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ABSTRACT

In next-generation (i.e., 6G) networking sys-
tems, the data-driven approach will play an
essential role, being an efficient tool for network-
ing system management and bringing popular
user applications. With those unprecedented and
novel usages, existing frameworks fail to con-
sider the complex nature of the next-generation
networking system and consequently fail to be
applied to future communication systems directly.
Moreover, existing frameworks also fail to support
popular privacy-preserving learning strategies effi-
ciently by presenting special designs to respond to
the resource-demanding nature of the aforemen-
tioned strategies. To fill this gap, this paper extends
conventional serverless platforms with serverless
edge learning architectures, providing a mature
and efficient distributed training framework by
fully exploiting limited wireless communication
and edge computation resources in the consid-
ered networking system with the following three
features. Firstly, this framework dynamically
orchestrates resources among heterogeneous
physical units to efficiently fulfill privacy-pre-
serving learning objectives. The design jointly
considers learning task requests and underlying
infrastructure heterogeneity, including last-mile
transmissions, computation abilities of edge and
cloud computing centers, and loading status of
infrastructure. Secondly, the proposed framework
can easily work with data-driven approaches to
improve network management efficiency, real-
izing Al for network promise of next-generation
networking systems to provide efficient network
automation. Lastly, to significantly reduce distrib-
uted training overheads, small-scale data training
is proposed by integrating with a general, simple
data classifier. This low-load enhancement can
seamlessly work with various distributed deep
models in the proposed framework to improve
communications and computation efficiencies
during the training phase. Based on the above
innovations, open challenges, and future research
directions encourage the research community
to develop efficient privacy-preserving learning
techniques.

INTRODUCTION

Data-driven approaches will play essential roles
in next-generation networking systems, being effi-
cient tools for networking system management
and bringing popular user applications for end

users. To not only hold the unique opportunities
but also tackle the unprecedented challenges
brought by data-driven approaches, next-genera-
tion networking systems are supposed to achieve
artificial intelligence (Al) for network and network
for Al simultaneously [1]. On the one hand, a
network for Al promises to provide data-driven
approaches friendly networking structure for
increasingly popular learning-based client appli-
cations. On the other hand, Al for networks aims
to employ data-driven strategies to update net-
working systems from network softwarization
to network intelligence for more strict quality
of service requirements [1], [2], [3]. Given that
over 90% of data is generated and stored in end
devices, distributed learning is now an irreversible
trend. Furthermore, the 2018 Facebook Cam-
bridge Analytica data scandal, in which at least
87 million users’ information was disclosed, led
to governments worldwide amending related laws
to protect user-collected data, which has advo-
cated for the development of privacy-preserving
distributed learning research. Consequently, the
development of advanced networking systems is
essential in this direction.

Considering a typical scenario where a group
of clients conducts privacy-preserving learning
tasks wirelessly, low latency and reliable communi-
cation are crucial to facilitate the learning process
and achieve the network for Al’s promise. Intro-
ducing the concept of edge intelligence to handle
the learning tasks using in-network edge resources
could significantly reduce end-to-end latency.
However, the current radio access network (RAN)
[4] has limited reconfigurability and coordination
among network nodes to enable edge intelli-
gence to respond locally to learning tasks, which
affects the latency improvement. In line with this,
the recently proposed and advocated open-ra-
dio access network (O-RAN) architecture [5],
[6], promoted by the authoritative organization
in the telecommunication field, the 3rd Genera-
tion Partnership Project (3GPP), aims to provide
disaggregated, virtualized, and software-based
components. This will enable network nodes to
be connected via open and standardized inter-
faces, and interoperable across different vendors,
thereby achieving the aforementioned edge intel-
ligence. However, with the emergence of O-RAN
architecture, two challenges must be addressed
to truly bring edge intelligence to clients. Firstly,
how can we efficiently build a next-generation
networking framework for service providers to
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control and optimize O-RAN components? Sec-
ondly, after establishing the framework, how can
we incorporate popular learning-based network
management tools to achieve the Al for network
promise? To address these questions, we focus on
important and popular privacy-preserving learning
tasks as applications and develop and implement

a solution for next-generation networking systems.
In this paper, we extend serverless platforms

