b− a| ≤ 1,

|ũ′(φ(x0))| ≤ |ũ′(y0)|+ |
∫ φ(x0)

y0

ũ′′(y)dy| ≤ 2KM +

∫ M

0

2rK

L
dl ≤ M̃(1 + r),

where M̃ is a constant that depends on K,L but does not depend on n, r, S, and may change from
line to line during the rest of the proof. In sum, |ũ′(φ(x0))| + |ũ′′(φ(x0))| ≤ M̃(1 + r), then by

(3.11) again, |(vnr )′(x0)|+ |(vnr )′′(x0)| ≤ M̃(1 + r). As x0 is arbitrary,

sup
x∈X\S,n∈N

|(vnr )′(x)|+ |(vnr )′′(x)| ≤ M̃(1 + r). (3.12)

Now we estimate |v∞r (·)− vnr (·)| for r ≥ r0. Take n <∞ and set v̄r := v∞r − vnr . Since

−rvnr (x) + µn(x)(vnr )′(x) +
1

2
(σn(x))2(vnr )′′(x) = 0 on X \ S, ∀n ∈ N,

we have that

− rv̄r(x) + µ∞(x)(v̄r)
′(x) +

1

2
(σ∞(x))2(v̄r)

′′(x) + g(x) = 0 on X \ S, (3.13)

where

g(x) := (µ∞(x)− µn(x))(vnr )′(x) +
1

2
[(σ∞(x))2 − (σn(x))2](vnr )′′(x). (3.14)

Meanwhile, v̄r in (3.13) has the following probabilistic representation

v̄r(x) = EQ
∞

x

[∫ ρX\S

0
e−rsg(Xs)ds+ e

−rρX\S v̄r(XρS )

]
∀x ∈ X \ S. (3.15)

By (3.12) and (3.14),

|g(x)| ≤ M̃(1 + r)[‖µn − µ∞‖∞ + ‖σn − σ∞‖∞] ∀x ∈ X \ S. (3.16)

Notice that v̄ |∂S= 0 and r ≥ r0 > 0, then from (3.15) and (3.16) we deduce that

|v̄r(x)| ≤ sup
y∈X\S

|g(y)|
∫ ∞
0

e−rtdt ≤ M̃
(

1 +
1

r0

)
[‖µn − µ∞‖∞ + ‖σn − σ∞‖∞] ∀x ∈ X \ S.

(3.17)
Step 3. Since the RHS of (3.17) is independent of S, we can now choose N independent of S

such that the RHS of (3.17) is less than ε
2 for any n > N . This together with (3.8) implies that

sup
x∈X

∣∣JQn(x, S, f∞)− JQ∞(x, S, f∞)
∣∣ = sup

x∈X\S

∣∣JQn(x, S, f∞)− JQ∞(x, S, f∞)
∣∣

= sup
x∈X\S

∣∣∣∣∫ ∞
0

vnr (x)F (dr)−
∫ ∞
0

v∞r (x)F (dr)

∣∣∣∣ ≤ ∫
[0,r0]
‖v̄r‖∞F (dr) +

∫
(r0,∞)

‖v̄r‖∞F (dr) ≤ ε.

where the first line follows from the fact that JQ
n
(x, S, f∞) = f∞(x) = JQ

∞
(x, S, f∞) for x ∈

S.

We are now ready for the proofs of Theorems 3.1 and 3.2.
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Proof of Theorem 3.1. By Lemma 2.1, for any n ∈ N,

V Qn(x, fn) = JQ
n
(x, S∗(fn, Qn), fn) ∀x ∈ X.

Now we divide the proof into two steps.
Step 1. We first prove that, for any ε > 0,

lim sup
n→∞

V Qn

ε/2 (x, fn) ≤ V Q∞
ε (x, f∞) ∀x ∈ X. (3.18)

Fix an arbitrary ε > 0. By Lemma 3.1 and ‖fn− f∞‖ → 0, there exists N such that for all n ≥ N ,

sup
x∈X,S∈B

|JQn(x, S, fn)− JQ∞(x, S, f∞)| ≤ ε

2
and f∞ ≤ fn +

ε

2
.

