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Abstract

Preferential attachment (PA) network models have a wide range of applications in various sci-
entific disciplines. Efficient generation of large-scale PA networks helps uncover their structural
properties and facilitate the development of associated analytical methodologies. Existing soft-
ware packages only provide limited functions for this purpose with restricted configurations
and efficiency. We present a generic, user-friendly implementation of weighted, directed PA net-
work generation with R package wdnet. The core algorithm is based on an efficient binary tree
approach. The package further allows adding multiple edges at a time, heterogeneous recipro-
cal edges, and user-specified preference functions. The engine under the hood is implemented
in C++. Usages of the package are illustrated with detailed explanation. A benchmark study
shows that wdnet is efficient for generating general PA networks not available in other packages.
In restricted settings that can be handled by existing packages, wdnet provides comparable
efficiency.
Keywords complete binary tree; heterogeneous reciprocity; multiple addition; user-specified
preference function; weighted and directed network

1 Introduction
Preferential attachment (PA) networks are important network models in scientific research. The
standard PA model (Barabási and Albert, 1999) evolves under the mechanism that a new node
is attached to an existing node with probability proportional to its degree. With the increasing
needs of accommodating the heterogeneity and complexity of modern networks, a variety of
extended PA network models have been proposed. Examples are directed PA models (Bollobás
et al., 2003), generalized directed PA models (Britton, 2020), weighted PA models (Barrat et al.,
2004), and PA models with reciprocal edges (Britton, 2020; Wang and Resnick, 2022a,b). In a
general setting, the probability that a node gets a new edge is proportional to a preference
function of some (node-specific) characteristics (e.g., node degree or strength). Due to their
versatility, PA models have found a wide range of applications such as friendship networks (Mo-
meni and Rabbat, 2015), scientific collaboration networks (Abbasi et al., 2012), Wikipedia net-
works (Capocci et al., 2006), and the World Wide Web (Kong et al., 2008), among others. Many
of these networks are massive in scale.
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Table 1: Summary of packages generating PA networks.
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Preference function
fastnet ! ! Node degree
igraph ! ! Power of node degree plus a positive constant
NetworkX ! Node degree
PAFit ! Power or logarithm of node in-degree
wdnet ! ! ! ! General (user-specified) function of node degree/strength

Efficient generation of large-scale PA networks is critical to the investigations of their com-
plex local and asymptotic properties. When the preference function is linear in node degree,
Wan et al. (2017) developed a structured algorithm with complexity O(n) for generating di-
rected PA networks, where n is the number of generation steps. When the preference function is
nonlinear in node degree, however, a naive extension of this algorithm requires visiting existing
nodes one after another at each sampling step, leading to an increase in complexity to O(n2).
Other node-degree-based techniques like stratified sampling or grouping (Hadian et al., 2016)
cannot handle continuous edge weights. An algorithm based on a binary tree (Atwood et al.,
2015) has complexity O(n log n) at the cost of additional storage of subtree information for each
node. This algorithm is promising in handling weighted, directed PA networks with general pref-
erence functions. No user-friendly software package, however, has been available beyond the C
implementation of Atwood et al. (2015).

Existing software packages only provide limited functions for PA network generation. Python
package NetworkX (Hagberg et al., 2008) has a utility function for generating unweighted, undi-
rected, linear PA networks. R packages igraph (Csardi and Nepusz, 2006), PAFit (Pham et al.,
2020), and fastnet (Dong et al., 2020) contain functions for generating directed and/or undirected
PA networks, but none of them allows edge weights. Both igraph and PAFit provide functions
for preference functions that are not linear in node degrees, but they only cover a small class of
power and logarithm functions. Further, no existing package implements the recently proposed
PA models with reciprocity (Britton, 2020; Wang and Resnick, 2022a,b). See Table 1 for a brief
summary of the functions for generating PA networks in these packages.

We introduce an R package wdnet (Yuan et al., 2023) for efficient generations of a general
class of PA networks. The core algorithm is a generalization of the binary tree approach (Atwood
et al., 2015). Our package contains substantial improvements in the flexibility for the generation
of PA networks: It not only allows directed edges and edge weights, but also has additional
features such as multiple edge additions, user-defined preference functions, and heterogeneous
reciprocal edges, among others. See Table 1 for a summary of the features in comparison with
existing packages. The engine under the hood is implemented in C++ for fast speed and then
interfaced to R as facilitated by package Rcpp (Eddelbuettel and François, 2011).

The rest of the paper is organized as follows. In Section 2, we introduce the preliminaries
of weighted, directed PA networks and present the core binary tree algorithm for generating
PA networks with basic configurations. In Section 3, we illustrate the usage of the main gen-
eration function and how to control the PA network configurations for advanced features like
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adding multiple edges and reciprocal edges, and defining user-specified preference functions.
Performance comparisons are conducted in Section 4. Section 5 concludes with a summary of
the paper and a brief introduction of other functions beyond PA network generation in package
wdnet.

2 Generating Weighted, Directed PA Networks
We begin with an introduction to weighted, directed PA networks and a generic PA network
generation framework in Section 2.1. The core of an efficient PA network generation algorithm
in package wdnet is specified in Section 2.2.