[7]1 (e.g., Amazon Web Services (AWS) Lambda
and Google Cloud Functions) with serverless
edge learning architectures from the networking
perspective, providing an efficient framework
for distributed training by fully exploiting limited
communications and edge computation resources
in the considered networking system. Notably,
to better serve distributed training scenarios, the
proposed framework can dynamically allocate
resources and intelligently assign communications
and computation tasks to cell sites, edge com-
putation centers, and cloud computing centers.
Based on O-RAN architecture, the intelligent
allocation is according to the heterogeneous and
dynamic nature of wireless conditions, computa-
tion abilities, and loading status of infrastructure.
Especially, our framework is actually suitable to
tackle the resource-demanding issues of cur-
rent privacy-preserving learning schemes [8] to
improve training efficiency. Moreover, the pro-
posed framework can easily work with data-driven
approaches to improve network management
efficiency, realizing Al for the network promise
of next-generation networking systems. To the
best of our knowledge, this work is the first to
develop a networking framework from the net-
working perspective for efficient distributed
training and efficient network automation deploy-
ment. Furthermore, to further reduce distributed
training overheads, in this work, we also offer a
learning enhancement that distributed training
can be operated on small-scale data to increase
communications and computation efficiency dra-
matically and simultaneously. While conventional
communications-efficient or computation-efficient
algorithms work on communications or computa-
tion efficiency separately, our design brings huge
potential to distributed training development with
small data. We summarize the contributions of
this paper below:

*  We propose a novel serverless edge learn-
ing platform designed for next-generation
networking systems, which aims to realize
the promises of 6G networking systems
based on the latest specifications. This plat-
form can fully leverage in-network resourc-
es to support resource-demanding learning
applications through its provided controlling
capability. Furthermore, it enables the quick
development, deployment, and execution of
data-driven approaches to improve network
efficiency.

+ To illustrate the capabilities of our proposed
platform, we implemented reinforcement
learning (RL)-based network management
using online training/inferring signaling pro-
cedures for popular federated learning appli-
cations. This was done within our proposed
framework, utilizing the controlling capabil-
ity to perform dynamic resource allocation
and improve the end-user satisfaction rate.

+ We also investigated the use of a few-shot
learning (FSL)-enabled distributed learning
strategy within our proposed framework.
Our simulation results show that FSL can
effectively balance the required network
resources and performance achieved,
enabling efficient and effective federated
learning for end-users.

The rest of this paper is organized as follows.
Section Il reviews the latest progress of related
research topics. Section Il introduces distributed
privacy-preserving learning over serverless edge
architectures. Section IV further provides a few-
shot learning enhancement to realize small-scale
data training. Section V lists open research direc-
tions, and Section VI concludes the paper.

STATE-OF-THE-ARTS

This section reviews the latest research progress
of privacy-preserving learning and distributed
training strategies.

PRIVACY-PRESERVING LEARNING APPROACHES

For privacy-preserving deep learning, train-
ing data and model parameters are the two
elements that need protection. We consider a
group of clients conducting distributed learning
with the support of wireless networking systems
while malicious clients also operate within cov-
erage, aiming to steal private data and model
parameters by eavesdropping on the infor-
mation-exchanging process wirelessly. In the
black-box attacking mode, shadow training and
reverse engineering can be utilized to obtain or
recover sensitive model parameters and data if no
additional protection mechanisms are built into
the information-exchanging process. Thanks to
the recent developments in the privacy-preserving
research area, the required data and parameter
protection can be realized by federated learning
and secure multi-party computation, respectively,
being the considered privacy-preserving mecha-
nisms in this paper.

However, these privacy-preserving learning
strategies require significant network resources for
two reasons. First, the amount of model param-
eters in powerful neural networks can be up to
several million, requiring substantial communi-
cation resources in each epoch of the training
process. Second, computationally heavy key
generation and management will be required in
advanced federated learning scenarios, such as
vertical federated learning and federated transfer
learning. Therefore, current privacy-preserving
learning requires significant resources supported
by network systems. To provide services to numer-
ous end-users with different privacy-preserving
learning applications, next-generation networking
systems must offer dynamic resource allocation
capabilities for smooth training processes.

