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IN HIGH-DIMENSIONAL
SELF-EXCITING POISSON PROCESSES
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Abstract: High-dimensional self-exciting point processes have been widely used in many applica-
tion areas to model discrete event data in which past and current events affect the likelihood of
future events. In this paper, we are concerned with detecting abrupt changes of the coefficient
matrices in discrete-time high-dimensional self-exciting Poisson processes, which have yet to be
studied in the existing literature due to both theoretical and computational challenges rooted
in the non-stationary and high-dimensional nature of the underlying process. We propose a
penalized dynamic programming approach which is supported by a theoretical rate analysis

and numerical evidence.
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1. INTRODUCTION

1. Introduction

Self-exciting point processes (SEPPs) are useful in modelling many types
of discrete event data in which past and current event help determine the
likelihood of future events. Such data are common in spike trains recorded
from biological networks [e.g. Brown et al., 2004, Pillow et al., 2008], in-
teractions within a social network [e.g. Zhou et al., 2013, Hall and Willett,
2016], pricing changes within financial networks [e.g. Chavez-Demoulin and
McGill, 2012, Ait-Sahalia et al., 2015], power failures in networked electri-
cal systems [e.g. Ertekin et al., 2015], crime and military engagements [e.g.
Stomakhin et al., 2011, Blundell et al., 2012] and a variety of other settings.

SEPPS were, arguably, first rigorously studied in a mathematical frame-
work by Hawkes [1971], where the eponymous Hawkes process was proposed.
Since the debut of the Hawkes process, there have been tremendous efforts
poured into different aspects of understanding and utilizing the univariate
Hawkes process; see Laub et al. [2015] and Reinhart [2019] for comprehen-
sive and contemporary reviews. More recently, due to the availability of
richer datasets and computational resources, attention has shifted to multi-
variate and even high-dimensional SEPPs, where different coordinates might
correspond to different geographic locations, different neurons in a biologi-

cal neural network, people in a social network, etc. See, for instance, Hall
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et al. [2016], Mark et al. [2018], Chavez-Demoulin and McGill [2012] and
Ertekin et al. [2015].

In these high-dimensional settings, understanding how events in one
coordinate influence the likelihood of events in another coordinate provides
valuable insight into the underlying process. We call the collection of these
influences between pairs of coordinates a “network”, and this paper de-
scribes novel methods for detecting abrupt changes in this network with
theoretical performance bounds that characterize the accuracy of the change
point estimation and how strong the signals must be to ensure reliable es-
timation.

While change point detection has a long and rich history, we are un-
aware of any preexisting change point methodology that can be used to
detect changes in SEPPs in high dimensions. Some recent high-dimensional
change point detection work is briefly discussed as follows. Wang et al.
[2018] and Padilla et al. [2019] studied the change point detection in Bernoulli
networks and dynamic random dot product graphs, respectively. Cho and
Fryzlewicz [2015], Cho [2016], Matteson and James [2014], Wang and Sam-
worth [2018], Dette and Gosmann [2018] and others investigated high-
dimensional mean change problems. Wang et al. [2017], Aue et al. [2009]

and others were concerned with high/multi-dimensional covariance struc-
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ture changes. Safikhani and Shojaie [2017] and Wang et al. [2019] exploited
the high-dimensional vector autoregressive models and provided change
point detection results thereof. Li et al. [2017] focused on a low-dimensional
Hawkes process setting in which the processes may be characterized by a
small number of parameters.

Given the abundant existing literature, we see a vacuum in the re-
search on high-dimensional integer valued time series change point detec-
tion, which on its own has already been of high demand in application
areas. For example, in a biological neural network, the recorded data are
spike trains recorded on neurons and are in the form of integers. It is of
increasing interest to detect and understand the underlying changes in such
a network. In a communication network, the data can be the number of
emails sent by individuals from a large firm and are again in the form of
integers. Estimating underlying changes in the communication network has
been used for legal investigation among many other uses.

This paper describes a computationally- and statistically-efficient method-
ology for detecting changes in the network underlying SEPPs. At the heart
of our method lies a penalized dynamic programming algorithm that esti-
mates the times at which each change occurs when the underlying network

is sparse, i.e. when the number of network edges is small relative to the
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number of pairs of network nodes. In this paper, we also apply our method
to neuron spike train data sets to help pinpoint the times at which the
functional networks might change due to the changes of the state of con-
sciousness.