Then for any n ≥ N and S ∈ EQ
n

ε/2(fn), we have that

JQ
∞

(x, S, f∞) ≥ JQn(x, S, fn)− ε

2
≥ fn(x)− ε

2
≥ f∞(x)− ε ∀x /∈ S,

which implies that S ∈ EQ
∞

ε/2 (f∞). Hence, EQ
n

ε/2(fn) ⊂ EQ
∞

ε (f∞) for n ≥ N . Then for any x ∈ X

lim sup
n→∞

V Qn

ε/2 (x, fn) ≤ lim sup
n→∞

sup
S∈EQ

∞
ε (f∞)

JQ
n
(x, S, fn)

= sup
S∈EQ

∞
ε (f∞)

JQ
∞

(x, S, f∞) = V Q∞
ε (x, f∞),

where the first equality follows from Lemma 3.1, so (3.18) is established.
Step 2. Now we prove the desired result. By (3.18) and Proposition 3.1,

lim
ε↘0

(
lim sup
n→∞

V Qn

ε (x, fn)
)
≤ lim sup

ε↘0
V Q∞

2ε (x, f∞) = V Q∞(x, f∞) ∀x ∈ X. (3.19)

In addition, for any ε > 0, by Lemma 3.1, for n large enough,

JQ
n
(x, S∗(f∞, Q∞), fn) ≥JQ∞(x, S∗(f∞, Q∞), f∞)− ε

2

≥f∞(x)− ε

2
≥ fn − ε ∀x /∈ S∗(f∞, Q∞),

(3.20)

so S∗(f∞, Q∞) ∈ EQ
n

ε (fn) for n large enough. Therefore,

V Q∞(x, f∞) = JQ
∞

(x, S∗(f∞, Q∞), f∞) ≤ lim inf
n→∞

V Qn

ε (x, fn) ∀x ∈ X,

which implies that

V Q∞(x, f∞) ≤ lim
ε↘0

(
lim inf
n→∞

V Qn

ε (x, fn)
)
∀x ∈ X. (3.21)

Then the desired result follows from (3.19) and (3.21).

Proof of Theorem 3.2. Take an arbitrary ε > 0. Lemma 3.1 enables us to exchange n and ∞ in
(3.20) to conclude that S∗(fn, Qn) ∈ Eε(f∞, Q∞), for n large enough. This together with Lemma
2.1 implies that

V Qn(x, fn) = JQ
n
(x, S∗(fn, Qn), fn) ≤ sup

S∈Eε(f∞,Q∞)
JQ

n
(x, S, fn), for n large enough.
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By applying Lemma 3.1 again to above inequality, we have that for x ∈ X,

lim sup
n→∞

V Qn(x, fn) ≤ lim
n→∞

sup
S∈Eε(f∞,Q∞)

JQ
n
(x, S, fn)

= sup
S∈Eε(f∞,Q∞)

JQ
∞

(x, S, f∞) = V Q∞
ε (x, f∞).

Then by letting ε↘ 0 and applying Proposition 3.1, we achieve (3.2).

4 Examples

In Section 4.1, we provide an example where lim supn→∞ V
Qn(x, fn) < V Q∞(x, f∞). This indicates

that the exact continuity for (fn, Qn) 7→ V (fn, Qn) may fail, which further justifies the necessity
of use for ε-mild equilibria for the value function. In Section 4.2, we present an example where
S∗(f∞, Q∞) * lim infn→∞ S

∗(fn, Qn). In particular, this contrasts with [2, Theorem 3.1], the lower
semi-continuity for (fn, Qn) 7→ S∗(fn, Qn) in the discrete-time context. Throughout this section,
g′(x−) (resp. g′(x+)) denotes the left (resp. right) derivative.

4.1 An example of strict upper semi-continuity

Let X = R, δ(t) = 1
1+βt with β > 0, and set µn ≡ − 1

n , σ
n ≡ 1 for all n ∈ N. We have that

δ(t+ s) > δ(t)δ(s) ∀t, s > 0. (4.1)

We choose arbitrary constants a, b, d ∈ R with a < b and d > 0, and define{
Jb(x) := dEQ

∞
x [δ(ρ{b})] ∀x ∈ R; c := Jb(a) > 0;

Ja,b(x) := cEQ
∞

x [δ(ρ{a,b}) · 1{ρ{a,b}=a}] + dEx[δ(ρ{a,b}) · 1{ρ{a,b}=b} ∀x ∈ R.

