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Abstract— This paper presents a method for generating
stable reduced order macroscopic traffic models. Starting from
the Payne-Whitham traffic model, a set of hyperbolic PDEs,
Galerkin projection in conjunction with proper orthogonal
decomposition is used. To enforce stability of the reduced order
scheme, an extension of two methods developed for parabolic
PDEs is presented in this paper. The performances of the a-
posteriori stabilization schemes are compared showing that, with
an appropriate calibration process, the stabilized models have
comparable prediction errors to the full order models.

I . INTRODUCTION

The increasing number of vehicles on the road has resulted
in longer travel times for drivers, increased energy consump-
tion, and additional air pollution. In 2019 it was reported that
in the United States, due to stop and go conditions, drivers
spent an additional 8.7 billion hours on the road, consumed
an additional 3.5 billion gallons of fuel, and emitted 36
million tons of excess greenhouse gases [1]. Controlling the
inflow of vehicles by using macroscopic models has proven
to be a successful strategy for reducing traffic jams [2]–[4].

Macroscopic models used to describe traffic flow are
made up of partial differential equations (PDEs), where
the dynamic variables are represented by locally aggregated
quantities such as vehicle density, flow, and mean speed
[5]. Common macroscopic models used for traffic simulation
include first-order models such as the Lighthill-Whitham-
Richards (LWR) model and second-order models such as the
Payne-Whitham (PW) and Aw-Rascle-Zhang (ARZ) mod-
els [5]–[7]. The PW model is obtained by replacing the
equilibrium velocity equation in the LWR model with a
momentum equation [8]. There are drawbacks to the PW
model such as negative speeds sometimes occuring at the
tail-end of congested regions [9]. Second-order models are
more realistic in capturing traffic dynamics in congestion due
to the models possessing a family of flow rate curves [10].

For control and optimization applications, PDEs are usu-
ally converted into a set of coupled ordinary differential
equations (ODEs) [11]–[14]. Model order reduction tech-
niques used in conjunction with the ODE system include
moment matching, balanced truncation, Galerkin projection,
and proper orthogonal decomposition (POD). Compared to
frequency-based methods, projection methods are best suited
for traffic models as they retain accuracy over a wider range

of speeds [15], [16]. For this paper, Galerkin projection with
POD is considered due to the nonlinearities in the general
traffic PDEs, and POD is of particular interest because real
world data can be used to determine the basis [15]. A  pre-
liminary application of POD-Galerkin for computationally
efficient traffic simulation is presented in [17]. However, no
stability analysis of the reduced order model (ROM) was
performed despite the fact that ROMs obtained by applying
POD-Galerkin projection are not guaranteed to be stable even
if the full order model (FOM) is stable [16], [18].

In literature, three approaches have been developed for
enforcing stability of ROMs a-posteriori, of which the first
two are conducive to control design. The first method utilizes
pole placement to move the new and artificial unstable poles
of the system to the stable region [18]. While conceptually
simple, this method relies on the arbitrary selection of
the pole location. Alternatively, a semidefinite programming
problem can be solved, such that the reduced state matrix is
asymptotically stable within a certain margin [16]. The
computation time required for this method is higher com-
pared to the pole-placement approach, but has the advantage
of reducing the manual tuning. Finally, [18] also presents
a method where the solution of a nonlinear least squares
problem that minimizes the deviation between the ROM
and FOM is used to reassign the unstable eigenvalues. This
method provides a systematic approach to the stabilization of
the ROM, however is computationally expensive as both the
ROM and FOM need to be simulated simultaneously. This is
a limitation for control design, as the process should be
repeated every time a new controller is implemented, which
changes the response of the system.

In this paper, a ROM of the linear PW model is obtained
using POD-Galerkin and the stability of the resulting ROM is
analyzed for different orders of truncation. To address the loss
of stability caused by the model reduction process, two
methods originally applied to parabolic PDEs, namely pole
placement and semidefinite programming, are extended to
hyperbolic problems in this paper and applied for the stabi-
lization of the reduced PW model. A  comparison between
the different approaches is then presented.