2.1 Preliminaries
For discrete time t = 0, 1, 2, . . ., let G(t) := (V (t), E(t)) be a weighted, directed network with
node set V (t) and edge set E(t). For any vj , vk ∈ V (t), let (vj , vk, wjk) ∈ E(t) denote a directed
edge from vj to vk, where wjk > 0 represents its weight. There can be more than one edges from
vj to vk. For the special case of j = k, (vj , vk, wjk) ∈ E(t) is a self-loop. By convention, an initial
(or seed) network G(0) has at least one node and one edge.

We consider weighted, directed PA networks that allow adding multiple edges at each epoch.
For illustration, we begin with a standard directed PA network that adds one edge at a time for
now. There are three edge creation scenarios, respectively associated with probabilities α, β, γ "
0, subject to α+β +γ = 1. Note that we do not allow β = 1 to avoid degenerative situations. At
each step t " 1, we flip a three-sided coin whose outcomes correspond to the three edge creation
scenarios as follows:
(1) With probability α, add a new edge from a new node to an existing one from G(t − 1);
(2) With probability β, add a new edge between two existing nodes from G(t − 1) (self-loops are

allowed);
(3) With probability γ , add a new edge from an existing node from G(t − 1) to a new one.

For convenience, we call these three scenarios α, β, and γ schemes, respectively; see Figure 1
for a graphical illustration.

Once an edge creation scenario is decided, we need to determine the corresponding source
and/or target nodes. The probability of each candidate node from the current network being
selected is proportional to its preference score, which is given by a function (called preference
function) of node-specific characteristics. For unweighted, directed PA networks, the most com-
monly used characteristics are out- and in-degrees, whereas for weighted, directed PA networks,

vj

vi

vi vj vi

vj

Figure 1: Three edge creation scenarios corresponding to α, β and γ schemes (from left to right),
respectively.
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out- and in-strengths are usually adopted. Let

O(vj , t) :=
∑

k:(vj ,vk,wjk)∈E(t)

wjk and I(vj , t) :=
∑

k:(vk,vj ,wkj )∈E(t)

wkj

represent the out- and in-strength of vj ∈ V (t), respectively. Let θ1(vj , t) := f1(O(vj , t), I(vj , t))

be the preference score for sampling vj as a source node for a newly added edge at step t + 1,
with a non-negative function f1(·) called source preference function. Then the probability of
node vj ∈ V (t) being selected as a source node at time t + 1 is given by

θ1(vj , t)∑
vk∈V (t) θ1(vk, t)

.

Similarly, with a non-negative target preference function f2(·), one can define the preference
score for sampling vj ∈ V (t) as a target node at time t + 1 as well as the associated sampling
probability. The default option for both f1 and f2 in the package is a power function:

f (x, y) := a1x
a2 + a3y

a4 + a5, (1)

where the parameters, ai , i = 1, . . . , 5, are specified by the users and can be different for f1 and
f2. User-defined preference functions are also allowed; see Section 3.2 for details.

Once the source and target nodes of a new edge are selected, its weight is drawn indepen-
dently from a distribution with probability density or mass function h on a positive support.
The in- and out-strengths of the corresponding nodes are also updated, as well as their source
and target preference scores. Then the algorithm proceeds to the next step.

Algorithm 1 summarizes the core structure of generating a weighted, directed PA network.
The bottleneck of the algorithm is how to efficiently sample source or target nodes, i.e., the
Sample_Node() function in Algorithm 1. We use the sampling procedure for source nodes as
an illustration. At time t + 1, the sampling step takes an updated vector of preference scores
{θ1(vj , t) : vj ∈ V (t)} as input. In fact, the task is straightforward. Given the grid of increasing
breakpoints formed by cumulative sums of the current preference scores, find an appropriate
interval that contains a uniform random variable U drawn from Unif(0,

∑
vj ∈V (t) θ1(vj , t)). This

can be done by sequentially subtracting node preference scores from U until we find the node
such that removing its preference score would cause U # 0. The above sampling method is a
fundamental linear search, as it has to visit each of the existing nodes (one after another), and
keeps updating their preference scores. This sampling approach is the linear method in the
package, and the complexity of network generation by using this method is O(n2).

Fast sampling is possible for some special cases like when source and target preference func-
tions are linear in node out- and in-degrees, respectively. Without loss of generality, consider
a source preference function in the form of f1(x, y) = x + a5. When the edges are unweighted,
the interval (containing U) can be determined by one uniform draw (Wan et al., 2017). This
algorithm acts like by putting the node labels into a bag the same number of times as their
out-degrees and then drawing a label from the bag, which is analogous to the Pólya urn the-
ory (Mahmoud, 2008). This technique is called bag in package igraph, and the same name is
adopted in package wdnet. When the edges are weighted, by a clever maneuver, the sampling
step for the whole generation process can be done in one batch with a pre-set cumulative sum
vector of the edge weights by using the base R function findInterval(). This is an extension of
the bag algorithm, so we named it bagx. See Appendix A for more details about bag and bagx.
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Algorithm 1: Generating a weighted, directed PA network.
Input: Number of steps n;

initial network G(0) = (V (0), E(0));
probabilities for three edge creation scenarios α, β, γ ;
probability density (or mass) function h for drawing edge weights from;
preference functions for source node f1 and for target node f2.