Define reward functions fn ≡ f for all n ∈ N with

f(x) :=


e−2(a−x) · Ja,b(x) x ∈ (−∞, a)

1

1 + L0(x− a)(b− x)
· Ja,b(x) x ∈ [a, b]

Jb(x) x ∈ (b,∞)

, (4.2)

where L0 > 0 is a constant. We first provide formulas of Jb, Ja,b and relations of Jb, Ja,b and f as
follows.

Lemma 4.1. We have that

Jb(x) = d

∫ ∞
0

e−se−|x−b|
√
2βsds ∀x ∈ R;

Ja,b(x) =


c
∫∞
0 e−se−|x−a|

√
2βsds, x ∈ (−∞, a)

c
∫∞
0 e−s sinh((b−x)

√
2βs)

sinh((b−a)
√
2βs)

ds+ d
∫∞
0 e−s sinh((x−a)

√
2βs)

sinh((b−a)
√
2βs)

ds x ∈ [a, b],

Jb(x) x ∈ (b,∞).

(4.3)

Moreover, {
Jb(x) = Ja,b(x) = f(x) x ∈ {a} ∪ [b,∞);

Jb(x) > Ja,b(x) > f(x) x ∈ (−∞, a) ∪ (a, b),
(4.4)

as shown in Figure 1.

9



Proof. By the definition of Jb, a direct calculation shows

Jb(x) = dEQ
∞

x [δ(ρ{b})] = d

∫ ∞
0

pb(t)

1 + βt
dt = d

∫ ∞
0

∫ ∞
0

e−(1+βt)spb(t)dsdt

= d

∫ ∞
0

es
(∫ ∞

0
e−βtspb(t)dt

)
ds = d

∫ ∞
0

e−sEQ
∞

x [e−βsρ{b} ]ds

= d

∫ ∞
0

e−se−|x−b|
√
2βsds ∀x ∈ R,

(4.5)

where pb(t) denotes the density function of ρ{b} under PQ
∞

x , and the third line follows from the
formula [6, 2.0.1 on page 204]. Similarly,

Ja,b(x) := cEQ
∞

x [δ(ρ{a,b}) · 1{ρ{a,b}=a}] + dEQ
∞

x [δ(ρ{a,b}) · 1{ρ{a,b}=b}]

= c

∫ ∞
0

∫ ∞
0

e−(1+βt)spa,b(t)dsdt+ d

∫ ∞
0

∫ ∞
0

e−(1+βt)sqa,b(t)dsdt

= c

∫ ∞
0

es
(∫ ∞

0
e−βtspa,b(t)dt

)
ds+ d

∫ ∞
0

es
(∫ ∞

0
e−βtsqa,b(t)dt

)
ds

= c

∫ ∞
0

e−sEx[e−βsρ{a,b} · 1{Xρ{a,b}=a}]ds+ d

∫ ∞
0

e−sEx[e−βsρ{a,b} · 1{Xρ{a,b}=b}]ds

=


c
∫∞
0 e−se−|x−a|

√
2βsds, x ∈ (−∞, a)

c
∫∞
0 e−s sinh((b−x)

√
2βs)

sinh((b−a)
√
2βs)

ds+ d
∫∞
0 e−s sinh((x−a)

√
2βs)

sinh((b−a)
√
2βs)

ds x ∈ [a, b],

Jb(x) x ∈ (b,∞).

(4.6)

where pa,b(t) (resp. qa,b(t)) denotes the density of ρ{a,b} on {Xρ{a,b} = a} (resp. {Xρ{a,b} = b})
under PQ

∞
x , and the last line above follows from formulas [6, 3.0.5 (a)&(b) on page 218].