I I . HOMOGENEOUS PAYNE-WHI THA M MODEL

The homogeneous, nonlinear PW model is described by
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where ρ =  ρ(x, t) is the traffic density, u =  u(x, t) is
the velocity, and c0 is maximum traffic wave speed. The
linearized model is obtained by defining the perturbation
variables:

and
m1 =  

c0 −  u0 
, m2 =  

c0 +  u0
(17)

B. Numerical Solution of the Linear PW Model

ρ(x, t) =  ρ0 +  δρ(x, t)                             (3)
u(x, t) =  u0 +  δu(x, t)                             (4)

where ρ0 and u0 are the equilibrium values for density and
velocity, respectively, and δρ and δu are the perturbations
around the equilibrium states. The linear PW model is

∂δρ 
+  ρ0 

∂δu 
+  u0 

∂δρ 
=  0 (5)

∂δu 
+  u0 

∂δu 
+  

c2 ∂δρ 
=  0 (6)

0

The two boundary conditions for the second-order PDE
system are

δρ(0, t) =  δρ0(t) (7)

δu(L, t) =  K δρ (L, t) (8)

which consist of a Dirichlet boundary condition for density
perturbation at the beginning of the road and an orifice
boundary condition describing the relation between density
and velocity perturbations at the end of the road, which is a
common convention in gas dynamics [19]. These boundary
conditions mimic the presence of infrastructure that restricts
the flow of traffic, such as a traffic light, stop sign, or
reduction in speed limit. The length of the road L  and the
parameter K  are constant. For conciseness, since the rest
of this section deals with the linear model, the perturbed
variables, δρ and δu, will be given as ρ and u.

A. Analytical Solution of the Linear PW Model
The analytical solution of the linear PW model is found

via a direct Laplace transform with zero initial conditions
and is used to validate the FOM and ROM results. After the
transform, the PW model in the frequency domain is

sP (x, s) +  ρ0 
dU (x, s) 

+  u0 
dP (x, s) 

=  0 (9)

sU (x, s) +  u0 
dU (x, s) 

+  
c2 dP (x, s) 

=  0 (10)
0

The two boundary conditions in the Laplace domain are

P (0, s) =  P0 (s) (11)

U (L, s) =  K P ( L , s ) (12)

Following the method found in [20], the transfer function
between the perturbation in density at the end of length of
road P (L, s)  and the beginning of length of road P (0, s) is

P (L, s) z2(c0 −  u0)
P (0, s) u0(z1 +  Kρ0 z3 ) −  ρ0( ρ0 

z3 +  K z1 )

where

z1 =  s(e m 2 L  −  e m 1 L )  −  u0m1 em1 L +  u0m2 em2 L (14)
z2 =  m1 e ( m 1 + m 2 ) L  −  m2 e ( m 1 + m 2 ) L (15)
z3 =  −m 1 e m 1 L  +  m2 em 2 L (16)

The PW model defined in (5), (6) is semi-discretized
in space using a first-order Euler finite difference scheme.
This semi-discretization transforms the original PDEs into a
system of ODEs, where the conservation of mass equation
and momentum equation are staggered [19]. The resulting
repeating structure of the ODEs at all interior nodes is

dt 
=  

∆x
[ρ0 (ui−1  −  ui ) +  u0 (ρ i−1 −  ρ i )] (18)

d 
dt 

1 =  
∆x

[u0 (ui−1  −  ui ) +  
ρ

2 
(ρ i−1  −  ρ i )] (19)

where i  � 2, n since the density perturbation at the
beginning of the road ρ1(t) =  ρ(0, t) is the boundary
condition. Using the boundary condition at the end of the
length of road defined in (8), the remaining two ODEs for
the density at n and velocity at n −  1 are

dt 
=  

∆x
[ρ0 un−1  +  u0ρn−1 −  (K ρ0  +  u0)ρn] (20)

d 
dt 

1 =  
∆x

[u0 un−1  +  
ρ0 

ρn−1  −  (K u0  +  
ρ0 

)ρn ] (21)

