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ABSTRACT

Subspace clustering algorithms are used for understanding the
cluster structure that explains the patterns prevalent in the dataset
well. These methods are extensively used for data-exploration tasks
in various areas of Natural Sciences. However, most of these meth-
ods fail to handle confounding attributes in the dataset. For datasets
where a data sample represent multiple attributes, naively applying
any clustering approach can result in undesired output. To this end,
we propose a novel framework for jointly removing confounding at-
tributes while learning to cluster data points in individual subspaces.
Assuming we have label information about these confounding at-
tributes, we regularize the clustering method by adversarially learn-
ing to minimize the mutual information between the data represen-
tation and the confounding attribute labels. Our experimental result
on synthetic and real-world datasets demonstrate the effectiveness of
our approach.

Index Terms— clustering, bias mitigation, subspace

1. INTRODUCTION

Most real-world datasets carry information arising from several at-
tributes. Given the task of estimating some unknown value, such as
the category of input, some of these attributes have no information
about the task, i.e., they are statistically independent of the desired
value. ldeally, given large enough samples taken iid from the data
distribution, these attributes should be uncorrelated to the features of
the dataset that are important to fulfill the task. However, some at-
tributes can still be highly correlated with the informative features in
many real-world datasets due to non-iid sampling or data collection
procedures [1]. When training data-driven models on such datasets,
these attributes can negatively affect the inference results. We refer
to such attributes as confounding attributes or biases.

While many past works have proposed to learn models which are
robust to the presence of confounding attributes (bias mitigation),
they generally address supervised learning tasks [2][3][4], where
task-relevant label information is available during model training
time. However, bias mitigation strategies for the unsupervised set-
ting, i.e., when task-relevant information is absent, have largely been
understudied. In this work, we address the problem of unsupervised
learning when data can contain confounding attributes.

Among the data-driven approaches for unsupervised learning,
subspace clustering shows great promise. In subspace clustering,
the assumption is that the high dimensional data lie on a union of
low dimensional subspaces. The objective here is to find separate
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subspaces for separate clusters of data points. Among the family
of subspace clustering algorithms, Self-expression based algorithms
form the state of the art[5]. Self-expression imposes the constraint
that every data point in the dataset can be explained through a lin-
ear combination of all the other data points in the dataset. Let <
represents the coefficient of the j " datapoint w.r.t. its contribution
in reconstructing the it" datapoint. One of the reasons why self-
expression-based methods are popular is because of the subspace
preserving property of the coefficient matrix achieved under certain
regularisation function [6][7][8][9][10]. This means that Ci; is only
non-zero when the it" and j " data points are in the same subspace.
Most recent advances in subspace clustering literature have focused
on scalability and out-of-sample clustering using neural networks.
But even these algorithms fail under the presence of confounding
attributes, as we later show.

More often, we have labels pertaining to these confounding at-
tributes. Under the assumption that the labels of the biases are known
during the training, we propose an information-theoretic inspired
method of jointly learning the cluster membership while ignoring
the confounding attributes in the data. We evaluate our proposed
method over synthetic and naturally occurring image datasets and
show superior performance than the current state of the art.

The remaining paper is organized as follows. Section 2 presents
the problem statement, section 3 presents the proposed solution, sec-
tion 4 presents the experiments and results, and section 5 presents the
conclusion.

2. PROBLEM STATEMENT

Most clustering algorithms must be trained on the whole dataset to
find clusters. As the size of the dataset increases, they become hard
to scale. Scalable Subspace clustering algorithms show great
promise in solving this problem [11][12][13]. The method proposed
in [5], based on self-expression, scales well for large datasets and
shows great performance on out-of-sample data points. But under
the presence of confounding attributes, these methods fail on out-
of-sample data points resulting in learning wrong self-expression
coefficients. This paper focuses on this problem and looks toward
improving the existing method. Below we formulate the problem of
clustering under the presence bias information.

