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Abstract—In this article, we propose a novel adaptive
dynamic programming (ADP) algorithm, named hybrid it-
eration (HI), to solve the cooperative, optimal output reg-
ulation problem (CO2RP) for continuous-time, linear, multi-
agent systems. Unlike the traditional ADP algorithms, i.e.,
policy iteration (PI) and value iteration (VI), HI does not need
an initial stabilizing control policy required by PI. At the
same time, it maintains a faster convergence rate compared
with VI. First, a model-based HI algorithm is proposed to
solve the CO2RP. Based on the proposed HI algorithm, a
data-driven, adaptive, optimal controller is developed to
solve the cooperative, adaptive, and optimal output reg-
ulation problem without using any information about the
physics of the system. Instead, the states/input information
collected along the trajectories of the dynamic system is
employed. The proposed data-driven HI is applied to the
adaptive, optimal secondary voltage control (also known as
voltage restoration control) of an islanded modern micro-
grid based on the inverter-based resources. Compared with
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the VI and PI algorithms, comparative simulation results
demonstrate that the proposed HI approach is significantly
able to save the convergence time of the central processing
unit (also known as CPU) deployed, reduce the number
of learning iterations, and remove the requirement of the
initial stabilizing control policy. Comparative experiments
reveal the practicality and superiority of the proposed
methodology.

Index Terms—Adaptive dynamic programming (ADP),
continuous-time, cooperative, linear, multiagent systems
(MASs), optimal output regulation, reinforcement learning.

I. INTRODUCTION

OVER the past decade, the cooperative output regulation
problem (CORP) has been widely investigated due to

its massive impact and importance in engineering applications,
including distributed energy resources and inverter-based re-
sources (IBRs) in modern microgrids (M2Gs), connected and
autonomous vehicles, cooperative robot reconnaissance, and
satellite clustering [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].
The CORP is employed in the design of distributed controllers
to achieve asymptotic tracking of a class of reference inputs
and disturbance rejection in leader–follower multiagent sys-
tems (MASs) while maintaining the stability of the closed-
loop system [11]. Two major strategies are usually used in
addressing the CORPs: feedback-feedforward control [12], [13]
and the internal model principle [14], [15]. Existing studies
of the leader–follower consensus problem usually assume the
availability of the states of the exosystem (leader) to all other
agents (followers); this assumption is restricted. In practice, such
as in M2Gs, communication channels are employed to transmit
the reference’s state information. However, failures or delays
in transferring the exact information will destabilize the over-
all MAS [7]. Therefore, distributed observers were developed
in [16] and [17] to estimate the leader’s states, enabling the
distributed controller to maintain the asymptotic input tracking
and disturbance rejection. It is noteworthy that the output regu-
lation problem is different from the output-feedback controller
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design problems—see [18], [19], and [20]—in the sense that
an exosystem generates the desired trajectories in the output
regulation problems. In addition, the exosystem is considered in
order to create disturbances to the system.

Besides the accessibility issue of the leader, the CORP by
itself does not optimize the performance of the closed-loop
MAS. Therefore, CORP and optimal control problem have to
be addressed together. Dynamic programming (DP) [21] and
Bellman’s principle of optimality are the backbones of solving
optimal control problems [22]. Since DP suffers from the curse
of dimensionality in practice, learning-based methods, including
reinforcement learning [23] and adaptive dynamic programming
(ADP) [24], were developed in order to provide solutions to
optimal control and decision-making problems without using the
modeling information. ADP approaches are mainly built upon
policy iteration (PI) and value iteration (VI). These strategies
have been developed to control continuous-time and discrete-
time systems [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34].

Based on Kleinman’s PI [35] and its data-driven implemen-
tation [36], the gap between optimality and cooperative output
regulation is filled in [37], wherein the cooperative, adaptive,
optimal output regulation problem is solved by developing
distributed feedback-feedforward controllers through originally
combining the theories of ADP; adaptive, optimal control;
and cooperative output regulation. The presented data-driven
method converges to the optimal policy with a quadratic rate.
However, its major drawback is that a stabilizing control policy
is required to initiate the learning process—thus making it
expensive to implement without the MASs dynamics. In order to
overcome this barrier, and based on the results in [38], the coop-
erative, optimal output regulation problem (CO2RP) is solved
by VI in [19] and [39], wherein the initial stabilizing control
policy is no more required. Nevertheless, VI requires more
learning time and iterations for convergence, which restricts its
use in practice due to the delay incurred in its learning process.
The issue becomes more severe in applications requiring quick
decisions and actions.

The main objective of this work is to develop an innovative
ADP method, named hybrid iteration (HI), to solve the CO2RP.
The HI will enable us to bring the advantages of PI and VI
together and remove their drawbacks simultaneously. Notably,
the optimal solution for the CORP will be developed by ADP
without an initial stabilizing control policy. In addition, the
method will quadratically converge to the optimal solution.
Therefore, this article’s contributions are as follows.

1) As the first contribution, an innovative successive approx-
imation algorithm is proposed in order to achieve co-
operative, optimal output regulation of continuous-time,
linear MASs (hereinafter referred to as MASs for ease
of reference) by obtaining an optimal distributed control
policy based on the knowledge of the system dynamics
of each agent.

2) As the second contribution, an efficient, nonmodel-based
learning method is developed to implement HI using the
states/input data collected online along the MAS trajec-
tories, with completely unknown model information.

3) Last but not least, this article is the first attempt to apply
data-driven HI strategies to control islanded M2Gs based
on IBRs.

