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Efficient Content Delivery in User-Centric and
Cache-Enabled Vehicular Edge Networks with
Deadline-Constrained Heterogeneous Demands

Md Ferdous Pervej
Shih-Chun Lin

Abstract—Modern connected vehicles (CVs) frequently require
diverse types of content for mission-critical decision-making and
onboard users’ entertainment. These contents are required to be
fully delivered to the requester CVs within stringent deadlines
that the existing radio access technology (RAT) solutions may
fail to ensure. Motivated by the above consideration, this article
exploits content caching in vehicular edge networks (VENSs) with a
software-defined user-centric virtual cell (VC) based RAT solution
for delivering the requested contents from a proximity edge server.
Moreover, to capture the heterogeneous demands of the CVs, we
introduce a preference-popularity tradeoff in their content request
model. To that end, we formulate a joint optimization problem
for content placement, CV scheduling, VC configuration, VC-CV
association and radio resource allocation to minimize long-term
content delivery delay. However, the joint problem is highly com-
plex and cannot be solved efficiently in polynomial time. As such,
we decompose the original problem into a cache placement problem
and a content delivery delay minimization problem given the cache
placement policy. We use deep reinforcement learning (DRL) as
a learning solution for the first sub-problem. Furthermore, we
transform the delay minimization problem into a priority-based
weighted sum rate (WSR) maximization problem, which is solved
leveraging maximum bipartite matching (MWBM) and a simple
linear search algorithm. Our extensive simulation results demon-
strate the effectiveness of the proposed method compared to exist-
ing baselines in terms of cache hit ratio (CHR), deadline violation
and content delivery delay.

Manuscript received 14 February 2022; revised 1 October 2022 and 29 March
2023; accepted 29 July 2023. Date of publication 1 August 2023; date of current
version 17 January 2024. This work was supported in part by the Zhejiang
Provincial Natural Science Foundation of China under Grant LQ23F010021,
in part by the Ng Teng Fong Charitable Foundation in the form of ZJU-SUTD
IDEA under Grant 188170-11102, in part by the North Carolina Department
of Transportation under Grant TCE2020-03, in part by the National Science
Foundation under Grant CNS-2210344, in part by the Department of the Air
Force under Grant FA9453-23-P-A044, in part by the NC Space Grant, in part
by Lockheed Martin Space, in part by Cisco Systems, and in part by the US Na-
tional Science Foundation under Grants CNS-1824518 and ECCS-2203214. The
review of this article was coordinated by Dr. Guiyi Wei. (Corresponding author:
Richeng Jin.)

Md Ferdous Pervej, Shih-Chun Lin, and Huaiyu Dai are with the Department
of Electrical and Computer Engineering, NC State University, Raleigh, NC
27695 USA (e-mail: mpervej@ncsu.edu; slin23 @ncsu.edu; hdai@ncsu.edu).

Richeng Jin is with the Department of Information and Communication
Engineering, the Zhejiang-Singapore Innovation and Al Joint Research Lab,
and the Zhejiang Provincial Key Lab of Information Processing, Communica-
tion, and Networking, Zhejiang University, Hangzhou 310007, China (e-mail:
richengjin@zju.edu.cn).

Digital Object Identifier 10.1109/TVT.2023.3300954

, Graduate Student Member, IEEE, Richeng Jin
, Member, IEEE, and Huaiyu Dai

, Member, IEEE,
, Fellow, IEEE

Index Terms—Connected vehicle (CV), content caching, delay
minimization, software-defined networking (SDN), user-centric
networking, vehicular edge network (VEN).

1. INTRODUCTION

DVANCED driver-assistance systems (ADAS) and in-

fotainment are two premier features for modern con-
nected vehicles (CVs). With advanced radio access technolo-
gies (RATSs), delivering the Society of Automotive Engineers
(SAE) level 5 automation on the road seems more pragmatic
day by day. Different government organizations - such as the
U.S. Department of Transportation’s National Highway Traffic
Safety Administration in the United States [1], the Department
for Transport in the U.K. [2], etc., set firm regulations for the
CVs to ensure public safety on the road. For swift decision-
making to satisfy the safety requirements, the CVs need fast,
efficient, and reliable communication and data processing. As
such, an efficient vehicular edge network (VEN) must ensure
uninterrupted and ubiquitous wireless connectivity on the road.
Note that a VEN is an edge network that mainly focuses on
communication among vehicles and/or between vehicles and
infrastructure [3]. To deliver above services, the VEN demands
advanced machine learning (ML) tools for resource management
complementary to a RAT solution, such as the 5G new-radio
(NR) vehicle-to-everything (V2X) communication [4].

With increased automation, in-car entertainment is also be-
coming a priority for modern CVs [5]. Modern CVs are expected
to have many new features, such as vehicular sensing, onboard
computation, virtual personal assistant, virtual reality, vehicular
augmented reality, autopilot, high-definition (HD) map collec-
tion, HD content delivery, etc., [6], [7] that are interconnected
for both ADAS and infotainment. For these demands, by ex-
ploiting the emerging content caching [8], the centralized core
network can remarkably gain by not only ensuring local content
distribution but also lessening the core network congestion [9],
[10]. As such, VENs can reduce end-to-end latency significantly
by storing the to-be-requested contents at the network edge
[11], which is vital for the CVs’ mission-critical delay-sensitive
applications. A practical RAT on top of content caching can,
therefore, bring a promising solution for SAE level 5 automation
on the road. Moreover, owing to these multifarious requirements,
it is also critical to explore the efficacy of content caching with
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limited cache storage and different types of content classes, each
class with multiple contents, in the content library.

For diverse applications, such as mobile broad bandwidth
and low latency (MBBLL), massive broad bandwidth machine-
type (mBBMT), massive low-latency machine-type (mLLMT)
communications, etc., the CVs urgently need an efficient RAT
solution [12]. In the meantime, regardless of the applications, the
VEN must ensure omnipresent connectivity to the CVs and de-
liver their requested contents timely. The so-called user-centric
networking [13], [14], [15], [16] is surging nowadays with its
ability to shift network resources towards network edge. Note
that a user-centric approach is based on the idea of serving
users by creating virtual cells (VCs) [17], [18], [19]. While
the network-centric approach serves a user from only one base
station, the user-centric approach enables serving a user from
a VC that may contain multiple transmission points [17], [18],
[19]. The latter approach can, thus, not only provide ubiquitous
connectivity but also provide higher throughput with minimized
end-to-end latency for the end-users [20]. As such, a user-centric
approach can combat the frequent changes in received signal
strength - often experienced in VENs due to high mobility, by
ensuring multipoint data transmission and receptions.

While the user-centric networking approach can bring uni-
versal connectivity and MBBLL/mBBMT/mLLMT solutions
for the CVs, it induces a more complex network infrastructure.
To ensure multipoint data transmission and reception, efficient
baseband processing is required. Moreover, as the traditional
hardware-based and closed network-centric approach is inflex-
ible, the user-centric approach demands the use of software-
defined networking [21], which can offer more efficient and
agile node associations and resource allocations in the user-
centric approach. With proper system design, it is possible to
create VCs with multiple low-powered access points (APs) to
ensure that the throughput and latency requirements of the CVs
are satisfied. Moreover, amalgamating content caching with the
user-centric RAT solution can indeed ensure timely payload
delivery for stringent delay-sensitive application requirements
of modern CVs. However, this requires a joint study for - content
placement, CV scheduling, VC formulation, VC association
with the scheduled CV, and radio resource allocation of the APs
in the VCs.

A. Related Work

In literature, there exist several works [22], [23], [24], [25],
[26], [27], [28], [29] that considered cache-enabled VENS from
the traditional network-centric approach. Huang et al. proposed
a content caching scheme for the Internet of vehicles (IoVs) in
[22]. They developed a delay-aware content delivery scheme
exploiting both vehicle-to-infrastructure (V2I) and vehicle-to-
vehicle (V2V) links. The authors minimized content delivery
delays for the requester vehicles by jointly optimizing cache
placement and vehicle associations. Nan et al. also proposed a
delay-aware caching technique assuming that the vehicles could
either a) decide to wait for better delivery opportunities, or b) get
associated with the roadside unit (RSU) that has the content, or
c) use one RSU as arelay to extract the content from the cloud in
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[23]. The authors exploited deep reinforcement learning (DRL)
to minimize content delivery cost. However, these assumptions
are not suitable for CVs because time-sensitivity plays a crucial
role in the quick operation of CVs. [24] proposed quality-of-
service ensured caching solution by bounding the content into
smaller chunks.

Dai et al. leveraged blockchain and DRL to maximize caching
gain [25]. Lu et al. proposed a federated learning approach
for secure data sharing among the IoVs [26]. However, [25],
[26] assumed that the data rate is perfectly known without any
proper resource allocations for the RAT. Zhang et al. addressed
proactive caching by predicting user mobility and demands in
[27]. Similar prediction-based modeling has also been exten-
sively studied in [8], [30], [31]. Moreover, [27] only analyzed
cache hit ratio without incorporating any underlying RAT. Fang
et al. considered a static popularity-based cooperative caching
solution for roaming vehicles, which assumed constant velocity
and downlink data rate and minimized content extraction delay
[28]. Liu et al. considered coded caching for a typical heteroge-
neous network with one macro base station (MBS) overlaid on
top of several RSUs [29]. Vehicles trajectory, average residence
time within RSU’s coverage, and system information were as-
sumed to be perfectly known to the MBS in [29]. Owing to the
time-varying channel conditions in VENs, the authors further
considered a two-time scaled model. Particularly, they assumed
that content requests only arrive at the large time scale (LTS)
slot, whereas MBS could decide to orchestrate resources in each
small time scale (STS) slot - within the LTS slot. However,
although [29] assumed LTS and STS considering time-varying
wireless channels, it did not consider any communication model.
Therefore, the study presented in [29] did not reflect delay
analysis in VENs.