The velocity at the last node un (t) is given by the orifice
equation in (8). Using the perturbed densities ρ i  and veloc-
ities ui at the same discretized spatial locations as the state
variables, the system of ODEs can be written in state space:

ẋ =  A x  +  B u
y =  C x

The input to the system is

u =  ρ1 (23)

The state vector is
x  =  ρ2 u1 ρ3 u2 · · · ρn u n −1

T (24)

The system A  � R 2 ( n −1 ) × 2 ( n −1 ) ,  B  � R 2 ( n −1 ) × 1 ,  and C  �
R 1 × 2 ( n −1 )  is written explicitly as

�
−u0     ρ0 0 −ρ0        0 0 · · ·

�

�− c 2         

u0 0 −u0       0 0 · · ·�
� u0 0 −u0        ρ0 0            −ρ0 · · ·�

A  =   1  � 
c 2

0 − c 2

u0 0 −u0 · · ·�
� . . . . . . . . . . . . . . . . . �

� 0 0 0 u0 0     −K ρ 0  −  u0     ρ0 �
0 0 0 c 2

0 −K u 0  −  c 2         

u0

B  =  ∆ x      u0        
c 2            

0     · · · 0 
T

C  =   1      0     0     · · · 0     1     0
(25)

The output of the system is the density at the end of the road.
This matches the analytical solution used as the benchmark.
A  comparison between the system responses obtained from
the analytical and numerical solution is performed in the
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Laplace domain using the parameters summarized in Tab. I. 600

The direct comparison between the analytical and numerical
solutions is shown in Fig. 1. Results show that the numerical
solution matches both the amplitude and peak locations of 400

the analytical solution over the frequency range of interest.

TA B L E  I 200

M O D E L PA R A M E T E R S  F O R V E R I F I C AT I O N .

3

2

1

0

-1

-2

Parameter
Average density ρ0
Average velocity u0
Maximum speed c0
Restriction coefficient K  =  u0 /ρ0
Road length L
Spatial discretization n

4

Analytical Solution

3
Numerical Solution

2

1

Value Unit
120 [cars/km]
10 [m/s]
11.11 [m/s]
83 [m2/ (cars·s)]
6000 [m]
601 [-]

0-3 0             2000          4000          6000

Position [m]

Fig. 2.     Comparison of nonlinear and linear PW model.

of the road and spatial discretization. The new values are L
=  500m and n =  51, respectively. The matrices A  and B  are
the same as the ones defined in (25), with A  � R100×100 and
B  � R100×1 . Because both density and velocity are wanted
at each discretized point along the road, C  =  I100 � R100×100 .
The initial conditions are

0
10-5 10-4 10-3

Frequency [Hz]

Fig. 1.     System responses for the analytical and numerical solution.

C. Comparison between Linear and Nonlinear PW Models
To confirm the small perturbation assumption, the linear

model described by Eq. (22)-(25) is compared against the
nonlinear PW model defined in (1), (2) . The nonlinear model
is solved using the MacCormack method [21], while the
linear model is solved in MATLAB. The parameters for the
simulation are summarized in Tab. I. The simulation is run
for T =  600s with initial density ρ(x, 0) =  120 cars/km and
velocity specified differently in two regions

(
9, for 0 ≤  x  ≤  2000
9 +  2 · tanh x−2000 ,     for 2000 <  x  ≤  L

The boundary condition at the beginning of the road is
ρ(0, t) =  120 cars/km. The point-to-point percentage error
in density between the nonlinear model and the linear model is
defined as

ρnonl in (x, t) −  ρ l in (x, t)
max(ρnonl in (x, t))

The error is shown in Fig. 2, where minimal deviation
between the linear and nonlinear models is observed. The
maximum percentage error is -2.38%. The error starts to
grow at around x  =  2000m because the values of density
there are getting further from the equilibrium value for den-
sity. Hence, a small perturbation assumption is appropriate
for the selected case study.