We would like to point out that in this paper, we address challenging
theoretical issues that go well beyond simply combining the existing results,
including two closely relevant papers Mark et al. [2018] and Wang et al.
[2019].

e Mark et al. [2018] addressed penalized regression for SEPPs, a frame-
work that does appear in this paper. However, there is no change in the
underlying distribution in Mark et al. [2018]. In contrast, in this paper,
it is essential that we characterize what happens when we perform penal-
ized regression over an interval that does contain a change point, i.e. when
there is more than one distribution governing the data generation. Such
analysis goes beyond the scope of Mark et al. [2018] and is a major tech-
nical contribution of our submission. More generally, it has been known
for decades in the change point detection community that consistency in
regression settings does not generally translate to the consistency in change
point detection.

e Wang et al. [2019] does consider sparse regression over a time series
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that might contain a change point, but it only considers linear models. In
contrast, the SEPP model necessitates considering nonlinear models. There
is a wealth of literature on GLMs showing that fitting linear models to GLM
data without accounting for nonlinear link functions is highly problematic
both theoretically and empirically. More specifically, a key technical task is
to characterize the population quantity corresponding to fitting a nonlinear
model to a time series containing a change point in high dimensions. This
is a challenging task that has not been studied in any past paper of which
we are aware and which requires non-trivial arguments that go well beyond
combining or simply extending known results. In Section 3, we have pre-
processed the data and applied the methods developed in Wang et al. [2019].
We have shown the limitations of applying methods designed for linear data
to nonlinear data.

More comparisons with the aforementioned two papers can be found in

Section 2.2.

1.1 Problem formulation

The detailed model considered in this paper is introduced as follows.

Model 1. Let {X (t)}_, C ZM be a discrete-time Poisson process. For each

te{l,...,T}, let X(t) = (X(1),...,X(t)) € RM*t consist of all the his-
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tory up to timet. Foreacht € {1,...,T—1} andm € {1,..., M}, suppose
that given X (t), all coordinates {X,,(t + 1)} are conditionally independent

and the conditional distribution of X,,(t + 1) is a Poisson distribution, i.e.

Xm(t+1)|X(t) ~ PoissoN(exp{\..(t)}), (1.1)

where
Am(t) =v+ AL (H)g{ X (1)}, (1.2)

the matriz A*(t) € RM*M s the coefficient matriz at time point t, A% (t)
is the m-th row of A*(t) and g;(-) : RM*t — RM s an M-dimensional
vector-valued function.

Suppose that there exists an integer K > 0 and time points {nk}ﬁ[)l,
called change points, satisfyingl =ng <m < ... <ng <T < g1 =T+1
and A*(t) # A*(t — 1), if and only if t € {m}1_,. Let the minimal spacing
and the minimal jump size be defined as A = ming_y _ g+1(Np — Nk—1) and

k= ming_y g || A () — A*(k — 1)||, respectively, where || - ||p denotes

the Frobenius norm of a matrix.

Compared to the abundance of the existing literature, we would like
to highlight that Model 1 allows for change points in a high-dimensional
integer-valued time series. In Model 1, we assume that up to time ¢, we

observe a series of discrete events associated with M nodes. For each node
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m € {1,..., M}, we model the marginal distribution of X,, (¢t + 1) using a
point process with time-varying rate function exp(\,,(t)) that reflects how
many events at time point £ + 1, node m is expected to participate. In
order to incorporate the temporal dependence of the time series, we further
assume that A, (¢) is a linear function of X(t) = [Xy(¢),..., X (t)]. We
remark that Model 1 resembles the high-dimensional vector autoregressive
(AR) model, with the main difference being that all of our observations
X (t) are vectors of integers. So we use generalized linear regression instead

of linear regression to establish the temporal dependence between X (¢) and

X(t+1).

Remark 1 (The intercept). In Model 1, we assume that the intercept v
stays constant across coordinates and the time course. We remark that in
many applications, the intercept plays the role of background noise and it is
common practice in the existing literature to treat it as a constant. On the
other hand, allowing the intercept to vary across coordinates and/or time
indeed increases the flexibility of the model. With additional assumptions
imposed on the intercepts, the varying intercept case can be seen as a special
case of our results through a simple change of variable argument. We will

consider allowing for varying intercept in the future work.