The rest of this article is organized as follows. In Section II,
the problem statement is provided by recalling the formula-
tion of the CO2RP and the existing DP solutions. The new
HI solution to the CO2RP is proposed in Section III, wherein
the model-based HI is first presented with a rigorous proof of
convergence. Following that, this article’s new data-driven HI
algorithm for MASs is proposed in order to solve the CO2RP
discussed earlier. Additionally, the convergence analysis of this
algorithm is provided. Simulation results are given in Section IV
by applying data-driven HI to an application of M2Gs and com-
paring its performance with PI and VI. Comparative experiments
are also conducted in order to reveal the proposed methodology’s
practicality and effectiveness. Finally, Section V concludes this
article.

Notations. Throughout this article, the following notations are
denoted. Z+ denotes the set of nonnegative integers. In denotes
the identity matrix of dimension n and 0n×m denotes an n×m
zero matrix. 1n represents a vector of dimension n, with all its
elements being 1. || · || denotes the induced norm operator for
matrices and the Euclidean norm operator for vectors.⊗ denotes
the Kronecker product operator. Given a matrixA ∈ Rn×m, with
ai ∈ Rn are the columns of A, vec(A) = [aT

1, a
T
2, . . . , a

T
m]T.

Given ATA is invertible, A† = (ATA)−1AT indicates the pseu-
doinverse of A. Given a vector z ∈ Rn and a symmetric matrix
P = P T ∈ Rm×m, vecs(P ) = [p11, 2p12, . . . , 2p1m, p22, 2p23,

. . . , 2pm−1,m, pmm]T∈ R
1
2m(m+1), and vecv(z) = vecs(zzT).

P � (�)0 and P ≺ (�)0 indicate that P is the positive definite
(semidefinite) and negative definite (semidefinite), respectively.
diag(c1, c2, c3) denotes a diagonal matrix with c1, c2, and c3
as its diagonal elements. For a matrix A ∈ Rn×n, σ(A) de-
notes the spectrum of A. Re(λ) represents the real part of the
eigenvalue λ ∈ σ(A). Jm denotes all m×m real symmetric
matrices normed space, equipped with the induced matrix norm.
Jm
+ = {P ∈ Jm : P � 0}.

II. PROBLEM STATEMENT AND FORMULATION

This section presents the problem to be studied. Also, the
preliminaries are shown as a preface for the proposed solution
to the CO2RP. Consider the following MAS:

v̇ = Ev (1)

ẋi = Aixi +Biui +Div (2)

ei = Cixi + Fiv, i ∈ T (3)

where for each ith subsystem, xi ∈ Rni is the state, ui ∈ Rmi is
the control input, ei ∈ Rpi is the tracking error, and v ∈ Rq is the
exostate in the exosystem (1). Div and −Fiv are generated by
the exostate as the ith subsystem disturbance and the reference
signal, respectively. Given the exosystem (1) and the plant (2)
and (3), a diagraph G is defined as G = {V, E}, where the sets
of nodes and edges are represented by V = {0, 1, . . . , N} and
E ⊂ V × V , respectively. The leader modeled via the exosystem
(1) is represented by node 0. The followers described by (2)
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and (3) are identified by a set of nodes T = {1, 2, . . . , N}. The
adjacency matrix A = [aij ] ∈ R(N+1)×(N+1) is defined by the
weight aij such that aij > 0 if (j, i) ∈ E ; otherwise, aij = 0.
Ni denotes the set of all the nodes j such that (j, i) ∈ E . The
Laplacian L of the diagraph G is defined as follows:

L =

[∑N
j=1 a0j −[a01, . . . , a0N ]

−Δ1N H

]
(4)

whereΔ = diag(a10, a20, . . . , aN0), andH = [hij ] ∈ RN×N is
defined by hii = (

∑N
j=0 aij)− aii and hij = −aij ∀ i 
= j.

This article develops a data-driven learning algorithm for
MASs to solve the CO2RP, i.e., the tracking error of all the fol-
lowers asymptotically converges to zero in an optimal sense with
guaranteed stability. Second, the developed algorithm should
not rely on the knowledge of an initial stabilizing policy or the
system dynamics in the state equation. Third, this algorithm
should converge in fewer iterations than what is required by VI.

In order to solve the CO2RP and traditional CORP, some
standard assumptions are considered for the system expressed
in (1)–(3).

Assumption 1: The diagraph G contains a directed spanning
tree with the node 0 as the root.

Assumption 2: The pair (Ai, Bi) is stabilizable ∀i ∈ T .

Assumption 3: Rank
([

Ai − λI Bi

Ci 0

])
=ni + pi∀λ ∈ σ(E),

i ∈ T .
First, recalling the solution to the CORP is presented in the

following lemma.
Lemma 1 ([40], [41]): Under Assumptions 1–3, choose a

large enough constant γ > 0 such that Re(λi(E)− γλj(H)) <
0 ∀ i = 1, 2, . . . , q and any j ∈ T . Let Ki be a stabilizing
control gain matrix ∀i ∈ T , and let Li = KiXi + Ui, where the
following regulator equations are solved by the pair (Xi, Ui):

AiXi +BiUi +Di = XiE (5)

CiXi + Fi = 0. (6)

Then, the following distributed control policy solves the CORP:

ζ̇ = Eζi + γ

[ ∑
j∈Ni

aij(ζj − ζi) + ai0(v − ζi)
]

(7)

ui = −Kixi + Liζi ∀i ∈ T . (8)

In order to guarantee both the transient- and steady-state re-
sponses of the agents, one can design a control policy to achieve
the (cooperative) output regulation in an optimal sense—i.e., the
(cooperative) optimal output regulation [41], [42], [43]. In order
to solve the CO2RP, the following two optimization problems
are to be addressed.

Problem 1:

min
(Xi,Ui)

Tr
(
XT

i Q̄iXi + UT
i R̄iUi

)
(9)

subject to (5) and (6) (10)

where Q̄i = Q̄T
i � 0, R̄i = R̄T

i � 0.