DISTRIBUTED DEEP TRAINING STRATEGIES

The goal of existing distributed training strategies
is to maintain the achieved performance while
reducing communications or computation over-
heads. To improve communications efficiency
[9], coding or model compression schemes (e.g.,
model pruning, model quantization) can be
applied to the model parameter uploading step
and download step during training. However,
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FIGURE1. The considered scenario of serverless edge learning framework in a distributed environment. We consider clients with local
training data distributed in the environment. To prevent data leakage to malicious clients, federated learning is adopted. In such
cases, our main goal is to develop a networking framework to satisfy the resource-demanding learning tasks by intelligently

allocating in-network resources according to dynamic resource and task status.
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FIGURE 2. The function blocks of the serverless edge learning framework.
With the provided resource status and learning task requests, the global
controller is responsible for performing service management and network
and resource management to facilitate distributed deep learning training by
exploiting limited communications and computation resources efficiently.

these schemes work after local model training
and cannot improve the computation efficiency,
and they also create a computation burden by
performing additional compression schemes.
On the other hand, to improve computation effi-
ciency [10], existing algorithms introduce the
concept of importance sampling or similarity
calculation (i.e., active sampling) to choose
the samples with higher importance or lower
similarity for the model training to mitigate com-
putation overhead. However, these approaches
also bring a new challenge to distributed train-
ing, as estimating the behavior of a neural
network on a specific sample is very difficult.
Computation-efficient algorithms need remark-
able computations, which cannot be ignored
in the distributed training scenarios, to perform
accurate estimations, threatening their practi-
cality. In short, the development of distributed

deep training strategies is still in its infancy stage.
It requires innovations as a comprehensive
networking framework, which simultaneously
considers the device heterogeneity and underly-
ing edge computing capability.

EFFICIENT DISTRIBUTED PRIVACY-PRESERVING
LEARNING OVER SERVERLESS EDGE LEARNERS

We introduce a serverless edge learning frame-
work to facilitate resource-demanding distributed
training in next-generation networking systems.

NEXT-GENERATION NETWORKING SYSTEMS

We consider next-generation networking sys-
tems as shown in Fig. 1. That is, several clients
with local data aim to conduct federated learning
to finish distributed training without data leaking
to malicious clients. To support those learning
tasks, our goal is to create a networking platform,
controlling and commanding in-network infra-
structures (i.e. cell sites, edge clouds, and regional
clouds) to provide efficient communication and
computation services to those clients. To enable
the required edge intelligence, we introduce
O-RAN architecture to disaggregate traditional
base station functionalities, realizing fine-granted
designs to achieve our goal. Specifically, based on
3GPP specifications, next-generation infrastruc-
tures can be further divided into three categories:
O-RAN central unit (O-CU), O-RAN distributed
unit (O-DU), and O-RAN radio unit (O-RU), pro-
viding different communication and computation
functionalities to clients in coverage. O-RU is
responsible to perform lower physical layer and
radio frequency (RF) front-end operations, O-DU
is designed to conduct higher physical layer and
lower data link layer operations in a real-time
manner, and O-CU aims to provide higher data
link layer and network functionalities in a non-real-
time manner. We consider a general case, where
each cell site is consisting of O-RU and O-CU.
Moreover, each edge cloud and regional cloud
is with O-CU and computing resources, con-
necting to cell sites via wired fronthaul. Note that
our work is even suitable to work with popular
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FIGURE 3. The signaling procedures to deploy RL solution in the proposed framework and execute online RL inferring and online RL

updating operations.

6G heterogeneous networks (HetNets), such as
Space-Air-Ground Integrated Network, to handle
the underlying heterogeneity by performing differ-
ent operations for different targets. Also note that
how to dynamically allocate in-network resources
in such systems to support resource-demanding
federated learning applications is still an open
question, being the main promise of the proposed
framework.

SERVERLESS EDGE LEARNING FRAMEWORK OVERVIEW

To achieve the promise, we designed and imple-
mented a serverless edge learning platform, which
is also shown in Fig. 1. Hence, all in-network infra-
structure, including O-RUs, O-DUs, and O-CUs
can be virtualized and be provided to the oper-
ation system (O/S) for further use. In the O/S
layer, two controllers, near real-time RAN intelli-
gent controller (RIC) and non real-time RIC, are
created to execute different network management
functionalities in different time-scales. Near real-
time RIC is responsible for single-cell site level
timely operations with stricter latency requirement
(10-1000 ms) while non real-time RIC is focusing
on multi-cell sites level operations (> 1 s) in the
network. Moreover, to support future networking
scenarios with various service requirements, dif-
ferent operations can be placed in the application
layer as xApps and rApps, allowing near real-time
RIC and non-real-time RIC to realize network
automation by selecting appropriate operations to
achieve different service requirements. With this
design, advanced network management designs
can be easily developed, deployed, and executed
with next-generation infrastructure.