2.1. Formulation

Let x P RY be the input data and X “ rxi1,...,%ns P RY " rep-
resent the input data matrix where the x; represents different data
points while the rows represent the dimensions. We make the as-
sumption that the data, i.e., the columns in X lie on the union of k
low-dimensional subspacesxj PY ;& Xi. Letb; “ rb1,...,bmsPB
for m biases, bi P tO, 1u, we define B “ rb1,bz,...,bns as
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the matrix containing bias labels corresponding to X for n samples.
Based on the self-expressive models [6], we can define each data
pointin X as a linear combination of all the other data points as [6],
y
Xj “ Cij Xi (1)
%o

Here cij P R represents the elements of the matrix C, self-
expressive coefficient matrix, satisfying the following,

X “CX, diagpCq “ 0 (2)
Hence learning of the self-expressive coefficient matrix could be for-
mulated as the following optimization problem,

minLpX,CXqg  RpCq, (3)
C

where L and R represent cost and regularization terms, respectively.
Here Rp“q enforces subspace preserving property in the learned C
[14]. Therefore the C matrix, subspace preserving, can be further
used to get the affinity matrix A “ |C|* |C’|. We can obtain the
clustering labels s over X using the affinity matrix in the spectral
clustering algorithm [15].

Now, let s be the random variable representing the set of true
(desired) cluster labels, and I px, x*q be the mutual information be-
tween random variables x and x*. Suppose the random variable %
represents the cluster labels based on the C matrix we get from solv-
ing (3). Then due to the presence of confounding attributes in the
data, we can very possibly observe,

Ips, bg " Ips, bq (4)
The effect of confounding attributes on classification task is already
well discussed and studied in literature [2]. Therefore in tasks where
supervision is not present, the strong presence of confounding at-
tributes in the data would lead to clustering outcome getting biased
too as formulated in (4). This would likely result in 8 %os. In this
contribution, we aim at solving the problem in (3) while enforcing
bias mitigation as expressed in Eq. (4). To solve this problem we
propose an information theoretic based approach in the next section.

3. BIAS MITIGATION FOR SELF-EXPRESSIVE
NETWORKS

In this section, we discuss the elements of our proposed solution and
finally discuss the architecture and optimization for Inv-SENet.

3.1. Self Expressive Network

In subspace clustering literature, there are many optimization frame-
works already proposed that try to solve (3) to learn the self expres-
sion coefficient matrix C. Past works have tried to solve (3) by
optimizing the following loss,

“

cijxi}3® rpciq (5)

%o i%oj

min }x;j ’
Cij,i%o]

Lse

where rp’q represents the regularisation term based on elastic net
regularisation [14]. The role of rp’q is to provide a denser subspace
preserving coefficient matrix. Let fp"q: R4~ R¢ N R be the func-
tion, parameterised by © taking arguments xi and x;, and giving
self-expression coefficients ci,j in matrix C, i.e. fpxi, x;; ©q “
cij. Therefore we can rewrite (5) as the following optimisation,
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Fig. 1. Architecture for Inv-SENet. Here kpx; 8uqg and gpx; 8vq be
key and the query net respectively. gpu;j; 8q and glpvi; 8g1qare the
bias classifiers.

“«

fpxi, xj; ©@axi}; rpfpxi, xj; ©qq (6)
%o ]

.y ,
L min =}x;
SE ) 2} i
In [5], the authors propose the SENet, which models f pxi, xj; ©q
as neural network expressed as

fpxi, xj;0q “ aTgpy'vig
uj “ kpxj; 6ug PRP
Vi “ qpxi; 6vq P RP
where,
Tep'q “ signptgmaxpO, [t] ~ Ba. (7)
Here k and q represent the key and the query networks, while Tgis
a soft thresholding operator. © “ t0u, Oy, Bu represents the
learnable parameters of the model. We highlight that SENet is not
designed to cluster the data when bias is present in the data. We
improve upon their model by adding a bias mitigation mechanism.
The resulting methodology leads to a learning algorithm capable of
performing clustering and mitigation jointly as described next.