It is worth mentioning that {X(#)}7_, defined in Model 1 is an SEPP,
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where each X,,(t) is conditionally distributed as a Poisson random variable.
We therefore refer to (1.1) as a self-exciting Poisson process. When there is
no ambiguity, we will also refer to self-exciting Poisson processes as SEPPs.

In fact, Model 1 is a generalization of a stationary SEPP process, which
assumes that the coefficient matrices A*(t) = A*(1), t € {1,...,T}. Sta-
tionary SEPP models have been well-studied in the existing literature, in-
cluding Hall et al. [2018] and Mark et al. [2018], where it has been shown
that the coefficient matrix of the point process can be estimated by an
(1-penalized likelihood estimator.

Given { X (t)}], satisfying Model 1, our main task is to estimate {n }1_,
accurately. To be specific, we seek estimators {ﬁk},lf:l such that as the sam-

ple size T diverges, with probability tending to 1, it holds that
K=K and ¢/A=A"" max [ — 1 = 0. (1.3)

For the change point estimators satisfying (1.3), we call them consistent
change point estimators. We will also call € the localization error.

To the best of our knowledge, we are the first to study the high-
dimensional SEPPs with change points. In addition to the mathematical
introduction of the model, we investigate the consistency of the abrupt
change point location estimators, under minimal conditions. The proposed

penalized dynamic programming approach in Section 2 is computationally
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efficient and tailored for this novel setting.

Notation. For any integer pair (t1,ty) € Z?, let [ty,ts] denote the
integer interval [t1,%5] N Z. Same notation applies to open intervals. For
any matrix A € RM*M et A,, denote the mth row of A and Ay denote
the (m,m’)th entry of A. With some abuse of notation, for any vector v and
any matrix M, let ||v]2, ||v]l1, || M]|r and ||M ||y be the fo- and ¢;-norms of
v, the Frobenius norm of M and the ¢;-norm of vec(M), respectively, where
vec(M) is the vectorized version of M by stacking all the columns of M.
For any v(t) : [1,T] = R™, let ||Dv]lo = S, I{v(t — 1) # v(t)}, where
I{-} € {0,1} is the indicator function. For any set S C {(m,m’) : m,m' =
L...,M}, let As € RM*M gatisfy (As)mm = Ammr, if (m,m’) € S,
and (Ag)mm = 0, otherwise. Given any A(t) : [1,7] — RM*M and any

I C[1,T],if A(-) is unchanged in I, then we denote A(I) = A(t), t € I.

2. The Penalized Dynamic Programming Algorithm

To detect the change points in Model 1, we propose the penalized dynamic
programming (PDP) algorithm, stated in (2.7) with necessary notation in
(2.4), (2.5) and (2.6). The PDP consists of two layers: estimation of the
coefficient matrices A*(t), t € [1, 7], and estimation of the change points.

For the coefficient matrix estimation, we let X(I ) be the penalized log-
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likelihood estimator of the coefficient matrix over an integer interval I C

(1,77, i.e.

A(I) = argmin H(A, I), (2.4)
AeC

where H(A, I) and C are the penalized log-likelihood function and the con-
strained domain of the coefficient matrices, respectively. To be specific,

with a pre-specified tuning parameter A > 0 and I = [s, ¢], let

e—1 M

HA L =) (explv+ Ang{X(t)}]

t=s m=1

— Xt + Do+ Apg {X @)} + NIM?| Allx (2.5)
and

C:{AERMXM: max

m=1,...,M |

Al < 1}. (2.6)

The loss function H(-,-) is a penalized negative logarithmic conditional
likelihood function, recalling that X, (¢ + 1) given X (t) follows a Poisson
distribution with intensity exp [v + A,,g,{X (t)}]. The penalty term \|I|'/2
in (2.5) is introduced in a way such that the tuning parameter X is indepen-
dent of the interval length. The term |I|'/? reflects the order of the standard
error of the sum of |/| marginal log-likelihood functions. We elaborate on

this scaling factor and its derivation in Lemma S8 and its proof.



