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Abstract—Modern connected vehicles (CVs) frequently require
diverse types of content for mission-critical decision-making and
onboard users’ entertainment. These contents are required to be
fully delivered to the requester CVs within stringent deadlines
that the existing radio access technology (RAT) solutions may
fail to ensure. Motivated by the above consideration, this article
exploits content caching in vehicular edge networks (VENs) with a
software-defined user-centric virtual cell (VC) based RAT solution
for delivering the requested contents from a proximity edge server.
Moreover, to capture the heterogeneous demands of the CVs, we
introduce a preference-popularity tradeoff in their content request
model. To that end, we formulate a joint optimization problem
for content placement, CV scheduling, VC configuration, VC-CV
association and radio resource allocation to minimize long-term
content delivery delay. However, the joint problem is highly com-
plex and cannot be solved efficiently in polynomial time. As such,
we decompose the original problem into a cache placement problem
and a content delivery delay minimization problem given the cache
placement policy. We use deep reinforcement learning (DRL) as
a learning solution for the first sub-problem. Furthermore, we
transform the delay minimization problem into a priority-based
weighted sum rate (WSR) maximization problem, which is solved
leveraging maximum bipartite matching (MWBM) and a simple
linear search algorithm. Our extensive simulation results demon-
strate the effectiveness of the proposed method compared to exist-
ing baselines in terms of cache hit ratio (CHR), deadline violation
and content delivery delay.
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I. INTRODUCTION

A
DVANCED driver-assistance systems (ADAS) and in-

fotainment are two premier features for modern con-

nected vehicles (CVs). With advanced radio access technolo-

gies (RATs), delivering the Society of Automotive Engineers

(SAE) level 5 automation on the road seems more pragmatic

day by day. Different government organizations - such as the

U.S. Department of Transportation’s National Highway Traffic

Safety Administration in the United States [1], the Department

for Transport in the U.K. [2], etc., set firm regulations for the

CVs to ensure public safety on the road. For swift decision-

making to satisfy the safety requirements, the CVs need fast,

efficient, and reliable communication and data processing. As

such, an efficient vehicular edge network (VEN) must ensure

uninterrupted and ubiquitous wireless connectivity on the road.

Note that a VEN is an edge network that mainly focuses on

communication among vehicles and/or between vehicles and

infrastructure [3]. To deliver above services, the VEN demands

advanced machine learning (ML) tools for resource management

complementary to a RAT solution, such as the 5G new-radio

(NR) vehicle-to-everything (V2X) communication [4].

With increased automation, in-car entertainment is also be-

coming a priority for modern CVs [5]. Modern CVs are expected

to have many new features, such as vehicular sensing, onboard

computation, virtual personal assistant, virtual reality, vehicular

augmented reality, autopilot, high-definition (HD) map collec-

tion, HD content delivery, etc., [6], [7] that are interconnected

for both ADAS and infotainment. For these demands, by ex-

ploiting the emerging content caching [8], the centralized core

network can remarkably gain by not only ensuring local content

distribution but also lessening the core network congestion [9],

[10]. As such, VENs can reduce end-to-end latency significantly

by storing the to-be-requested contents at the network edge

[11], which is vital for the CVs’ mission-critical delay-sensitive

applications. A practical RAT on top of content caching can,

therefore, bring a promising solution for SAE level 5 automation

on the road. Moreover, owing to these multifarious requirements,

it is also critical to explore the efficacy of content caching with
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limited cache storage and different types of content classes, each

class with multiple contents, in the content library.

For diverse applications, such as mobile broad bandwidth

and low latency (MBBLL), massive broad bandwidth machine-

type (mBBMT), massive low-latency machine-type (mLLMT)

communications, etc., the CVs urgently need an efficient RAT

solution [12]. In the meantime, regardless of the applications, the

VEN must ensure omnipresent connectivity to the CVs and de-

liver their requested contents timely. The so-called user-centric

networking [13], [14], [15], [16] is surging nowadays with its

ability to shift network resources towards network edge. Note

that a user-centric approach is based on the idea of serving

users by creating virtual cells (VCs) [17], [18], [19]. While

the network-centric approach serves a user from only one base

station, the user-centric approach enables serving a user from

a VC that may contain multiple transmission points [17], [18],

[19]. The latter approach can, thus, not only provide ubiquitous

connectivity but also provide higher throughput with minimized

end-to-end latency for the end-users [20]. As such, a user-centric

approach can combat the frequent changes in received signal

strength - often experienced in VENs due to high mobility, by

ensuring multipoint data transmission and receptions.

While the user-centric networking approach can bring uni-

versal connectivity and MBBLL/mBBMT/mLLMT solutions

for the CVs, it induces a more complex network infrastructure.

To ensure multipoint data transmission and reception, efficient

baseband processing is required. Moreover, as the traditional

hardware-based and closed network-centric approach is inflex-

ible, the user-centric approach demands the use of software-

defined networking [21], which can offer more efficient and

agile node associations and resource allocations in the user-

centric approach. With proper system design, it is possible to

create VCs with multiple low-powered access points (APs) to

ensure that the throughput and latency requirements of the CVs

are satisfied. Moreover, amalgamating content caching with the

user-centric RAT solution can indeed ensure timely payload

delivery for stringent delay-sensitive application requirements

of modern CVs. However, this requires a joint study for - content

placement, CV scheduling, VC formulation, VC association

with the scheduled CV, and radio resource allocation of the APs

in the VCs.

A. Related Work

In literature, there exist several works [22], [23], [24], [25],

[26], [27], [28], [29] that considered cache-enabled VENs from

the traditional network-centric approach. Huang et al. proposed

a content caching scheme for the Internet of vehicles (IoVs) in

[22]. They developed a delay-aware content delivery scheme

exploiting both vehicle-to-infrastructure (V2I) and vehicle-to-

vehicle (V2V) links. The authors minimized content delivery

delays for the requester vehicles by jointly optimizing cache

placement and vehicle associations. Nan et al. also proposed a

delay-aware caching technique assuming that the vehicles could

either a) decide to wait for better delivery opportunities, or b) get

associated with the roadside unit (RSU) that has the content, or

c) use one RSU as a relay to extract the content from the cloud in

[23]. The authors exploited deep reinforcement learning (DRL)

to minimize content delivery cost. However, these assumptions

are not suitable for CVs because time-sensitivity plays a crucial

role in the quick operation of CVs. [24] proposed quality-of-

service ensured caching solution by bounding the content into

smaller chunks.

Dai et al. leveraged blockchain and DRL to maximize caching

gain [25]. Lu et al. proposed a federated learning approach

for secure data sharing among the IoVs [26]. However, [25],

[26] assumed that the data rate is perfectly known without any

proper resource allocations for the RAT. Zhang et al. addressed

proactive caching by predicting user mobility and demands in

[27]. Similar prediction-based modeling has also been exten-

sively studied in [8], [30], [31]. Moreover, [27] only analyzed

cache hit ratio without incorporating any underlying RAT. Fang

et al. considered a static popularity-based cooperative caching

solution for roaming vehicles, which assumed constant velocity

and downlink data rate and minimized content extraction delay

[28]. Liu et al. considered coded caching for a typical heteroge-

neous network with one macro base station (MBS) overlaid on

top of several RSUs [29]. Vehicles trajectory, average residence

time within RSU’s coverage, and system information were as-

sumed to be perfectly known to the MBS in [29]. Owing to the

time-varying channel conditions in VENs, the authors further

considered a two-time scaled model. Particularly, they assumed

that content requests only arrive at the large time scale (LTS)

slot, whereas MBS could decide to orchestrate resources in each

small time scale (STS) slot - within the LTS slot. However,

although [29] assumed LTS and STS considering time-varying

wireless channels, it did not consider any communication model.

Therefore, the study presented in [29] did not reflect delay

analysis in VENs.

The study presented in [22], [23], [24], [25], [26], [27], [28],

[29] mostly considered that the content catalog consist of a

fixed number of contents from a single category. In reality,

each content belongs to a certain category, and the catalog

consists of contents from different categories. Besides, these

studies mainly assumed that the users request contents based on

popularity. However, each CV may have a specific need for a

particular type of content. For example, some CVs may need

to have frequent operational information, whereas other CVs

may purely consume entertainment-related content. Therefore,

a VEN shall consider individual CV’s preference, as well as the

global popularity.

Some literature also exploited user-centric RAT solutions

for VENs [14], [17], [18], [19], [20], [32]. Considering the

high mobility of the vehicles, [14] proposed an approach for

user-centric VC creation and optimized resource allocation to

ensure maximized network throughput. A power-efficient solu-

tion for the VC of the VENs was also proposed in [20]. Lin

et al. proposed heterogeneous user-centric (HUC) clustering for

VENs in [32]. Particularly, the authors considered creating HUC

using both traditional APs and vehicular APs. The goal of [32]

was to study how HUC migration helps in VEN. Considering

both horizontal handover (HO) and vertical HO, [32] studied

the tradeoff between throughput and HO overhead. Xiao et al.

showed that dynamic user-centric virtual cells could be used
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to multicast the same message to a group of vehicles in [17].