From [44], given any matrices Di and Fi, Assumption 3
ensures that the regulators (5) and (6) are solvable ∀i ∈ T . In
addition, it has been shown in [43] that the Problem 1 has an
optimal solution (X∗

i , U
∗
i ). Denote x̄i := xi −X∗

i v and ūi :=
ui − U ∗

i v. Then, the following error system is obtained:

˙̄xi = Aix̄i +Biūi (11)

ei = Cix̄i. (12)

Afterward, a constrained minimization problem described in
Problem 2 is solved in order to obtain the optimal feedback
controller in the form of ū∗

i = −K∗
i x̄i.

Problem 2:

min
ūi

∫ ∞

0

(
x̄T
iQix̄i + ūT

iRiūi

)
dt (13)

subject to (11) (14)

where Qi = QT
i � 0 and Ri = RT

i � 0, with the pair
(Ai,

√
Qi) being observable ∀i ∈ T .

Assuming the system matrices are known, the CO2RP is solv-
able in a suboptimal sense with the development of a distributed
controller [41] described by

u∗
i = −K∗

i xi + L∗
iζi ∀i ∈ T (15)

where K∗
i is computed by solving the Problem 2 such that

K∗
i = R−1

i BT
i P

∗
i , where P ∗

i = (P ∗
i )

T � 0 is the solution to the
following algebraic Riccati equation:

P ∗
i Ai +AT

i P
∗
i +Qi − P ∗

i BiR
−1
i BT

i P
∗
i = 0. (16)

It is noticeable that (16) is nonlinear in Pi
∗, which makes it

a difficult task to find Pi
∗ directly from (16). Two successive

approximation methods are recalled in order to solve (16).
1) Policy Iteration: The PI algorithm is a successive approx-

imation method for solving optimal control problems by alter-
nating policy evaluation and policy improvement. Kleinman [35]
has proposed a PI method to approximate P ∗

i from (16), which
is recalled in the following text.

a) Policy Evaluation: Solve Pi,k from

Z(Pi,k,Ki,k) = 0, k ∈ Z+∀i ∈ T (17)

where Z(·, ·) is the Lyapunov operator defined by

Z(Pi,Ki) = Pi(Ai −BiKi) + (Ai −BiKi)
TPi +Qi

+KT
i RiKi.

b) Policy Improvement: Update the control gain matrix by

Ki,k+1 = R−1
i BT

i Pi,k. (18)

The following lemma summarizes the convergence of Klein-
man’s PI-based algorithm.

Lemma 2 ([35]): Let Ki,0 ∈ Rmi×ni be a stabilizing feed-
back gain matrix ∀ i ∈ T , the matrix Pi,k � 0 be the solution
for the Lyapunov equation (17), and the control gain matrix
Ki,k, for k = 1, 2, . . . is recursively defined by (18). Then, the
following properties hold ∀ k ∈ Z+, i ∈ T .

i) The matrix Ai −BiKi,k is Hurwitz.
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ii) P ∗
i � Pi,k � Pi,k−1.

iii) limk→∞ Ki,k = K∗
i , limk→∞ Pi,k = P ∗

i .
2) Value Iteration: Different from PI, the VI [38], [39] re-

laxes the learning process by overcoming the barrier of knowing
a stabilizing control gain matrix Ki,0 for each subsystem. VI
starts from an arbitrary initial value matrix Pi,0= (Pi,0)

T � 0
for all i ∈ T . The iterative scheme of VI is done by updating the
value matrix until a predefined criterion is satisfied. The iterative
process of VI is done as follows.

a) Value Update: Given Pi,0, update the value matrix using

Pi,k+1 ← εk
(
Pi,kAi +AT

i Pi,k +Qi − Pi,kBiR
−1
i BT

i Pi,k

)
+ Pi,k, k ∈ Z+, i ∈ T (19)

where {εk}∞k=0 is a deterministic sequence defined in
Section III.

The proof of convergence of the VI algorithm can be found
in Theorem 3.3 detailed in [38].

Remark 1: Unlike the research conducted in the state-of-
the-art literature that has studied the output-feedback control
(see [18], [19], and [20]), the formulation of the system described
by (1)–(3) considers the presence of the exosystem (1)—which
generates the reference signal −Fiv to the output of the ith
subsystem and simultaneously generates the disturbance Div to
the system (2).

III. MAIN RESULTS

Although VI is less conservative than PI in the sense that
no prior knowledge of an initial stabilizing control policy is
required, it usually needs tremendously more learning iterations
than PI to converge to an optimal solution. This matter makes
the use of VI not applicable to the applications where a quick
decision needs to be taken, such as M2Gs. This section proposes
an entirely novel approximation strategy, namely HI, to bridge
the performance gap between PI and VI for MASs. To be
more specific, HI does not require any initial stabilizing control
policy and requires much fewer iterations than VI to converge
to the optimal solution. Initially, a model-based HI algorithm is
introduced. Based upon that, a data-driven HI is developed such
that the optimal control policy is learned from the information
collected along the trajectories of the dynamic systems.

A. Model-Based HI for CO2RP

The HI algorithm differs from the traditional existing DP
algorithms in the sense that the optimal solution convergence
process gets completed in two phases. In the first phase, a stabi-
lizing control policy is found for each i ∈ T using VI to avoid
prior knowledge of a stabilizing control policy for each agent.
Moreover, the phase is terminated once a stabilizing control gain
matrix is obtained in order to prevent a large number of iterations
incurred in VI. Using the obtained stabilizing control gain matrix
from Phase 1, PI is leveraged and initiated until the convergence
to the optimal solution is achieved. The details of both phases
are discussed as follows.