Output: G(n) = (V (n), E(n)).
1 Algorithm:
2 Initialize (n + |V (0)|)-dimensional zero vectors of out- and in-strengths, O and I;
3 Initialize (n + |V (0)|)-dimensional zero vectors of source and target preference

scores θ1 and θ2;
4 Update O, I, θ1 and θ2 with initial network G(0);
5 t ← 1;
6 while t # n do
7 N ← |V (t − 1)| ; /* Number of nodes in G(t − 1) */
8 Draw ψ ∼ Unif(0, 1);
9 if ψ # α then /* α scheme */

10 j ← N + 1 ; /* Source node index */
11 k ← Sample_Node(V (t − 1), 2) ; /* Target node index; the "2" as the

second argument indicates target node sampling. */
12 V (t) ← V (t − 1) ∪ {vj};
13 else if α < ψ # α + β then /* β scheme */
14 j ← Sample_Node(V (t − 1), 1) ; /* The "1" as the second argument

indicates source node sampling */
15 k ← Sample_Node(V (t − 1), 2);
16 else if ψ > α + β then /* γ scheme */
17 j ← Sample_Node(V (t − 1), 1);
18 k ← N + 1;
19 V (t) ← V (t − 1) ∪ {vk};
20 Draw w from weight distribution h ; /* Sample edge weight */
21 E(t) ← E(t − 1) ∪

{
(vj , vk, w)

}
; /* Add the new edge to G(t) */

22 O[j ] ← O[j ] + w ; /* Update preference function inputs */
23 I[k] ← I[k] + w;
24 θ1[j ] ← f1(O[j ], I[j ]) ; /* Update preference scores */
25 θ2[j ] ← f2(O[j ], I[j ]);
26 θ1[k] ← f1(O[k], I[k]);
27 θ2[k] ← f2(O[k], I[k]);
28 t ← t + 1;
29 return G(n) = (V (n), E(n));

2.2 Node Sampling Based on a Binary Tree
Our recommended approach for Sample_Node() is a binary tree approach that extends the
algorithm in Atwood et al. (2015) to weighted, directed PA networks with general preference
functions. In a binary tree structure, each node has no more than two children nodes. The two
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Figure 2: A generated network with initial graph colored with blue (panel a), its corresponding
complete binary tree structure (panel b) and a summary of node attributes (panel c); the source
and target preference functions are respectively given by f1(x, y) = x + 1 and f2(x, y) = y + 1.

children nodes of a parent node are distinguished by their positions, i.e., the left and the right
child. Except for the root node, each node has only one parent node. A complete binary tree refers
to a binary tree with all levels fully filled except for the last level. The last level is not necessarily
completely filled, but has to be filled from left to right. A hypothetical example of complete binary
tree is given in Figure 2b. An important application of binary trees is searching. The complexity
of searching a specific node in a binary tree with n nodes is of order O(log n) (Mahmoud, 1992),
which is more efficient than the linear search of complexity O(n).

We translate a PA network to a binary tree as follows. Each node in a PA network cor-
responds to a node in the associated complete binary tree based on the time of its creation.
Suppose that G(0) contains only one node v1 with a self-loop, then v1 becomes the root of the
complete binary tree. Then node v2 that joins the PA network at t = 1 is the left child of v1, and
the next new node v3, which joins the PA network at t = 2, is the right child of v1. For the next
newcomer v4 (at time t = 3), it is attached to v2 as a left child since the first level (consisting
of v2 and v3) is fully filled. The transition continues in this fashion until all nodes in the PA
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Algorithm 2: Node sampling function based on a binary tree storage structure.
Input: Node set V (t − 1);

i ∈ {1, 2} for sampling a source or a target node, respectively.
Output: j , the index of the sampled node.

1 Function Sample_Node(V (t − 1), i):
2 j = 1 ; /* Start from the root v1 */
3 Draw U ∼ Unif(0, ηi(v1, t − 1));
4 while j # |V (t − 1)| do
5 U ← U − θi (vj , t − 1);
6 temp ← ηi (l(vj ), t − 1);
7 if 0 < U # temp then /* Search in the subtree with root l(vj ) */
8 j ← index of l(vj );
9 else if U > temp then /* Search in the subtree with root r(vj ) */

10 U ← U − temp;
11 j ← index of r(vj );
12 else if U # 0 then /* Return the index of the sampled node vj */
13 return j ;

network are added to the complete binary tree. For an initial graph G(0) containing more than
one nodes, a node enumeration {v1, v2, . . . , v|V (0)|} is required before constructing the binary tree;
see Figures 2a and 2b for an example with an initial graph consisting of two nodes (connected
by one edge which is colored with blue). Different enumeration orders of the initial network
result in different binary trees and, consequently, different networks because of the underlying
sampling mechanism.