Particularly, [17] assumed that a group of vehicles could be

considered as a hotspot (HS). If all vehicles inside the HS

are interested in the same multicasted message, multiple APs

could formulate a VC to serve the HS. [17] optimized power

allocation to balance the signal-to-interference-plus-noise ratio

for the vehicles in the HS. Shahin et al. also performed similar

studies in [18], [19]. Instead of serving a single user, they created

HS for V2X broadcast groups. They then maximized the total

active HS in the network using admission control, transmission

weight selection and power control [18], [19].

B. Motivations and Our Contributions

As ubiquitous connectivity is essential for CVs, the existing

RAT solutions may not be sufficient to meet the strict require-

ments of CVs for higher automation. Existing literature shows

that VC-based user-centric networking can bring additional

burdens that need rigorous studies, such as mobility and HO

management [32]. Moreover, as multicasting delivers a common

signal, the study presented in [17], [18], [19] is not suitable for

CV-specific independent data requirements in delay-sensitive

applications. However, an alternative software-defined network-

ing approach with advanced ML algorithms can potentially

bring the RAT solution [14], [20], [33]. Moreover, [14], [20]

considered that all APs could serve all users, which may not be

possible due to limited coverage and other resource constraints.

Inspired by the user-centric VC-based studies [14], [17], [18],

[19], [20], [32], our proposed VEN can deploy a close proximity

edge server that acts as the software-defined controller. The

to-be-requested contents can be prefetched through the edge

servers to ensure local delivery. Besides, multiple low-powered

APs can be placed as RSUs. The controller can determine the

user-centric VC configuration and the corresponding resource

orchestration to meet the requirements of the CVs by controlling

these APs.

In comparison to the above studies, in this work, we have

considered a practical communication model, introduced a

preference-popularity tradeoff in content request models, con-

sidered a multi-class content catalog, introduced a new VC

formation strategy that exploits all possible ways of partitioning

the low-powered APs, introduced a duration of interest (DoI) for

which the edge server cannot update the cache storage due to

practical hardware and overhead constraints, and devised a joint

cache placement and user-centric RAT solution. Particularly, our

contributions are
� Considering the stringent requirements of the regulatory

organizations, we propose a new software-defined user-

centric RAT solution that partitions the low-powered APs

to form VC, and provides ubiquitous and reliable connec-

tivity to the CVs on the road.
� To ensure fast decision-making for mission-critical

operations and uninterrupted onboard entertainment,

we exploit content prefetching at the edge server, with

multiple classes in the content catalog, while introducing

preference-popularity tradeoff into individual content

requests owing to the CVs’ heterogeneous preferences.

Moreover, we introduce a DoI for which the cached

contents remain idle due to practical limitations and

leverage our proposed RAT solution to deliver the

requested contents within a hard deadline.
� We introduce a joint content placement, CV scheduling,

VC configuration, CV-VC association and radio resource

allocation problem to minimize content delivery delays.
� To tackle the grand challenges of the joint optimization

problem, we decompose it into a cache placement sub-

problem and a delay minimization sub-problem - given the

cache placement policy. We propose a novel DRL solution

for the first sub-problem. We then transform the second

sub-problem to a weighted sum rate (WSR) maximiza-

tion problem due to practical limitations and solve the

transformed problem using maximum weighted bipartite

matching (MWBM) and a simple linear search algorithm.
� Through analysis and simulation results, we verify that

our proposed solution achieves better performance than

the existing baselines in terms of cache hit ratio (CHR),

deadline violation and content delivery delay.

The rest of the paper is organized as follows: Section II intro-

duces our proposed software-defined user-centric system model.

Section III presents the caching model, followed by the joint

problem formulation in Section IV. Problem transformations

are detailed in Section V, followed by our proposed solution

in Section VI. Section VII presents extensive simulation results

and discussions. Finally, Section VIII concludes the paper. The

important notations are listed in Table I.

II. SOFWARE-DEFINED USER-CENTRIC COMMUNICATION

MODEL

A. Communication System Model

This article considers a software-defined cache-enabled VEN.

An edge server - controlled by a software-defined controller,

is placed in proximity to the edge CVs. The edge server has

dedicated radio resources with limited local cache storage and is

connected to the cloud. Several low-powered APs are deployed

as RSUs to provide omnipresent wireless connectivity to the

CVs. These APs are connected to the edge server with high-

speed wired links. The software-defined centralized controller

can control the edge server and perform user scheduling, node

associations, precoding, channel estimations, resource alloca-

tions, etc. In other words, the edge server acts as the baseband

unit. Besides, unlike the legacy system models, we consider

a user-centric approach that uses multiple APs to serve the

scheduled CVs. These APs are used as RSUs that only perform

radio transmissions over the traditional Uu interface [34]. De-

note the vehicle and AP set by U = {u}Uu=1 and B = {b}Bb=1,

respectively. The VEN operates in slotted times. GivenB APs at

fixed locations, unlike the traditional network-centric approach,

the proposed VEN partitions the AP set B into W (t) ≤ B
subsets of APs at each slot t. Without loss of generality, we

define each subset as a VC. The proposed VEN can assign such

a VC to a scheduled CV.

Let there be a set A (W (t)) = {a}AW (t)

a=1 that defines the

possible ways to partition the B APs into W (t) subsets of APs,
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TABLE I
IMPORTANT NOTATIONS UTILIZED IN THIS PAPER

i.e., VCs. Denote the ith VC of a ∈ A (W (t)) by V Ci
a ⊂ B and

the set of VCs by Ba
vc(W (t)) = {V Ci

a}W (t)
i=1 . Furthermore, for

each a ∈ A (W (t)), the VC must obey the following rules:

V Ci
a �= ∅, ∀a and i, (1a)

Fig. 1. Proposed user-centric cache-enabled vehicular edge network.

V Ci
a

⋂

V Ci′
a = ∅, ∀a and i �= i′, (1b)

⋃W

i=1
V Ci

a = B, ∀a. (1c)

The first rule in (1a) means that the V Ci
as must not be empty,

while the second rule in (1b) means the subsets are mutually ex-

clusive. Besides, the last rule in (1c) represents that the union of

theV Ci
as must yield the original AP set B. WhenW (t) = 3 and

B = 6, for one possible a ∈ A (W (t)), the VC set Ba
vc(W (t))

is shown in Fig. 1 by the filled ovals.

Then, for a given W (t), the VEN can formulate the total VC

configuration pool Bvc(W (t)) = {Ba
vc(W (t))}AW (t)

a=1 . More-

over, the VEN can partition the B APs into W (t) VCs following

the above rules in AW (t) = W (t)!Bvc(B,W (t)) ways, where

Bvc(B,W (t)) is calculated as

Bvc(B,W (t)) =
1

W (t)!

W (t)
∑

w̄=1

(−1)w̄
(

W (t)

w̄

)

(W (t)− w̄)B . (2)

Note that Bvc(B,W (t)) is commonly known as the Stirling

number of the second kind [35].

To this end, as the VCs contain different AP configurations,

denote the VC and AP mapping by

Ii,ab (t) =

{

1, if APbis inV Ci
a during slot t,

0, otherwise,
. (3)

The edge server selects the total W (t) number of VCs to form

and their configuration Ba
vc(W (t)) ∈ Bvc(W (t)). The VCs

V Ci
a ∈ Ba

vc(W (t)) are assigned to serve the scheduled CVs.

Denote the CV scheduling and VC-CV association decisions by

the following indicator functions:

Iu(t) =

{

1, if CV u is scheduled in slot t,

0, otherwise,
. (4)

Ii,au (t) =

{

1, if V Ci
a is selected forCV u in slot t,

0, otherwise,
. (5)

Note that (5) means that if Ii,au (t) = 1, i.e., V Ci
a is assigned to

CV u, then the CV is connected to all APs inside this V Ci
a.
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We contemplate that the VEN operates in frequency division

duplex (FDD) mode and has a fixed Z̄ Hz bandwidth. The

edge server uses this dedicated Z̄ Hz bandwidth and divides

it into Z orthogonal physical resource blocks (pRBs). Let the

set of the orthogonal pRBs be Z = {z}Zz=1 for the downlink

infrastructure-to-vehicle (I2V) communication. Denote the size

of a pRB by ω, while we introduce the following indicator

function for the pRB allocation

Ib,uz (t) =

⎧

⎪

«

⎪

¬

1, if pRB z is assigned toAPbwhen

Ii,au (t) = 1andIi,ab (t) = 1,

0, otherwise,

. (6)

B. Communication Channel Modeling

We consider single antenna CVs whereas, the APs are

equipped with L > 1 antennas. Let us denote the channel re-

sponse at a CV u from the AP b, over pRB z, as follows:

h
u,z
b (t) =

√

ψu
b (t)τ

u
b (t)h̆

u,z
b (t) ∈ C

L×1, (7)

where
√

ψu
b (t), τ

u
b (t) and h̆

u,z
b (t) = [hu,z

b,1 (t), . . . , h
u,z
b,L(t)]

T ∈
C

L×1 are large scale fading, log-Normal shadowing and fast

fading channel responses from the L antennas, respectively.

Besides, hu,z
b,l (t) is the lth row of h̆

u,z
b (t) that denotes the channel

between u and the lth antenna of AP b at time t over pRB z.