2. THE PENALIZED DYNAMIC PROGRAMMING ALGORITHM

The constraint on C is to ensure that the SEPP process as vector-valued
time series is stable [see e.g. Liitkepohl, 2005]. As for stationary SEPP

estimation, Mark et al. [2018] proposed a constraint similar to (2.6).

Given the above framework, we can now consider estimating change

points by setting

7/5:argmin{ZH(ﬁ(]),f)+7|P|}7 (2.7)

P IeP

where v > 0 is a tuning parameter, the minimization is over all possible
interval partitions of [1, 7] and P denotes one such partition. To be specific,
an interval partition has the form P = {I;, k = 1,..., Kp} and satisfies
IyNI;, = () and UkKjl I, = [1,T]. Once P is at hand, we let K = 1P|—1>0,

Mgy =1+ 1 and

7>:{{1,...,ﬁ1—1},...,{ﬁk,...,ﬁk+1—1}521}.

We call {ﬁk}le the change point estimators induced by P.

The optimization problem in (2.7) is known as the minimal partitioning
problem on a linear chain graph and can be solved using dynamic program-
ming [e.g. Friedrich et al., 2008] with the worst case computational cost
of order O{T?Cost(T)}, where Cost(T') denotes, in our case, the compu-
tational cost of computing A(I) in the interval I with [I| = T. Using

coordinate decent, one can achieve Cost(T) = O(TM?). We remark that



2. THE PENALIZED DYNAMIC PROGRAMMING ALGORITHM

there has been a line of attack on the computational aspect of optimizing
the minimal partition problem, including Killick et al. [2012] and Maidstone
et al. [2017], among others. Some variants [e.g. the PELT algorithm pro-
posed in Killick et al., 2012] of the minimal partition problem can have a
linear computational cost, under stronger model assumptions. We remark
that in practice, one may use these variants to solve (2.7), but the theoret-
ical results in this paper only hold when the minimal partition algorithm is
executed.

For completeness, we summarize the PDP procedure in Algorithm 1
below. The quantities and functions involved are defined in (2.4), (2.5)

and (2.6).

2.1 Localization rate of the PDP estimators

In order to establish the consistency of the change point estimators re-
sulting from the PDP procedure detailed in Algorithm 1, we first impose

Assumption 1.

Assumption 1. Let {X(t)}, C ZM be a discrete-time SEPP generated

according to Model 1 and satisfying the following.

A1l. There exists a subset S C {(m,m’) :m,m' =1,..., M} such that for

allt € [1,T], Ay, () =0, if (m,m') ¢ S. Let d = |S].
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Algorithm 1 Penalized Dynamic Programming. PDP({X (¢)}/1, A, )
INPUT: Data {X(t)}_,, tuning parameters A,y > 0.

Set B=0,p=1(0,...,0), B=(00,...,00) and By = —v. Denote B; to
—— —
be the i-th entry ofTB. '
for r in {1,...,7]} do
for [in {1,...,r]} do
b< Bi_i+~v+ H(AI),I)), where I =[l,...,7];
if b < B, then
B, « b;
p. <1 —1.
end if
end for
end for
To compute the change point estimates from p € N7, k < T.
while £ > 0 do
h < p;
B=BUAh;
k < h.

end while

OUTPUT: The estimated change points B.
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A2. It holds that

*
< 1.
Jnax max 1A, <1

A3. For any £ > 0, there exist absolute constants Ca 1,Ca2 > 0 such that

A>CaT and A>Chap log? (T M) d> max{r 2, K *}.

A4. There exist absolute constants p € Z+ and w > 0 such that for any t,

the matriz
Elg{X ()} g AX ()} X (t — p)] — wln
is positive definite, where Iy € RM*M s an identity matriz. In

addition, v and ||g;(+)||s, for all t, are uniformly upper bounded by an

absolute constant Cy > 0.

Model 1 and Assumption 1 completely characterize the problem with
model parameters M (the dimensionality of the time series), d (the sparsity
parameter indicating an upper bound of the number of nonzero entries
in all the coefficient matrices), A (the minimal spacing between change
points), and x (the minimal jump size), along with the sample size T. The
consistency we are to establish is based on allowing M and d to diverge and
k to vanish as the sample size T' diverges unbounded.