I I I . R EDU C ED O RDE R MODEL
A. Definition of the Case Study

The model parameters for the case study presented in this
section are the same as those in Tab. I, except for the length

ρ(x, 0) =  0, u(x, 0) =  0 (28)

which corresponds to a completely empty road. This initial
condition was chosen for consistency since the snapshot used
later for the creation of the basis was formed starting from
the zero initial condition. The boundary condition is

t/300,                for t ≤  30
0.2 −  t/300,     for t >  30

which simulates an increase in traffic density up until t =  30s
where it then decreases back. This simulates a traffic light
upstream of x  =  0m turning green at t =  0s and then turning
red at t =  30s, restricting the flow of traffic. The resulting
density profile for the nonlinear model is shown on the left in
Fig. 3. As the traffic that enters the system after t =  30s starts
to encounter the high density traffic already in the system,
the traffic density starts to build up. This can be seen at
around t =  50s.

60 100 60 100

40 40

50 50

20 20

0 0 0 0
0      100 200 300 400 500 0      100 200 300 400 500

Position [m]                                                              Position [m]

Fig. 3.     (Left) Nonlinear result and (Right) ROM result, k  =  30.

B. Petrov-Galerkin Projection
Assuming that the state trajectories x(t) can be sufficiently

approximated by a trial basis V , it is possible to rewrite the
state vector as

x(t) ≈  V · xk (t) (30)

The Petrov-Galerkin projection determines the basis V such
that the residual r  is constrained to be orthogonal to a
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subspace W defined by a test basis W � R N × k  [15]. For a
LT I  system, if V is nonsingular, then the matrices of the
ROM are

0.15

0.1

A k  =  W T AV
B k  =  W T B

(31) 0.05

(32) 0
10 20 30 40 50 60 70 80 90 100

C k  =  C V (33) Order of ROM

where V, W � R 2 ( n − 1 ) × k  is an orthonormal vector, A k  �
R k × k ,  B k  � R k × l ,  and C k  � R q × k  [15]. The dimensions l, q,
and k represent the input size, output size, and the order of the
ROM. A  special case of the Petrov-Galerkin projection is the
Galerkin projection, where V =  W .

Fig. 4.     Relative simulation time for the ROMs.

1010
10-1

105 10-2

100

C. Proper Orthogonal Decomposition
The basis used for the projection is determined empirically

through POD [15]. The snapshot matrix, S , is formed by
simulating the linear model with the initial conditions given
by (28) and a step function for the boundary condition:

ρ(0, t) =
0.066,     for 10 ≤  t ≤  80

(34)

The resulting values of density and velocity are used to
populate S . Singular value decomposition (SVD) is then
applied to the resulting snapshot matrix S . The left singular
vectors of the matrix S  are used to populate the matrices V
and W .

D. Reduced Order Model Results
A  reduced model with truncation order k =  30 is sim-

ulated and results are shown on the right side of Fig. 3.
Compared to the result from the nonlinear model, the ROM is
able to achieve the same profile. Where the models differ is the
dissipation of the maximum density line. As shown in the
nonlinear density profile, the high density region, in dark red,
starts to dissipate as the traffic reaches x  =  300m, whereas
in the ROM result the high density region does not dissipate.
Moreover, and as noted before, the ROM density profile does
not show the build up of traffic density that is observed in
the nonlinear result. The relative time it takes to simulate the
ROM in comparison with the nonlinear model shown is Fig. 4,
for each reduced order averaged over 20 runs. Both models are
simulated using MATLAB on a 3.4GHz Intel Xeon CPU with
32 GB of RAM. As expected, the ROMs outperform the
nonlinear model in terms of simulation time, with the ROMs
being at least 20 times faster up to k =  30. To evaluate the
accuracy of the ROM, the root mean square error (RMSE)
of the simulated density

 
is

 
calculated:

R M S E  = i = 1  
t  (ρ F O M  −  ρ R O M  )2

(35)
x t

where ρ F O M  is the density from the FOM, ρ R O M  is the
density from the ROM, nx is the number of spatial nodes,
and nt is the number of time steps. The RMSE for all
reduced orders is shown in Fig. 5. As is expected, the
error between the FOM and ROM decreases as the order
of the ROM increases. For this case study, however, it