Note that we consider the urban macro (UMa) model [36] for

modeling the path losses following 3rd Generation Partnership

Project (3GPP) standard [34]. Then, for all pRBs in the system,

we express the wireless channels from AP b to CV u, at time

t, as Hb
u(t) = [hu,1

b (t), . . . ,hu,Z
b (t)] ∈ C

L×Z . We consider the

edge server has perfect channel state information (CSI)1 and all

transceivers can mitigate the Doppler effect.

C. Transceiver Modeling

The transmitted signal at the AP b for CV u is sub (t) =√
Pbx

u
b (t)w

u,z
b (t) ∈ C

L×1, where Pb is the transmission power

of AP b. Besides, xu
b (t) and w

u,z
b (t) ∈ C

L×1 are the unit pow-

ered intended signal and corresponding precoding vector over

pRB z, respectively, of the AP b for u during slot t. Then,

the transmitted signals for CV u from all APs is su(t) =
[su1 (t), . . . , s

u
B(t)]

T ∈ C
L×B . Moreover, as each AP transmits

over orthogonal pRBs, the proposed VEN does not have any

interference. To this end, we calculate the received signal at CV

u, over pRB z, as

yzu(t) =
∑W (t)

i=1
Ii,au (t)

×
(

∑B

b=1
I
i,a
b (t) · Ib,uz (t)

[

h
u,z
b (t)

H
s
u
b (t) + ηub (t)

]

)

, (8)

where ηub (t) ∼ CN(0, σ2
b) is zero mean circularly symmetric

Gaussian distributed noise with variance σ2. The corresponding

1Although channel reciprocity does not hold in FDD, the edge server can use
some feedback channels to estimate the CSI.

signal-to-noise ratio (SNR), over pRB z, is

Γz
u(t) =

∑W (t)
i=1

Ii,au (t)

(

∑B
b=1 I

i,a

b
(t)·Ib,uz (t)

[

Pb

∣

∣

h
u,z

b
(t)

H
w

u,z

b
(t)
∣

∣

2
])

ω
[

∑W (t)
i=1

Ii,au (t)·(
∑B

b=1 I
i,a

b
(t)·σ2

b)
] .

(9)

Therefore, the total downlink achievable capacity for CV u is

Ru(t) =
∑Z

z=1
ω · log2 (1 + Γz

u(t)) . (10)

III. EDGE CACHING MODELING

A. Definitions and Assumptions

To avoid cross-domain nomenclature, we present necessary

terms and our assumptions in the following.

Definition 1 (Content): The source file that the CVs request

is defined as content. These files can contain CVs’ operational

information, geographic information, map/navigation informa-

tion, weather conditions, compressed file with sensory data,

local news, video/audio clips, etc.

Definition 2 (Content Class): Each content belongs to a class

that defines the type/category of the content. Let there be F
contents in each class and the set of the content class be C =
{c}Cc=1, where C ∈ Z

+. Denote the content set of class c by

Fc = {fc}Ff=1, where fc represents the f th content of class c.
Moreover, let the content size be S bits.

Definition 3 (Content Features): Let the content in the cth

class haveGc ∈ Z
+ features. Denote the feature set of content fc

by Gfc = {gfc}Gc

g=1. Note that the content features are essentially

the descriptive attributes of the content. For example, it can be

the genre/type of the content, names of the directors, actors,

actresses, geolocation information, timestamp, etc.

Definition 4 (Content Library): The content library is com-

prised of all contents from all classes. Let F =
⋃C

c=1 Fc be the

content library.

Definition 5 (Duration of Interest (DoI)): The period for

which the content library remains fixed is denoted as the duration

of interest (DoI). Denote this period by Υ.

The content library F is fixed. While the CVs may request

contents in each slot t, the edge servers can update its cached

content only in each t = nΥ time slot, wheren ∈ Z
+ defines the

cache (re)placement counter. Note that this assumption is made

as it may not be practical to update the cache storage in each

slot t due to hardware limitations. Moreover, we assume that

the content update/refresh process is independent of the content

request arrival process. To this end, we focus on request arrival

modeling from the CVs, followed by modeling their preferences,

i.e., their requested fc ∈ F in slot t.

B. User Request/Traffic Modeling

We assume that the CVs can make content requests in each

slot t following Bernoulli distribution2. At slot t, letΘt
u denote a

Bernoulli random variable - with success probability pu, that de-

fines whether umakes a content request or not. The total number

of requests during a DoI Υ for an individual CV u follows Bino-

mial distribution. Besides, at slot t, the total number of requests

2Similar access modeling was also used in existing works [37], [38].
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from all CVs, i.e., Ψt =
∑U

u=1 Θ
t
u, follows a Poisson binomial

distribution [39] with probabilities p = {pu}u∈U . Moreover,

the probability of the distribution of Ψt can be bounded using

Proposition 1.

Proposition 1: Let μ̄ = E[Ψt] =
∑U

u=1 pu and p̄ =

(1/U)
∑U

u=1 pu be the average success probability. Then,

at slot t, the probability that the distribution of the total number

of requests of the CVs gets larger than some ξ = μ̄+ δ and

0 < δ < U − μ̄, is bounded above as follows:

Pr {Ψt ≥ ξ} ≤ exp [−UDp̄ (χ)] , (11)

where Dp̄(χ) = χ ln(χ/p̄) + (1 − χ) ln((1 − χ)/(1 − p̄)) is

the relative entropy of χ to that of p̄ and χ = ξ/U .

Proof: Please see Appendix A. �

C. Individual User Preference Modeling

Given that a CV makes a request, we now focus on the

which question, i.e., given that Θt
u = 1, which content shall that

CV request at that slot? Let us express a particular content fc
requested by CV u during slot t by

Ifcu (t) =

{

1, if Θt
u = 1 andu request fc,

0, otherwise,
(12)

Unlike legacy modeling3, we consider that a CV’s choice de-

pends both on its personal preference and global popularity.

Depending on the operational needs, a CV may prefer to con-

sume a specific content related to its operation. Besides, it may

also prefer consuming a content very similar to the one that it

previously consumed. Moreover, it may also get influenced by

the popularity of the contents. For example, at slot t, a CV may

request operation-related content fc specific to that particular

timestamp. At slot t+ 1, it may then need another operation-

related content f ′
c that is very similar to fc. Similarly, for purely

entertainment-related content, the request can get influenced by

the user’s previous experience. The user may also choose to

consume the most popular content at that time. As such, we

model the user’s content request as the exploitation-exploration

tradeoff between personal preference and global popularity of

the contents. We present this by the εu-policy, i.e., a CV exploits

with probability εu and explores with probability (1 − εu).
1) Content Selection during Exploitation: In this case, the

CV exploits its preferred contents from the same class it previ-

ously consumed a content. Given that CV has requested fc in

slot t, it will request the most similar content to fc in class c with

probability εu if Θt+1
u = 1. Note that similarity between fc and

f ′
c, where fc �= f ′

c is calculated as

Ω
f ′
c

fc
=
(

∑

g∈Gfc

gfc gf ′
c

)

/

(

√

∑

g∈Gfc

g2
fc

√

∑

g∈Gf ′
c

g2
f ′
c

)

. (13)

2) Content Selection during Exploration: Given that the CV

requested content from class c previously, it will explore new

content from a different class c′ �= c. Denote CV u’s class selec-

tion probability by puc , which follows a categorical distribution.

3Legacy model assumes that content requests follow Zipf distribution [22],
[23], [28], which does not capture the personal preferences of the users[8].

Once the CV chooses the new content class c, it randomly selects

a content from this class based on global popularity. Denote the

global popularity of contents in class c by pf
c = {pfcc }fc∈Fc

,

where pfcc is the popularity of content fc.

Note that our design boils down to a solely popularity-based

model [11] when there is only a single content class and εu = 0.

D. Content (Re)placement in the Cache

Recall that only the edge server has limited cache storage in

the proposed VEN. Let the cache storage of the edge server be

Λ. Denote the cache placement indicator by the binary indicator

function Ifc(n) during cache placement counter n. The edge

server obeys the following rules for cache placement:

S ·
∑C

c=1

∑F

f=1
Ifc(n) ≤ Λ, (14)

S ·
∑F

f=1
Ifc(n) = Λc, (15)

where Λc is the total storage taken by the cached content from

class c ∈ C . Moreover, (14) ensures that the size of the total

cached contents must not be larger than the storage capacity. At

each t = nΥ, the software-defined controller pushes the updated

contents into the cache storage. These contents remain at the

edge servers’ cache storage till the next DoI update.

IV. DELAY MODELING AND PROBLEM FORMULATION

A. Content Delivery Delay Modeling

For higher automation (and uninterrupted entertainment of the

onboard users), the CVs may need to continuously access diverse

contents within a tolerable delay to avoid fatalities (and quality

of experiences (QoEs)). This motivates us to introduce a hard

deadline requirement for the edge server to deliver the requested

contents. We consider that content requests arrive continuously

following Θt
us. Each CV can make at most a single content

request based on its preference if Θt
u = 1. The requester has

an associated hard deadline requirement dmax
f , within which it

needs the entire payload. The edge server, on the other hand,

can have a shorter deadline, denoted by d̂fcu (t), associated with

the requests as it replaces the content at the end of each DoI.