1) Phase 1 to Find a Stabilizing Control Policy: Through-
out Phase 1, the value matrix is iteratively updated until a

Algorithm 1: Model-Based HI.
1: i ← 1
2: repeat
3: Select ε̂i > 0, Pi,0 = (Pi,0)

T � 0, and
Q̂i = (Q̂i)

T � Qi. k, r ← 0.
4: repeat
5: P̃i,k+1 ← Pi,k + εk(Pi,kAi +AT

i Pi,k + Q̂i

− Pi,kBiR
−1
i BT

i Pi,k)

6: if P̃i,k+1 /∈ BrthenPi,k+1 ← Pi,0, r ← r + 1.
7: else Pi,k+1 ← P̃i,k+1 endif
8: k ← k + 1
9: until (P̃i,k − Pi,k−1)/εk−1 ≺ Q̂i

10: repeat
11: Ki,k ← R−1

i BT
i Pi,k−1

12: Solve Pi,k from Z(Pi,k,Ki,k) = 0. k ← k + 1.
13: until ‖Pi,k − Pi,k−1‖ < ε̂i
14: i ← i+ 1
15: until i = N + 1

stabilizing control policy is found. It is worth mentioning that
stochastic approximation is used in this phase to solve the value
update step. To begin with, {Br}∞r=0 is defined as a collection
of nonempty interiors bounded sets, which satisfies

Br ⊂ Br+1 ∈ J n
+ , r ∈ Z+, lim

r→∞
Br = J n

+

and ε̂i > 0∀i ∈ T is a small threshold. In addition, select a
deterministic sequence {εk}∞k=0 such that

εk > 0,

∞∑
k=0

εk = ∞, lim
k→0

εk = 0.

Since the primary goal of Phase 1 is to seek a stabilizing policy
for the ith subsystem and save iterations compared with VI, Qi

is replaced with Q̂i � Qi and the value update step is repeated
until the first stabilizing control policy is obtained. With the
obtained stabilizing control policy, Phase 1 is stopped, and that
policy is then employed in the following phase.

2) Phase 2 to Explore the Optimal Control Policy for
CO2RP: In Phase 2, the PI is initiated using the stabilizing
control policy obtained from Phase 1. The policy evaluation
in (17) and the policy improvement in (18) are repeated until
the value matrix Pi,k is close enough to P ∗

i , ∀i ∈ T . Algorithm
1 presents the detailed steps of the model-based HI algorithm,
including its proof of convergence shown in Theorem 1.

Theorem 1: Consider the sequences {Pi,k}∞k=0 and
{Ki,k}∞k=1 computed by Algorithm 1 for all i ∈ T . There exists
a k∗ ∈ Z+ such that the inequalities of ‖Pi,k∗ − P ∗

i ‖ ≤ ε̂i and
‖Ki,k∗ −K∗

i ‖ ≤ ε̂i hold in which ε̂i > 0 is a small threshold
for any i ∈ T .

Proof: Based on the article presented in [38], by repeating
Steps 5–8, ‖Pi,k − P ∗

i ‖ → 0 is achieved as k → ∞ ∀ i ∈ T .
By defining Ki,k expressed in (18), the convergence of the
sequence {Pi,k}∞k=0 implies the convergence of the sequence
{Ki,k}∞k=1. Therefore, with k → ∞, ‖Ki,k −K∗

i ‖ → 0 for
all i ∈ T can also achieved. The condition in Step 9, i.e.,
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(P̃i,k − Pi,k−1)/εk−1 ≺ Q̂i, is equivalent to

Pi,k−1Ai +AT
i Pi,k−1 − Pi,k−1BiR

−1
i BT

i Pi,k−1 ≺ 0

which implies the following inequality:

Pi,k−1(Ai −BiKi,k) + (Ai −BiKi,k)
TPi,k−1

≺ −KT
i,kRiKi,k � 0 (20)

where Ki,k = R−1
i BT

i Pi,k−1. Therefore, given any Q̂i � 0, a
stabilizing control gain matrix Ki,ka

= R−1
i BT

i Pi,ka−1 can al-
ways be obtained such that the matrix Ai −BiKi,ka

is Hurwitz
when Steps 4–9 are finished at iteration ka ∈ Z+. By starting
with the stabilizing control gain Ki,ka

and considering [35],
repeating Steps 10–13 will lead to the convergence to the
optimal solution P ∗

i . In other words, when Step 13 is satis-
fied, one can always find an iteration index k∗ ∈ Z+ such that
‖Pi,k∗ − P ∗

i ‖ ≤ max{ε̂i/‖R−1
i BT

i ‖, ε̂i}. This fact implies that
‖Ki,k∗ −K∗

i ‖ ≤ ‖R−1
i BT

i ‖‖Pi,k∗ − P ∗
i ‖ ≤ ε̂i for any i ∈ T .

The proof is, thus, completed. �

B. Data-Driven, Cooperative, HI for CO2RP

This section extends the HI Algorithm 1 to a data-driven ver-
sion, where the algorithm relies on the states/input information
collected along the trajectories of each subsystem. First, the
details of finding a stabilizing control policy using the online
data are given. Afterward, the PI-based data-driven suboptimal
controller designed in [41] is used with the stabilizing policy
obtained in order to converge to the optimal solution.

Considering the ith subsystem, define x̄ij = xi −Xijv for
0 ≤ j ≤ hi + 1, where Xi0 = 0ni×q, Xij ∈ Rni×q so that
CiXi1 + Fi = 0. The matrices Xij for 2 ≤ j ≤ hi + 1, where
hi = (ni − pi)q is the null space dimension of Iq ⊗ Ci, are
selected such that the basis for ker(Iq ⊗ Ci) is formed by all
the vectors vec(Xij). With the above definitions along with (1)
and (2), the following differential equation is then obtained:

˙̄xij= Ai,kx̄ij +Bi(Ki,kx̄ij + ui) + (Di − Si(Xij))v (21)

where the Sylvester map Si : Rni×q → Rni×q satisfies
Si(X) = XE −AiX ∀X ∈ Rni×q , and Ai,k = Ai −BiKi,k.
For any two vectors a(t) ∈ Rn, b(t) ∈ Rm, and a sufficiently
large ρ ∈ Z+, the following matrices are defined:

δb =
[
vecv(b)|t1t0 , vecv(b)|t2t1 . . . , vecv(b)|tρtρ−1

]T

∈ Rρ×m(m+1)/2

Γa,b =
[∫ t1

t0
a⊗ b dτ,

∫ t2
t1

a⊗ b dτ, . . . ,
∫ tρ
tρ−1

a⊗ b dτ
]T

∈ Rρ×nm.