We have that for x ∈ (a, b),

Ja,b(x)− Jb(x) = EQ
∞

x

[
1{Xρ{a,b}=a}

(
cδ(ρ{a,b} − dδ(ρ{b})

)]
< EQ

∞
x

[
1{Xρ{a,b}=a}

δ(ρ{a,b})
(
c− dδ(ρ{b} − ρ{a,b})

)]
= EQ

∞
x

[
1{Xρ{a,b}=a}

δ(ρ{a,b})
(
c− dEQ∞x

[
δ(ρ{b} − ρ{a,b})

∣∣∣Fρ{a,b}])]
= EQ

∞
x

[
1{Xρ{a,b}=a}

δ(ρ{a,b}) (c− Jb(a))
]

= 0,

(4.7)

where the second line follows from (4.1) and f(b) = d > 0. Similarly, we have

Ja,b(x) < Jb(x) ∀x ∈ (−∞, a). (4.8)

Then, by combining (4.7), (4.8) and (4.2), we reach to (4.4).

Notice that all the conditions in Theorem 3.1 are satisfied. The following proposition shows
that the strict semi-continuity in (3.2) holds in this example.

Proposition 4.1. We have that S∗(Q∞, f) = {b}, and S∗(f,Qn) = {a, b} for n ∈ N large enough.
Moreover,

lim sup
n→∞

V Qn(x, f) < V Q∞(x, f) ∀x ∈ (−∞, a). (4.9)
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Figure 1: Relations of Jb(·), Ja,b(·) and f(·)

Proof. By construction of f in (4.2), we can see that f > 0 and f(b) = maxx∈R f(x), thus b
must be contained in S∗(f,Qn) for any n ∈ N. Since f(x) ≤ Jb(x) = JQ

∞
(x, f, {b}), we have

S∗(f,Q∞) = {b}.
Now we show that for n ∈ N large enough, {a, b} is a mild equilibrium for Qn. For all n ∈ N,

write Jnb (x) := JQ
n
(x, {b}, f) and Jna,b(x) := JQ

n
(x, {a, b}, f) for short. First, by applying similar

arguments in (4.5), (4.6) with formulas [6, 2.0.1 on page 301, 3.0.5 (a)&(b) on page 315], we have
that, for any n ∈ N,

Jnb (x) = d

∫ ∞
0

e−se
− 1
n
(b−x)−|b−x|

√
2βs+ 1

n2 ds ∀x ∈ R;

Jna,b(x) =


c
∫∞
0 e−se

− 1
n
(a−x)−|a−x|

√
2βs+ 1

n2 ds x ∈ (−∞, a)∫∞
0

(
ce

1
n
(x−a)e−s

sinh((b−x)
√

2βs+ 1
n2

)

sinh((b−a)
√

2βs+ 1
n2

)
+ de

1
n
(x−b)e−s

sinh((x−a)
√

2βs+ 1
n2

)

sinh((b−a)
√

2βs+ 1
n2

)

)
ds, x ∈ [a, b]

JQ
n
(x, {b}, f) x ∈ (b,∞)

.

(4.10)

By the formulas of Jnb in (4.10) and the relation
√

2βs+ 1
n2 <

√
2βs + 1

n , we have that for any

n ∈ N, {
Jb(x) · e−

2
n
|b−x| < Jnb (x) < Jb(x) ∀x ∈ (−∞, b);

Jb(x) < Jnb (x) < Jb(x) · e
1
n
|b−x| ∀x ∈ (b,∞).

(4.11)

Then the first line in (4.4) together with the second line in (4.11) indicates that, for all n ∈ N,

Jnb (x) ≥ f(x) ∀x ∈ [b,∞). (4.12)
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Similarly, we can show that for any n ∈ N,

Jna,b(x) ≥ Ja,b(x) · e−
2
n
(a−x) ≥ f(x), ∀x ∈ (−∞, a). (4.13)

As for x ∈ (a, b), by the formulas of Jna,b on [a, b] in (4.10) and Ja,b on [a, b] in (4.3), we have that

Jna,b → Ja,b and (Jna,b)
′ → J ′a,b, uniformly on (a, b).