Formally, the deadline for the edge server to fully offload a

requested content is

d̂fcu (t) = min
{

dmax
f , (n+ 1)Υ− t

}

, ∀t ∈ [nΥ, (n+ 1)Υ]. (16)

Essentially, (16) ensures that the edge server cannot exceed the

minimum of the maximum allowable delay threshold dmax
f and

remaining time till the next cache replacement slot (n+ 1)Υ.

To that end, we calculate the associated delay of delivering

the requested contents from all CVs u ∈ U . This delay depends

on whether the requested content has been prefetched and the

underlying wireless communication infrastructure. Particularly,

for the cache miss event4, the requested content is extracted from

the cloud. This extraction causes an additional delay and involves

the upper layers of the network5. Denote the delay for extracting

4When the edge server needs to serve content request Ifcu (t) but it does not
have content fc in its local cache storage is known as the cache miss.

5We assume that each miss event needs to be handled by the upper layers.
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content fc, requested by CV u during slot t, from the cloud by

dm,t
u,fc

. Moreover, we consider two more additional delays. The

first one is the wait time of a request before being scheduled for

transmission by the edge server, given that the edge server has

either prefetched the content during the cache placement slot or

the upper layers have already processed the requested content

from the cloud. The second one is the transmission delay. Denote

these two delays, i.e., wait time and transmission delays, for

Ifcu (t) by dq,tu,fc
and ds,tu,fc

, respectively. Therefore, the total delay

of delivering the entire content is calculated as

dfcu (t) = [1 − Ifc(n)] d
m,t
u,fc

+ dq,tu,fc
+ ds,tu,fc

. (17)

Thus, the average content delivery delay for all CVs is

d̄(t) = (1/U)
∑U

u=1

∑C

c=1

∑F

f=1
Ifcu (t) · dfcu (t). (18)

B. Joint Problem Formulation

We aim to find joint cache placement Ifc(n), user scheduling

Iu(t), totalW (t)VC to form, the VC configuration Ba
vc(W (t)),

VC association Ii,au (t) and radio resource allocation for the

serving APs in the selected VCs, i.e., Ib,uz (t)s to minimize

long-term expected average content delivery delay for the CVs.

As such, we pose our joint optimization problem as

minimize
Ifc (n),Iu(t),W (t),Ba

vc(W (t)),I
i,a
u (t),I

b,u
z (t)

d = lim sup
T→∞

E

[

1

T

T
∑

t=1

d̄(t)

]

(19)

s.t. C1 :
∑C

c=1

∑F

f=1
Ifcu (t) ≤ 1, ∀u, t (19a)

C2 : (14), (15), ∀n, (19b)

C3 :
∑U

u=1
Iu(t) ≤ W (t), ∀ t, (19c)

C4 :
∑W (t)

i=1
Ii,au (t) = 1, ∀u, (19d)

C5 :
∑U

u=1
Ii,au (t) = 1, ∀ i, (19e)

C6 :
∑U

u=1

∑W (t)

i=1
Ii,au (t) = W (t), (19f)

C7 : W (t) = min

{

∑U

u=1
Iu(t),Wmax

}

, (19g)

C8 :
∑B

b=1
Ib,uz (t) = 1, ∀ z, u, (19h)

C9 :
∑Z

z=1
Ib,uz (t) = 1, ∀ b, u, (19i)

C10 :
∑U

u=1
Ib,uz (t) = 1, ∀ z, b, (19j)

C11 :
∑Z

z=1

∑B

b=1

∑U

u=1
Ib,uz (t) = Z, (19k)

C12 : dfcu (t) ≤ d̂fcu (t), (19l)

C13 : Ifc (n), Iu(t), I
i,a
u (t), Ib,uz (t) ∈ {0, 1}, (19m)

where Wmax is the maximum allowable number of VCs in the

system. Constraint C1 ensures that each CV can request at most

one content in each slot t. The constraints (14) and (15) in C2

are due to physical storage limitations. Constraint C3 in (19c)

restricts the total number of scheduled CVs to at max the total

number of created VCs W (t). Constraints (19d), (19e), and

(19f) make sure that each CV can get at max one VC, each

VC is assigned to at max one CV and summation of all assigned

VCs is at max the total number of available VCs, respectively.

Besides, constraints C7 in (19g) restricts the total VCs W (t)
to be at max the minimum of the total scheduled CVs and

Wmax. Furthermore, constraints (19h), (19i) and (19j) ensure

that each AP can get at max one pRB, each pRB is assigned to

at max one AP and each CV gets non-overlapping resources,

respectively. Constraint C11 in (19k) ensures that all available

radio resources are utilized.C12 is introduced to satisfy the entire

payload delivery delay of a requested content to be within the

edge server’s hard deadline d̂fcu (t). Finally, constraints in (19m)

are the feasibility space.

Remark 1 (Intuitions behind the constraints): Constraint C1

incorporates CV’s content request, while C2 is for the cache

placement at the edge server. ConstraintC3 is for CV scheduling.

Constraints C4 - C7 are for the user-centric RAT’s VC formation

and associations. Besides, constraints C8 - C11 are for radio

resource allocation. Moreover, C12 is introduced to satisfy the

hard deadline for delivering the CVs’ requested contents, which

holds if
∑d̂fc

u (t)
t̄=t

Iu(t̄) · κ ·Ru(t̄) ≥ S, where κ is the transmis-

sion time interval (TTI).

Remark 2: The total delay associated with each content re-

quest, calculated in (17), depends on both cache placement and

the RAT. More specifically, an efficient cache placement solution

can minimize cache miss events, i.e., minimize dm,t
u,fc

s. On the

other hand, dq,tu,fc
and ds,tu,fc

depend on the CV scheduling, and

total VC W (t), VC configuration Ba
vc(W (t)), CV-VC associa-

tion Ii,au (t) and radio resource allocation Ib,uz (t).
Note that the optimization problem in (19) is an average

Markov decision process (MDP) over an infinite time horizon

with different combinatorial optimization variables. Recall that

the CSI varies in each slot t. Besides, in slot t, neither the CV’s

to-be-requested contents nor the CSI in the future time slots are

known beforehand. As such, without knowing these details, the

optimal decision variables may not be known. In the subsequent

section, we will prove that even the reduced problems of this

complex joint optimization are NP-hard. Moreover, the decision

variables are different in different time slots. As such, we de-

compose the original problem into two sub-problems. The first

sub-problem transforms the cache placement problem, which

will be solved using a learning solution. The second sub-problem

introduces a joint CV scheduling, total W (t) VC formation,

association and resource allocation optimization problem for

minimizing the average content delivery delay, given that the

edge server knows the cache placement decisions. The learning

solution for the cache placement depends on the following

preliminaries of DRL.

C. Preliminary of Deep Reinforcement Learning

An MDP contains a set of states X = {x}|X |
x=1, a set of

possible actions M = {m}|M |
m=1, a transition probabilityPtt′(m)

from the current state xt ∈ X to the next state xt′ ∈ X when

action m is taken, and an immediate reward Rt(m) for this state
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transition [40]. RL perceives the best way of choosing actions

in an unknown environment through repeated observations and

is widely used for solving MDP. The RL agent learns policy

π : M × X → [0, 1], whereπ(xt,m) = Pr{m|xt} denotes the

probability of taking action m given the agent is at state xt.

Following π, given the agent is at state xt, the expected return

from that state onward denotes how good it is to be at that state

and is measured by the following state-value function:

Vπ(xt) = E[R|xt, π] = E

[

∑Tend

t′=t
γt′−tRt′(m)|xt, π

]

, (20)

where γ ∈ [0, 1] is the discount factor, Tend is the time step at

which the episode ends, and Rt′(m) is the reward at step t′.
Moreover, the quality of an action taken at a state is ascertained

by the following action-value function [40]:

Q(xt,m) = Rt(m) + γ
∑

xt′∈X
Ptt′(m)Vπ(xt′). (21)

The agent’s goal is to find optimal policy π∗ to maximize

Q∗(xt,m) = Rt(m) + γ
∑

xt′∈X
Ptt′(m)Vπ∗(xt′), (22a)

where Vπ∗(xt′) = max
m̆∈M

Q∗(xt′ , m̆). This Q(xt,m) value is up-

dated as [41]

Q (xt,m) ← (1 − α)Q (xt,m) + αȳt, (23)

where α is the learning rate and ȳt = Rt(m) +
γ max
m̆∈M

Q(xt′ , m̆)) is commonly known as the temporal target.

Usually, a deep neural network (DNN), parameterized by its

weight θθθ, is used to approximate Q∗(x,m) ≈ Q(x,m;θθθ),
which is known as the so-called DRL [42]. The agent is trained

by randomly sampling Sb batches from a memory buffer D ,

which sores of the agent’s experiences {xt,m,Rt, xt′}, and

performing stochastic gradient descent (SGD) to minimize the

following loss function [42]:

L(θθθ) = [ȳt(θθθ)−Q (xt,m;θθθ)]2 , (24)

where ȳt(θθθ) = Rt(m) + γm̆∈M max Q(xt′ , m̆;θθθ). While the

same DNN θθθ can be used to predict both Q(xt,m;θθθ) and the

target ȳt(θθθ), to increase learning stability, a separate target DNN,

parameterized by θ−θ−θ−, is used to predict ȳt(θθθ
−) [42].