The study presented in [22], [23], [24], [25], [26], [27], [28],
[29] mostly considered that the content catalog consist of a
fixed number of contents from a single category. In reality,
each content belongs to a certain category, and the catalog
consists of contents from different categories. Besides, these
studies mainly assumed that the users request contents based on
popularity. However, each CV may have a specific need for a
particular type of content. For example, some CVs may need
to have frequent operational information, whereas other CVs
may purely consume entertainment-related content. Therefore,
a VEN shall consider individual CV’s preference, as well as the
global popularity.

Some literature also exploited user-centric RAT solutions
for VENs [14], [17], [18], [19], [20], [32]. Considering the
high mobility of the vehicles, [14] proposed an approach for
user-centric VC creation and optimized resource allocation to
ensure maximized network throughput. A power-efficient solu-
tion for the VC of the VENs was also proposed in [20]. Lin
et al. proposed heterogeneous user-centric (HUC) clustering for
VENSs in [32]. Particularly, the authors considered creating HUC
using both traditional APs and vehicular APs. The goal of [32]
was to study how HUC migration helps in VEN. Considering
both horizontal handover (HO) and vertical HO, [32] studied
the tradeoff between throughput and HO overhead. Xiao et al.
showed that dynamic user-centric virtual cells could be used
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to multicast the same message to a group of vehicles in [17].
Particularly, [17] assumed that a group of vehicles could be
considered as a hotspot (HS). If all vehicles inside the HS
are interested in the same multicasted message, multiple APs
could formulate a VC to serve the HS. [17] optimized power
allocation to balance the signal-to-interference-plus-noise ratio
for the vehicles in the HS. Shahin et al. also performed similar
studies in [18], [19]. Instead of serving a single user, they created
HS for V2X broadcast groups. They then maximized the total
active HS in the network using admission control, transmission
weight selection and power control [18], [19].

B. Motivations and Our Contributions

As ubiquitous connectivity is essential for CVs, the existing
RAT solutions may not be sufficient to meet the strict require-
ments of CVs for higher automation. Existing literature shows
that VC-based user-centric networking can bring additional
burdens that need rigorous studies, such as mobility and HO
management [32]. Moreover, as multicasting delivers a common
signal, the study presented in [17], [18], [19] is not suitable for
CV-specific independent data requirements in delay-sensitive
applications. However, an alternative software-defined network-
ing approach with advanced ML algorithms can potentially
bring the RAT solution [14], [20], [33]. Moreover, [14], [20]
considered that all APs could serve all users, which may not be
possible due to limited coverage and other resource constraints.
Inspired by the user-centric VC-based studies [14], [17], [18],
[19], [20], [32], our proposed VEN can deploy a close proximity
edge server that acts as the software-defined controller. The
to-be-requested contents can be prefetched through the edge
servers to ensure local delivery. Besides, multiple low-powered
APs can be placed as RSUs. The controller can determine the
user-centric VC configuration and the corresponding resource
orchestration to meet the requirements of the CVs by controlling
these APs.

In comparison to the above studies, in this work, we have
considered a practical communication model, introduced a
preference-popularity tradeoff in content request models, con-
sidered a multi-class content catalog, introduced a new VC
formation strategy that exploits all possible ways of partitioning
the low-powered APs, introduced a duration of interest (Dol) for
which the edge server cannot update the cache storage due to
practical hardware and overhead constraints, and devised a joint
cache placement and user-centric RAT solution. Particularly, our
contributions are

¢ Considering the stringent requirements of the regulatory
organizations, we propose a new software-defined user-
centric RAT solution that partitions the low-powered APs
to form VC, and provides ubiquitous and reliable connec-
tivity to the CVs on the road.

e To ensure fast decision-making for mission-critical
operations and uninterrupted onboard entertainment,
we exploit content prefetching at the edge server, with
multiple classes in the content catalog, while introducing
preference-popularity tradeoff into individual content
requests owing to the CVs’ heterogeneous preferences.
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Moreover, we introduce a Dol for which the cached
contents remain idle due to practical limitations and
leverage our proposed RAT solution to deliver the
requested contents within a hard deadline.

e We introduce a joint content placement, CV scheduling,
VC configuration, CV-VC association and radio resource
allocation problem to minimize content delivery delays.

e To tackle the grand challenges of the joint optimization
problem, we decompose it into a cache placement sub-
problem and a delay minimization sub-problem - given the
cache placement policy. We propose a novel DRL solution
for the first sub-problem. We then transform the second
sub-problem to a weighted sum rate (WSR) maximiza-
tion problem due to practical limitations and solve the
transformed problem using maximum weighted bipartite
matching (MWBM) and a simple linear search algorithm.

e Through analysis and simulation results, we verify that
our proposed solution achieves better performance than
the existing baselines in terms of cache hit ratio (CHR),
deadline violation and content delivery delay.

The rest of the paper is organized as follows: Section II intro-
duces our proposed software-defined user-centric system model.
Section IIT presents the caching model, followed by the joint
problem formulation in Section IV. Problem transformations
are detailed in Section V, followed by our proposed solution
in Section VI. Section VII presents extensive simulation results
and discussions. Finally, Section VIII concludes the paper. The
important notations are listed in Table I.

II. SOFWARE-DEFINED USER-CENTRIC COMMUNICATION
MODEL

A. Communication System Model

This article considers a software-defined cache-enabled VEN.
An edge server - controlled by a software-defined controller,
is placed in proximity to the edge CVs. The edge server has
dedicated radio resources with limited local cache storage and is
connected to the cloud. Several low-powered APs are deployed
as RSUs to provide omnipresent wireless connectivity to the
CVs. These APs are connected to the edge server with high-
speed wired links. The software-defined centralized controller
can control the edge server and perform user scheduling, node
associations, precoding, channel estimations, resource alloca-
tions, etc. In other words, the edge server acts as the baseband
unit. Besides, unlike the legacy system models, we consider
a user-centric approach that uses multiple APs to serve the
scheduled CVs. These APs are used as RSUs that only perform
radio transmissions over the traditional Uu interface [34]. De-
note the vehicle and AP setby % = {u}V_, and % = {b}2_,,
respectively. The VEN operates in slotted times. Given B APs at
fixed locations, unlike the traditional network-centric approach,
the proposed VEN partitions the AP set % into W(t) < B
subsets of APs at each slot t. Without loss of generality, we
define each subset as a VC. The proposed VEN can assign such
a VC to a scheduled CV.

Let there be a set </ (W(t)) = {a}ffl(” that defines the
possible ways to partition the B APs into W (¢) subsets of APs,
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TABLE I

IMPORTANT NOTATIONS UTILIZED IN THIS PAPER

Parameter Definition
B.B,b Set of APs, total number of APs, b™ AP
U, U,u Set of CVs, total number of CVs, u™ CV
Winax, W (1) Maximum possible VCs with B APs, total created VCs in

slot 1

B (WD), Awr),

All VC configurations set, total possible VC configurations

Be.(W(1)) in B,.(W(r)), VC sets under a configuration
VCi i VC of %% (W(1))
L) Indicator function that defines whether AP b is in VC!
L(1) Indicator function that defines whether CV u is scheduled at
slot 1
I9(r) Indicator function that defines whether VC VC, is selected
for user u at time 7
7,7, 2, Total network bandwidth, total orthogonal pRB, Pad pRB,
size of the pRBs
(1) Indicator function that defines whether pRB z is assigned to
AP b to serve CV u at time ¢
HAGKAGE Large scale fading, log-Normal shadowing, fast fading
hy< (1), hZ'Zm channel response, entire channel response, res[{1 ctively, from
AP b to CV u during slot 7 over the z" pRB
H.(1) Stacked h; s over all pRBs for CV u and AP b during slot ¢
X (1), sp(t), w,~ Intended signal, symbol, and beamforming vector of AP b
for CV u, respectively
P, Tr ission power of AP b
Yo(0), T(1) Downlink received signal and downlink SNR at CV u over
pRB z, respectively, during slot ¢
K Transmission time interval
R.(1) Downlink achievable rate at CV u during slot ¢
¢, C,c Content class set, total content class, ¢™ content class
Fes F, fo, F Content set in class ¢, total content in a class, fh content of
class ¢, entire content library
%C, Ge, g5, Set of the content features, total number of features, g‘;:_
feature, respectively, of content f of class ¢
T, n Dol, cache (re)-placement or Dol change counter
A Bernoulli random variable that defines whether CV u places
a content request at time ¢
¥, Total content requests from all CVs during time 7
1 (1) Indicator function that defines whether CV u requests
content f. during time ¢
fo Cosine similarity index of content f, and f(,
S, A A content size, cache storage size of edge server, cache storage
to be filled with content from class ¢
Iy.(n) Indicator function that defines whether content f, is stored
during cache placement counter n
[ Highest probability for content exploitation of CV u
A CV u’s probability of selecting content class ¢
pf‘ Global popularity of content f,. of class ¢
dﬂ’; d;’} l\llf- Content extraction delay from cloud, wait time of I (1)
e 3 ¢

before being scheduled, transmission delay

a7 3

Maximum allowable delay by the CV, hard-deadline for the
edge server to completely offload the requested content

d(t) Average delays for all IJ¢ (1)s
Mea, Mjoint (1) Cache placement action, possible action space
11” (1) Cache hit event for I° (1)
h(t), CHR( ) Total cache hit during slot 7, cache hit ratio during slot ¢
Tea Cache placement policy of the edge server
A Slots of interests during slot 7
T
Remaining time to the deadline and payload for the
tfd"‘"“r{ requested content in slot 1 —d} + ¢ at the current slot ¢
rcin
Uy Tems Pem Valid CV set during slot 7, and their minimum remaining
deadline and payload sets, respectively
0,(1) Normalized weights of the CVs in valid CV set during slot ¢
N Scheduled CV set during slot 7
R(1) Weighted sum rate of the VEN during slot ¢
FP(n) Top-most popular and their A°-top similar contents matrix
Pr’eq( n) Content-specific requests history matrix of u in past Dol
P, (n) Content-specific local cache hit history matrix of « in past
Dol
P/(n) Measured popularity of contents during n based on past Dol
s 1oy State and instantaneous reward of the edge server during 7,
learning
6.0, Online DNN and offline DNN of the edge server for learning
the CPP

meme,, meniy,"

Edge server’s memory buffer, maximum length of mem,, for
learning 7,

G, R, Bipartite graph, weighted data rate matrix
e(b.z), Ri[b,7] Edge connecting vertex b and z, and corresponding weights
RIF (1) Possible transmissible bits for CV u during slot ¢

i.e., VCs. Denote the i VC of a € .;zf(W( )by VCi C % and

the set of VCs by 22, (W (t)) =
eacha € &/ (W

{veir .