By the formula of f on [a, b] in (4.2), we have f ′(a+) < J ′a,b(a+) and f ′(b−) > J ′a,b(b−). Then
there exist α > 0 and a′, b′ ∈ (a, b) with a′ < b′, such that for any x ∈ [a′, b′],

f ′(x)− J ′a,b(x) ≤ −α for x ∈ (a, a′); f ′(x)− J ′a,b(x) ≥ α for x ∈ (b′, b); and f(x)− Ja,b(x) ≤ −α.

Then for n ∈ N large enough, we have that

f ′(x) ≤ (Jna,b)
′(x) for x ∈ (a, a′); f ′(x) ≥ (Jna,b)

′(x) for x ∈ (b′, b); f(x) ≤ Jna,b(x) for x ∈ [a′, b′],

which implies that

Jna,b(x) ≥ f(x) ∀x ∈ (a, b), for n ∈ N large enough. (4.14)

Then by (4.12), (4.13) and (4.14), {a, b} is a mild equilibrium for Qn when n ∈ N is large enough.
Note that S∗(f,Qn) 6= {b} for n ∈ N. Indeed, if for some n0 ∈ N, {b} is a mild equilibrium for

Qn0 , then due to the setup of (µn)n∈N,

f(a) ≤ JQn0 (a, {b}, f) < JQ
∞

(a, {b}, f) = f(a),

a contradiction. Then by the facts that b ∈ S∗(f,Qn) for all n ∈ N and {a, b} is a mild equilibrium
for all n ∈ N large enough, we conclude that S∗(f,Qn) = {a, b} for n ∈ N large enough.

Finally, since S∗(f,Qn) = {a, b} for all n ∈ N and S∗(f,Q∞) = {b}, we have that for x < a,

V Q∞(x, f)− lim sup
n→∞

V Qn(x, f) = Jb(x)− lim sup
n→∞

JQ
n
(x, {a, b}, f)

= Jb(x)− lim sup
n→∞

JQ
n
(x, {a}, f) = Jb(x)− JQ∞(x, {a}, f) = Jb(x)− Ja,b(x) > 0,

which implies (4.9).

4.2 An example showing S∗(f∞, Q∞) * lim infn→∞ S∗(fn, Qn)

Let µn ≡ 0 and σn ≡ 1 for all n ∈ N. That is, we fix the process X to be a one-dimensional
Brownian motion and take X = R. Let δ(t) = 1

1+βt with β > 0, and set α := 1/
∫∞
0 e−s

√
2βsds.

We further define

f∞(x) :=


x+ α, x ∈ [−α, 0),

− x+ α, x ∈ [0, α),

0, otherwise,

and fn(x) := f∞
(
x− 1

n

)
∀n ∈ N.

Notice that the conditions in Theorem 3.1 are satisfied.

Proposition 4.2.
lim sup
n→∞

S∗(fn, Qn) = ∅ $ {0} = S∗(f∞, Q∞). (4.15)
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Figure 2: Relations of V Qn(·, fn), fn(·) ∀n ∈ N.

Proof. It is easy to see that 0 ≤ fn ≤ α = ‖fn‖∞ for any n ∈ N, which indicates that

1

n
∈ S∗(fn, Qn) ∀n ∈ N.

By a calculation similar to (4.5) and the definition of α, for any n ∈ N, we can get JQ
n
(x, fn) and

its derivatives as follows:
JQ

n
(x, { 1n}, f

n) = α
∫∞
0 e−se−|x−

1
n
|
√
2βsds ∀x ∈ R;

(JQ
n
)′( 1

n−, {
1
n}, f

n) = 1, (JQ
n
)′( 1

n+, { 1n}, f
n) = −1;

(JQ
n
)′′(x, { 1n}, f

n) = α
∫∞
0 e−s · 2βs · e−|x−

1
n
|
√
2βsds > 0 ∀x ∈ (−∞, 1n) ∪ ( 1

n ,∞).

(4.16)

Notice that

(fn)′(x) = 1, for all x ∈
(
−α+

1

n
,+

1

n

)
, (fn)′(x) = −1, for all x ∈

(
1

n
, α+

1

n

)
. (4.17)

Then (4.16) and (4.17) together imply that

JQ
n

(
x,

{
1

n

}
, f∞

)
≥ fn(x) ∀n ∈ N,

as shown in Figure 2. Therefore, S∗(fn, Qn) = { 1n} for any n ∈ N, and (4.15) follows.