Here we emphasize that since the Q value functions are

estimated using the DNN θθθ, i.e., Q∗(x,m) ≈ Q(x,m;θθθ), un-

like classical tabular Q-learning, the DRL solution may not

be optimal [40]. To that end, we first introduce our problem

transformation in the next section, followed by more pertinent

information on a DRL-based solution in Section VI.

V. PROBLEM TRANSFORMATIONS

Since the original problem is hard to solve and the decision

variables are not the same in different time slots, we decompose

the original problem by first devising a learning solution for

cache placement policy (CPP) for the cache placement slot

t = nΥ. Then, we use this learned CPP to re-design the delay

minimization problem from the RAT perspective. Intuitively,

given that the best CPP for the slot t = nΥ is known, in order to

ensure minimized content delivery delay, one should optimize

the RAT parameters jointly.

A. Cache Placement Policy (CPP) Optimization Sub-Problem

We want to learn the CPP πca that provides the optimal cache

placement decision Ifc(n) in the cache placement time slots t =

nΥ, ∀n. We have total mca =
∏C

c=1 m
c
ca =
∏C

c=1

(

F
Λc

)

ways

for content placement as Λc and Λ are of the unit of content size

S based on constraints (14) and (15). Moreover, the CPP πca is

a mapping between the system state xn
ca and an action mca in

the joint action space with mca(n) possible actions. To this end,

let us define a cache hit event by

1Ifcu
(t) =

{

1, if Ifcu (t) = 1 and Ifc(n) = 1,

0, otherwise.
. (25)

Besides, the total cache hit at the edge server is calculated as

the summation of the locally served requests and is calculated

as h(t) =
∑U

u=1 1Ifcu
(t). Thus, we calculate the CHR as

CHR(t) = h(t)/

(

∑U

u=1
Ifcu (t)

)

. (26)

Next, we devise the CPP of the edge server that ensures a

long-term CHR while satisfying the cache storage constraints.

Formally, we pose the optimization problem as follows:

maximize
πca

CHR(πca) = lim
T→∞

E

[

(1/T )
∑T

t=1
CHR(t)

]

, (27)

s. t. C1, C2, Ifc (n) ∈ {0, 1}, (27a)

where C1 and C2 are introduced in (19).

Theorem 1: The CHR maximization problem (27) is NP-hard.

Proof: Please see Appendix B. �

B. Joint Optimization Problem for the User-Centric RAT

Note that as the delay of extracting a content from the cloud

during a cache miss event is fixed, the first term in (17) will

be minimized if the CPP πca ensures maximized CHR. In this

sub-problem, we focus on the other two delays dq,tu,fc
and ds,tu,fc

in (17) by jointly optimizing scheduling, VC formation, VC

association and radio resource allocation of the proposed user-

centric RAT solution assuming the cache placement is known

at the edge server. Therefore, we pose the following modified

content delivery delay minimization problem.

minimize
Iu(t),W (t),Ba

vc(W (t)),I
i,a
u (t),I

b,u
z (t)

d = lim sup
T→∞

E

[

(1/T )
∑T

t=1
d̄(t)

]

(28)

s. t. C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, (28a)

Iu(t), I
i,a
u (t), Ib,uz (t) ∈ {0, 1}, (28b)

where the constraints in (28a) and (28b) are taken for the same

reasons as in the original problem in (19).

Sub-problem (28) contains combinatorial optimization vari-

ables and, thus, is NP-hard. An exhaustive search for optimal

parameters is also infeasible due to the large search space as

well as sequential dependencies for the deadline constraints in
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C12. Besides, as each content request arrives with a deadline

constraint and wireless links vary in each slot, we consider that

the edge server adopts priority-based scheduling. Intuitively,

given the fact that the edge server does not know the transmission

delay ds,tu,fc
due to channel uncertainty and it needs to satisfy

constraint C12 for all Ifcu (t)s, it should schedule the CVs with

earliest-deadline-first (EDF)6 followed by optimal VC forma-

tion, association and radio resource allocation. Note that EDF is

widely used for scheduling in real-time operating systems [45].

If EDF cannot guarantee zero deadline violation for the tasks, no

other algorithm can [44]. In our case, scheduling also depends

on the availability of the requested content at the edge server. In

cache miss event, the edge server must wait for dm,t
u,fc

so that the

upper layers can extract the content from the cloud.

Upon receiving a content request Ifcu (t), the edge server

checks Ifc(n). If Ifc(n) = 0, the request is forwarded to the

upper layers. The upper layer initiates the extraction process

from the cloud. At each slot t, before making the scheduling

and VC formation decisions, the edge server considers previous

T t
SoI slots information. These T t

SoI slots are termed as our slots

of interest (SoI) and are calculated in (29).

T
t

SoI =
{

min{0, t− dmax
f + ζ}

}dmax
f

ζ=1
. (29)

This SoI captures the previous slots that may still have unde-

livered payloads with some remaining time to the deadlines at

the current slot t. Denote the remaining time to the deadline and

payload for Ifcu (t− dmax
f + ζ) in current slot tbyT

t−dmax
f

+ζ
u,rem and

P
t−dmax

f
+ζ

u,rem , respectively. Particularly, for all Ifcu (t− dmax
f + ζ),

the edge server first checks whether the content is available at

the edge server’s local cache storage or by the upper layers. If it

is available, the edge server calculates the remaining time to the

deadlines and payloads for the requests in all slots of T t
SoI. The

edge server finds a set of candidate requester CVs U t
val ⊆ U ,

their minimum remaining time to the deadline set T t
rem and

corresponding left-over payload set Pt
rem. This procedure is

summarized in Algorithm 1. Note that the time complexity of

Algorithm 1 is O(4U |T t
SoI|+ 3U + 5).

After extracting the valid CV set U t
val, the edge server can

formulate total W (t) VCs based on the following equation:

W (t) = min
{∣

∣U
t
val

∣

∣ ,Wmax

}

, (30)

where |U t
val| is the cardinality of the set U t

val. This essentially

means that the server creates the minimum of the total valid CVs

in the set U t
val and the maximum allowable number of VCs.

Besides, the edge server calculates the priorities of the valid

CVs set based on their remaining time to the deadlines using the

following equation:

φu(t) = φ̄u(t)/

(

∑

u∈U t
val

φ̄u(t)

)

, (31)

where φ̄u(t) = (
∑

u∈U t
val

T t
val[u])/T

t
val[u]. Note that (31) sets

the highest priority to the CV that has the least remaining time

to the deadline. The edge server then picks the top-W (t)CVs for

scheduling based on the priorities φu(t)s. Denote the scheduled

6Similar scheduling is also widely used in literature [43], [44].

CV set during slot t by U t
sch ⊆ U t

val. Given that the edge server

makes scheduling decisions based on top-W (t)priorities of (31),

to satisfy the hard deadline constraint inC12, we aim to maximize

a WSR, which is calculated as

R̆(t) =
∑

u∈U t
sch

Iu(t) ·Ru(t) · φu(t), (32)

where the weights are set based on the CV’s priority φu(t).
Again, the intuition for this is that with the underlying RAT

solution, due to channel uncertainty, the edge server expects

to satisfy constraint C12 by prioritizing the CVs based on (31)

and follow optimal VC configuration, their association and

radio resource allocation. As such, we pose the following WSR

maximization problem for the edge server:

maximize
Ba

vc(W (t)),I
i,a
u (t),I

b,u
z (t)

R̆(t), (33)

subject to C4, C5, C6, C8, C9, C10, C11, (33a)

Ii,au (t) ∈ {0, 1}, Ib,uz (t) ∈ {0, 1}, (33b)

where the constraints in (33a) and (33b) are taken for the same

reasons as in the original problem in (19).

Remark 3: The edge server finds W (t) VCs and Iu(t)s using

(30) and (31), respectively. Given that the contents are placed

following πca during slot t = nΥ, and the edge server knows

W (t) and Iu(t)s, the joint optimization problem in (28) is

simplified to a joint VC configuration, CV-VC association and

radio resource allocation problem in (33).

VI. PROBLEM SOLUTION

The edge server uses a DRL agent to solve the transformed

CHR maximization problem (27). Since the CVs request con-

tents based on the preference-popularity tradeoff and their future

demands are unknown to the edge server, DRL is adopted as a

sub-optimal learning solution for (27). Moreover, we optimally

solve the joint optimization problem (33). In order to do so,

first, we leverage graph theory to find optimal pRB allocation

based on a given VC configuration Ba
vc(W (t)) ∈ Bvc(W (t)).

Then we perform a simple linear search to find the best VC

configuration Ba∗
vc(W (t)).