1) Phase 1 to Find a Stabilizing Control Policy for
CO2RP: First, a data-driven VI approach is proposed in or-
der to solve the CO2RP. This approach is used for the sake
of getting a stabilizing control policy. Consider the Lyapunov
candidate Vk(x̄ij) = x̄T

ijPi,kx̄ij , where k ∈ Z+ and i ∈ T . By
taking the time derivative of Vk(x̄ij) along with (21), with some
mathematical manipulations and rearrangements, one obtains

the following:

V̇k(x̄ij) = ˙̄xT
ijPi,kx̄ij + x̄T

ijPi,k ˙̄xij

= x̄T
ij(Hi,k)x̄ij + 2uT

iRiKi,k+1x̄ij

+ 2vT(Di − Si(Xij))
TPi,kx̄ij (22)

where Hi,k = AT
i Pi,k + Pi,kAi.

By taking the integral of (22) over [t0, ts], where {tl}sl=0

(with tl = tl−1 +Δt and Δt > 0) is an increasing sequence,
the result can be written in the following Kronecker product
representation:

Θij

⎡
⎢⎣ vec(Hi,k)

vec(Ki,k+1)

vec((Di − S(Xij))
TPi,k)

⎤
⎥⎦ = δx̄ij ,x̄ij

vecs(Pi,k) (23)

where Θij =
[
Γx̄ij ,x̄ij

, 2Γx̄ij ,u(Ini
⊗Ri), 2Γx̄ij ,v

]
.

Lemma 3: For all j ∈ Z+, if there exists an s′ ∈ Z+ such that
the following rank condition is satisfied for all s > s′:

rank
([

Γx̄ij ,x̄ij
,Γx̄ij ,ui

,Γx̄ij ,v

])
=

ni(ni + 1)

2
+ (mi + q)ni

(24)

the matrix Θij has full column rank ∀ k ∈ Z+, i ∈ T , for any
increasing sequence {tl}sl=0 (with tl = tl−1 +Δt and Δt > 0).

Proof: One can prove this lemma by contradiction. Assume
Ξv = [vec(Ω1), vec(Ω2), vec(Ω3)]

T is a nonzero solution to

ΘijΞv = 0. (25)

Considering (22) and (21), the following equation is concluded:

Γx̄ij ,x̄ij
vec(Ω1) + 2Γx̄ij ,ui

vec(Ω2) + 2Γx̄ij ,vvec(Ω3) = 0
(26)

where Ω1 = Hi,k, Ω2 = RiKi,k+1, and Ω3=(Di−S(Xij))
T

Pi,k. Then, (26) implies the following equation:

[
Γx̄ij ,x̄ij

, 2Γx̄ij ,u, 2Γx̄ij ,v

]⎡⎢⎣vec(Ω1)

vec(Ω2)

vec(Ω3)

⎤
⎥⎦ = 0. (27)

Under full rank condition of (24), one concludes that vec(Ω1) =
0, vec(Ω2) = 0, and vec(Ω3) = 0. As a result, the following
equations are obtained:

Hi,k := AT
i Pi,k + Pi,kAi = 0 (28)

RiKi,k+1 := BT
i Pi,k = 0. (29)

By Assumption 2, the pair (Ai, Bi) 
= (0n×n, 0n×m) is obvi-
ously concluded, so one can quickly notice that having Pi,k = 0
is required. Consequently, Ξv = 0 is the unique solution to (25),
which contradicts our assumption that Ξv 
= 0. The proof is,
thus, completed. �

Lemma 3 shows that if (24) is satisfied, the existence and
uniqueness of the solution to (23) is guaranteed, where the
solution can be obtained using the pseudoinverse of Θij .

Remark 2: The matrix Θij is fixed for all k ∈ Z+ and does
not require to be updated at each iteration k.
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To this end—similar to the model-based HI method—Q̂i is
regarded as the state weights in the value update equation. The
value matrix is updated by the stochastic approximation, i.e.,

Pi,k+1 ← Pi,k + εk

(
Hi,k + Q̂i−(Ki,k+1)

TRiKi,k+1

)
until the condition (Pi,k − Pi,k−1)/εk ≺ Q̂i is satisfied. By
the latter, it is guaranteed that the obtained control policy is
stabilizing, which is then employed to start Phase 2.