=1

VC # (), Va and i, (1a)

® . Furthermore, for
(t)), the VC must obey the following rules:
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Fig. 1. Proposed user-centric cache-enabled vehicular edge network.

vcl ﬂ VC! =0, Yaand i # i, (1b)
VC” A, Va. (lo)

The first rule in (1a) means that the V C's must not be empty,
while the second rule in (1b) means the subsets are mutually ex-
clusive. Besides, the last rule in (1c) represents that the union of
the V C's must yield the original AP set . When W (t) = 3 and
B = 6, for one possible a € </ (W (t)), the VC set A% (W (1))
is shown in Fig. 1 by the filled ovals.

Then, for a given W (¢), the VEN can formulate the total VC
configuration pool AB,.(W(t)) = {%gc(W(t))}::Wl“) . More-
over, the VEN can partition the B APs into W () VCs following
the above rules in Ay = W(t)!B,.(B, W (t)) ways, where
B,.(B,W(t)) is calculated as

W (t)
Wi(t) _
Buc(B,W (1) = 7757 Z ( p ) W -a)”. @)
Note that B,.(B, W (t)) is commonly known as the Stirling
number of the second kind [35].
To this end, as the VCs contain different AP configurations,
denote the VC and AP mapping by

Iz’a(t) _ 1, if AP b%s in VC! during slot ¢, . 3)
0, otherwise,
The edge server selects the total W (¢) number of VCs to form
and their configuration ABS. (W (t)) € By.(W(t)). The VCs
VOl e 22 (W(t)) are assigned to serve the scheduled CVs.
Denote the CV scheduling and VC-CV association decisions by
the following indicator functions:

—_

, if CV wisscheduled inslot t,
L(t) = : - )
0, otherwise,

Ii’a(t) _ L if vl %s selected for CV w in slot t,' 5)

0, otherwise,

—_—

Note that (5) means that if I4%(¢) = 1, i.e., VC? is assigned to
CV u, then the CV is connected to all APs inside this VC};.
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We contemplate that the VEN operates in frequency division
duplex (FDD) mode and has a fixed Z Hz bandwidth. The
edge server uses this dedicated Z Hz bandwidth and divides
it into Z orthogonal physical resource blocks (pRBs). Let the
set of the orthogonal pRBs be 2 = {z}Z_, for the downlink
infrastructure-to-vehicle (I2V) communication. Denote the size
of a pRB by w, while we introduce the following indicator
function for the pRB allocation

1, if pRBzisassignedto AP b when
Ih0(t) = land*(t) =1, . (6)
0, otherwise,

() =

B. Communication Channel Modeling

We consider single antenna CVs whereas, the APs are
equipped with L > 1 antennas. Let us denote the channel re-
sponse at a CV u from the AP b, over pRB z, as follows:

by * (1) = o (6 (Dhy " (1) € C4, ()
where /9 (t), 7(t) and h}"* (t) = [y L (t), - by (] €

CE*1 are large scale fading, log-Normal shadowing and fast
fading channel responses from the L antennas, respectively.
Besides, h,7 (t) is the I row of h;"*(t) that denotes the channel
between u and the [ antenna of AP b at time ¢ over pRB ~z.
Note that we consider the urban macro (UMa) model [36] for
modeling the path losses following 3rd Generation Partnership
Project (3GPP) standard [34]. Then, for all pRBs in the system,
we express the wireless channels from AP b to CV wu, at time
t,as HY (1) = [ (1), ..., hy"? (t)] € C2*Z. We consider the
edge server has perfect channel state information (CSI)! and all
transceivers can mitigate the Doppler effect.

C. Transceiver Modeling

The transmitted signal at the AP b for CV w is s} (t) =
VPl (t)w, *(t) € CL*1, where P, is the transmission power
of AP b. Besides, z}/(t) and w;"*(t) € CL*! are the unit pow-
ered intended signal and corresponding precoding vector over
PRB z, respectively, of the AP b for w during slot ¢. Then,
the transmitted signals for CV u from all APs is s,(t) =
[s¥(t),...,s%(t)]T € CL*B. Moreover, as each AP transmits
over orthogonal pRBs, the proposed VEN does not have any
interference. To this end, we calculate the received signal at CV
u, over pRB z, as

W(t)

va®) =Y L)
B lia b,u w,z  NH w
x (Z,,leb’ (0120 [y )i 1) + i (”D’ (®)
where 7 (t) ~ CN(0,07) is zero mean circularly symmetric

Gaussian distributed noise with variance 0. The corresponding

! Although channel reciprocity does not hold in FDD, the edge server can use
some feedback channels to estimate the CSI.

1133

signal-to-noise ratio (SNR), over pRB z, is

SO 10 (S 1 o [0 w0 ])
W[ - (SE 1 ()07 '

IMOE
9

Therefore, the total downlink achievable capacity for CV u is

Ru(t) = Zzzzl

III. EDGE CACHING MODELING

w-log, (1+T2(1)). (10)

A. Definitions and Assumptions

To avoid cross-domain nomenclature, we present necessary
terms and our assumptions in the following.

Definition 1 (Content): The source file that the CVs request
is defined as content. These files can contain CVs’ operational
information, geographic information, map/navigation informa-
tion, weather conditions, compressed file with sensory data,
local news, video/audio clips, etc.

Definition 2 (Content Class): Each content belongs to a class
that defines the type/category of the content. Let there be F'
contents in each class and the set of the content class be € =
{c}_,, where C € Z*. Denote the content set of class ¢ by
Fe =1 fc}ff:l, where f. represents the f™ content of class c.
Moreover, let the content size be .S bits.

Definition 3 (Content Features): Let the content in the ¢
classhave G, € Z* features. Denote the feature set of content f,.
by ¥, = {9y, }f;l . Note that the content features are essentially
the descriptive attributes of the content. For example, it can be
the genre/type of the content, names of the directors, actors,
actresses, geolocation information, timestamp, etc.

Definition 4 (Content Library): The content library is com-
prised of all contents from all classes. Let .Z = | J_, .%, be the
content library.

Definition 5 (Duration of Interest (Dol)): The period for
which the content library remains fixed is denoted as the duration
of interest (Dol). Denote this period by Y.

The content library .% is fixed. While the CVs may request
contents in each slot ¢, the edge servers can update its cached
contentonly ineach ¢ = nY time slot, where n € ZT defines the
cache (re)placement counter. Note that this assumption is made
as it may not be practical to update the cache storage in each
slot ¢t due to hardware limitations. Moreover, we assume that
the content update/refresh process is independent of the content
request arrival process. To this end, we focus on request arrival
modeling from the CVs, followed by modeling their preferences,
i.e., their requested f. € .% inslot .

B. User Request/Traffic Modeling

We assume that the CVs can make content requests in each
slot ¢ following Bernoulli distribution. At slot ¢, let ©F, denote a
Bernoulli random variable - with success probability p,,, that de-
fines whether u makes a content request or not. The total number
of requests during a Dol Y for an individual CV u follows Bino-
mial distribution. Besides, at slot ¢, the total number of requests

2Similar access modeling was also used in existing works [37], [38].
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from all CVs, ie., ¥; = 25:1 GZ, follows a Poisson binomial
distribution [39] with probabilities p = {py }uea . Moreover,
the probability of the distribution of ¥, can be bounded using
Proposition 1.

Proposition  1: Let p=E[¥;] = 25:1 p, and p=
(1/0) 25: | pu be the average success probability. Then,
at slot ¢, the probability that the distribution of the total number
of requests of the CVs gets larger than some £ = 1 4+ 0 and
0 < § < U — @1, is bounded above as follows:

Pr{¥; > ¢} < exp[-UDj (x)], (11)

where  Djp(x) = xIn(x/p) + (1 —x) In((1 —x)/(1 —p)) is
the relative entropy of y to that of p and y = £/U.
Proof: Please see Appendix A. |

C. Individual User Preference Modeling

Given that a CV makes a request, we now focus on the
which question, i.e., given that @Z = 1, which content shall that
CV request at that slot? Let us express a particular content f.
requested by CV w during slot ¢ by

12)

e (t) = 1, if©! =1andurequest f,,
“2700, otherwise,

Unlike legacy modeling?, we consider that a CV’s choice de-
pends both on its personal preference and global popularity.
Depending on the operational needs, a CV may prefer to con-
sume a specific content related to its operation. Besides, it may
also prefer consuming a content very similar to the one that it
previously consumed. Moreover, it may also get influenced by
the popularity of the contents. For example, at slot £, a CV may
request operation-related content f. specific to that particular
timestamp. At slot ¢ + 1, it may then need another operation-
related content f/ that is very similar to f.. Similarly, for purely
entertainment-related content, the request can get influenced by
the user’s previous experience. The user may also choose to
consume the most popular content at that time. As such, we
model the user’s content request as the exploitation-exploration
tradeoff between personal preference and global popularity of
the contents. We present this by the €,,-policy, i.e., a CV exploits
with probability €,, and explores with probability (1 — €,,).