A. Learning Solution for the CPP

To find the CPP πca, the edge server uses some key infor-

mation from the environment and learns the underlying envi-

ronment dynamics. Recall that the CVs requests are modeled

by the exploration and exploitation manner. At the beginning of

each DoI, the edge server determines top-Λc popular contents in

each class and also calculates top-Λc similar contents for each

of these popular contents as

Ftop(n)[c, fc]=

{

1, if fc is top−Λc similar content of f top
c ,

0, otherwise,
,

where f top
c is in top-Λc popular content list of class c. Besides,

the edge server also keeps track of the content requests coming

from each CV and corresponding cache hit based on the stored

content during the previous DoI. Let the edge server store
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Algorithm 1: Get Eligible CV Set for Scheduling.

the content-specific request from CV u into a R
C×F matrix

Pu
req(n) during all slots of the DoI. Similarly, let there be a

matrix Pu
hit(n) ∈ R

C×F that captures content-specific cache

hit 1Ifcu
(t)s during all t within the DoI. Furthermore, we also

provide the measured popularity matrix Pf (n) during the cur-

rent DoI based on the CVs requests in the previous DoI change

interval (n− 1). As such, the edge server designs state xn
ca as

the following tuple:

xn
ca =

{

{Pu
req(n)

}U

u=1
,
{

P
u
hit(n)}Uu=1,F

top(n),Pf (n)
}

. (34)

The intuition behind this state design is to provide the edge

server some context on how individual CVs’ preferences and

global content popularity may affect the overall system reward.

At each t = nΥ, the edge server takes a cache placement

action mca to prefetch the contents in its local storage. At the

end of the DoI, it gets the following reward rnca

rnca = (1/Υ)
∑(n+1)Υ

t̃=t
rca(t̃), (35)

where rca(t̃) =
∑C

c=1

∑Fc

fc=1 rca[c, fc]. Moreover, rca[c, fc]

is calculated in (36), where δsimpop and δhit are two hyper-

parameters. Note that these hyper-parameters balance the cache

hit for the top-Λc contents and the other stored contents in

the edge server’s cache storage. Empirically, we have observed

δsimpop > δhit works well.

rca[c, fc](t̃) =
⎧

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

¬

δsimpop ·∑U
u=1 1Ifcu

(t̃), if Ftop (n) [c, fc] = 1

and
∑U

u=1 Ifcu (t̃) > 0,

δhit ·
∑U

u=1 1Ifcu
(t̃), if Ftop (n) [c, fc] �= 1

and
∑U

u=1 Ifcu (t̃) > 0,

−∑F
fc=1

∑U
u=1 I

fc
u (t̃), otherwise,

, (36)

We consider that the edge server learns the CPP πca offline. It

uses two DNNs - θθθca and θθθ−ca, and learns πca following the basic

principles described in Section IV-C. Algorithm 2 summarizes

the CPP learning process. While the training episode is not

terminated, in line 6, the CVs make content requests. During the

cache placement slots t = nΥ, line 7, the edge server observes

its state xn
ca in line 8. Based on the observed state, the agent

takes action mca following the ε-greedy policy [40] using θθθca in

line 9. During the last time slot of the current DoI, in line 11, the

environment returns the reward rnca and transits to the next state

xn′
ca in line 12. Moreover, in line 13, the edge server stores its

experiences tuple {xn
ca,mca, r

n
ca, x

n′
ca} into its memory buffer

memca, which can hold memmax
ca number of samples. In line

15, the edge server randomly sample Sca batches from memca

and uses the θθθca and θθθ−ca to get Q(xn
ca,mca;θθθca) and the target

value ȳt(θθθ
−), respectively. In line 16, it then trains the DNN

θθθca by minimizing the loss function shown in (24) using SGD.

Moreover, after η̆ca steps, the offline DNN θθθ−ca gets updated by

θθθca in line 20.

B. WSR Maximization

Recall that once the edge server determines W (t) based

on (30), all possible VC configurations Bvc(W (t)) =

{Ba
vc(W (t))}AW (t)

a=1 can be generated following the VC forma-

tion rules defined in (1a)-(1c). Besides, each VC configuration

Ba
vc(W (t)) has exactly W (t) number of VCs. Moreover, the

edge server schedules |U t
sch| = W (t)CVs in each slot t based on

the priorityφu(t). Let the ith CV in U t
sch be assigned to the ith VC

in Ba
vc(W (t)). This assigns each CV to exactly one VC and all

VCs are assigned to all scheduled CVs. Therefore, essentially,

for a selected VC configuration Ba
vc(W (t)), by assigning the

VCs in the above mentioned way, the edge server can satisfy

constraintsC3,C4,C5 andC6. To this end, given that the selected

VC configuration Ba
vc(W (t)) and Ii,au (t) are known at the edge

server, we can rewrite (33) as follows:

maximize
Ib,uz (t)

R̆(t), (37)

subject to C8, C9, C10, C11, I
b,u
z (t) ∈ {0, 1}. (37a)

As the CSI is perfectly known at the edge server, it can choose

maximal ratio transmission to design the precoding vectorw
u,z
b .

In other words, given Ib,uz (t) = 1, the edge server chooses

w
u,z
b (t) = h

u,z
b (t)/‖hu,z

b (t)‖. Besides, the received SNR at the

CV u, calculated in (9), is the summation over all APs of the

CV’s assigned VC divided by total noise power. As such, we

can stack the weighted data rate at the CV from the APs that

are in its serving VC over all pRBs into a matrix - denoted by

Rt ∈ R
B×Z matrix. This weighted data rate matrix extraction

process is summarized in Algorithm 3. In this algorithm, we

initiate a matrix of zeros of RB×Z in line 1. Recall that all VCs

are assigned to the scheduled CVs and all APs are assigned

to form the VCs based on the rules defined in Section II-A. As

such, for each u ∈ U t
sch, we get the assigned VC in line 3. Then,

for all APs and all pRBs, we calculate the spectral efficiency in

line 6. Moreover, we update the respective (b, z) element of the
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Algorithm 2: CPP Learning Algorithm.

Rt matrix in line 7. Note that Algorithm 3’s time complexity is

O(W (t)[2Z|V Ci
a|+ 1] + 1).

Algorithm 3: Get Weighted Data Rate Matrix.

Algorithm 4: Optimal VC Configuration and pRB Alloca-

tion.

Upon receiving Rt, the edge server leverages graph theory

to get the optimal assignment as follows. It forms a bipartite

graphG = (B × Z ,E ), where B and Z are the set of vertices,

and E is the set of edges that can connect the vertices [47].

Moreover, Rt[b, z] are the weights of edge e(b, z) that connects

Algorithm 5: Content Delivery Model.

Input: Ifcu (t)’s of all CVs in content delivery slot t
1 Check if the requested contents are in the cache storage, if any

requested content is not available, forward the request to upper layer
for extraction from cloud;

2 Calculate SoI T t
SoI using (29);

3 Find eligible CV set U t
val using Algorithm 1;

4 Find total number of VC to formulate, i.e., W (t) using (30);

5 Calculate eligible CVs’, i.e., u ∈ U t
val, priorities using (31);

6 Get the CV set U t
sch to schedule by picking the top-W (t) φu(t)s;

7 Find optimal VC configuration Ba∗
vc(W (t)) and optimal pRB

allocations I
b,u∗
z (t) by running Algorithm 4;

8 Based on VC configuration Ba∗
vc(W (t)) and I

b,u∗
z (t) calculate CVs

SNRs ΓΓΓt = {Γz
u(t)}u∈U t

sch
using (9);

9 Calculate Rbit
u (t) using (38) for all u ∈ U t

sch;

10 Offload Rbit
u (t) bits from the remaining payloads of all CVs u ∈ U t

sch

orderly from the requests made in the SoIs T t
SoI;

11 Update all u ∈ U remaining payload and deadline;

vertex b ∈ B and z ∈ Z . Note that, for the graph G, a matching

is a set of pair-wise non-adjacent edges where no two edges

can share a common vertex. This is commonly known as the

maximum weighted bipartite matching (MWBM) problem [47].

The edge server needs to find the set of edges e∗(b, z) ∈ E that

maximizes the summation of the weights of the edges. Moreover,

the edge server uses well-known Hungarian algorithm [46] to get

the optimal edges e∗(b, z), i.e., pRB allocations Ib,uz (t)s in poly-

nomial time. This pRB allocation is, however, optimal only for

the selected VC configuration Ba
vc(W (t)). In order to find the

best VC configuration Ba∗
vc(W (t)), the edge server performs a

simple linear search over allAW (t)s VC configurations. As such,

we can solve problem (33) optimally using the above techniques.

Algorithm 4 summarizes the steps. Note that Algorithm 4 has

a time complexity of O(AW (t)[W (t)(2Z|V Ci
a|+ 1) + Z3 +

4] + 3).

C. Content Delivery Process

Contents are placed using the trained CPP πca during each

cache placement slot t = nΥ, while the CVs make content

requests in each t following Section III-C. Please note that,

during t = nΥ, the edge server only requires to perform one

forward pass7 on the trained θθθca. Upon receiving the Ifcu (t)s,

the edge server checks whether Ifc(n) = 1 or Ifc(n) = 0. If

Ifc(n) = 1, fc can be delivered locally. All cache miss events are

forwarded to the VEN’s upper layers. The upper layer extracts

each cache missed content from the cloud with an additional

delay of dm,t
u,fc

. In all t, the edge server calculates the SoI T t
SoI

using (29). It then finds the eligible CV set U t
val and forms total

W (t) VCs using Algorithm 3 and (30), respectively. To that

end, the edge server calculates the priorities φu(t)s using (31)

and selects top-W (t) CVs to schedule. Once the edge server

knows W (t), φu(t)s and U t
sch, it runs Algorithm 4 to get the VC

configuration and pRB allocations that maximizes the WSR of

(33). Algorithm 4 returns the Ba∗
vc and Ib,u

∗
z (t)which then can be

7The time complexity of the forward pass depends on the input/output size
and DNN architecture.
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TABLE II
SYSTEM PARAMETERS

Fig. 2. Simulated RoI.

used to get the SNRs Γz
u(t)s from (9). Upon receiving the SNRs

Γz
u(t)s, the edge server can calculate the possible transmitted

bits for the CVs as follows:

Rbit
u (t) = κ ·Ru(t). (38)

The edge server then delivers the remaining P
t−dmax

f
+ζ

u,rem s

sequentially. This entire process is summarized in Algorithm 5.