Fig. 2 provides a closer look at the O/S layer
for different network management operations.
In our implementations, we further provide two
application programming interfaces (APIs) for end
devices (i.e., in-network infrastructures and cli-
ents) and O/S, respectively. As a result, on the
one hand, infrastructures can utilize the provided
API to report resource status. On the other hand,
clients can use the provided API to submit learn-
ing task requests with different quality of service
requirements. The collected information will be
provided to O/S for dynamic network operations.

By doing so, global control and distributed execut-
ing are realized to fully utilize in-network resources
to aid resource-demanding learning applications,
being able to design the optimal network opera-
tions based on collected global information and
assign those operations to specific infrastructure
for executions. In our designs, two management
modules and several containers are designed
as function blocks for different network man-
agement operations since different network
operations require different Key Performance Indi-
cators (KPIs) and are expected to deliver different
network instructions. Service level operations are
belonging to non-real-time RIC, utilizing multi-cell
site resources to fulfill service requirements. Simi-
larly, network and resource awareness blocks are
also belonging to non-realtime RIC to monitor all
in-network infrastructures to catch the dynamic
nature of networking systems, also letting routing
control and resource coordination blocks design
multi-cell site operations based on the provided
information. Finally, network scheduling and
resource management blocks are implemented
in near real-time RIC to offer timely single-cell site
operations.

A CASE STUDY: RL-BASED NETWORK MANAGEMENT XAPP

An important aspect of the proposed O/S layer
design is its ability to easily support advanced Al
solutions to facilitate Al for networks in next-gen-
eration networking systems. For example, popular
RL-based network management algorithms can
be easily supported by placing agents in the
O/S layer, which can generate network opera-
tions as actions and commands for in-network
infrastructure executions based on the given state
(i.e., KPI, learning tasks requests, and resource
status reports). In this subsection, we provide
a case study that demonstrates the develop-
ment of a network management xApp, which
can aid in-network resource allocation utilizing
RL-based solutions. We consider a practical case
where an RL-based network management solu-
tion is pre-trained offline, and we introduce how
to support online RL inferring and updating if
required. The detailed signaling procedures are
provided in Fig. 3. Our implementations include
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FIGURE 4 The achieved performance of the proposed federated distributed learning in two different scenarios.

building the necessary open interfaces to connect
all in-network infrastructure according to 3GPP
specifications. Specifically, the F1-c and F1-u inter-
faces connect the cell site and edge cloud for
control plane and data plane data exchanges. The
AT interface is used to connect the edge cloud
and regional cloud, and the OT1 interface is uti-
lized to bridge the cell site and regional cloud.

In the case of online RL inferring operations,
a resource reporter is implemented at the cell
site to collect service requests and relay the infor-
mation to the resource management container
in the edge cloud. The resource management
container then retrieves the latest RL policy from
the regional cloud and uses it to generate alloca-
tion decisions, which are passed to the resource
allocation container in the edge cloud. Upon
receiving the decisions, the resource allocator
preserves computation resources and instructs
the cell site to allocate communication resources
to specific clients based on the decisions, com-
pleting the online RL inferring. For online RL
updating operations, a KPI monitor records the
satisfaction rate of clients in the cell site. If the
rate drops below a predefined level for a speci-
fied time, the online RL updating is triggered to
adjust the trainable parameters in the RL algo-
rithms. To do so, the collected service requests
are sent to the RL updating container in the
regional cloud. Then, the adjusted policy is
downloaded by the resource management con-
tainer to conduct the same procedures as online
RL inferring. The only difference is that after
executing allocation decisions, the KPI monitor
container provides feedback on the satisfaction
rate of clients to the regional cloud. The proce-
dures are iteratively performed until convergence,
and the fixed policy is stored in the regional
cloud for future downloading. Although existing
works have discussed similar research topics to
this paper, such as networking framework con-
struction for network management and network
orchestration, those papers often focus more on
algorithm development or concept elaboration.
In contrast, this work designs and implements
the proposed framework using the latest O-RAN
specification released by 3GPP to demonstrate
its flexibility. Specifically, the detailed opera-
tion procedures provided in this paper enable
online updating/inferring of RL-based network
management xApps. These results facilitate

the effortless deployment and maintenance of
RL-based network management algorithms in
future networking systems, being the main differ-
ence between our work and existing papers.