3.2. Bias Mitigation

As discussed in Section 2.1, the presence of confounding attributes
in the training dataset leads to bias-dependent solutions for the opti-
mization problem and, therefore, leads to biased clustering. Below
we present the proposed bias mitigation strategy. For this, we as-
sume that the training dataset contains labels for the confounding
attribute classes. Note, however, that these labels are not required
for the test set. Therefore the goal here is to propose a way of
learning © s.t. cij is invariant to the presence of confounding at-
tributes. Referring to the proposed architecture in Fig. 1 we define
gpkpx; Buq;0gq : RP N B and g'pgpx; 6vq; 0,19 : RP N B as
the bias classification functions. Let u and v be the random vari-
able representing the output of key and query networks, and random
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variable b represent the confounding attribute. Therefore the optimi-
sation framework in (6) can be modified as:
L“ Leg

Aplpu, bg ™ Ipv, baq. (8)

Here A P R is a scalar hyperparameter controlling the bias
mitigation component in the loss. Estimating Ip”q requires the joint
distributions ppb, vg and ppb, ug. This makes the problem hard to
solve and often cases intractable. Mutual information can also be
written in terms of the conditional entropy such that
Ipb,uq “ Hpbg " Hpb|ug.

Ipb,vg “ Hpbg " Hpb|vg,

Here, Hpbg “ f b ps PPbiglogP pbiqg, represents the entropy.
Note that Hpbqg can be‘ignored when optimizing (8) since the bias b
is independent of the model parameters ©. To compute condi-
tional entropies conditional densities such as Ppb|uqg and Ppb]|vq
are required but can be difficult to obtain. In [2] the authors approxi-
mated the conditional distribution using a variational distribution Q.
Following a similar reasoning we can define two distributions Q and
Q! to approximate Ppb|uq and Ppb|vq, respectively. Now, let B¢
and Bg:1 be the parameters of Q and Q .1Thus, each parameter can be
learned by minimizing the Kullback—Leibler (Dk.) divergence
between the respective distributions. For 8¢ we have:

rrewin DkLrQpgpkpx; 8uq; B¢q| kpx; OugqqlP pb|kpx; Buggs  (9)
g

“

while an equivalent problem can be solved for v
ted here for sake of space.

Now, we can define the bias classification optimization problem
by combining a cross-entropy loss and the KL in (9) as a regulariza-
tion term. The goal of this optimization is not only to make the bias
classifier able to classify the bias class accurately but also to make
the kpx; Ouq invariant of the bias. To solve the second objective we
can impose a regularisation on 84 aiming at maximizing the neg-
ative of (9), hence making it hard for the gpq to classify the bias.
Therefore the optimization becomes a min max problem,

qpx; 8vq, omit-

key « . . . 3 .
Lpins “ min r’gax Ex,Pxp a Ep tip | kpx:6,aq710BAPD [ kpX; Bugqss
g

6y

MEx,pyp-arLepb, gpkpx; Buq; Beqs (10)

where Lcp“qg represents the cross entropy loss. The second term in
(10) is the relaxation term for the KL divergence condition in (9).
Similar discussion is presented in [2]. Equivalently, we can define
the minimax problem L °"" for optimizing 8+ and 84, also omitted
in this manuscript.

Let ©g “ tBg, Og1u represent the set of all parameters of the
bias classifiers. Therefore, combining (10), for both key and query
networks, and (5) we can rewrite (8) as:

L “ Lse " ApLEEY * Lauervg
. y .V
“ minmax Y- r}x; Tgpkpxj;Gunqpxi;ququ}i
® 0g 2n

i 1%o]
rpTepkpx;; Buq’ apxi; Bvaaads

" NEx,pyp alEp qp 1 kpx;6,qq7 108 Qpb | kpx; Buqass (12)
KEx,py -, rLepb, gpkpx; Buq; Beqs

" AEx,pyp alEp q1p qpx;0yaq 108 Q*pb|qpx; Bvqass
HEx,py -, rlepb, g'papx; Bvq; B10s.