2) Phase 2 to Explore the Optimal Control Policy for
CO 2 RP: Now, it is time to start with PI since it is guar-
anteed that the control policy obtained from the previous
phase is stabilizing. Consider a Lyapunov function defined
by Vk(x̄ij) = x̄T

ijPi,kx̄ij ∀i ∈ T and k = 1, 2, . . .. By its time
derivative along with (21), the following is obtained:

V̇k(x̄ij) = x̄T
ij(Pi,kAi,k +AT

i,kPi,k)x̄ij

+ 2(ui +Kikx̄ij)
TBT

i Pi,kx̄ij

+ 2vT(Di − Si(Xij))
TPi,kx̄ij . (30)

The following is reached by taking the integral of (30) over
[t0, ts] and using the fact that Pi,kAi,k +Ai,k

TPi,k = −Qi −
KT

i,kRiKi,k

Vk(x̄ij)|tst0 =

∫ ts

t0

[
x̄T
ij(−Qi −KT

i,kRiKi,k)x̄ij

+ 2(ui +Ki,kx̄ij)
TRiKi,k+1x̄ij

+2vT(Di − Si(Xij))
TPi,kx̄ij

]
dτ. (31)

Equation (31) can be written in the Kronecker representation as
follows:

Ψij,k

⎡
⎢⎣ vecs(Pi,k)

vec(Ki,k+1)

vec((Di − Si(Xij))
TPi,k)

⎤
⎥⎦ = Φij,k (32)

where

Ψij,k =
[
δx̄ij ,x̄ij

,−2Γx̄ij ,x̄ij

(
Ini

⊗KT
i,kRi

)
−2Γx̄ij ,ui

(Ini
⊗Ri) ,−2Γx̄ij ,v

]
Φij,k = − Γx̄ij ,x̄ij

vec
(
Qi +KT

i,kRiKi,k

)
.

It is noticeable that the satisfaction of (24) also implies the
existence and the uniqueness of the solution to (32). The novel
data-driven HI algorithm can now be introduced, as all its
preliminaries are ready. It is presented in Algorithm 2 with its
proof of convergence in Theorem 2.

Theorem 2: If (24) is satisfied, the sequences {Pi,k}∞k=0 and
{Ki,k}∞k=1 learned by Algorithm 2 converge to P ∗

i and K∗
i ∀

i ∈ T , respectively.
Proof: Given that (24) is satisfied, one can guarantee that

a unique solution is obtained from (23). In addition, Hi,k,
Ki,k+1, and vec((Di − S(Xij))

TPi,k)must satisfy (22) ∀i ∈ T
such that Hi,k = AT

i Pi,k + Pi,kAi and Ki,k+1 = R−1
i BT

i Pi,k.
Therefore, both P̃i,k+1 and Pi,k+1 solved from 10–16 in Algo-
rithm 2 are equivalent to those solved in Algorithm 1 through

Algorithm 2: Data-Driven HI for CO2RP.
1: i ← 1
2: Choose ε̂i > 0, Pi,0 = (Pi,0)

T � 0, and
Q̂i = (Q̂i)

T � Qi.
3: repeat
4: Compute the matrices Xi0, Xi1, . . . , Xi,hi+1.
5: Employ u0

i = −Ki,0x+ ηi, with arbitrary Ki,0, and
exploration noise ηi over [t0, ts]. j ← 0.

6: repeat
7: Compute Γx̄ij x̄ij

, Γx̄ijui
, and Γx̄ijv while satisfying

(24). j ← j + 1.
8: until j = hi + 2
9: k ← 0, j ← 0, r ← 0.

10: repeat
11: Solve Hi,k and Ki,k+1 from (23).
12: P̃i,k+1 ← Pi,k+ εk(Hi,k+ Q̂i− (Ki,k+1)

TRiKi,k+1)

13: if P̃ i,k+1 /∈ Br thenPk+1 ← Pi,0, r ← r + 1.
14: else Pi,k+1 ← P̃i,k+1 end if
15: k ← k + 1
16: until (Pi,k − Pi,k−1)/εk ≺ Q̂i

17: j ← 0
18: repeat
19: Solve Pi,k and Ki,k+1 from (32). k ← k + 1.
20: until ‖Pi,k − Pi,k−1‖ < ε̂i
21: k ← k∗, j ← 1.
22: repeat
23: From (32), solve Si(Xij). j ← j + 1.
24: until j = hi + 2

From Problem 1, find (X∗
i , U

∗
i ) using online data.

25: Li,k∗ ← U ∗
i +Ki,k∗X∗

i

26: Obtain the suboptimal controller using (7) and

u∗
i = −Ki,k∗xi + Li,k∗ζi. (33)

27: i ← i+ 1
28: until i = N + 1

Steps 4–9. Moreover, by the article presented in [36], given that
(24) is satisfied, the pair (Pi,k,Ki,k+1) obtained from solving
Steps 18–20 in Algorithm 2 is equivalent to those solved in Algo-
rithm 1 through Steps 10–13. The convergence of the sequences
{Pi,k}∞k=0 and {Ki,k+1}∞k=0 obtained using Algorithm 1 is
proved in Theorem 1. Therefore, the same sequences obtained
under Algorithm 2 are also ensured. Moreover, the feedback
gain matrix Ki,k∗ is stabilizing for small ε̂i > 0. It is guaranteed
from Lemma 1 that the closed-loop system is asymptotically
stable and the tracking error converges asymptotically to zero
using the learned suboptimal controller (7) and (33). This section
completes the proof. �

Remark 3: The proposed HI Algorithm 2 is an off-policy
learning algorithm. Each agent has its own optimal control policy
and is learned independently of the other agents.

Remark 4: An exploration noise is added to the input of the
system (2) and (3) during the learning process of Algorithm 2.
Such an input is chosen to satisfy the rank condition (24)—
which is similar to the persistent excitation condition. The noise
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Fig. 1. Sample of an M2G s swarm communication architecture.

selected can be a random noise or a summation of sinusoidal
signals with distinct frequencies.