1) Content Selection during Exploitation: In this case, the
CV exploits its preferred contents from the same class it previ-
ously consumed a content. Given that CV has requested f. in
slot ¢, it will request the most similar content to f. in class ¢ with
probability €, if ©fF! = 1. Note that similarity between f. and

!, where f. # f/ is calculated as

of = (Y gfcgfé)/( S [ a) a3
gegfc gegfc gegf(/:

2) Content Selection during Exploration: Given that the CV
requested content from class ¢ previously, it will explore new
content from a different class ¢’ # c. Denote CV u’s class selec-
tion probability by p¥, which follows a categorical distribution.

3Legacy model assumes that content requests follow Zipf distribution [22],
[23], [28], which does not capture the personal preferences of the users[8].
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Once the CV chooses the new content class c, it randomly selects
a content from this class based on global popularity. Denote the
global popularity of contents in class ¢ by p/ = {p/<};.cz..
where ple is the popularity of content f..

Note that our design boils down to a solely popularity-based
model [11] when there is only a single content class and ¢,, = 0.

D. Content (Re)placement in the Cache

Recall that only the edge server has limited cache storage in
the proposed VEN. Let the cache storage of the edge server be
A. Denote the cache placement indicator by the binary indicator
function Iy (n) during cache placement counter n. The edge
server obeys the following rules for cache placement:

S. Zil Z; I;.(n) < A,

F
S Zle I;.(n) = A°,

where A€ is the total storage taken by the cached content from
class ¢ € €. Moreover, (14) ensures that the size of the total
cached contents must not be larger than the storage capacity. At
eacht = nY, the software-defined controller pushes the updated
contents into the cache storage. These contents remain at the
edge servers’ cache storage till the next Dol update.

(14)

15)

IV. DELAY MODELING AND PROBLEM FORMULATION
A. Content Delivery Delay Modeling

For higher automation (and uninterrupted entertainment of the
onboard users), the CVs may need to continuously access diverse
contents within a tolerable delay to avoid fatalities (and quality
of experiences (QoEs)). This motivates us to introduce a hard
deadline requirement for the edge server to deliver the requested
contents. We consider that content requests arrive continuously
following ©!s. Each CV can make at most a single content
request based on its preference if ©f = 1. The requester has
an associated hard deadline requirement d?“x, within which it
needs the entire payload. The edge server, on the other hand,
can have a shorter deadline, denoted by Elf} (t), associated with
the requests as it replaces the content at the end of each Dol.
Formally, the deadline for the edge server to fully offload a
requested content is

dfe (t) = min {d}*, (n+ )Y —t}, Vi€ [nY, (n+1)Y]. (16)

Essentially, (16) ensures that the edge server cannot exceed the
minimum of the maximum allowable delay threshold d'¥"** and
remaining time till the next cache replacement slot (n + 1)T.
To that end, we calculate the associated delay of delivering
the requested contents from all CVs u € % . This delay depends
on whether the requested content has been prefetched and the
underlying wireless communication infrastructure. Particularly,
for the cache miss event?, the requested content is extracted from
the cloud. This extraction causes an additional delay and involves
the upper layers of the network>. Denote the delay for extracting

4When the edge server needs to serve content request I'{i” (t) but it does not
have content f. in its local cache storage is known as the cache miss.
SWe assume that each miss event needs to be handled by the upper layers.
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content f., requested by CV w during slot ¢, from the cloud by
de’ftc. Moreover, we consider two more additional delays. The
first one is the wait time of a request before being scheduled for
transmission by the edge server, given that the edge server has
either prefetched the content during the cache placement slot or
the upper layers have already processed the requested content
from the cloud. The second one is the transmission delay. Denote
these two delays, i.e., wait time and transmission delays, for

/e (t) by dg’f and du 't.» respectively. Therefore, the total delay
of delivering the entire content is calculated as
dle(t) = [1 =T, ()] i} +d2 +d3" (17)
Thus, the average content delivery delay for all CVs 1s
— fe (¢
S S i DA U AVNE

B. Joint Problem Formulation

We aim to find joint cache placement I, (n), user scheduling
L, (t), total W (¢) VC to form, the VC configuration B%.(W (t)),
VC association 14%(t) and radio resource allocation for the
serving APs in the selected VCs, i.e., I>%(t)s to minimize
long-term expected average content delivery delay for the CVs.
As such, we pose our joint optimization problem as

T
1 _
minimize d =limsupE | — d(t)]
Tpo (1)L (£), W (£), B (W (1)1 (£),12" (t) T—o0 T ,g?
(19)
fc
st. Ci: Zc 1Zf e <1 VYt (19a)
Cy: (14),(15), Vn, (19b)
U
Ciiy L) <W@), Vi, (19)
w(t) 1,a
Cy Zizl L) =1, Yu, (19d)
U .
Cs : Z =1, i, (19)
w(t) ira(
Ce : Zu IZ IL0(t) = W(t), (19f)
U
Cr: W(t) = mln{zuzl Iu(t),WmaX}, (19g)
B b,u
Cs : Zb MO =1, Ve, (19h)
zZ
Co: Y. 112“():1, Vb, u, (191)
U
Cio: Yy LBt =1, Ve, (19))
bu o
C“ Zz 12[, 1Zu 1% - 7 (19k)
Cip : dfe(t) < dfe(v), (191)
Cis : I, (n), L), 15°(1), 1% (t) € {0,1}, (19m)

where W .« 18 the maximum allowable number of VCs in the
system. Constraint C} ensures that each CV can request at most
one content in each slot ¢. The constraints (14) and (15) in C,
are due to physical storage limitations. Constraint C5 in (19¢)
restricts the total number of scheduled CVs to at max the total
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number of created VCs W (t). Constraints (19d), (19¢), and
(19f) make sure that each CV can get at max one VC, each
VC is assigned to at max one CV and summation of all assigned
VCs is at max the total number of available VCs, respectively.
Besides, constraints C7 in (19g) restricts the total VCs W (t)
to be at max the minimum of the total scheduled CVs and
W nax. Furthermore, constraints (19h), (191) and (19j) ensure
that each AP can get at max one pRB, each pRB is assigned to
at max one AP and each CV gets non-overlapping resources,
respectively. Constraint C'y; in (19k) ensures that all available
radio resources are utilized. C|; is introduced to satisfy the entire
payload delivery delay of a requested content to be within the
edge server’s hard deadline &j} (t). Finally, constraints in (19m)
are the feasibility space.

Remark 1 (Intuitions behind the constraints): Constraint C;
incorporates CV’s content request, while C, is for the cache
placement at the edge server. Constraint C' is for CV scheduling.
Constraints Cy - C5 are for the user-centric RAT’s VC formation
and associations. Besides, constraints Cg - (' are for radio
resource allocation. Moreover, C', is introduced to satisfy the
hard deadline for delivering the CVs’ requested contents, which

holds if Zd M7 L.(%) - k- Ry(t) > S, where & is the transmis-
sion time 1nterval (TTD).

Remark 2: The total delay associated with each content re-
quest, calculated in (17), depends on both cache placement and
the RAT. More specifically, an efficient cache placement solution
can minimize cache miss events, i.e., minimize dm’f s. On the

other hand, dq’ and d> tf depend on the CV scheduling, and
total VC W (¢ ) \(e conﬁguratlon P (W(t)), CV-VC associa-
tion I%%(¢) and radio resource allocation I%%(¢).

Note that the optimization problem in (19) is an average
Markov decision process (MDP) over an infinite time horizon
with different combinatorial optimization variables. Recall that
the CSI varies in each slot ¢. Besides, in slot ¢, neither the CV’s
to-be-requested contents nor the CSI in the future time slots are
known beforehand. As such, without knowing these details, the
optimal decision variables may not be known. In the subsequent
section, we will prove that even the reduced problems of this
complex joint optimization are NP-hard. Moreover, the decision
variables are different in different time slots. As such, we de-
compose the original problem into two sub-problems. The first
sub-problem transforms the cache placement problem, which
will be solved using a learning solution. The second sub-problem
introduces a joint CV scheduling, total W (¢) VC formation,
association and resource allocation optimization problem for
minimizing the average content delivery delay, given that the
edge server knows the cache placement decisions. The learning
solution for the cache placement depends on the following
preliminaries of DRL.

C. Preliminary of Deep Reinforcement Learning

An MDP contains a set of states & = {1}‘%‘9:_/‘] a set of
possible actions .# = {m}m |» atransition probability Py (m)
from the current state x; € 2" to the next state xy € 2~ when
action m is taken, and an immediate reward R;(m) for this state
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transition [40]. RL perceives the best way of choosing actions
in an unknown environment through repeated observations and
is widely used for solving MDP. The RL agent learns policy
7w M x X —[0,1], where w(x¢, m) = Pr{m|x;} denotes the
probability of taking action m given the agent is at state xy.
Following 7, given the agent is at state x;, the expected return
from that state onward denotes how good it is to be at that state
and is measured by the following state-value function:

Vi (z) = E[R|zy, 7] = E {Z

Tena

V' Ry (m) |y, 7|, (20)

t'=t
where v € [0, 1] is the discount factor, Teyq is the time step at
which the episode ends, and Ry (m) is the reward at step ¢'.
Moreover, the quality of an action taken at a state is ascertained
by the following action-value function [40]:

Q(z,m) = )+ Z Vi (av).
The agent’s goal is to find 0pt1mal policy 7* to maximize
Q' (wiym) = Ri(m)+7>_

where V- (xy) = max Q*(zy,
€.
dated as [41]

Q (xy,m) «+ (1 —a)Q (x4, (23)

where « is the learning rate and g = Ri(m)+
7 max Q(xzy,m)) is commonly known as the temporal target.
me

Usually, a deep neural network (DNN), parameterized by its
weight @, is used to approximate Q*(z,m) =~ Q(xz,m;8),
which is known as the so-called DRL [42]. The agent is trained
by randomly sampling S; batches from a memory buffer 2,
which sores of the agent’s experiences {x;, m, R, zy}, and
performing stochastic gradient descent (SGD) to minimize the
following loss function [42]:

L(8) = [5:(6) — Q (wr,m; ),

where 7:(0) = Ri(m) + Yme.x max Q(xy,m;0). While the
same DNN @ can be used to predict both Q(x¢, m;0) and the
target g (@), to increase learning stability, a separate target DNN,
parameterized by 67, is used to predict g, (0~) [42].