The time complexity of running Algorithm 5 is O(U [Λ/S +
4|T t

SoI|+ 4] +W (t)[log(|U t
val|) +AW (t)(2Z|V Ci

a|+ 1) +
3] +AW (t)[Z

3 + 4] + |U t
val|+ |T t

SoI|+ 10).

VII. PERFORMANCE EVALUATION

A. Simulation Setting

We consider U CVs roam over a region of interest (RoI)

and deploy B = 6 APs alongside the road to cover the entire

RoI. Table II shows other key simulation parameters used in

this article. We consider a 300 meters by 200 meters Manhattan

grid model [34] with two-way roads as shown in Fig. 2. For

realistic microscopic CV mobility modeling, we use the widely

known simulation of urban mobility (SUMO) [48]. The CVs are

deployed with some initial routes with a maximum speed of 45

miles/hour and later randomly rerouted from the intersections on

this RoI. In SUMO, we have used car-following mobility model

[49] and extracted the CVs’ locations using the Traffic Control

Interface [50] application programming interface.

To design our simulation episode, we consider 1000κ mil-

liseconds of CVs activities. For the CPP learning, the edge

server uses DNN θθθca that has the following architecture: 2D

Fig. 3. CPP learning: average return during training.

convolution (Conv2d) → Conv2d → Linear → Linear. We train

θθθca in each cache placement slots with a batch size Sca =
512. Besides, we choose γ = 0.995, εmax = 1, εmin = 0.005,

ν = 0.6, Memmax
ca = 15000, Tepoch = 15000, η̆ca = 4Υ. For

training, we use Adam as the optimizer with a learning rate of

0.001. Using our simulation setup, the edge server first learns

πca using Algorithm 2 for Tepoch episodes. The average per

state returns during this learning is shown in Fig. 3. As the

training progresses, we observe that the edge server learns to

tune its policy to maximize the expected return. After sufficient

exploration, the edge server is expected to learn the CPP that

gives the maximized expected return. As a result, it is expected

that the reward will increase as the learning proceeds. Fig. 3 also

validates this and shows the convergence of Algorithm 2. As

such, we use this trained CPP πca for performance evaluations

in what follows.

B. Performance Study

We first show the performance comparisons of the learned

CPP with the following baselines without any RAT solution.

Genie-Aided cache replacement (Genie): The to-be requested

contents are known beforehand during the start of the DoI

provided by a Genie. In this best case, we then store the top-Λc

requested contents from all c ∈ C in all n.

Random cache replacement (RCR): In this case, contents from

each class are selected randomly for cache placement.

K-Popular (K-PoP) replacement [51]: In this popularity-

based caching mechanism, we store the most popular K = Λc

contents during the past DoI for each content class c ∈ C .

Modified K-PoP+LRU (K-LRU) replacement: We modify

the popularity-driven K-PoP with classical least recently used

(LRU) [52] cache replacement. The least popular contents in the

K-PoP contents are replaced by the most recently used but not

in K-PoP contents to prioritize recently used contents.

To this end, we vary the cache size of the VEN and show

the average CHR during an episode in Fig. 4(a). The general

intuition is that when we increase the cache sizeΛ, more contents

can be placed locally. Therefore, by increasing Λ, the average

CHR is expected to increase. K-PoP and K-LRU do not capture

the heterogeneous preferences of the CVs. Similarly, as contents

are replaced randomly with the naive RCR baseline, it should

perform poorly. However, when the cache size is relatively

small, solely popularity-based K-PoP performs even worse

than RCR. This means that popularity does not dominate the

content demands of the CVs. Moreover, when the cache size

becomes moderate, K-PoP and K-LRU outperform the naive
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Fig. 4. (a) CHR comparison with baselines when Υ = 50 × κ (without RAT). (b) CHR comparison with baselines for 10 test episodes when Υ = 50 × κ
(without RAT). (c) CHR analysis for different DoI when U = 8 (without RAT).

RCR baseline. On the other hand, the proposed CPP aims to

optimize πca by capturing the underlying preference-popularity

tradeoff of the CVs. Therefore, the average CHR is expected to

be better than the baselines. Fig. 4(a) also reflects these analysis.

Moreover, notice that the performance gap with the Genie-aided

average CHR and our proposed CPP is lower. In the VEN, we do

not know the future and CVs’ content demands. Therefore, we

can only predict the future and tune the CPP πca accordingly.

Particularly, when the cache storage is reasonable, the perfor-

mance gap of the proposed CPP is much lower. For example,

at Λ = 9 and Λ = 12 the proposed CPP delivers around 93%

and 98% of the Genie-aided solution. Moreover, the baselines

perform poorly regardless of Λ. For example, at Λ = 9, the

proposed CPP is around 49%, 23% and 24% better than RCR,

K-PoP and K-LRU, respectively.

Fig. 4(b) shows the average CHR variation over 10 test episode

in 100 simulation runs and corresponding standard deviations.

As expected, the performance of the proposed CPP is very close

to the Genie-aided performance in these test runs. Particularly,

the proposed CPP delivers around 98% of the Genie-aided

performance. Moreover, the other baselines’ average CHRs

largely deviate from the Genie-aided solution. We observe that

the proposed CPP is around 52%, 16% and 14% better than

RCR, K-PoP and K-LRU, respectively, even when Λ is 80% of

the content catalog F , which validate the effectiveness of the

proposed method.

To this end, we study the impact of different DoI Υ on the

CHR. Recall that the DoI is the period for which the contents in

the library remain fixed. A shorter DoI means that the content

catalog can be refreshed quickly. Besides, based on our content

request model, each CV’s content choices change fewer times

within this short interval. Hence, the edge server can quickly

accommodate the CPP to capture the future demands of the

CVs. This, thus, may yield better CHR. On the other hand, when

this period is extended, performance is expected to deteriorate

slightly. This is due to the fact that the cache storage cannot be

replaced until this DoI period expires, while the CVs’ requests

vary in each slot. We also observe similar trends in our simulation

results. Fig. 4(c) shows CHR for different DoI, where we observe

that even the Genie-aided performance degrades from 80% to

76% when the DoI is increased from 25 × κ to 100 × κ. We

also observe that our proposed CPP experiences only about 4%

performance degradation. Moreover, the performance improve-

ment of our proposed solution is about 49%, 22% and 23% at

Υ = 25 × κ and about 42%, 17% and 18% at Υ = 100 × κ,

respectively, over the RCR, K-Pop and K-LRU baselines. Note

that we leave the choice of DoI as a design parameter chosen

by the system administrator, which can be decided based on the

practical hardware limitations and other associated overheads

in the network. As such, we fix Υ = 50 × κ for the rest of our

analysis.

As content requests arrive following preference-popularity

tradeoff, the CHR also gets affected by the total number of CVs

in the VEN. Intuitively, as the CVs’ preferences are heteroge-

neous, when the total number of CVs in the VEN increases,

the content requests largely diversify. Therefore, even with the

Genie-aided solution, the CHR may degrade when the number

of CVs in the VEN increases. This is also reflected in our

simulated results in Fig. 5(a). The performance of the proposed

CPP algorithm is stable regardless of the number of CVs in the

VEN. We observe a slight performance gap between the CPP

and the Genie-aided solution. This gap gets smaller and smaller

as the total number of CVs in the VEN increases. Particularly,

we observe that the proposed CPP delivers an average 97%
CHR for the considered CV numbers. Besides, it delivers around

47%, 21% and 22% better performance than RCR, K-PoP and

K-LRU, respectively. Therefore, we will use this CPPπca to find

Ifc(n) for all n and show performance analysis of our proposed

user-centric RAT solution.

To that end, we compare the performance of the proposed

RAT solution with legacy network-centric RAT (NC-RAT). In

the NC-RAT, a base station (BS) is located at a fixed suitable

location which has Z = 6 pRBs and total transmission power of

46 dBm. We use the same scheduling and deadline-based priority

modeling for the NC-RAT as the proposed user-centric case.

Besides, we distributed the total transmission power proportion-

ally to the scheduled CVs’ priorities. Moreover, we performed

the same WSR maximization problem for getting the pRB

allocation using Hungarian algorithm [46]. In the following, this

legacy RAT solution is termed NC-RAT and used with the cache

placement baselines. On the other hand, the ‘Proposed’ method

uses the proposed CPP and user-centric RAT solution.
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Fig. 5. (a) Deadline violation percentage comparisons for different content size S. (b) Average content delivery delay comparison with NC-RAT and caching
baselines. (c) Deadline violation percentage comparison with legacy NC-RAT.

