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In the original paper, we erroneously neglected the influence of massive modes on the derivation of the four-gradient
term in the NLσM action. Explicit integration of the massive modes gives the following additional contribution

SM =
πν

16
DD′εTr[∇2Q̂(∇Q̂)2]. (Er1)

This term should be included on the right-hand side of Eq. (13). When combined with the contribution originating

from the gradient expansion in the absence of massive modes, S
(2)
0,η,ϕ = −πν8 DD

′
εTr[∇2Q̂(∇Q̂)2], Eq. (18), the overall

coefficient of the four-gradient term is halved, SM +S
(2)
0,η,ϕ = −πν16DD

′
εTr[∇2Q̂(∇Q̂)2]. Except for the coefficient of the

four-gradient term, the calculations and conclusions presented in the original paper remain unchanged. In particular,
the interaction corrections to the static part of the correlation function in the one-loop approximation presented in
Sec. IV do not depend on the four-gradient term. The mechanism for producing the four-gradient term SM through
the coupling of soft and massive modes had been noted previously in Ref. 1 in the context of the Quantum Hall Effect.

In order to understand the origin of SM , it is sufficient to focus on the non-interacting case as described in Sec. V B.
Retracing the steps outlined in Appendix B, the parametrization of the matrix Q̂, Eq. (B2), should be generalized to

include massive fluctuations2 Q̂→ Q̂M = Û P̂M
ˆ̄U . Here, P̂M is a Hermitian matrix that is block-diagonal in Keldysh

space and δP̂M = P̂M − σ̂3 parametrizes massive fluctuations around the saddle point. Correspondingly, the Keldysh
partition function is written as Z =

∫
Ψ†,Ψ,P̂M ,Û

I[P̂M ] exp(iS) with

S =

∫
~Ψ
(
Ĝ−1

0 +
i

2τ
P̂M + ˆ̄U [Ĝ−1

0 , Û ]
)
~Ψ +

iπν

4τ
Tr[P̂ 2

M ]. (Er2)

In the expression for the partition function, I[P̂M ] is the Jacobian arising due the parametrization of Q̂M . With the

definition Ĝ−1
M = Ĝ−1 + i

2τ δP̂M , the partition function after integration over the fermionic fields can be presented as

Z =
∫
P̂M ,Û

eiS with S = S[Û , δP̂M ] + S[δP̂M ] and

S[Û , δP̂M ] = −itr ln[1 + ĜM
ˆ̄U [Ĝ−1

0 , Û ]], (Er3)

S[δP̂M ] = −itr ln

[
1 + Ĝ

i

2τ
δP̂M

]
+
iπν

4τ
tr[P̂ 2

M ]− i ln I[P̂M ]. (Er4)

Here, S[Û , δP̂M ] describes the coupling of soft and massive modes. The influence of the massive modes was entirely

neglected in the expansion described in Sec. V B of the original paper, which was based on S[Û , δP̂M = 0]. This

expansion led to S1, Eq. (58), and S2, Eq. (59) (which equals S
(2)
0,η,ϕ in the notation of Sec. III A). The integration

of the massive modes produces a contribution to the NLσM with four gradients, SM [Eq. (Er1)], of the same form

as S2. To obtain this term, it is sufficient to integrate δP̂M in the Gaussian approximation. Therefore, S[δP̂M ]

should be expanded up to second order in δP̂M . Upon substituting P̂M = σ3 + δP̂M , linear terms in δP̂M cancel
between the first two terms in Eq. (Er4) by virtue of the saddle point approximation. Higher order terms in δP̂M
resulting from the expansion of the tr ln in Eq. (Er4) give subleading contributions (in the parameter 1/εF τ), since
they involve a ξp integration over a product of only retarded (or only advanced) Green’s functions. The Jacobian

I[P̂M ] is not easily evaluated in a continuum model, as it requires a regularization. However, from diagrammatic
considerations one expects deviations from the self-consistent Born approximation (which underlies the saddle point

equation), to be suppressed by powers of (εF τ)−1. In effect, we may here approximate the quadratic form in δP̂M by

S[δP̂M ] ≈ iπν
4τ tr[δP̂ 2

M ].

Corrections to the NLσM originating from the coupling of soft and massive modes in S[Û , δP̂M ] can be organized

as a cumulant expansion in δS = S[Û , δP̂M ]−S[Û , δP̂M = 0]. δS, in turn, is obtained by expanding GM in powers of

δP̂M . At first order, the cumulant expansion gives δS(1) = 〈δS〉, where 〈. . . 〉 stands for a Gaussian average with the

action S[δP̂M ]. Such terms can be checked to give small corrections only. The contribution of interest originates from

the second cumulant δS(2) = i
2 〈〈(δS)2〉〉 by replacing ˆ̄U [Ĝ−1

0 , Û ]→ O = 1
2m [V̂i

−→
∇i−

←−
∇iV̂i] in Eq. (Er3), expanding the



2

logarithm to second order in O, and further expanding one of the two Green’s functions in the resulting expression
for δS to first order in δP̂M as ĜM ≈ Ĝ− i

2τ ĜδP̂M Ĝ. After averaging with respect to δP̂M , one finds

SM =
i

4πντ

∫
dr tr[(ĜOĜOĜ)‖r,r(ĜOĜOĜ)‖r,r]. (Er5)

Fig. 1 displays the corresponding diagram. Focusing only on the particle-hole asymmetric contribution, one obtains

SM = −πνDD′εTr[σ3V̂i⊥V̂i⊥V̂j⊥V̂j⊥], (Er6)

which results in Eq. (Er1). For a comparison with Ref. 1, notice the relation Tr[∇2Q̂(∇Q̂)2] = −Tr[(∇Q̂)2(∇Q̂)2Q̂].

FIG. 1: Generation of the four-fermion term SM through the coupling of soft and massive modes. The dashed line stands for
an impurity line connecting two retarded or two advanced Green’s functions.

Finally, we would like to note that after incorporating SM into the derivation, Eq. (66) should include the term

−πν16DD
′
εTr[∇2Q̂(∇Q̂)2] on the right hand side.
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