A A Brief Introduction of Mild, Weak and Strong Equilibria

Recall the dynamic of X in (2.1). When δ is non-exponential (e.g., δ is a weighted discount function
as in Assumption 2.1), the optimal stopping problem

sup
τ

E[δ(τ)f(Xτ )] (A.1)
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can be time-inconsistent in the sense that an optimal stopping rule obtained today may no longer
be optimal from a future’s perspective. One approach to address this time inconsistency is to look
for a subgame perfect Nash equilibrium, a strategy such that given future selves following this
strategy, the current self has no incentive to deviate from it. For stopping problem (A.1), there are
mainly three different types of pure equilibria that are investigated in the literature, which we will
introduce briefly as follows.

Definition A.1. A closed set S ⊂ X is said to be a mild equilibrium (w.r.t. f and Q), if{
f(x) ≤ JQ(x, S, f) ∀x /∈ S, (A.2)

f(x) ≥ JQ(x, S, f) ∀x ∈ S. (A.3)

This kind of equilibrium is first proposed in [13], and is called mild equilibrium in [4] to dis-
tinguish from other equilibrium concepts. Here f(x) is the value for immediate stopping, while
JQ(x, S, f) represents the value for continuing as ρS is the first time to enter S after time 0. Hence,
the economic meaning of condition (A.2) is clear: when x /∈ S, there is no incentive to switch from
the action of “continuing” to “stopping” since the value J is better than the value f . A similar
reasoning seems also hold for the other case x ∈ S in (A.3). However, given the current one-
dimensional setting, we have ρS = 0 Px-a.s., and thus f(x) = JQ(x, S, f) for any x ∈ S. Therefore,
(A.3) holds trivially and we only require (A.2) for mild equilibrium as in the Definition 2.2. On
the other hand, in multi-dimensional setting, if X0 belongs to the inner part of S, then ρS = 0 a.s.;
if X0 is at the boundary of S, then the identity ρS = 0 requires certain regularity of the boundary,
and consequently, the verification of (A.3) on the boundary may not be trivial.

Another type of pure equilibrium concept for time inconsistent stopping, called weak equilib-
rium, is proposed in [7], and is defined as follows.

Definition A.2. A closed set S ⊂ X is said to be a weak equilibrium (w.r.t. f and Q), if
f(x) ≤ JQ(x, S, f) ∀x /∈ S, (A.4)

lim inf
ε↘0

f(x)− EQx [δ(ρεS)f(XρεS
)]

ε
≥ 0 ∀x ∈ S, (A.5)

where ρεS := inf{t ≥ ε : Xt ∈ S}.

Compared to Definition A.1, the condition (A.3) (which trivially holds for a one-dimensional
recurrent process) is replaced with a first order condition (A.4) for a weak equilibrium.

Recently, [4] proposed another notion of equilibria as follows.

Definition A.3. A closed set S ⊂ X is said to be a strong equilibrium, if{
f(x) ≤ JQ(x, S, f) ∀x /∈ S,
∃ε(x) > 0, s.t. ∀ε′ ≤ ε(x), f(x)− EQx [δ(ρε

′
S )f(X

ρε
′
S

)] ≥ 0 ∀x ∈ S. (A.6)

Compared to Definition A.2, the first order condition (A.4) is upgraded to a local maximum
condition (A.6), which better captures the economic meaning of “Nash equilibrium”.

By the definitions above, a strong equilibrium must be weak, and a weak equilibrium must be
mild. Under continuous time Markov chain setting, [4] shows that an optimal mild equilibrium is
also weak and strong. Recently, such relation has been further extended to the one-dimensional
diffusion context in [1]. The purpose of this paper is to consider the stability of the optimal value
induced by all mild equilibria (which is also the value associated with the optimal mild equilibrium
as indicated below Lemma 2.1) w.r.t. the dynamic of process X and reward function f in a one-
dimensional diffusion setting.
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