-5

10 20 30  40 50 60 70 80 90 100

Order of ROM

Fig. 5.     RMSE for the Reduced Order Models.

is observed that as the order of the ROM increases, the
model becomes unstable despite the original FOM being
stable. This behaviour is seen in Fig. 5 for orders 36 to
67. Even though the RMSE for orders 36-40 is still low,
the model is still unstable as the reduced order matrix A k

has positive eigenvalues. It is worth noting that the trend of
unstable modes for higher orders of truncation is specific to
this case study. The stability of the ROM is highly dependent
on the choice of the equilibrium values ρ0 and u0 and the
maximum speed c0. To showcase this, 3 different values
of u0 are used, and the RMSE and stability of the ROMs
is evaluated for the same initial conditions. The resulting
RMSE for each case is shown in Fig. 6. For both u0 =  9m/s
and u0 =  10m/s, the value used in this paper, the ROM goes
unstable at k =  37, but for u0 =  11m/s the model does not
go unstable until k =  44. So, depending on the equilibrium
values used in the linearization procedure, the stability of the
the ROM changes. Moreover, the instability of the system can
only be determined a-posteriori, hence after the reduction.
So, a stabilization procedure that produces consistent, stable
ROMs is necessary in order to use reduced order traffic
models for control purposes. For the rest of the paper the
values given in Tab. I  will be used.

1010

u
0 

= 9 m/s

105
u

0 
= 10 m/s

u = 11 m/s
10

10-5

10 20 30  40 50 60 70 80 90 100

Order of ROM

Fig. 6.     Error for unstable ROMs.

I V. S TA B I L I Z AT I O N PRO C EDUR E

A. Stabilization via Pole Placement

The method developed in [18] uses full state feedback to
stabilize unstable ROMs. This is equivalent to introducing
an artificial viscosity in the system. A  control matrix, Bc ,  is
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chosen and applied to the ROM:

ẋ k  =  A k x k  +  B k u  +  Bc uc
yk =  C k x k

In this case, uc is assumed to be a linear state feedback
control input of the form

The matrices M E  � R ( k + p ) × k  and MA  � R ( k + p ) × k  are the
reduction of the matrices E  =  I  and A, respectively, using
Wk +p , and are given by

M E  =  W k + p E V k                                                        (48)
MA  =  W k + p (A  +  µE )Vk                                   (49)

uc =  K c x k

Substituting (37) into (36) produces

ẋ k  =  ( A k  −  B c K c ) x k  +  B k u
yk =  C k x k

where the closed-loop system matrix is

A k  =  A k  −  B c K c

(37)

(38)

(39)

The parameter µ is a stability margin which is an upper
bound placed on the real parts of the eigenvalues of the
system. The matrix X  is found by solving an optimization
problem using semidefinite programming (SDP). The opti-
mization problem is given as

min f ( P )
P �R ( k + p ) × ( k + p )

s.t.     M T P M A  +  M T P M E  =  −Q (50)

P  >  0 ( k + p ) × ( k + p )

In this case study, B c  is chosen to be the identity matrix, I k ,
such that the controllability matrix for the pair (A k , B c )  is
full rank. The feedback matrix K c  is computed such that A k
has stable poles. The desired poles of the closed-loop system
are found by reassigning the eigenvalues:

s s

λ k  ⇒ −α  · Re(λ k )  ±  i  · I m(λ k ) (40)

where λ s  are the stable eigenvalues, λu  are the the unstable
eigenvalues, and α >  0 is a modifiable parameter. For this
case study, α was chosen to be 0.1     1     10 .