Here we emphasize that since the () value functions are
estimated using the DNN 0, i.e., Q*(x,m) = Q(x,m;8), un-
like classical tabular Q-learning, the DRL solution may not
be optimal [40]. To that end, we first introduce our problem
transformation in the next section, followed by more pertinent
information on a DRL-based solution in Section VI.

, P (m ey

Ptt’ Vi (»Lt/) (22a)

ﬁz) This Q(xz, m) value is up-

3

m) + agta

(24)

V. PROBLEM TRANSFORMATIONS

Since the original problem is hard to solve and the decision
variables are not the same in different time slots, we decompose
the original problem by first devising a learning solution for
cache placement policy (CPP) for the cache placement slot
t = nY. Then, we use this learned CPP to re-design the delay
minimization problem from the RAT perspective. Intuitively,
given that the best CPP for the slot ¢t = n'Y is known, in order to
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ensure minimized content delivery delay, one should optimize
the RAT parameters jointly.

A. Cache Placement Policy (CPP) Optimization Sub-Problem

We want to learn the CPP 7., that provides the optimal cache
placement decision Iy, (n) in the cache placement time slots t =
nY, Vn. We have total m,, = HcC:l mé, = HCC:1 (fL) ways
for content placement as A€ and A are of the unit of content size
S based on constraints (14) and (15). Moreover, the CPP 7, is
a mapping between the system state =, and an action m., in
the joint action space with m., (n) possible actions. To this end,
let us define a cache hit event by

1, ifTfe(t)=1andI =1
m(t):{’ if L (1) = Land Iy, (n) = 1,

. (25)
0, otherwise.

Besides, the total cache hit at the edge server is calculated as
the summation of the locally served requests and is calculated
as h(t) =Y, 1;s. (t). Thus, we calculate the CHR as

cur(e) = n)/ (1 140).

Next, we devise the CPP of the edge server that ensures a
long-term CHR while satisfying the cache storage constraints.
Formally, we pose the optimization problem as follows:

(26)

maximize

Tca

CHR(7¢q) = Tlim E
—00

wny CHR(t)} @)

s. t. Ch,Cs, Ifc (n) S {0, 1}, (27a)

where C] and (5 are introduced in (19).
Theorem I: The CHR maximization problem (27) is NP-hard.
Proof: Please see Appendix B. |

B. Joint Optimization Problem for the User-Centric RAT

Note that as the delay of extracting a content from the cloud
during a cache miss event is fixed, the first term in (17) will
be minimized if the CPP 7., ensures maximized CHR. In this
sub-problem, we focus on the other two delays dq’ s, and cls i’
in (17) by jointly optimizing scheduling, VC formatlon VC
association and radio resource allocation of the proposed user-
centric RAT solution assuming the cache placement is known
at the edge server. Therefore, we pose the following modified
content delivery delay minimization problem.

d—hmsupE{ I/T)Z }

minimize

L (£), W (1), B8 (W (£)),15 % (£).12" (t) T—o0
(28)
s.t.  (3,04,C5,Cq,C7,Cy, Cy, Cho, Cry, Cha, (28a)
L (1), 154 (), 12 (¢) € {0, 1}, (28b)

where the constraints in (28a) and (28b) are taken for the same
reasons as in the original problem in (19).

Sub-problem (28) contains combinatorial optimization vari-
ables and, thus, is NP-hard. An exhaustive search for optimal
parameters is also infeasible due to the large search space as
well as sequential dependencies for the deadline constraints in
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C),. Besides, as each content request arrives with a deadline
constraint and wireless links vary in each slot, we consider that
the edge server adopts priority-based scheduling. Intuitively,
given the fact that the edge server does not know the transmission
delay dZ’}tfc due to channel uncertainty and it needs to satisfy
constraint Oy, for all If¢(t)s, it should schedule the CVs with
earliest-deadline-first (EDF)® followed by optimal VC forma-
tion, association and radio resource allocation. Note that EDF is
widely used for scheduling in real-time operating systems [45].
If EDF cannot guarantee zero deadline violation for the tasks, no
other algorithm can [44]. In our case, scheduling also depends
on the availability of the requested content at the edge server. In
cache miss event, the edge server must wait for dm ’t so that the
upper layers can extract the content from the cloud

Upon receiving a content request I/¢(t), the edge server
checks Iy, (n). If I5,(n) = 0, the request is forwarded to the
upper layers. The upper layer initiates the extraction process
from the cloud. At each slot ¢, before making the scheduling
and VC formation decisions, the edge server considers previous
T, slots information. These Z4.; slots are termed as our slots
of interest (Sol) and are calculated in (29).

3 max o
T = {mm{O,t —df* + C}}CLI )

This Sol captures the previous slots that may still have unde-
livered payloads with some remaining time to the deadlines at

the current slot ¢. Denote the remaining time to the deadline and
e

(29)

payload for 150 (t— dm""‘ + () incurrent slot ¢ by Tu rem and
PZ}ﬁax , respectively. Particularly, for all 156( - d?a" + ),

the edge server first checks whether the content is available at
the edge server’s local cache storage or by the upper layers. If it
is available, the edge server calculates the remaining time to the
deadlines and payloads for the requests in all slots of 7. The
edge server finds a set of candidate requester CVs %\, C %,
their minimum remaining time to the deadline set ygm and
corresponding left-over payload set &L . This procedure is
summarized in Algorithm 1. Note that the time complexity of
Algorithm 1 is 0(4U| | + 3U +5).
After extracting the valid CV set %,};, the edge server can

formulate total W (¢) VCs based on the following equation:
W(t) = ol Wina (30)

where |%,},] is the cardinality of the set %},. This essentially
means that the server creates the minimum of the total valid CVs
in the set %, and the maximum allowable number of VCs.
Besides, the edge server calculates the priorities of the valid
CVs set based on their remaining time to the deadlines using the
following equation:

0.0 =)/ (X, 90)).

where ¢, (t) = e, Tl u))/ Tk [u]. Note that (31) sets
the highest priority to the CV that has the least remaining time

to the deadline. The edge server then picks the top-W (t) CVs for
scheduling based on the priorities ¢,,(¢)s. Denote the scheduled

mln{’

3D

6Similar scheduling is also widely used in literature [43], [44].
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CV set during slot ¢ by %, C %,,. Given that the edge server
makes scheduling decisions based on top-W (t) priorities of (31),
to satisfy the hard deadline constraintin C,, we aim to maximize

a WSR, which is calculated as

R =", Tult) R

where the weights are set based on the CV’s priority ¢, ().
Again, the intuition for this is that with the underlying RAT
solution, due to channel uncertainty, the edge server expects
to satisfy constraint C', by prioritizing the CVs based on (31)
and follow optimal VC configuration, their association and
radio resource allocation. As such, we pose the following WSR
maximization problem for the edge server:

(t) - u(t), (32)

maximize R(¢), (33)

B (W (1)), 15 (1),12™ (1)
subject to Cy, Cs, Cg, Cg, Cy, Cio, Ch1,s (33a)
15(t) € {0,1},12%(¢) € {0,1}, (33b)

where the constraints in (33a) and (33b) are taken for the same
reasons as in the original problem in (19).

Remark 3: The edge server finds W (¢) VCs and L, (¢)s using
(30) and (31), respectively. Given that the contents are placed
following 7., during slot ¢ = nY, and the edge server knows
W (t) and I,(¢)s, the joint optimization problem in (28) is
simplified to a joint VC configuration, CV-VC association and
radio resource allocation problem in (33).

VI. PROBLEM SOLUTION

The edge server uses a DRL agent to solve the transformed
CHR maximization problem (27). Since the CVs request con-
tents based on the preference-popularity tradeoff and their future
demands are unknown to the edge server, DRL is adopted as a
sub-optimal learning solution for (27). Moreover, we optimally
solve the joint optimization problem (33). In order to do so,
first, we leverage graph theory to find optimal pRB allocation
based on a given VC configuration B, (W (t)) € By (W (t)).
Then we perform a simple linear search to find the best VC
configuration 2, (W (t)).

A. Learning Solution for the CPP

To find the CPP 7,, the edge server uses some key infor-
mation from the environment and learns the underlying envi-
ronment dynamics. Recall that the CVs requests are modeled
by the exploration and exploitation manner. At the beginning of
each Dol, the edge server determines top-A€ popular contents in
each class and also calculates top-A° similar contents for each
of these popular contents as

1, if f.istop—A°similar content of ftoP,

0, otherwise,

Ftop(n) [07 fc] = { s
where f1°P is in top-A¢ popular content list of class c. Besides,
the edge server also keeps track of the content requests coming
from each CV and corresponding cache hit based on the stored
content during the previous Dol. Let the edge server store
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Algorithm 1: Get Eligible CV Set for Scheduling.