The number of parameters at each time point is of order M?, which

is allowed to well exceed the sample size. A sparsity constraint therefore
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comes into force in Assumption A1, which is a standard assumption in the
high-dimensional statistics literature. Note that the set S is the union of all
(m,m’) pairs with a nonzero entry in any coefficient matrix. Assumption
A2 echoes the imposition of the constraint domain C (2.6) in the optimiza-
tion (2.4), to ensure the stationarity of the SEPP. In fact, the constant one
in the upper bound can be relaxed to any absolute constant and is set to
be one in this paper for identification issue. To be specific, what goes into
the model is the product of A,,(¢) and g;{X ()}, and the latter is assumed
to be upper bounded in sup-norm in Assumption A4.

Assumption A3 can be regarded as a signal-to-noise assumption. It
is required that the minimal spacing A is at least of a constant fraction
of the total sample size, which implies the number of change points is of
order O(1). This might appear to be strong compared to other change point
detection literature, however, the problem we are facing here is challenging
due to the nonlinearity of the SEPP model. In order to estimate the change
points accurately, one needs to estimate the underlying distribution. In
the analysis, one needs to deal with intervals, say I, containing more than
one underlying distributions, and control the estimation error Hﬁl — Afllr,
where A\I is the penalized estimator and Aj is the population coefficient

matrix for the whole interval I. With nonlinear models, such as the SEPP
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model considered here, it is hard to characterize Aj. As a consequence, we
resort to the current minimal spacing condition, which is still the sharpest
in the existing literature. The number of change points can grow with n
if we assume knowledge of the minimal spacing between change points, A.
In this case, we can repeat our proposed PDP method in every segment of
length C'A, where C' > 1 is an absolute constant. Thus we focus in the
below on the setting where A is unknown.

In fact, Assumption A3 is a mild condition and covers some challenging
scenarios. For instance, Assumption A3 holds if M = exp(T'/?), d < T"/*
and x =< log(T). The quantity £ can be set arbitrarily small and it ensures
the consistency of the estimator which will be explained after Theorem 1.

Assumption A4 can be interpreted as the restricted eigenvalue con-
dition for SEPP processes. We refer readers to Section 4 of Mark et al.
[2018] for a number of common self-excited point process models satisfying

Assumption A4.
In what follows, we show the consistency of PDP in Theorem 1.

Theorem 1. Let {X(¢)}_;, C ZM be an SEPP generated from Model 1 and
satisfying Assumption 1. Let {ﬁk}kf{:l be the change point estimators from

the PDP algorithm detailed in Algorithm 1 with tuning parameters

A=Cylog(TM) and ~=C,log*(TM)d(1+ drx?), (2.8)
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where Cy, C,, > 0 are absolute constants, depending only on p, w, Ca1, Ca 2

and Cy. We have that

P {[/(\' =K and max e — k| < Ced?log? (T M) max{x 2, /<;4}}

where Cc > 0 is an absolute constant only depending on p, w, Ca1, Caz

and C,.

The proof of Theorem 1 is deferred to Section S2, where it can be seen

that the order of the estimation error is of the form

Nd NP
N Y

K2 KA K2
Due to the signal-to-noise ratio condition in Assumption A3, we have that

A ~ A
d?log*(TM) max{x~2, K~} .
™~ @2 log*™ (T M) max{x=2, k=4}

0,

as T — oo. This explains the role of the quantity £ in Assumption A3 and
shows the consistency of the PDP algorithm. In fact, if we let d = 1 and
assume k > 1, then the localization error we derived here coincides with
the optimal localization error in the univariate mean change point detection

problem [e.g. Wang et al., 2020].
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Two tuning parameters are involved, where A is used in the optimiza-
tion (2.5) to recover the sparsity in estimating high-dimensional coeffi-
cient matrices, and 7 is involved in optimizing (2.7) to penalize the over-
partitioning. The order of A required in (2.8) is a logarithmic quantity in 7
and M, which is resulted from a union bound argument applied to a sub-
exponential concentration bound. The requirement on + is essentially that
v =< M (d + d?k7?), which can be intuitively explained as an upper bound on
the difference between H(g(h), ]1)+H(/Al(_72), I5) and H(/Al(_fl Uly), 1 UI),
where I, and I, are two relatively long, non-overlapping and adjacent in-
tervals, and there is no true change point near the shared endpoint of I
and 5. In this case, one would not wish to partition I; U Iy into I; and Is.
If we only focus on the log-likelihood functions, over-estimating will result

in that
H(A(L), I) + H(A(L), I,) < H(A(I, U L), I, U L).