NETWORK MANAGEMENT XAPP SIMULATION RESULTS

To test the above designs, we consider a single-cell
site scenario with 500 x 500 (m?) coverage, where
several clients with mobility submit learning task
requests with latency requirements to perform
federated learning. Specifically, we consider that
there are two groups of clients conducting feder-
ated model training with different applications. To
satisfy the received requests, the cell site needs to
allocate bandwidth, transmission power, and com-
putation power to each client to upload/distribute
the model parameters and encrypt the model
parameters. We consider a cell site with a total
bandwidth of 1.5 GHz, total computing power
50 Mega CPU cycles, and total transmission
power 30 W as system configuration. To simplify
the resource allocation process, we assume there
are 4 discrete levels to each resource for the cell
site to choose from. The goal of the considered
optimization is to maximize the service-level
satisfaction rate (i.e., satisfying latency require-
ments) obeying system constraints by dynamically
adjusting each resource. To do so, in the network
management block, we develop an RL-based algo-
rithm for automated network management. Note
that the considered optimization is an NP-hard
problem and thus no closed-form solutions can
be utilized, motivating us to consider the RL-based
algorithm as an efficient searching solution. Specif-
ically, the signal-to-noise ratio (SNR) of all clients
in the previous time slot is provided as the state
of the developed RL-based algorithm, and all
feasible sets satisfying system constraints are con-
sidered as the action space. Moreover, we set the
service-level satisfaction rate as the reward to per-
form direct optimization to the interested network
management problem. We consider two scenar-
ios with different numbers of clients attending the
training federated learning to test our algorithm.
We compare the service-level satisfaction rate
results of RL-based, random search, and exhaus-
tive search algorithms. In the exhaustive search
algorithm, all possible actions are computed to
obtain the optimal action while the random search
algorithm picks an action randomly to serve each
client. The results are presented in Fig. 4, where
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particular, we implement these models in a considered distributed scenario using a serverless edge learning framework to evaluate

the training overheads of different models.

we consider two scenarios with different num-
bers of participants to show the generalization
capability of RL-based algorithms. In each training
step, the presented results are obtained via testing
the achieved performance in a testing dataset,
which is mutually exclusive to the training dataset
to reflect the achieved performance. Due to the
higher variance of the RL-based algorithm and
random search algorithm, we use a solid line to
present the average testing results of the previ-
ous 100 training steps. Two considered scenarios
show a similar tendency, where the RL-based algo-
rithm converges around 500 training steps.
Moreover, the exhaustive search algorithm shows
around 100 % satisfaction rate while the RL-based
algorithm achieves 90 % and the random search
algorithm provides a 30 % satisfaction rate. Note
that although the exhaustive search algorithm pro-
vides the best performance, only the RL-based
algorithm and random search algorithm meet
near real-time requirements and the RL-based
algorithm brings acceptable performance to aid
network automation. Moreover, more advanced
RL-based algorithms can be trained and deployed
by the near real-time RIC to generate more pow-
erful xApp for network automation. Also note
that satisfaction rate is crucial when considering
the training process of federated learning. Failure
to satisfy the resource requirements will lead to
significantly slower convergence since enough
gradient information cannot be collected from
clients in each training round.

FEW-SHOT MOBILE COMPUTING ENHANCEMENT

To further mitigate communications and compu-
tation overheads for next-generation networking
systems, we provide a novel enhancement for
efficient distributed training in Section Il and
study a use case to show that communications
and computation overheads during distributed
training can be improved simultaneously. Thus,
this enhancement can bring a better trade-off
between achieved performance and training over-
heads in serverless edge learning.