Intuitively, with an increasedΛ, the edge server can store more

contents locally which increases the total number of local deliv-

ery by assuring lower cache miss events. Therefore, with a proper

RAT solution, the content delivery delay is expected to decrease

if we increase the cache size of the edge server. We also observe

this trend with both NC-RAT and our proposed user-centric RAT

solution in Fig. 5(b). However, note that NC-RAT is inflexible,

and depending on the location of the CVs, NC-RAT may not even

have expected radio-link qualities. This can, therefore, cause link

failure and may increase the content delivery delay for the CVs’

requested content. On the other hand, the proposed user-centric

RAT solution can design the appropriate VC configuration, VC

associations and proper radio resource allocation to deliver the

content timely. Therefore, we expect the user-centric RAT solu-

tion to outperform the traditional NC-RAT. Fig. 5(b) shows the

average content delivery delay d = 1
T

∑T
t=1 d̄(t), where d̄(t) is

calculated in (18) with Wmax = 5. As we can see, the proposed

solution outperforms the baselines. Particularly, the average gain

of the proposed solution on content delivery delay is around 15%

over the baselines.

The effectiveness of the proposed solution is more evident in

Fig. 5(c), which shows the percentage of deadline violations

in a test episode when the content size is S = 4 KB. As a

general trend, the deadline violations decrease as Λ increases.

Besides, among the cache placement baselines, as we have seen

in the performance comparisons of the CPP, even RCR delivers

lower deadline violations than solely popularity-based K-PoP

when the cache size is small. Moreover, we observe around 28%
higher deadline violations with the baseline NC-RAT over our

proposed user-centric RAT solution. Recall that this deadline

violation is essentially the violation of constraint C12, which

means the requester CVs have not received the requested content

by their required deadlines. As such, these requester CVs may

experience fatalities and degraded QoEs with the existing RAT

and cache placement baselines.

Content sizeS also affects the delivery delays and correspond-

ing deadline violations. Intuitively, content delivery delay shall

increase if the payload increases when the network resources

are unchanged. This also increases the likelihood of deadline

violations. Fig. 6 shows how the delivery delay gets affected by

content size S. Note that transmission delay is directly related

Fig. 6. Average content delivery delay comparisons for different content szeS.

Fig. 7. Deadline violation percentage comparisons for different content sizeS.

to channel quality between the transmitter and receiver. This

channel uncertainty can cause fluctuations in the content deliv-

ery delay. However, the general expectation is that the content

delivery delay will increase when the payload size increases. We

also observe these in Fig. 6. Particularly, when S = 2.5 KB, the

performance gain of the proposed solution is around 30% over

the RCR+NCRAT and around 27% over the K-PoP+NCRAT

and K-LRU+NCRAT baselines.

Recall that delay cannot exceed the hard deadline. Therefore,

higher content delivery delay leads to deadline violations. Fig. 7

shows how the payload size affects the deadline violations in
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Fig. 8. Average content delivery delay for different Λ.

Fig. 9. Average delay for different number of CVs.

the proposed VEN. As expected, even when the payload size

is small, we observe that the legacy NC-RAT solution cannot

ensure guaranteed delivery within the deadline. On the contrary,

our proposed solution can ensure 0% deadline violations till

S = 3 KB. Moreover, when S increases, the deadline violation

percentage of our proposed solution performs significantly better

than the NCRAT-based baselines. For example, whenS = 4 KB,

the deadline violation percentage with our proposed solution is

around 12%, whereas the NCRAT-based baselines have around

47% deadline violations. From Fig. 5(b)–7, we can clearly

see that the traditional NC-RAT is not sufficient to deliver the

demands of the CVs.

To that end, we show the efficacy of the proposed RAT solution

by considering all cache placement baselines accompanied by

the proposed RAT solution for delivering the requested contents

of the CVs. Fig. 8 shows how the content delivery delay gets

affected by different cache sizes. Particularly, the proposed

solution delivers requested contents around 14%, 7% and 8%

faster than the RCR+Proposed-RAT, K-PoP+Proposed-RAT

and K-LRU+Proposed-RAT, respectively, when Λ = 9. Recall

that the proposed CPP (without RAT) had a performance gain

of around 49%, 23% and 24% over the RCR, K-LRU and

K-PoP, respectively. The proposed RAT can, thus, significantly

compensate for the cache miss events.

Moreover, Fig. 9 shows delay vs total number of CVs U in

the VEN. Intuitively, if U increases, the edge server receives a

larger number of content requests. Then, with the limited VCs,

the edge server can at max schedule only Wmax number of CVs.

Therefore, d is expected to increase if U increases, which is

also reflected in Fig. 9. Notice that in both Figs. 8 and 9, while

the proposed solution outperforms the other cache placement

baselines, the performance gaps are small because all cache

placement baselines now use our proposed user-centric RAT

solution for delivering the requested contents.

Finally, our extensive simulation results suggest that the CHR

from our proposed CPP is very close to the genie-aided solution,

while the baseline RCR, K-Pop and K-LRU cache placements

yield poor CHRs. Besides, when we use the proposed CPP with

our user-centric RAT solution, the performance improvements,

in terms of deadline violation percentage and content delivery

delay, are significant compared to existing legacy NC-RAT with

the above cache placement baseline solutions. Additionally,

having a larger cache storage size increases the CHR, while

having more CVs in the VEN leads to a slightly degraded CHR

for all cache placement strategies. Moreover, with fixed limited

radio resources, content delivery delays grow, which increases

the deadline violation percentage.

VIII. CONCLUSION

Considering the higher automation demand on the road, in this

article, we propose a user-centric RAT solution for delivering the

CVs requested content with a learning solution for the cache

placement. From the results and analysis, we can conclude

that existing cache placement baselines may not be sufficient

to capture the heterogeneous demands and preferences of the

CVs. Moreover, the existing NC-RAT may cause severe fatalities

on the road as it yields frequent deadline violations. Even for

continuous deadline-constrained demand arrivals in each time

slot, the proposed software-defined user-centric RAT solution

has shown significant potential for offloading the payloads

timely. The results suggest that our proposed cache placement

policy delivers practical near-optimal cache hit ratio while the

proposed user-centric RAT efficiently delivers the requested

contents within the allowable deadline.

APPENDIX A

PROOF OF PROPOSITION 1

Assuming ι > 0, we write the following:

Pr {Ψt ≥ ξ} = Pr
{

eιΨt ≥ eιξ
}

(a)

≤ (E
[

eιΨt
]

)/eιξ,

(b)
= e−ιξ

∏U

u=1
E

[

eιΘ
t
u

]

(c)
= e−ιξ

∏U

u=1
(1 − pu + pue

ι) ,

(d)

≤ e−ιξ
[

∑U
u=1 (1 − pu + pue

ι)

U

]U

= e−ιξ [1 − p̄+ p̄eι]U ,

= exp [−ιξ + U ln (1 − p̄+ p̄eι)] , (39)

where (a) follows Markov inequality, (b) is true as Θt
us are

independent and identically distributed, (c) follows as E[eιΘ
t
u ]

is the moment generating function of Θt
u, and (d) is obtained

following the inequality of arithmetic and geometric means.
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To this end, we find eι = ξ(1−p̄)
p̄(U−ξ) that minimizes (39). Plug-

ging this value in (39), we obtain the bound as

Pr {Ψt ≥ ξ}
(a)

≤ exp

[

U

{

ln

(

(1−p̄)

1−χ

)

−χ ln

(

χ (1−p̄)

p̄ (1−χ)

)}]

,

= exp [−UDp̄ (χ)] , (40)

where χ = ξ
U

in (a) and Dp̄ = χ ln
(

χ
p̄

)

+ (1 − χ) ln
(

1−χ
1−p̄

)

.

APPENDIX B PROOF OF THEOREM 1

We show that an instance of our problem in (27) reduces to

an instance of a well-known NP-hard problem. Particularly, we

only consider a single cache placement step t = nΥ and assume

that Ifcu (t)s, ∀t ∈ [nΥ, (n+ 1)Υ] are known at the edge server

beforehand8. Then, we re-write our (27) instance as

maximize
Ifc (n); ∀fc∈F

∑

t∈[nΥ,(n+1)Υ]
CHR(t), (41)

C
∑

c=1

∑

fc∈Fc

S · Ifc(n) ≤ Λ,
∑

fc∈Fc

S · Ifc(n) = Λc, (41a)

Ifc(n) ∈ {0, 1}, ∀c = 1, . . . , C; fc ∈ Fc, (41b)

where the constraints are taken for the same reasons as in (27).

To that end, if Λc = S · 1, we could rewrite the second

constraint as
∑

fc∈Fc
Ifc(n) = 1. Then, it is easy to recognize

that an instance of the well-known multiple-choice knapsack

problem (MCKP) [53] has reduced to this instance of our CHR

maximization problem. As MCKP is a well-known NP-hard

problem [53], we conclude that the cache placement problem

for each t = nΥ is NP-hard even when the to-be requested

contents are known beforehand. As such, the long-term policy

optimization problem in (27) is NP-hard.
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