Input: T A () be 70+ AThrem e e+ {Phsem i 72,
1 Initiate empty valid CV set % "1 =[], valid minimum time to the
renrlalnmfg] deadline set ., =[] and valid remaining payload set
Pl =
2 Initiate an initial deadline matrix Tem < Ones(U x d**) x 100 ;
3 Initiate an initial payload matrix P!, + Zeros(U x dy*)

4 for all k slots in Sol set F{, do

5 for uc 7% do
6 if I (k) is available at the edge server in this slot t and
Tﬁmn>02mdpumn>0uwn
7 rem[u k] — Tu rem ’
8 Prem [Lt k} <~ Pu rem >
9 end
10 end
u for ue % do
12 Find the maximum remaining payload for CV u in all slots
inside the Sol .7 | as Pl = max{Pl [u,:]};
13 if B, >0 then
14 Find the minimum valid remaining time to the deadline
k4 = min{T,,[u,:]} and corresponding slot index k% ;
15 %, -append(u) ;
16 F-append (L) -
17 gzrem dppend (Prem |: k::'lll);l:l)
18 end
Output: %/, J,, and Pl

the content-specific request from CV v into a RE*F matrix
P}, (n) during all slots of the Dol. Similarly, let there be a
matrix P¥,,(n) € RO*F that captures content-specific cache
hit 1. (¢)s during all ¢ within the Dol. Furthermore, we also
provide the measured popularity matrix P ¢(n) during the cur-
rent Dol based on the CVs requests in the previous Dol change
interval (n — 1). As such, the edge server designs state x”, as
the following tuple:

- {{P'req }u 1° {tht (n)}gzliFtop(n)7 Pf (TL)} . (34)

The intuition behind this state design is to provide the edge
server some context on how individual CVs’ preferences and
global content popularity may affect the overall system reward.

At each t = nY, the edge server takes a cache placement
action m, to prefetch the contents in its local storage. At the
end of the Dol, it gets the following reward [,

= b,

where 7., (f) = ZC 1ch_1rca[ fe]- Moreover, 7eq[c, fc]
is calculated in (36), where (5;’071’} and 6p;; are two hyper-
parameters. Note that these hyper-parameters balance the cache
hit for the top-A¢ contents and the other stored contents in
the edge server’s cache storage. Empirically, we have observed

6;2,’;} > Op,;¢ works well.

(35)

TealC, fel ({) =
S U (), EF ) fe, £] = 1
and Zgzl I () > 0,
Onit * Yo Lyge (1), i F*°P (n) [c, f] # 1, (36)

and YU, Tk (£) > 0,
otherwise,

- ch:l ZU—I 1 (1),
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We consider that the edge server learns the CPP m., offline. It
uses two DNNs - 0., and 0_,, and learns 7, following the basic
principles described in Section IV-C. Algorithm 2 summarizes
the CPP learning process. While the training episode is not
terminated, in line 6, the CVs make content requests. During the
cache placement slots ¢ = n'Y, line 7, the edge server observes
its state =7, in line 8. Based on the observed state, the agent
takes action m.,, following the e-greedy policy [40] using 6., in
line 9. During the last time slot of the current Dol, in line 11, the
environment returns the reward 7, and transits to the next state
2% in line 12. Moreover, in line 13, the edge server stores its
experiences tuple {7, Meq, ", 2" } into its memory buffer
memeq, Which can hold memg** number of samples. In line
15, the edge server randomly sample S, batches from mem.,
and uses the 0, and 0_,, to get Q(z?,, Mmcq;60.,) and the target
value g;(07), respectively. In line 16, it then trains the DNN
0., by minimizing the loss function shown in (24) using SGD.
Moreover, after 7)., steps, the offline DNN @ gets updated by
6. in line 20.

B. WSR Maximization

Recall that once the edge server determines W (t) based
on (30), all possible VC configurations %,.(W(t)) =
{,%’gc(W(t))}AW(” can be generated following the VC forma-
tion rules defined in (1a)-(1c). Besides, each VC configuration
P4 (W(t)) has exactly W (t) number of VCs. Moreover, the
edge server schedules | %, | = W (¢) CVsineach slot ¢ based on
the priority ¢, (t). Let the i CV in %, be assigned to the i VC
in 22, (W(t)). This assigns each CV to exactly one VC and all
VCs are assigned to all scheduled CVs. Therefore, essentially,
for a selected VC configuration #2,(W (t)), by assigning the
VCs in the above mentioned way, the edge server can satisfy
constraints 3, Cy, Cs and Cy. To this end, given that the selected

VC configuration ¢, (W (t)) and I:,%(¢) are known at the edge
server, we can rewrite (33) as follows:
maximize  R(t), (37)
(1)
subjectto  Cg, Cy, Cho, C11,15%(t) € {0,1}.  (37a)

As the CSI is perfectly known at the edge server, it can choose
maximal ratio transmission to design the precoding vector w;"*
In other words, given 1%%(t) = 1, the edge server chooses
w, % (t) = h,%(t)/|Ih, " (¢)|. Besides, the received SNR at the
CV u, calculated in (9), is the summation over all APs of the
CV’s assigned VC divided by total noise power. As such, we
can stack the weighted data rate at the CV from the APs that
are in its serving VC over all pRBs into a matrix - denoted by
R; € RB*Z matrix. This weighted data rate matrix extraction
process is summarized in Algorithm 3. In this algorithm, we
initiate a matrix of zeros of R®*Z in line 1. Recall that all VCs
are assigned to the scheduled CVs and all APs are assigned
to form the VCs based on the rules defined in Section II-A. As
such, foreachu € %, , we get the assigned VC in line 3. Then,
for all APs and all pRBs, we calculate the spectral efficiency in
line 6. Moreover, we update the respective (b, z) element of the
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Algorithm 2: CPP Learning Algorithm.

Algorithm 5: Content Delivery Model.

Input: Scas Memeg, ﬁt‘a’ Emaxs Emins Vs Tepnchs T, ecm e:a

1 Calculate € decaying rate as decaye = S —tnin
VXdepoch

2 for e in Topoen do

3 € < max{€nin, Emax — (€ X decaye)} ;

4 Set t =0, n =0, done=False ;

5 while not done do

6 Get all CVs content requests using Section III-C ;
7 ifr==0 or(gt+1) mod Y) == 0 then

8 Get state x;, from the environment ;

9 Edge server takes cache placement action m,, based on

observation x!, using its action selection policy ;

10 n+=1;

11 else if (r+1) == (nY — 1) then

12 Get 77, x;'{; and done flag from environment ;
13 Store {x",,meq, 1", x" done} into Meme, ;

14 if len(Mem.q) > Sq then // train O,

15 Uniformly sample S, samples from Mem,, ;
16 Use the sampled samples to train 0, ;

/

Y X Xea s

18 t+=1;

19 if t mod fi,, ==0 then // Update @,

20 |0, < Oca

21 end
22 end

Output: 6.,

R, matrix in line 7. Note that Algorithm 3’s time complexity is
OW()RZ|IVCy| + 1] + 1).

Algorithm 3: Get Weighted Data Rate Matrix.

Input: 2Ly, 25V (1), {9u(0) s, - B0
1 Initiate matrix R, = zeros(Bx Z) ;
2 for ue %}, do

3 |Get assigned VC} using 10

4 for b € VC, do

5 for z€ 2 do R

.z NH U2
6 Calculate r;(u,b,z) =log, <1 + M) received
b
at CV u from AP b over pRB z during slot 7 ;

7 R [b,2) = r(u,b,2) X ¢, (1) ;

8 end

9 end
10 end

Output: R,

Algorithm 4: Optimal VC Configuration and pRB Alloca-
tion.

nputs W(0). % {0,(0)}car, - HE(0). (W (1)
Initiate WSR vector ¥; = zeros(AW(,)) and empty pRB allocation set
L(t) = []’

2 for #5.(W(t)) € B,(W(r)) do

Get R; matrix from Algorithm 3 for this VC configuration ;

4 Solve the MWBM problem using Hungarian algorithm [46] to
get optimal pRB allocation set I} = {Ié”" (1) }f: | and get the
optimal sum-weights r; from the optimal edges e*(b,z) ;

_

w

Fla =1
L.(¢).append(I}) ;
end

Find the max(¥,) and corresponding index a* ;

Take best VC configuration %%. (W (z)) and corresponding optimal
PRB allocation set 1" (1) = L (1)[a*];

Output: %% (W (t)) and 2 ()

e ® N w;m

Upon receiving R, the edge server leverages graph theory
to get the optimal assignment as follows. It forms a bipartite
graph G = (B x %, &), where B and Z are the set of vertices,
and & is the set of edges that can connect the vertices [47].
Moreover, R;[b, z] are the weights of edge e(b, z) that connects

Input: I{° (t)’s of all CVs in content delivery slot ¢

Check if the requested contents are in the cache storage, if any
requested content is not available, forward the request to upper layer
for extraction from cloud;

Calculate Sol 7521 using (29);

Find eligible CV set %%, using Algorithm 1;

Find total number of VC to formulate, i.e., W (t) using (30);
Calculate eligible CVs’,i.e., u € ”//Vtal, priorities using (31);

Get the CV set %%, to schedule by picking the top-W (t) ¢, (t)s;
Find optimal VC configuration %%, (W (t)) and optimal pRB
allocations T2 (t) by running Algorithm 4;

8 Based on VC configuration 2%, (W (t)) and I2* (£) calculate CVs

SNRs Iy = {Fz(t)}ue%_th using (9);

9 Calculate R%(t) using (38) forall u € %, ;

10 Offload RY%*(t) bits from the remaining payloads of all CVs u € %},

N : Ft .
orderly from the requests made in the Sols g ;

11 Update all uw € % remaining payload and deadline;

—

N N R W

vertex b € A and z € Z. Note that, for the graph GG, a matching
is a set of pair-wise non-adjacent edges where no two edges
can share a common vertex. This is commonly known as the
maximum weighted bipartite matching (MWBM) problem [47].
The edge server needs to find the set of edges e*(b, z) € & that
maximizes the summation of the weights of the edges. Moreover,
the edge server uses well-known Hungarian algorithm [46] to get
the optimal edges e*(b, 2), i.e., pRB allocations 12%(#)s in poly-
nomial time. This pRB allocation is, however, optimal only for
the selected VC configuration 2. (W (t)). In order to find the
best VC configuration 2%, (W (t)), the edge server performs a
simple linear search over all Ay (;)s VC configurations. As such,
we can solve problem (33) optimally using the above techniques.
Algorithm 4 summarizes the steps. Note that Algorithm 4 has
a time complexity of O(Ayw )W (¢t)2Z|VCi| + 1)+ Z° +
4] +3).