Having built a complete binary tree, we augment the nodes therein according to a collection
of node attributes. At step t , the binary tree node vj stores the following information: parent
(except for v1) κ(vj ), left child l(vj ), right child r(vj ), out-strength O(vj , t), in-strength I(vj , t),
preference score as a source node θ1(vj , t), preference score as a target node θ2(vj , t). For now
we consider θ1 and θ2 as functions of node out- and in-strengths, but in general, θ1 and θ2 can
be functions of any node-level characteristics. Additionally, let η1(vj , t) and η2(vj , t) denote the
total preference of source and target nodes of the subtree (a portion of the binary tree consisting
of a node and all of its descendants) with root vj , respectively, giving rise to the following
relationship:

ηi (vj , t) = ηi (l(vj ), t) + ηi (r(vj ), t) + θi(vj , t), i ∈ {1, 2}.
Figure 2c summarizes the node attributes, including η1 and η2, from the complete binary tree
(in Figure 2b) that is constructed from the weighted network in Figure 2a.

Node sampling based on the binary tree structure, available as the binary method in wdnet,
is summarized in Algorithm 2. Generally, the algorithm searches for the subtree to which the
potentially sampled node belongs in a recursive manner until the root of the resulting subtree (or
the node itself if it is at the bottom level) is returned. The subtree-based searching substantially
reduces the complexity of the sampling step from O(n) (for the linear search algorithm) to
O(log n). The network generation algorithm with binary search thus has complexity O(n log n).

Upon the creation of a new edge (vj , vk, wjk), the following quantities need to be updated:
node strengths O(vj , t) and I(vk, t); preference scores θ1(vj , t), θ1(vk, t), θ2(vj , t) and θ2(vk, t);
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total preference scores of subtrees η1(vj , t), η2(vj , t), η1(κ(vj ), t), η2(κ(vj ), t), etc. The update of
total preference scores is not shown in the algorithm. It traces the growth path through subtrees
(backwards), and has the same time complexity O(log n) as the sampling method.

3 Usage
We start with the main function to generate PA networks with basic configurations in Section 3.1,
and then introduce additional features in Section 3.2.

3.1 Main Generation Function
The function rpanet() is used to generate PA networks.

library("wdnet")
args(rpanet)

function (nstep, initial.network = list(edgelist = matrix(c(1,
2), nrow = 1), edgeweight = 1, directed = TRUE), control,
method = c("binary", "linear", "bagx", "bag"))

NULL

The first three arguments of rpanet() are: the number of steps (nstep), the initial network
(initial.network), and a list of control parameters (control). Specifications of the control
parameters are done through a collection of functions as we proceed. The method argument
specifies which of the following four implemented methods is used to generate a PA network:
binary (default), linear, bagx, and bag.

With respect to the required inputs in Algorithm 1, we elaborate the usage of rpanet()
and its specifications via the control argument as follows.

Initial Network The initial.network is specified by a list containing a matrix of edges
(edgelist) in the order of edge creations, a vector of edge weights (edgeweight), and a logical
argument (directed) indicating whether the initial network as well as the generated network
are directed. Each row of edgelist has two elements specifying the two nodes of an edge. The
length of edgeweight is equal to the number of rows of edgelist. If edgeweight is not specified,
all edges from the initial network are assumed to have weight 1. The default initial network has
only one edge, (1, 2, 1.0), corresponding to a network consisting of two nodes with a unit-weight
edge from node 1 to node 2. The initial.network can also be specified by a wdnet object,
which can be constructed via utility functions edgelist_to_wdnet() or adj_to_wdnet(). The
following example sets up an initial network with two weighted edges, (1, 2, 0.5) and (3, 4, 2.0).

netwk0 <- list(edgelist = matrix(c(1, 2, 3, 4), nrow = 2, byrow = TRUE),
edgeweight = c(0.5, 2.0), directed = TRUE)

Edge Scenarios The function rpa_control_scenario() is used to specify the probability of
each edge creation scenario. Based on the real data analysis in Wan et al. (2017), we also include
two additional edge creation scenarios to the α, β and γ schemes introduced in Section 2.1: (1)
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the ξ scheme where a new edge is added between two new nodes, and (2) the ρ scheme where a
new node with a self-loop is added. Self-loops are allowed in the β scheme by setting beta.loop
to be TRUE. When beta.loop = FALSE, the order of sampling source and target nodes may affect
the structure of generated PA network as controlled by the logical arguments source.first. The
default settings of these arguments are α = 1, β = γ = ξ = ρ = 0, beta.loop = source.first
= TRUE. The following example sets up a configuration that excludes self-loops under the β

scheme and samples target nodes before source nodes.

ctr1 <- rpa_control_scenario(alpha = 0.2, beta = 0.6, gamma = 0.2,
beta.loop = FALSE, source.first = FALSE)