The penalty we impose through v will therefore avoid this over-partitioning.

2.2 Comparisons with related work

In a broad sense, there have been numerous existing papers on different as-
pects of SEPPs. Another related area is the analysis of piecewise-stationary

time series models, where we also see a vast volume of existing papers. The
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two most related papers are Mark et al. [2018], which is concerned with a
stationary, high-dimensional SEPP, and Wang et al. [2019], which studies a
piecewise-stationary high-dimensional linear process.

Mark et al. [2018] studied a stationary version of Model 1 with K = 0.
The penalized estimator of the coefficient matrix developed there is almost
identical to the ones summoned in our problem in (2.4). There are a few
fundamental differences between this paper and Mark et al. [2018]. (1) Due
to the piecewise-stationarity assumed in Model 1, when estimating the co-
efficient matrices in (2.4) and (2.5), it is possible that there exists a true
change point in the interval of interest and the estimator we seek is an es-
timator of a mixture of different true coefficient matrices. (2) We provide
a more refined analysis as an improved version of Mark et al. [2018], for
instance, the optimization constrain domain C defined in (2.6) is a cleaner
version of its counterpart in Mark et al. [2018]; a subspace compatibility
condition is required in Mark et al. [2018] to control the ratio of differ-
ent norms of the coefficient matrix, and this assumption is shown to be
redundant in our new analysis.

The other closest-related work is Wang et al. [2019], where the change
point localizing problem in the piecewise-stationary vector autoregressive

models is investigated and a penalized dynamic programming approach was
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deployed there. The main differences between this paper and Wang et al.
[2019] come from the underlying model. The vector autoregressive model
is a linear model in the sense that given X'(t) the history data up till time
point ¢, the conditional expectation of X (¢ + 1) is a linear combination of
the columns of X' (), which is not the case here. The self-exciting point
process is a nonlinear model, and as we have mentioned, the logarithm
of the conditional intensity is a linear function of the history. Another
key difference is that Wang et al. [2019] are concerned with sub-Gaussian
innovation sequences, while the counting processes we study here determine

the heavy-tail properties of the data.

3. Numerical Experiments

In this section, we further examine the performances of the PDP algorithm
by numerical experiments, with simulated data analyzed in Section 3.1 and

a real data set in Section 3.2.

3.1 Simulated data analysis

We generate data according to Model 1 and Assumption 1. In particular, we

adopt the setting in Mark et al. [2018] and assume that the design function
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g:(+) is defined to be
g{X ()} = (min{X,(t), Cy},...,min{ Xy (t), C,})" € R, (3.9)

where Cy > 0 is a constant, X'(¢) is an M x t matrix and X}, (t) denotes the
mth row of X(t), m € {1,..., M}. For the two tuning parameters A and
v defined in (2.5) and (2.7), respectively, with the theoretical guidance in
Theorem 1, we fix A = 901log(T'M) and v = log®(M)/2 in all experiments

in this section.

Remark 2 (The robustness of ). Note that the tuning parameter ~ is
crucial in terms of determining the number of estimated change points. In
our analysis, we in fact conducted identical analysis to a range of v in all
simulation settings. To be specific, we let v € {0.2,0.5,1,1.3,2} x log*(M)
and they returned identical numerical results. We therefore omit presenting
them separately but we remark the robustness of the choice of v in our

algorithms.