B. Stabilization via Semidefinite Programming

An alternative to pole placement is presented in [16],
where the ROM is minimally modified to ensure stability.
The reduced order bases (ROBs) in this method are created
from a truncation of the larger computed set from POD. The
procedure starts from a left ROB Wk + p  and searches for
a left ROB Wk � range(Wk+p ) where p is the additional
search size and k is the order of the ROM, as before. Wk can
be written as

Wk =  W k + p X (41)

where X  � R ( k + p ) × k  is a matrix with full column rank. The
stabilization procedure takes an unstable ROM of the form

E k ẋ  =  A k x k  +  B k u (42)k k      k

where E k  =  I k ,  and converts it to

ẋ =  A k x
C

+  B k u (43)

It is shown in [16] that if P  � R ( k + p ) × ( k + p )  exists then a
positive semidefinite matrix P  � R ( k + p ) × ( k + p )  of rank k can
be constructed such that

M E  P M A  +  MA  P M E  =  −Q (51)

where P  is given as

P  =  X P − 1 X T (52)

The matrices P  and P  can be written as

P  =  P11 P12 (53)
22

P  =  P11 P −1  P11 P12 (54)
12

It follows then, from (52) and (54), that

X  =  P11 (55)
12

The objective function f  can be written as
f  =  P12 P22 F 

+  τ P11 F
(56)

where τ P11 is a regularization term that is added so
that P11 does not grow without bounds. The optimization
problem is solved in MATLAB using CVX [22]. For the case
study, the values of the parameters were chosen to be µ =  0,
Q =  I k ,  and τ =  10−5 . At higher ROM orders, the value
for p had to be increased so that the algorithm was able to
find a stable solution. For k � [37, 40], using p =  5 led to a
stabilized result, but for orders greater than k =  40, the
minimization problem was unfeasible and p =  10 was used.

C. Comparison

where

A k  =  E − 1 X T  (MA  −  µME ) (44)

B k  =  E − 1 X T  B k + p (45)
C k  =  C k + p (46)

E k  =  X T  M E (47)

The comparison of the two methods, together with the
unstabilized ROMs, is shown in Fig. 7. For the stable ROMs,
all stabilization methods show the same result as they do not
change the dynamics of the stable ROMs.

For pole placement, the value of the RMSE varies greatly
with the selected value of α. For the unstable models between
orders k =  37 and k =  40, where originally the error was
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low in spite of the instability, α =  0.1 and α =  1 are
enough for keeping the error low while still stabilizing the
model. However, choosing α =  10 leads to a higher error in
spite of the stabilization. Another example of the variation in
performance is at k =  44 where α =  10 results in the lowest
error, but at k =  45 the same selection results in the highest
error. This study shows that there is no systematic approach
for selecting the value of α that provides consistent, low
error over a span of ROM orders.

SDP, on the other hand, gives more consistent results, even
if the value chosen for p is not optimal. One drawback with
SDP is that as the model becomes larger, a higher value of
p must be chosen in order to find a solution. The larger the
value of p, the more time it takes to stabilize using SDP. With
pole placement, since it is just reassigning eigenvalues, the
process of stabilization is not computationally intensive for
any value of k. In light of control applications, both methods
suffer due to the fact that they stabilize the ROM a-posteriori.
As well, since the case study was based on a linear model, it
is unknown how these methods would work on the nonlinear
PW model.
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Fig. 7.     Comparison of RMSE for all methods.

V. CONC LUSION

This paper presented a method for generating stable re-
duced order models of the Payne-Whitham traffic model.
First, the homogeneous PW model was linearized and the
numerical solution was compared against the analytical so-
lution. Moreover, a comparison between linear and nonlinear
versions was shown for a selected case study. Starting
from the linear model, a reduced model was obtained via
POD/Galerkin projection. Results show that, in some cases,
even for a stable, full order model, the ROM can become
unstable as a result of the projection process. To remedy this,
two stabilization methods were extended to hyperbolic equa-
tions, one that utilizes pole placement and one that utilizes
semidefinite programming. The methods were compared,
and it was shown that the method based on semidefinite
programming provided better overall stabilization for the
POD/Galerkin reduced PW model. However, both methods
are limited as they stabilize the ROMs a-posteriori which is

undesirable for control applications. The results were shown
on a linear model, but an extension to a more realistic
nonlinear traffic model, such as the A R Z  model, is needed to
be able to better describe traffic and to handle shocks, in the
form of traffic jams, in congested traffic.
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