C. Content Delivery Process

Contents are placed using the trained CPP 7, during each
cache placement slot ¢ = n Y, while the CVs make content
requests in each ¢ following Section III-C. Please note that,
during t = nY, the edge server only requires to perform one
forward pass’ on the trained 6.,. Upon receiving the /< (#)s,
the edge server checks whether Iy, (n) =1 or Iy (n) = 0. If
I, (n) = 1, f.canbe delivered locally. All cache miss events are
forwarded to the VEN’s upper layers. The upper layer extracts
each cache missed content from the cloud with an additional
delay of d;nftc In all ¢, the edge server calculates the Sol 7.,
using (29). It then finds the eligible CV set %, and forms total
W (t) VCs using Algorithm 3 and (30), respectively. To that
end, the edge server calculates the priorities ¢,,(t)s using (31)
and selects top-W (¢) CVs to schedule. Once the edge server
knows W (t), ¢, (t)s and %L, it runs Algorithm 4 to get the VC
configuration and pRB allocations that maximizes the WSR of
(33). Algorithm 4 returns the 8%, and I%* (t) which then can be

ve

"The time complexity of the forward pass depends on the input/output size
and DNN architecture.
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TABLE IT
SYSTEM PARAMETERS
Ttem/Description Value
Total number of APs B 6
Maximum possible VC per slot W, 5
TTI k T ms
Dol update interval T S50 x k
Carrier frequency 2 GHz
pRB size ® 180 KHz
Noise power G~ -174 dBm/Hz
AP coverage radius 250 m
Antenna/AP L 4
AP antenna height 25 m
CV antenna height I.5m
Transmission power P, 30 dBm
AP transmitter antenna gain G 8 dBi
CV receiver antenna gain Giy 3 dBi
CV receiver noise figure Ly 9 dB
Total content class ¢ 3
Contents per class [ 7, 5
Feature per content G, 10
AN cache size A {3,6,9,12} xS
Max allowable delay &7 10x K
Content extraction delay d:f;c S5xK
CV active probability p, Uniform(0.1,1)
CV’s inclination to similarity/popularity &, Uniform(0, 1)
E
- b—.=
3
Fig. 2. Simulated Rol.

used to get the SNRs I'Z (¢)s from (9). Upon receiving the SNRs
T'Z(t)s, the edge server can calculate the possible transmitted
bits for the CVs as follows:

RYH(t) = k- Rul(t). (38)

The edge server then delivers the remaining Pf;i:fzax+cs
sequentially. This entire process is summarized in Algorithm 5.
The time complexity of running Algorithm 5 is &(U[A/S +
4| Tl + 4] + W (t) log(| %) + Aw ) 2ZIVCE| + 1) +

3+ Aw2° + 4] + %5 + | Tsy| + 10).

VII. PERFORMANCE EVALUATION

A. Simulation Setting

We consider U CVs roam over a region of interest (Rol)
and deploy B = 6 APs alongside the road to cover the entire
Rol. Table II shows other key simulation parameters used in
this article. We consider a 300 meters by 200 meters Manhattan
grid model [34] with two-way roads as shown in Fig. 2. For
realistic microscopic CV mobility modeling, we use the widely
known simulation of urban mobility (SUMO) [48]. The CVs are
deployed with some initial routes with a maximum speed of 45
miles/hour and later randomly rerouted from the intersections on
this Rol. In SUMO, we have used car-following mobility model
[49] and extracted the CVs’ locations using the Traffic Control
Interface [50] application programming interface.

To design our simulation episode, we consider 1000+ mil-
liseconds of CVs activities. For the CPP learning, the edge
server uses DNN 0., that has the following architecture: 2D
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rining Rewards Vs Episodes

Fig. 3. CPP learning: average return during training.

convolution (Conv2d) — Conv2d — Linear — Linear. We train
0., in each cache placement slots with a batch size S., =
512. Besides, we choose v = 0.995, €nax = 1, €min = 0.005,
v =0.6, Mem2* = 15000, T¢pocr, = 15000, 7., = 4Y. For
training, we use Adam as the optimizer with a learning rate of
0.001. Using our simulation setup, the edge server first learns
Teq Using Algorithm 2 for T, episodes. The average per
state returns during this learning is shown in Fig. 3. As the
training progresses, we observe that the edge server learns to
tune its policy to maximize the expected return. After sufficient
exploration, the edge server is expected to learn the CPP that
gives the maximized expected return. As a result, it is expected
that the reward will increase as the learning proceeds. Fig. 3 also
validates this and shows the convergence of Algorithm 2. As
such, we use this trained CPP 7., for performance evaluations
in what follows.

B. Performance Study

We first show the performance comparisons of the learned
CPP with the following baselines without any RAT solution.

Genie-Aided cache replacement (Genie): The to-be requested
contents are known beforehand during the start of the Dol
provided by a Genie. In this best case, we then store the top-A°
requested contents from all ¢ € ¢ in all n.

Random cache replacement (RCR): In this case, contents from
each class are selected randomly for cache placement.

K-Popular (K-PoP) replacement [51]: In this popularity-
based caching mechanism, we store the most popular K = A°
contents during the past Dol for each content class ¢ € .

Modified K-PoP+LRU (K-LRU) replacement: We modify
the popularity-driven K-PoP with classical least recently used
(LRU) [52] cache replacement. The least popular contents in the
K-PoP contents are replaced by the most recently used but not
in K -PoP contents to prioritize recently used contents.

To this end, we vary the cache size of the VEN and show
the average CHR during an episode in Fig. 4(a). The general
intuition is that when we increase the cache size A, more contents
can be placed locally. Therefore, by increasing A, the average
CHR is expected to increase. /X-PoP and K -LRU do not capture
the heterogeneous preferences of the CVs. Similarly, as contents
are replaced randomly with the naive RCR baseline, it should
perform poorly. However, when the cache size is relatively
small, solely popularity-based K-PoP performs even worse
than RCR. This means that popularity does not dominate the
content demands of the CVs. Moreover, when the cache size
becomes moderate, K -PoP and K-LRU outperform the naive
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Fig. 4.

RCR baseline. On the other hand, the proposed CPP aims to
optimize 7., by capturing the underlying preference-popularity
tradeoff of the CVs. Therefore, the average CHR is expected to
be better than the baselines. Fig. 4(a) also reflects these analysis.
Moreover, notice that the performance gap with the Genie-aided
average CHR and our proposed CPP is lower. In the VEN, we do
not know the future and CVs’ content demands. Therefore, we
can only predict the future and tune the CPP 7., accordingly.
Particularly, when the cache storage is reasonable, the perfor-
mance gap of the proposed CPP is much lower. For example,
at A =9 and A = 12 the proposed CPP delivers around 93%
and 98% of the Genie-aided solution. Moreover, the baselines
perform poorly regardless of A. For example, at A =9, the
proposed CPP is around 49%, 23% and 24% better than RCR,
K-PoP and K-LRU, respectively.

Fig. 4(b) shows the average CHR variation over 10 test episode
in 100 simulation runs and corresponding standard deviations.
As expected, the performance of the proposed CPP is very close
to the Genie-aided performance in these test runs. Particularly,
the proposed CPP delivers around 98% of the Genie-aided
performance. Moreover, the other baselines’ average CHRs
largely deviate from the Genie-aided solution. We observe that
the proposed CPP is around 52%, 16% and 14% better than
RCR, K-PoP and K-LRU, respectively, even when A is 80% of
the content catalog .%, which validate the effectiveness of the
proposed method.

To this end, we study the impact of different Dol T on the
CHR. Recall that the Dol is the period for which the contents in
the library remain fixed. A shorter Dol means that the content
catalog can be refreshed quickly. Besides, based on our content
request model, each CV’s content choices change fewer times
within this short interval. Hence, the edge server can quickly
accommodate the CPP to capture the future demands of the
CVs. This, thus, may yield better CHR. On the other hand, when
this period is extended, performance is expected to deteriorate
slightly. This is due to the fact that the cache storage cannot be
replaced until this Dol period expires, while the CVs’ requests
vary in each slot. We also observe similar trends in our simulation
results. Fig. 4(c) shows CHR for different Dol, where we observe
that even the Genie-aided performance degrades from 80% to
76% when the Dol is increased from 25 x s to 100 x k. We

5
Test Episode

75 100
Duration of Interest: T

(b) (c)

(a) CHR comparison with baselines when Y = 50 x x (without RAT). (b) CHR comparison with baselines for 10 test episodes when T = 50 x &
(without RAT). (c) CHR analysis for different Dol when U = 8 (without RAT).

also observe that our proposed CPP experiences only about 4%
performance degradation. Moreover, the performance improve-
ment of our proposed solution is about 49%, 22% and 23% at
T =25 x s and about 42%, 17% and 18% at ¥ = 100 x &,
respectively, over the RCR, K-Pop and K-LRU baselines. Note
that we leave the choice of Dol as a design parameter chosen
by the system administrator, which can be decided based on the
practical hardware limitations and other associated overheads
in the network. As such, we fix T = 50 x k for the rest of our
analysis.