3.3. Training

In (11) we present the overall loss function for the architecture pro-
posed in Fig. 1. In practice, we use two optimizers; one to solve the
inner maximization and the second one to solve the outer min-
imization. First we compute the forward pass of the data through
kpxj; Ouqg and gpxi; Ovq and compute Lse. At the same time, we
also pass both uj and v; through their respective bias classifiers
gp'q and glpqto get the bias classification. We then compute the
BLkev {BO;g and BLq“ery{BGgl and backpropagate through the bias
clasSifiers gp'q and glpq respectively. Using the gradient reversal
technique [16] together with the gradient of Lse we compute,

k
eu “« BLSE' A BLb?avs' ev « BLSE' LE;J:SW
BO. BO. BO, BOy

for key and query networks, respectively. At the beginning of the
training, the bias classifiers converge quickly. But as the training
goes on, the C matrix becomes invariant of the biases, and the bias
classifier starts performing poorly. This happens because the | pu, bq
and I pv, bq goes down i.e the key, and the query net becomes good at
unlearning the biases. The proposed method has constant memory
requirement similar to SENet and is comparable in runtime.

4. EXPERIMENT

We conduct experiments on real-world benchmarks to evaluate our
model performance. Specifically, we utilize three image datasets that
contain confounding attributes to evaluate our method.

4.1. Setup

Network Architecture: We formulate query, key, and bias networks
as an MLP. For query and key network, we create a three-layer MLP
with ReLU and tanh(-) as the activation functions. The number of
hidden units in each layer of these MLPs are t1024, 1024, 1024u,
and the output dimension is 1024. For the Bias networks, we use a
three-layer MLP of dimensions t1024,512, 256u followed by the
classification layer. We use the ReLU activation function and batch
normalization layer between each fully-connected layer. We apply
the softmax function to the output of the classification layer to com-
pute class probability scores. To optimize our model, we use Adam
[17] optimizer with a constant learning rate of 1e * 3 for the query
and key networks and 1e 4 for the bias networks.

Datasets: To evaluate our method, we consider two scenarios
where our data samples contain confounding attributes. In the first
setup, we intentionally add bias information to existing benchmarks
(MNIST [18], and FashionMNIST [19]). In the second case, we
consider a natural setting (Dogs and Cats dataset) where the bias
information is inherently present in the data as a confounding at-
tribute. Figure2 shows some of the samples from our constructed
datasets.

Setting 1:We evaluate the proposed method on MNIST and Fashion-
MNIST datasets as our representative large-scale scale benchmarks
to evaluate our method. Both benchmarks consist of grayscale im-
ages. We color each image red or green for MNIST and blue and
yellow for FashionMNIST to introduce confounding attribute. We
color each image in a manner that strongly correlates with original
class labels [20]. This allows us to measure the generalization prop-
erties of a given method effectively. If self-expressive coefficients
are directly learned using the data without handling the confounding
attributes, it should fail to generalize to out-of-distribution samples
where these confounding attributes might be absent. We create our
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(a). Colored-MNIST

training set in the following manner: We first assign a binary label y
to the image based on the digit/class i.e. we sety “ 0 for digits 0~
4 (classes 0 ° 4 for FashionMNIST) and y “ 1 for digits 5" 9
(classes 5 ° 9 for FashionMNIST ). We then flip the label with
25% probability. After that, we color the image as one of the colors
according to its (possibly flipped) label. We flip the color with a
probability e. For both benchmarks, we set e “ 40%. For testing,
we use the test sets of the original datasets without any confounding
attribute. We use scattering convolution transform[21] to generate
features from MNIST, and FashionMNIST similar to [5] for optimal
comparison.