Edge Weights Edge weights are controlled by rpa_control_edgeweight() through its
sampler argument. This argument accepts a function that takes a single parameter, repre-
senting the number of sampled values, and returns a vector of sampled edge weights. Note that
the sampled values must be positive real numbers. The default setting is sampler = NULL, refer-
ring to the case where all new edges take unit weight. As shown in the following example, edge
weights are sampled from a gamma distribution with shape 5 and scale 0.2; the “+” operator
has been overloaded to concatenate multiple control lists.

my_rgamma <- function(n) rgamma(n, shape = 5, scale = 0.2)
ctr2 <- ctr1 + rpa_control_edgeweight(sampler = my_rgamma)

Preference Functions The default preference function is in the form of f (x, y) given in
Equation (1), which covers a wide range of sub-linear, linear and super-linear functions. The
function rpa_control_preference() controls the configuration of this f (x, y) with ftype =
"default" along with two arguments sparams and tparams which specify the parameters of the
source and target preference functions of Equation (1), respectively. For directed PA networks,
the default source and target preference functions are, respectively, f1(x, y) = x+1 and f2(x, y) =
y+1. This is controlled by default value of sparams = c(1, 1, 0, 0, 1) and tparams = c(0,
0, 1, 1, 1). The following example sets the source preference function to f1(x, y) = x2 + 1
and the target preference function to f2(x, y) = y2 + 1:

ctr3 <- ctr2 + rpa_control_preference(ftype = "default",
sparams = c(1, 2, 0, 0, 1), tparams = c(0, 0, 1, 2, 1))

For undirected networks, the default preference function has the form g(x) = xb1 + b2, and
argument params specifies the preference parameters b1 and b2, with default values given by
b1 = b2 = 1.

We further allow users to specify their own preference functions; see Section 3.2 for details.

Returned Value Function rpanet() returns a list of class wdnet containing the following
components: newedge is a vector summarizing the number of new edges added at each step;
edge.attr is a data frame containing edge weights and edge creation scenarios, where edges
from schemes α, β, γ , ξ , ρ are respectively denoted as scenarios 1, 2, 3, 4, 5, and edges from the
initial network are denoted as scenario 0; node.attr is a data frame containing node out- and
in-strengths as well as source and target preference scores. Other items are self-explanatory.
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set.seed(12)
netwk3 <- rpanet(nstep = 1e3, initial.network = netwk0, control = ctr3)
names(netwk3)

[1] "edgelist" "newedge" "control" "directed" "edge.attr" "weighted"
[7] "node.attr"

print(netwk3)

Weighted: TRUE
Directed: TRUE
Number of edges: 1002
Number of nodes: 402

Edges:
source target weight scenario

1 1 2 0.5000000 0
2 3 4 2.0000000 0
3 5 2 0.4591485 1
4 5 6 0.4347588 3
5 5 7 0.6565225 3
...omitted remaining edges

Node attributes:
outs ins spref tpref

1 4.523894 0.0000000 21.465613 1.000000
2 0.000000 1.7270612 1.000000 3.982741
3 2.000000 0.8624366 5.000000 1.743797
4 2.823930 2.0000000 8.974579 5.000000
5 2.386927 43.7566871 6.697419 1915.647667
...omitted remaining nodes

3.2 Additional Features
The package wdnet provides a few additional distinctive features in the PA network generation
process that are not available in other software packages. These features are obtained by adapting
the Algorithm 1.

Multiple Edge Addition The creation of multiple edges at one step is controlled by function
rpa_control_newedge(). The first argument of this function, sampler, determines the distribu-
tion of the number of new edges to be added in the same step. This argument accepts a function
that takes a single parameter, representing the number of values to be sampled, and returns a
vector of sampled number of new edges. Note that the sampled values must be positive integers.
By default, sampler is set to NULL, representing the addition of only one edge at each step.

When more than one edges are added at one step, we keep the node strengths and their
preference scores unchanged until all edges at this step have been added. Users need to specify
whether to sample the candidate nodes with replacements or not. For directed networks, the



548 Yuan, Y. et al.

logical arguments snode.replace and tnode.replace determine whether the source and target
nodes are sampled with replacement, respectively. For undirected networks, only one logical
argument node.replace needs to be specified.

The code below updates the setting from ctr3 by letting the number of new edges follows
a unit-shifted Poisson distribution (Wang and Resnick, 2023) with probability mass function

Pr(X = k) = e−2 2k−1

(k − 1)! , k " 1.

Both source and target nodes are sampled without replacement.

ctr4 <- ctr3 + rpa_control_newedge(sampler = function(n) rpois(n, 2) + 1,
snode.replace = FALSE, tnode.replace = FALSE)

Reciprocal Edges Reciprocal edges are mutual links between two nodes. We allow reciprocal
edges under a heterogeneous setting (Wang and Resnick, 2022b) where each node belongs to one
of the K " 1 groups. With the emergence of each new node, its group label is given according to
a user-specified probability vector π := (π1, π2, . . . , πK), where 0 # πk # 1 represents the proba-
bility that the node belongs to group k ∈ {1, 2, . . . , K}. Similar to stochastic block models, there
is a probability block matrix q := (qk+)K×K (not necessarily symmetric), which is also specified
by the users, to determine the probability of adding a reciprocal edge for each new edge joining
the network. For example, consider a new edge (vi, vj , wij ) where vi and vj are respectively
labeled with k = 2 and + = 3, then its reciprocal correspondence (vj , vi, wji) is added to the
network instantaneously with probability q32. The weight of the reciprocal edge (if added), wji ,
is independently sampled with configurations specified in rpa_control_edgeweight(). When
more than one new edges are added at a step, the reciprocal edge for each of them is added
independently, one after another.