C. Computational Complexity of the HI Algorithm

The computational complexity analysis of the proposed HI
algorithm is now analyzed and elaborated. If singular value de-
composition (SVD) is employed to compute the pseudoinverse
in Steps 11 and 19 of Algorithm 2, it is found that the most
intensive steps computationally are Steps 11 and 19 with the
computational complexity of O(n2

iY1), where Y1 is the number
of rows of Θij and Ψij,k. The SVD method is considered in
the analysis since it has less complexity per iteration than the
one incurred in the inversion of matrices [45]. From the above
analysis, since the number of data to be collected in order to
satisfy the rank condition in (24) for HI, PI, and VI are the
same, one can conclude that the complexity per iteration of
Algorithm 2 cannot be higher than that of the PI algorithm.
In case they are to be equal due to the system’s dynamics, HI
will still have an advantage over PI since the stabilizing policy
is not required to begin the learning process, thus preserving
the quadratic rate of convergence. Moreover, Phase 2 of HI
has higher complexity per iteration compared with VI. Still,
due to the quadratic convergence of HI, the time required for
convergence is much less than what is necessary for VI since
VI needs many iterations to converge to its optimal policy,
considering its sublinear convergence rate.

IV. ILLUSTRATIVE EXAMPLE WITH SIMULATIONS AND

EXPERIMENTS

This section presents the efficacy of the proposed HI algorithm
by implementing the data-driven HI algorithm on an M2G with
communication topology, as depicted in Fig. 1. The results are
first validated using MATLAB 2022b. Afterward, the effective-
ness of the learned control policy is experimentally tested.

A. Simulation Results

Based on the HI method proposed for MASs in this article,
this section derives a secondary voltage control (also known as
voltage restoration control) for an islanded M2G containing N
IBRs. For such a configuration, one can obtain the following
voltage dynamics, which are linear and in the form of second-
order dynamical systems according to the article presented in [6]
and considering the actuators with partial loss of effectiveness
(PLOE) and bias faults occurring in M2Gs [see (2) in [5] for the

Fig. 2. ‖Pi,k − P ∗
i ‖ of IBR #i (i = 1, 2, 3, and 4) using HI Algorithm 2.

Fig. 3. Trajectories of the voltages vodi in rms with the learned con-
trol policy using (a) HI Algorithm 2, (b) data-driven PI algorithm, and
(c) data-driven VI algorithm.

latter]

v̈odi
= Qiui + Pi ∀i ∈ T (34)

where 0 < Qi ≤ 1 is the PLOE fault factor of the ith IBRs
actuator, and Pi is the time-varying PLOE fault severity of the
ith IBR satisfying ‖Pi‖ ≤ PS

i with PS
i > 0. Using (34) and

assuming xi = [vodi
v̇odi

]T, the dynamical model of the ith
IBR can be represented as follows:

ẋi = Aixi +Bi(Qiui + Pi), i ∈ T (35)
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Fig. 4. Closed-loop system with the feedback-feedforward diagram at the moment of applying the disturbance to the system.

where the system matrices obtained are as follows:

Ai =

[
0 1

0 0

]
, Bi =

[
0

Qi

]
, and Ci =

[
1 0

]
(36)

in which Q1 = 0.95, Q2 = 0.90, Q3 = 0.85, and Q4 = 0.80.
The disturbances are modeled as sinusoidal signals biased with
a constant generated by the exosystem. As a result, (35) can be
written in the form of (1)–(3) considering the matrices defined
in (36) and the following ones ∀i ∈ T :

E =

⎡
⎢⎣0 −5 0

5 0 0

0 0 0

⎤
⎥⎦ , D1 =

[
0 1 0

1 1 1

]
, D2 =

[
0 1 0
1
2

1
2

1
2

]

D3 =

[
0 1 0
1
5

1
3

2
5

]
, D4=

[
0 1 0

0 0 1

]
, Fi =

[
0 0 −1.1

]
.

The goal is to regulate the voltage vodi
of each IBR in an

optimal sense—despite the unknown dynamics of all IBRs—this
matter requires the designer to solve a cooperative, adaptive,
optimal output regulation problem.

The data-driven HI Algorithm 2 is validated by deploying it in
the system described by (35) with the communication topology,
as depicted in Fig. 1. Also, the data-driven PI and VI algorithms
are employed to compare their results with those obtained from
the HI method. The rest of the parameters are chosen by Qi =
104I2, Ri = 1, Pi,0 = 0.01I2, εk = 4

k , ε̂i = 10−4 ∀1 ≤ i ≤ 4,
and Br = 10(r + 1). The learning period is from t = 0 s to
t = 6 s such that the bounded input employed to the system
is a summation of randomly generated sinusoidal signals with
distinct frequencies. This section uses the parameters indicated
in Table I, as reported in [5].

Given that the initial stabilizing control policy is known for the
PI method, for simulation purposes, the total central processing
unit (CPU) time required for convergence is found to be 0.203,
0.125, and 1.922 (all in s) for the HI, PI, and VI methods,
respectively. From the results, as shown in Table I and Fig. 2,
one can realize the efficiency of HI over VI and PI. PI primarily
relies on prior knowledge of an initial stabilizing control policy
for each subsystem, which is assumed to be known in this case.
One can notice that PI requires fewer learning iterations and less
convergence time for each subsystem to learn its own optimal

TABLE I
NUMBER (NO.) OF ITERATIONS AND CPU TIME [IN SECOND (S)] FOR EACH

ALGORITHM TO CONVERGE TO THE OPTIMAL SOLUTION FOR EACH IBR
WITH PARAMETERS IN [5]

control policy. However, achieving this requirement in practice
is not straightforward due to the lack of modeling information.
One can see that HI requires significantly less time and iterations
than VI to converge.