PROTOTYPE NETWORK IMPLEMENTATION

Usually, clients are motivated to employ deep
learning models with more trainable parameters
to increase the capacity of deep learning models
for better performance, adding communication
and computation overheads during training at the
same time. Alternatively, novel few-shot learning

[11] matches the need for distributed deep train-
ing strategies naturally. Specifically, few-shot
learning aims to classify new data, having seen
only a few training samples. Unlike conventional
deep learning, few-shot learning algorithms com-
bine classical data-driven schemes (e.g., k-nearest
neighbor algorithm) and deep learning models,
limiting the number of trainable parameters to
work on the over-parameterization issue of con-
ventional deep learning models. As the number
of trainable parameters in few-shot algorithms
is reduced significantly, the number of training
data can also be reduced as long as the over-
fitting does not occur, leading to improved
communication and computation overheads
simultaneously. Note that this is crucial when con-
sidering privacy-preserving distributed learning
owing to the fact that the communication and
computation demands of such applications are
even higher than conventional learning appli-
cations, being the main motivation to consider
few-shot learning enhancement in this work.
Based on this concept, we aim to build a
specialized neural network containing a lower
amount of trainable parameters to address the
training challenges of distributed deep learning.
As a result, the computation and communication
efficiency can be improved simultaneously as the
number of training samples and parameters are
reduced. However, no such studies in the litera-
ture investigate the benefits of employing few-shot
learning to aid distributed deep training. There-
fore, we present a case study here to show the
potential of this research direction and encourage
researchers to contribute efforts to it. Toward this
end, we develop our solution based on a proto-
type network [12], a classic algorithm of few-shot
learning, and evaluate the benefits in distrib-
uted deep learning scenarios. Conventionally, in
a deep learning classification model, pixel-level
input sample will be transformed to a feature-level
latent vector first (i.e., feature extraction part),
then classification will be performed based on
the feature-level latent vector to get the final
result (i.e., classification part). The idea of the
prototype network is to employ a deep learning
model to perform feature extraction automati-
cally, then use the concept of k-nearest neighbor
to finish the classification task. As shown in Fig 5,
in the prototype model, the feature extraction
part is done by the neural network model, and
the classification part is aided by the k-nearest
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neighbor algorithm in the prototype model. As
for the benchmark model, the classification and
feature extraction parts are all performed by the
neural network model. Note that the number of
trainable parameters of the prototype network
and benchmark model are the same owing to
the fact that there are no trainable parameters
in the k-nearest neighbor algorithm. Specifically,
in the prototype model, given training samples
belonging to each class, the deep learning-based
feature extraction module will extract high-level
features from the training samples to present cor-
responding feature vectors in feature space with a
fixed dimension. For each specific class, the mean
value of that class (i.e., the prototype point) in the
feature space can be calculated by computing the
arithmetic average of feature vectors belonging
to the case. When a new data sample is obtained
for classification, the deep learning-based feature
extraction module will be employed again to proj-
ect the data point to the feature space. Then the
probability that the data point belongs to each
class can be calculated by the distance between
the feature vector of the new sample and the
mean values of training samples belonging to
each class. In order to minimize the cross-entropy
loss function of the prototype network, the deep
learning-based feature extraction module is forced
to find the best projection way to present data
in the feature space, consequently improving the
final classification accuracy.

PERFORMANCE EVALUATION OF PROTOTYPE NETWORK

We implement the prototype network in a server-
less edge federated learning framework to show
the potential of few-shot learning algorithms in
a distributed deep learning training environment.
MNIST handwriting image classification task and

MNIST-fashion clothing image classification task
[13] are implemented in distributed deep learn-
ing scenarios to obtain the simulation results in
this section. We also set the number of clients
as four, and each client holds non-overlapping
data and a local deep-learning model to perform
image classification. Next, we introduce the com-
munication and computation overhead we use
in this paper to evaluate the total overhead to
train a deep learning model. Considering a dis-
tributed training scenario with several clients,
we assume that a deep learning model with N,
model parameters is trained, and each client is
with Ny training samples. We further assume that
the training process is consisting of N, epochs.
With the above information, we define the com-
munication overhead to train a deep learning
model as N,,N, since those N,, model param-
eters need to be transmitted in each round of
Ne epochs. Similarly, we define the computation
overhead to train a deep learning model as NyN,
since Ny training samples need to be processed
in each round of N, epochs. In our simulations,
we set N, = 100 and N, = 200 for MNIST and
MNIST-Fashion, respectively since MNIST-Fashion
is a more challenging task than MNIST. When it
comes to the model architecture, as for the pro-
totype-based deep learning model, we construct
a feature extractor with a single-layer neural net-
work with 256 neurons and employ a k-nearest
neighbor algorithm-based classifier to finish the
classification task while the same neural network
model is directly adopted by benchmark model
without the aid of k-nearest neighbor algorithm.
Finally, we adjust Ny and record the achieved
performance in Fig. 6.