The function rpa_control_reciprocal() gives the configurations of reciprocal edges. The
arguments group.prob and recip.prob specify the probability vector π and the block prob-
ability matrix q, respectively. In addition, the logical argument selfloop.recip determines
whether reciprocal edges for self-loops are allowed. Their default settings are group.prob =
NULL, recip.prob = NULL and selfloop.recip = FALSE, respectively, referring to the case of
no immediate reciprocal edges. The following example creates a configuration with π = (0.4, 0.6)

and

q =
(

0.4 0.1
0.2 0.5

)
.

ctr5 <- ctr4 + rpa_control_reciprocal(group.prob = c(0.4, 0.6),
recip.prob = matrix(c(0.4, 0.1, 0.2, 0.5), nrow = 2, byrow = TRUE))

By default, all nodes in the seed network are assumed to be from group 1. This configuration
can be easily customized as shown in the following example, where nodes 1 and 4 are from
group 1, while nodes 2 and 3 are from group 2.

netwk0 <- list(edgelist = matrix(c(1, 2, 3, 4), nrow = 2, byrow = TRUE),
edgeweight = c(0.5, 2), directed = TRUE, nodegroup = c(1, 2, 2, 1))

netwk5 <- rpanet(1e3, control = ctr5, initial.network = netwk0)
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Node groups are recorded in the data frame node.attr; immediate reciprocal edges are
denoted as scenario 6 in the data frame edge.attr.

Customized Preference Functions User-defined preference functions in C++ syntax are
allowed by setting ftype = "customized" in rpa_control_preference(). This is implemented
in C++ through the utility functions in R package RcppXPtrUtils (Ucar, 2022). For directed
networks, one-line C++ expressions can be passed to arguments spref and tpref to define
the source and target preference functions, respectively. The expressions are strings in R but
with valid C++ syntax as transformations of outs and ins. The strings are passed to the
function cppXPtr() in package RcppXPtrUtils, which compiles the source code and returns an
XPtr (external pointer) that points to the compiled preference function. The default preference
functions f1(x, y) = x + 1 and f2(x, y) = y + 1 can be equivalently achieved by setting spref
= "outs + 1" and tpref = "ins + 1". The following example sets the preference functions to
f1(x, y) = ln(x + 1) + 1, f2(x, y) = ln(y + 1) + 1:

ctr6 <- ctr5 + rpa_control_preference(ftype = "customized",
spref = "log(outs + 1) + 1", tpref = "log(ins + 1) + 1")

For undirected networks, argument pref specifies a one-line C++ expression as a transfor-
mation of node strength s. The default preference function g(x) = x + 1 could be equivalently
achieved by pref = "s + 1". Users need to ensure the non-negativity of the preference func-
tions. The generation process will be terminated if a negative preference value is encountered.

For more advanced preference functions which may take multiple lines of C++ code, see
examples in Appendix B.

4 Benchmarks
In this section, we generate weighted and unweighted PA networks with different sizes and
preference functions via our package (wdnet, version 1.2.0), igraph (version 1.3.5) and PAFit
(version 1.2.5), and compare their performance. All simulations were run on a single core of
Intel Xeon Gold 6150 CPU @ 2.70GHz with 16 GB of RAM.

Weighted Networks Since the other two packages (i.e., igraph and PAFit) do not admit edge
weights, the comparison of weighted PA network generation is between the linear and binary
methods in our package wdnet. Specifically, we assign the same probabilities to edge creation
scenarios (i.e., α = β = γ = 1/3), set the source and target preference functions respectively
to f1(x, y) = xk + 0.1 and f2(x, y) = yk + 0.1 with k ∈ {0.5, 1, 2} (where k = 0.5 and k = 2
respectively refer to sub-linearity and super-linearity). Draw the edge weights independently
from Gamma(5, 0.2). For each k, we generate PA networks of various evolutionary steps (i.e.,
n ∈

{
103, . . . , 107

}
) with a simple initial network consisting of two nodes and one edge (1, 2, 1)

(default).
The top three panels of Figure 3 compare the median runtimes of generating 100 inde-

pendent weighted, directed PA networks via binary and linear methods. When preference
functions are sub-linear (k = 0.5) or linear (k = 1), the binary method is much more efficient
than the linear method. Besides, the larger the number of steps is, the more advantageous it is
to use the binary method. Some simulations for the linear method are omitted because they
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Figure 3: Algorithm runtime for weighted networks with default initial network (upper) of one
edge (1, 2, 1) and with initial weighted ER networks (lower) of 104 nodes and 106 edges. Edge
weights, including those in the initial weighted ER networks, are drawn from Gamma(5, 0.2).
Probability of edge schemes are α = β = γ = 1/3. Preference functions are f1(x, y) = xk +
0.1, f2(x, y) = yk + 0.1 with k ∈ {0.5, 1, 2}. Each point represents the median runtime of 100
replications.

are excessively time-consuming. For a super-linear preference function (k = 2), the difference in
generation speed between the two methods becomes subtle. A further investigation reveals that
the sum of source (and target) preference scores of the 20 earliest created nodes, {v1, v2, . . . , v20},
take 99% of the total (for all nodes), making them dominant in the sampling process. Those
early created nodes are always quickly selected under whichever edge addition scenario since
linear search visits those “ancestors” first. Consequently, the time cost of using linear method
is significantly reduced.