Additionally, the HI method is less conservative than the PI
method, as it removes the condition of prior knowledge of a
stabilizing policy for each follower by achieving the optimal
control policy with a fast convergence rate. It is worth mention-
ing that P ∗

i is not required to perform the simulations, as shown
in Fig 2. This article assumes that it is known in advance for
the sake of presenting the results of convergence. In practice,
it is enough to have ‖Pi,k − Pi,k−1‖ ≤ ε̂i to guarantee that the
learned value matrix Pi,k∗ is close enough to the actual optimal
one, i.e., P ∗

i , as shown in the proof of Theorem 2.
Moreover, Phase 1 of Algorithms 1 and 2 generates a mono-

tonically increasing sequence {Pi,k}∞k=0 since Pi,0 ≺ P ∗
i . The

weighting matrix Qi was chosen with large weights to ensure
a faster trajectories convergence at the cost of requiring a large
Pi,ka

� P ∗
i � 0, which can ensure that Ai −BiKi,ka

is Hur-
witz. Thus, the control policy Ki,ka

is stabilizing, which is
obtained by satisfying the condition in Step 16 in Algorithm
2. This fact is evident at the switching points in Fig. 2. The
significant jump onPi,k does not affect the state trajectory of the
closed-loop system since the off-policy reinforcement learning
strategy has been applied. The quadratic convergence of Phase
2 can also be observed. The tracking trajectories, as depicted
in Fig. 3, reveal that the HI, PI, and VI methods learn optimal
control policies since all three approaches converge to the same
optimal control policy—which is unique. Therefore, it is notable
that all tracking trajectories have the same behavior.
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Fig. 5. Test rig deployed in the experiments. (a) M2Gs power sys-
tem (b) and details of one IBR (parameters are reported in [5]), and
(c) amplifiers and low-impedance loads—all housed in the Laboratory for
Advanced Power and Energy Systems at Georgia Southern University—
where experiments have been conducted.

From Fig. 3, one can notice that the learned control policy
results in maintaining the optimal voltage of each M2Gs IBR
with the error converging to zero. Additionally, in order to
examine the functionality of the proposed HI method, an external
disturbance is applied at t = 10 s. The external disturbances are
directly applied to the system states through the signals injected

Fig. 6. Experimental results of the proposed method, HI Algorithm 2
with 93, 93, 94, and 93 iterations for IBRs #1–#4 (simulations in Fig. 3).
(a) Signals in the transient condition with 44 V/div for the vertical axis
and 1 s/div for the horizontal axis. (b) Signals in the steady-state con-
dition with 44 V/div for the vertical axis and 20 ms/div for the horizontal
axis. (c) Signal deviations from 220 V with 4.4 V/div for the vertical axis
and 20 ms/div for the horizontal axis.

into the systems states; disturbance signals replicate sudden
voltage sags that may occur in M2Gs (see Fig. 4 for details).
Finally, one can also observe that all the IBRs reject external
disturbances and reasonably recover from them.

B. Experimental Results

In order to validate the simulation results and to show the
practicability of the proposed method, the optimal control policy
learned from the HI Algorithm 2 has been employed to control
an M2 G experimentally. The test rig, as depicted in Fig. 5,
is utilized to conduct experimental examinations related to the
M2 G simulated in this article. Its IBRs are implemented by
the SEMIKRON intelligent power insulated-gate bipolar tran-
sistors (IGBTs), the SKM 50 GB 123 D modules. Besides, the
SEMIKRON gate drives, the SKHI 21 A (R) product, and protec-
tion circuitry are employed to make the converter functional. The
Verivolt current/voltage sensors (the IsoBlock I-ST-1c/IsoBlock
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Fig. 7. Comparative experimental results of the data-driven PI algo-
rithm with 15 iterations for IBRs #1–#4 (simulations in Fig. 3). (a) Signals
in the transient condition with 44 V/div for the vertical axis and 1 s/div for
the horizontal axis. (b) Signals in the steady-state condition with 44 V/div
for the vertical axis and 20 ms/div for the horizontal axis. (c) Signal
deviations from 220 V with 4.4 V/div for the vertical axis and 20 ms/div
for the horizontal axis.

V-1c products) have been hooked to digital inputs to measure
the currents and the voltages, respectively. In order to practi-
cally replicate external disturbance signals applied to the IBRs’
voltages (according to Section IV-A and Fig. 4), the voltage
sags are generated by programmable power amplifiers and by
connecting local low-impedance loads to IBRs. A dSPACE
MicroLabBox (MLBX) device using a real-time processor,
field-programmable gate arrays, and different inputs/outputs’
channels links the IBR under test to the measurement and drive
circuitry.

Furthermore, all the parameters of the setup deployed
are similar to those of simulations and are found in [5].
Therefore, a reasonably fair comparison between compara-
tive simulations and comparative experiments is feasible. In
this regard, comparing Figs. 6–8 with Fig. 3 reveals that
simulations and comparative experiments match well. Thus,
they demonstrate the effectiveness of the proposed control
methodology.

Fig. 8. Comparative experimental results of the data-driven VI algo-
rithm with 3095, 2915, 2759, and 2837 iterations for IBRs #1–#4 (sim-
ulations in Fig. 3). (a) Signals in the transient condition with 44 V/div
for the vertical axis and 1 s/div for the horizontal axis. (b) Signals in the
steady-state condition with 44 V/div for the vertical axis and 20 ms/div
for the horizontal axis. (c) Signal deviations from 220 V with 4.4 V/div
for the vertical axis and 20 ms/div for the horizontal axis.

V. CONCLUSION

In this article, we had solved the CO2RP using a novel
computational ADP algorithm called HI. Unlike the existing
ADP algorithms, HI has advantages in the sense that prior knowl-
edge of a stabilizing control policy is not required compared
with PI. At the same time, the fast convergence speed of PI
has still been preserved. Additionally, compared with VI, HI
converges much faster to the optimal control policy regarding
the number of learning iterations and convergence time. The
cooperative, adaptive, optimal controller had been designed
via the data-driven HI, and its convergence had been proved.
Comparative simulation results had shown the superiority of the
proposed HI methodology over the existing ADP methods. Also,
comparative experiments had been displayed in order to demon-
strate the practicability and excellence of the proposed method,
which had been applied to the secondary voltage control (also
known as voltage restoration control) of an islanded M2G based
on IBRs.
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