As content requests arrive following preference-popularity
tradeoff, the CHR also gets affected by the total number of CVs
in the VEN. Intuitively, as the CVs’ preferences are heteroge-
neous, when the total number of CVs in the VEN increases,
the content requests largely diversify. Therefore, even with the
Genie-aided solution, the CHR may degrade when the number
of CVs in the VEN increases. This is also reflected in our
simulated results in Fig. 5(a). The performance of the proposed
CPP algorithm is stable regardless of the number of CVs in the
VEN. We observe a slight performance gap between the CPP
and the Genie-aided solution. This gap gets smaller and smaller
as the total number of CVs in the VEN increases. Particularly,
we observe that the proposed CPP delivers an average 97%
CHR for the considered CV numbers. Besides, it delivers around
47%, 21% and 22% better performance than RCR, K-PoP and
K-LRU,respectively. Therefore, we will use this CPP 7, to find
I, (n) for all n and show performance analysis of our proposed
user-centric RAT solution.

To that end, we compare the performance of the proposed
RAT solution with legacy network-centric RAT (NC-RAT). In
the NC-RAT, a base station (BS) is located at a fixed suitable
location which has Z = 6 pRBs and total transmission power of
46 dBm. We use the same scheduling and deadline-based priority
modeling for the NC-RAT as the proposed user-centric case.
Besides, we distributed the total transmission power proportion-
ally to the scheduled CVs’ priorities. Moreover, we performed
the same WSR maximization problem for getting the pRB
allocation using Hungarian algorithm [46]. In the following, this
legacy RAT solution is termed NC-RAT and used with the cache
placement baselines. On the other hand, the ‘Proposed’ method
uses the proposed CPP and user-centric RAT solution.
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Fig. 5.
baselines. (c) Deadline violation percentage comparison with legacy NC-RAT.

Intuitively, with an increased A, the edge server can store more
contents locally which increases the total number of local deliv-
ery by assuring lower cache miss events. Therefore, with a proper
RAT solution, the content delivery delay is expected to decrease
if we increase the cache size of the edge server. We also observe
this trend with both NC-RAT and our proposed user-centric RAT
solution in Fig. 5(b). However, note that NC-RAT is inflexible,
and depending on the location of the CVs, NC-RAT may not even
have expected radio-link qualities. This can, therefore, cause link
failure and may increase the content delivery delay for the CVs’
requested content. On the other hand, the proposed user-centric
RAT solution can design the appropriate VC configuration, VC
associations and proper radio resource allocation to deliver the
content timely. Therefore, we expect the user-centric RAT solu-
tion to outperform the traditional NC-RAT. Fig. 5(b) shows the
average content delivery delay d = & 3> d(t), where d(t) is
calculated in (18) with W, = 5. As we can see, the proposed
solution outperforms the baselines. Particularly, the average gain
of the proposed solution on content delivery delay is around 15%
over the baselines.

The effectiveness of the proposed solution is more evident in
Fig. 5(c), which shows the percentage of deadline violations
in a test episode when the content size is S =4 KB. As a
general trend, the deadline violations decrease as A increases.
Besides, among the cache placement baselines, as we have seen
in the performance comparisons of the CPP, even RCR delivers
lower deadline violations than solely popularity-based /-PoP
when the cache size is small. Moreover, we observe around 28 %
higher deadline violations with the baseline NC-RAT over our
proposed user-centric RAT solution. Recall that this deadline
violation is essentially the violation of constraint C},, which
means the requester CVs have not received the requested content
by their required deadlines. As such, these requester CVs may
experience fatalities and degraded QoEs with the existing RAT
and cache placement baselines.

Content size S also affects the delivery delays and correspond-
ing deadline violations. Intuitively, content delivery delay shall
increase if the payload increases when the network resources
are unchanged. This also increases the likelihood of deadline
violations. Fig. 6 shows how the delivery delay gets affected by
content size S. Note that transmission delay is directly related

(a) Deadline violation percentage comparisons for different content size S. (b) Average content delivery delay comparison with NC-RAT and caching

Delay Vs Content Size |U = 8|A = 9|F = 15
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Fig.6.  Average content delivery delay comparisons for different content sze .S.
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Fig.7. Deadline violation percentage comparisons for different content size .S.

to channel quality between the transmitter and receiver. This
channel uncertainty can cause fluctuations in the content deliv-
ery delay. However, the general expectation is that the content
delivery delay will increase when the payload size increases. We
also observe these in Fig. 6. Particularly, when S = 2.5 KB, the
performance gain of the proposed solution is around 30% over
the RCR+NCRAT and around 27% over the K-PoP+NCRAT
and K-LRU+NCRAT baselines.

Recall that delay cannot exceed the hard deadline. Therefore,
higher content delivery delay leads to deadline violations. Fig. 7
shows how the payload size affects the deadline violations in
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the proposed VEN. As expected, even when the payload size
is small, we observe that the legacy NC-RAT solution cannot
ensure guaranteed delivery within the deadline. On the contrary,
our proposed solution can ensure 0% deadline violations till
S = 3 KB. Moreover, when S increases, the deadline violation
percentage of our proposed solution performs significantly better
than the NCRAT-based baselines. For example, when S = 4 KB,
the deadline violation percentage with our proposed solution is
around 12%, whereas the NCRAT-based baselines have around
47% deadline violations. From Fig. 5(b)-7, we can clearly
see that the traditional NC-RAT is not sufficient to deliver the
demands of the CVs.

To thatend, we show the efficacy of the proposed RAT solution
by considering all cache placement baselines accompanied by
the proposed RAT solution for delivering the requested contents
of the CVs. Fig. 8 shows how the content delivery delay gets
affected by different cache sizes. Particularly, the proposed
solution delivers requested contents around 14%, 7% and 8%
faster than the RCR+Proposed-RAT, K-PoP+Proposed-RAT
and K-LRU+Proposed-RAT, respectively, when A = 9. Recall
that the proposed CPP (without RAT) had a performance gain
of around 49%, 23% and 24% over the RCR, K-LRU and
K -PoP, respectively. The proposed RAT can, thus, significantly
compensate for the cache miss events.

Moreover, Fig. 9 shows delay vs total number of CVs U in
the VEN. Intuitively, if U increases, the edge server receives a
larger number of content requests. Then, with the limited VCs,
the edge server can at max schedule only W, number of CVs.
Therefore, d is expected to increase if U increases, which is
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also reflected in Fig. 9. Notice that in both Figs. 8 and 9, while
the proposed solution outperforms the other cache placement
baselines, the performance gaps are small because all cache
placement baselines now use our proposed user-centric RAT
solution for delivering the requested contents.

Finally, our extensive simulation results suggest that the CHR
from our proposed CPP is very close to the genie-aided solution,
while the baseline RCR, K-Pop and K-LRU cache placements
yield poor CHRs. Besides, when we use the proposed CPP with
our user-centric RAT solution, the performance improvements,
in terms of deadline violation percentage and content delivery
delay, are significant compared to existing legacy NC-RAT with
the above cache placement baseline solutions. Additionally,
having a larger cache storage size increases the CHR, while
having more CVs in the VEN leads to a slightly degraded CHR
for all cache placement strategies. Moreover, with fixed limited
radio resources, content delivery delays grow, which increases
the deadline violation percentage.

VIII. CONCLUSION

Considering the higher automation demand on the road, in this
article, we propose a user-centric RAT solution for delivering the
CVs requested content with a learning solution for the cache
placement. From the results and analysis, we can conclude
that existing cache placement baselines may not be sufficient
to capture the heterogeneous demands and preferences of the
CVs. Moreover, the existing NC-RAT may cause severe fatalities
on the road as it yields frequent deadline violations. Even for
continuous deadline-constrained demand arrivals in each time
slot, the proposed software-defined user-centric RAT solution
has shown significant potential for offloading the payloads
timely. The results suggest that our proposed cache placement
policy delivers practical near-optimal cache hit ratio while the
proposed user-centric RAT efficiently delivers the requested
contents within the allowable deadline.

APPENDIX A
PROOF OF PROPOSITION 1

Assuming ¢ > 0, we write the following:

(a)
Pr{l, > &} =Pr{e > e} < (E[eV]) /e,
@) e HU:1 E [eLef‘} © et HU:] (1 = pu + pue'),

U v
(%) 67L§|:Zu:1 (1 7Up“+p“6 ):|U:€7L£ [1— p + P L}U

=exp[—&+Uln(1 —p+ pe)],

where (a) follows Markov inequality, (b) is true as ©'s are
independent and identically distributed, (¢) follows as E[e‘©%]
is the moment generating function of ©,, and (d) is obtained
following the inequality of arithmetic and geometric means.
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To this end, we find e* = £ (11]1;3 ) that minimizes (39). Plug-

ging this value in (39), we obtain the bound as

Pr{T, > ¢} < exp {U {ln (g:?) —xIn (M)H

= exp [-UD; (X)), (40)

where Y = £ in (a) and Dy = xIn (%) +(1=x)In (%)

APPENDIX B PROOF OF THEOREM 1

We show that an instance of our problem in (27) reduces to
an instance of a well-known NP-hard problem. Particularly, we
only consider a single cache placement step ¢ = n'Y’ and assume
that I/=(¢)s, Vt € [nY, (n + 1)Y] are known at the edge server
beforehand®. Then, we re-write our (27) instance as

> CHR(t),
te[nY,(n+1)Y]

C
SN S I m) <A Y S I (n)=A°,  (@la)

c=1 f.eZ. fe€Ze

Ir.(n) €{0,1},Ve=1,...,C; f. € Z,,

maximize

41
It (n);VfeeF “n

(41b)

where the constraints are taken for the same reasons as in (27).

To that end, if A°= 5.1, we could rewrite the second
constraint as ) .z 7 (n) = 1. Then, it is easy to recognize
that an instance of the well-known multiple-choice knapsack
problem (MCKP) [53] has reduced to this instance of our CHR
maximization problem. As MCKP is a well-known NP-hard
problem [53], we conclude that the cache placement problem
for each t = nY is NP-hard even when the to-be requested
contents are known beforehand. As such, the long-term policy
optimization problem in (27) is NP-hard.
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