To further investigate the impact of early created nodes in the sampling process, we consider
a modified (i.e., weighted and directed) Erdös–Rényi (ER) network (Erdös and Rényi, 1959;
Gilbert, 1959) as an initial network. For each simulation run, we generate an ER network with
104 nodes and 106 edges, where edge weights are drawn independently from Gamma(5, 0.2). We
keep all other parameters same as in the previous experiment, and give the median runtime (of
100 independently generated PA network replica) in the bottom three panels of Figure 3. We
observe similar patterns for k = 0.5 and k = 1, so focus on k = 2 only. Here the binary algorithm
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outperforms the linear method, since the large seed network alleviates the domination of old
nodes in the subsequent sampling process.

In fact, most nodes that are sampled throughout the process are those with high strengths
in the seed graph. Owing to the feature of ER network, a few hundred nodes (out of 104) in the
seed network are repeatedly sampled. However, a larger pool (compared to 20 in the previous
experiment) results in longer runtime when using the linear method. On the other hand, we
believe the performance of linear algorithm will improve as n gets larger since fewer nodes will
continue to be dominant in the sampling process. Since we have added a sorting procedure in the
linear algorithm, those nodes will be quickly selected. Accordingly, the linear method may
finally outperform the binary method for extremely large networks. Last but not least, we find
the tracing curves between 103 and 104 become flatter in the bottom plots when compared to
their upper counterparts (for each k). This is due to the large seed graph, which requires a certain
amount of time to initialize the sampling process. Consequently, there is a small difference in
the total generation time for relatively small n.

Unweighted Networks Next, we compare the performance of generating unweighted PA
networks using our package wdnet and the other two popular packages PAFit and igraph. Since
PAFit and igraph allow the α scheme only, we now set α = 1 in the rpa_control_scenario()
function. Under such setting, we only need to define a target preference function in the form of
f2(x, y) = yk+0.1, where we again assume k ∈ {0.5, 1, 2}. Similar to the previous experiments, we
generate unweighted PA networks with n ∈

{
103, . . . , 107

}
for each k. A default initial network

is adopted for each simulation run. The results are given in the top three panels of Figure 4. For
k = 0.5 and k = 1, we find the binary algorithm in our package and igraph (psumtree method)
are almost equally efficient, and outperform the rest. The performance of linear method in our
package is better than PAFit (similar to linear search) since the former is implemented in C++
whereas the latter is implemented in R. For k = 2, we do not see much difference among the two
methods in our package wdnet and that in igraph, which is consistent with our conclusions for
the weighted PA network generation experiment. Overall, PAFit is the least efficient, especially
for generating large PA networks.

Lastly, we repeat our simulations by considering large ER networks as the initial graphs in
order to alleviate the impact of few old nodes during the generation process. The setup is the
same as that for weighted network simulations. Noticing that PAFit does not accept arbitrary
initial networks, we exclude it from this set of simulation comparisons. The corresponding results
are shown in the bottom three panels of Figure 4. Similar to the conclusions drawn for weighted
PA networks, the binary method outperforms the linear method in our package owing to
the less influence from old nodes when k = 2. Moreover, there is little performance difference
between the binary method and igraph across all considered k values.

5 Discussions
Our R package wdnet provides useful tools to efficiently generate large-scale PA networks. The
package admits a wide range of PA network specifications such as multiple edge addition sce-
narios, weighted and directed edges, and reciprocal edges. Our implementations extend those
discussed in Wan et al. (2017) and Britton (2020), most of which are not available in other
existing packages. A distinctive feature of the package is that it allow users to define their own
preference functions. Our binary algorithm is efficient for general situations. Our linear algo-
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Figure 4: Algorithm runtime for unweighted networks with default initial network (upper) of
one edge from v1 to v2 and with initial unweighted ER networks (lower) of 104 nodes and 106

edges. Probability of edge schemes are α = 1, β = γ = 0. The target preference function is
f2(x, y) = yk + 0.1. Each point represents the median runtime of 100 replications.

rithm outperforms implementations of the same algorithm in other packages due to its sorting
step. The core implementation is in C++ for fast speed.