Setting 2: We select the Dogs and Cats dataset from [22] for evalua-
tion on the benchmark where confounding attributes naturally exists.
Due to the complex nature of the background and non-uniformity of
the colour attribute across the images, bias mitigation task becomes
challenging and non trivial. Hence benchmarking on this dataset
helps us test the efficacy or the proposed method. We followed the
similar setting from [2], wherein we subsample the original training
set consisting of 25K images to create two subsets: a biased subset
with dark-colored dog images and bright-colored cat images and a
test set of images that does not contain any dark or bright colored
dog or cat images. We obtained 6378 images as our train set and
8125 images as the test set. Thus in this setting, the bias classes are
tdark, brightu. For feature extraction, we used [23] as it learns to
represent features in a union of subspaces.

Metrics: For quantitative evaluation, we consider clustering ac-
curacy (ACC), normalized mutual information (NMI) [24] and
adjusted rand index (ARI) [25]. These metrics are commonly used
in the literature to evaluate clustering methods.

Hyperparameter Selection:We selected hyperparameters u and A
using random search and the 5-fold cross-validation (CV) method.
We trained our proposed method for each CV iteration on 4 ran-
domly sampled subsets and evaluated the clustering performance
on the held-out subset using the NMI metric. The final values that
we selected for each dataset are as follows.(i) MNIST: pu “ 0.1,
A “ 0.01; (ii) Fashion-MNIST: pu “ 0.1, A “ 0.02; (iii) Dogs and
Cats: u“ 0.3,A “ 0.05.

4.2. Results

We show our experimental results in Table 1. We evaluate the
vanilla SENet and Inv-SENet models for out-of-distribution clus-
tering. Here N represents the number of training samples. In this
experiment, we want to test the generalizability of the learned self-
expression coefficient matrices. To this end, we first train the model

(b). Colored-FashionMNIST

— 5
£ o O

(c). Dogs & Cats

Fig. 2. Examples of Datasets with bias [Top-Rows: Training set; Bottom-Rows: Test set]. We modified the MNIST and FashionMNIST
datasets by randomly adding color ([Red, Green] for MNIST and [Blue, Yellow] for FashionMNIST) to each dataset. We sub-sampled dark dog
and bright cat images for the Dogs and Cats dataset.

Table 1. Out-of-distribution clustering performance

Dataset Method N ACC (%) NMI. (%) ARI (%)
10000 4179 3334 2105
SENet

60000 3636 2514  16.14

MNIST 10000  68.44 6055  45.23
Inv-SENet 5500 7804 6753  58.56

N 10000 3847 3015  19.51

" ENet 60000  46.73 4246 3118
Fashion-MNIST 10000  50.73 4215 3014
Inv-SENet 5000 5691  44.68  34.41

Dogsand Cats  SENet 6738 6407 0759  06.94
Inv-SENet 6738 7853  25.32 324

on the biased version of each dataset and then test it on the unbiased
version. From the results in table 1, we can observe that having
confounding attributes in a dataset can negatively affect clustering
performance if the clustering is not invariant to such attributes. This is
evident from the results of the standard SENet model, which fails
to accurately cluster MNIST and FashionMNIST data based on
ground-truth categories. The model performance is only marginally
better than random chance (10% clustering accuracy for MNIST and
FashionMNIST; 50% clustering accuracy for Dogs and Cats). In
contrast, we see considerable improvement of our proposed method
over the standard model. In particular, we see a significant increase in
all three metrics for MNIST, while for FashionMNIST, we see
moderate improvements. For the Dogs and Cats dataset, where the
confounding attributes are naturally present, we again see improve-
ment in clustering performance when incorporating invariance to the
confounding attribute. This demonstrates that our method is able to
effectively mitigate non-trivial confounding information and hence
provide more accurate data clusters without any prior knowledge on
the interaction between confounding attributes and useful features.

5. CONCLUSION

In this work, we formulated a bias mitigation strategy aimed at
learning confounding attribute (bias) invariant self-expression co-
efficients. The proposed Inv-SENet is effective in learning bias-
invariant subspace clustering for data under the presence of con-
founding attributes. Through experiments on synthetic and real
world data we demonstrate the effectiveness of the proposed method.
Future work will focus on extending this work to datasets with
modalities having multiple confounds such as EEG[26], speaker
recognition[27] and fMRI[28][29].
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