As shown in Fig. 6, one can notice that there is
a constant gap between the achieved performance
provided by the prototype model and bench-
mark model, no matter which task is considered.
Specifically, with the aid of the k-nearest neigh-
bor algorithm, the prototype model can provide
about 6% and 5% performance gain in MNIST and
MNIST-Fashion tasks, respectively. Note that the
employment of the k-nearest neighbor algorithm
will not introduce any computation or communi-
cation overheads since no trainable parameters are
involved in the k-nearest neighbor algorithm.

CHALLENGES AND RESEARCH DIRECTIONS

This section presents open challenges for the pro-
posed serverless edge learning platform to enable
efficient privacy-preserving distributed learning.

INTELLIGENT RESOURCE ALLOCATION ALGORITHMS

In this paper, we present the development of a
next-generation serverless edge learning frame-
work, providing controlling capability to aid
resource-demanding learning applications. More-
over, we also demonstrate that Al for network
algorithms can easily be developed, deployed, and
executed via the provided framework. Despite the
proposed reinforcement learning-based resource
allocation mechanism, we believe advanced intelli-
gent resource allocation algorithms can be further
developed to utilize the provided controlling capa-
bility of the proposed platform fully. For example,
proactive resource allocation algorithms [14] can
be developed, utilizing spatial (i.e., network topol-
ogy) and temporal (i.e., time-varying user location
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distribution) correlation [15] to predict and pre-
serve communication and computation resource
for future application usages. Thus, the response
time for serverless edge infrastructure can be fur-
ther reduced.

IN-NETWORK PROCESSING ALGORITHMS

Another interesting research direction of the pro-
posed framework is the development of advanced
in-network processing algorithms. Specifically,
with the provided controlling capability, advanced
in-network processing algorithms can be executed
to present multi-cell sites and multi-applications
operations for enhanced efficiency in the pro-
posed framework. For example, given that the
initial weightings of neural networks will affect
the neural network convergence significantly, a
transfer learning-aided initial weighting design
mechanism can be developed to accelerate the
convergence of new applications in the network.
To explain, recent literature suggests that essen-
tial features for learning development are mostly
task-independent. While focused tasks are dif-
ferent in different research areas, basic learning
features might be highly relevant. This similarity
suggests that transfer learning algorithms can be
used to perform intelligent caching, providing
designed initial weightings to new applications in
the network to facilitate their distributed training.

DATA-CENTRIC ALGORITHMS

Finally, we also point to the potential of advanced
edge learning algorithms for improved communi-
cation and computation efficiency in distributed
learning scenarios. In light of this direction, some
interesting works can still be extended. For exam-
ple, current few-shot learning solutions are still
limited in a classification setting, further works can
be contributed to extending few-shot learning solu-
tions to regression and structure learning settings
for more usages. Moreover, due to the fact that
the proposed few-shot learning distributed train-
ing strategy can still be trained with small data,
the degree of freedom of training data selection
is provided to select the most informative training
samples to accelerate neural network convergence.
Similar ideas can be found in recent literature
regarding data-centric deep learning, focusing on
the development of the aforementioned training
data selection process. We expect the combination
of data-centric deep learning and few-shot learning
distributed training strategy to have huge potential
to aid current in-network distributed learning.

CONCLUSION

In this paper, a serverless edge learning framework
is proposed to fulfill two important promises of
next-generation networking systems: network for
Al and Al for networks. The framework achieves
dynamic orchestration to utilize in-network infra-
structure resources to aid resource-demanding
learning applications. Moreover, data-driven
approaches can be easily developed, deployed,
and executed to achieve efficient network auto-
mation. Finally, we also demonstrate the potential
of few-shot learning in distributed training sce-
narios by evaluating the reduced communication
and computation overheads during the training
phase. Open challenges and future research direc-
tions of serverless edge learning are summarized

to encourage the development of efficient distrib-
uted training strategies.
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