Efficient generation of PA networks facilitates investigation of PA networks properties and
goodness-of-fit diagnosis in real applications. A PA network is controlled by many parameters.
When theoretical properties, for example, transitivity and clustering coefficients, are challenging
to derive, their empirical versions can be easily learned from generating many realizations given
the model parameters. When the initial network size is large relative to the desired PA network
size, its impact may not be ignorable and could be studied through simulations. In real applica-
tions, the goodness-of-fit diagnosis of a PA network can be done by generating many replicates
from the fitted PA model and comparing the observed network statistics with the empirical
distribution of the same statistics from the replicates. Such goodness-of-fit check may motivate
modification of the PA networks to fit the real data better (e.g., Wang et al., 2022).

Beyond general PA network generation, wdnet also provides a collection of other func-
tions. Specifically, several centrality measures are available via function centrality(), includ-
ing the recently proposed weighted PageRank centrality (Zhang et al., 2022). Assortativity
measures for weighted directed networks discussed in (Yuan et al., 2021) are available via func-
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tion assortcoef(). A degree-preserving rewiring algorithm for generating networks with pre-
determined assortativity coefficients (Wang et al., 2022) is available via function dprewire().
All these functions are derived from recent research, so they are not available in other packages.

Supplementary Materials
(1) The code used for benchmarks and the R Markdown source for the paper can be found at

https://github.com/Yelie-Yuan/code-sharing/tree/main/generating-pa.
(2) The development version of the package is available at https://gitlab.com/wdnetwork/wdnet.
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A Alternative Sampling Method for Special Cases
Fast sampling is available when source (target) preference functions are linear. We demonstrate
this approach through an example of sampling source nodes with a preference function f1(x, y) =
x + a5.

As shown in Section 2.1, the main idea of sampling is to make draws from a bag of node
labels, where the number of labels is equal to the out-degrees. At step t + 1, generate a random
variable U ∼ Unif(0,

∑
vj ∈V (t) θ1(vj , t)), then the source node (for the new edge) is randomly

drawn from the bag if U # ∑
vj ∈V (t) O(vj , t). Otherwise, the source node is uniformly drawn from

all existing nodes (regardless of their out-degrees). The sampling at each step has complexity
O(1), thus giving complexity O(n) for the entire network generation process. The sampling of
target nodes can be done in an analogous manner, and we call this approach bag in our package.

This idea can be generalized to weighted networks. At step t +1, the source preference score
of node vj is ∑

k:(vj ,vk,wjk)∈E(t)

wjk + a5,

where total source preference of all existing nodes in the network is
∑

vj ∈V (t)

(
O(vj , t) + a5

)
:= W(t) + a5 |V (t)|,

where W(t) is the total weight and |V (t)| is the cardinality of V (t). The sampling process proceeds
as follows:
(1) At step t + 1, create a vector, ν(t), of cumulative sum of edge weights (according to the

emergence order of edges), where the first element is 0 and the last element is W(t);
(2) Compute τ (t+1) = (W(t)+a5|V (t)|)X for some random variable X ∼ Unif(0, 1), independent

from the network generation process;
(3) If τ (t + 1) > W(t), a node is randomly sampled from V (t); otherwise, find an index + such

that τ (t + 1) ∈ (ν+(t), ν++1(t)], then select the source node of the edge corresponding to the
+-th addition in ν(t).
The sampling becomes efficient if we apply the above approach to all steps simultaneously.

Notice that edge weights are independently drawn from h, and they are also independent of

https://github.com/Yelie-Yuan/code-sharing/tree/main/generating-pa
https://gitlab.com/wdnetwork/wdnet
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other network generation components. Hence, to efficiently generate networks after n steps of
evolution, vector ν(n) can be determined independently in advance. Moreover, given a generated
list of edge scenario parameters (i.e., α, β and γ ), |V (t)| can be obtained for 1 # t # n as
well. Therefore, we collect all information that we need for node sampling in the entire network
generation process, i.e., W(t) and |V (t)| for 1 # t # n, with complexity O(n). It remains to find
the exact interval covering τ (t + 1) in ν(t) (a subset of ν(n)) for τ (t + 1) # W(t), which can be
done efficiently using the findInterval() function (with time complexity O(n log n)).

We wrap up the above sampling approach as bagx in our package. Although bagx is not
as efficient as bag for generating unweighted, linear PA networks, it provides a competitive
alternative to generating weighted PA networks compared with the standard algorithm.

B Advanced Customized Preference Functions
Users can define customized preference functions by utilizing cppXPtr from package RcppXPrtU-
tils. The returned (external) pointer, XPtr, can be passed to spref and/or tpref. For instance,
we fix the target preference function as f2(x, y) = y + 1, and set the source preference function
to be

f1(x, y) =






1 if x < 1;
x2 if 1 # x # 100;
200(x − 50) otherwise.

The corresponding codes are given as follows:

my_spref <- RcppXPtrUtils::cppXPtr(code =
"double foo(double x, double y) {

if (x < 1) {
return 1;

} else if (x <= 100) {
return pow(x, 2);

} else {
return 200 * (x - 50);

}
}")

ctr7 <- rpa_control_preference(ftype = "customized", spref = my_spref,
tpref = "ins + 1")

External pointers cannot be shared across different R sessions. Therefore, we recommend
that users save the source code of the customized preference functions for recompilation.
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