Since the piecewise-stationary SEPP model is first introduced here, we
do not have direct competitors. For illustration purpose, however, we
compare our PDP algorithm with the SBS-MVTS algorithm [Cho and Fry-
zlewicz, 2015], E-Divisive procedure [Matteson and James, 2014] and VARDP

algorithm [Wang et al., 2019], all of which are designed to detect abrupt
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change points in multivariate time series, but none is designed specifically
for the scenarios we are studying here. Having said this, there are some rea-
sons we choose these competitors. The SBS-MVTS algorithm can identify
covariance changes in the high-dimensional autoregressive time series and
the E-Divisive procedure can estimate of both the number and locations
of change points under mild assumptions on the first or second moments
of the underlying distributions. Since Poisson random variables have the
same means and variances, these two competitors may be able to detect
the changes in Poisson processes with piecewise-constant parameters. The
VARDP adopts the same {y-penalization framework and can detect change
points in the regression coefficients in the high-dimensional vector autore-
gressive models. In order to apply the VARDP, we add independent noise
(Uniform[0, 0.01]) to every univariate data point X;(¢), i € {1,..., M} and
t € {1,...,T}, then apply the logarithm transform on the resulting data.
We remark that there is an optional local refinement (LR) second step to
VARDP. It improves the results of VARDP, provided that VARDP produces
consistent estimators.

In all the simulated experiments, the tuning parameters for SBS-MVTS
algorithm and E-Divisive procedure are selected according to the information-

type criteria and permutation tests in the R [R Core Team, 2017] pack-



3. NUMERICAL EXPERIMENTS

ages wbs [Baranowski and Fryzlewicz, 2019] and ecp [Nicholas A. James
and Matteson, 2019], respectively. The tuning parameters for VARDP
are selected based on a cross-validation procedure (https://github.com/
darenwang/vectordp).

Let {ﬁk}kf(zl and {n;,}, be a collection of change point estimates and
a collection of true change points, respectively. We evaluate the estimators’
performances by the absolute error |K — K | and their Hausdorff distance.

The Hausdorff distance between two sets A and B is defined as
D(A, B) = max{d(A|B), d(B|.A)}, (3.10)

where

d(A|B) = maxmin |a — b].
acA beB

In the sequel, we consider three settings. Recall that 7" is the total
number of time points, M is the dimensionality of the time series and C|; is
the threshold used in the design function g;(-), which is specified in (3.9).
Every setting is repeated 100 times. Additional setting details are listed

below.

(a) One change point and varying jump size. Fix T = 450, M = 30,


https://github.com/darenwang/vectordp
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C, = 6 and the intercept v = 1/2, which is defined in (1.2). Let

A*(t)

(pv1, pv2, Oprs(v—2)) € RM*M ¢ e [1,150],

(pva, pv1, Oprx(ni—2)) € RM>M "t ¢ [151,450],

where v; € RM with odd coordinates being 1 and even coordinates

being —1, v, = —vy, OMX(M_Q) e RMx(

M=2) is an all zero matrix and

p € {0.15,0.20,0.25,0.30,0.35}.

(b) Two change points and varying minimal spacing. Let

T € {180,240, 300, 360, 420},

M = 40, C; = 8 and the intercept v = 1/4. Let the coeflicient

matrices satisfy (A*(t));; =0, |[i —j| > 1, t € [1,T7,

(

(

0.15

—0.15

\
;

—0.15
0.15
\

0.15

—0.15

\

te[1,7/3]U(2T/3,T),

i =
t e (7/3,27/3],
te[l,T/3],
1 —J=—1,
te(1/3,1],
t e [1,27/3],
1— 7=

t e (27/3,T)],
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(c) Two change points and varying dimension. Let T' = 450, C, = 4,

v=1/5and M € {15,20,25,30,35}. Let
(

(U17U27U370M><(M—3)), t c [1, 150],
A(t) - (,U27,U37'U37OM><(M73)>, t e [151,300],

(v, va, v1, Oarxir—3)), t € [301,450],

\

where vy, v, v3 € RM are

v; = (—0.075,0.15,0.3,—0.3,0, . .. ,0)T,

vy = (0,...,0,0.375, —0.225, —0.075, 1.5, 0.225,0,...,0) ",
N——

4

v3 = (0,...,0,—0.15,—0.075,0.45, —0.225,0,...,0)".
8

We collect the simulation results in Tables 1, 2 and 3, for Settings (a),
(b) and (c), respectively. Each cell contains the mean and standard errors
of 100 repetitions. The Hausdorff distances are visualized in Figure 1 to im-
prove readability. These three settings have ranged over various situations.
It is clearly that PDP outperforms both competitors in all settings on both
metrics. We notice that, PDP outperforming VARDP demonstrates that it
is crucial to develop nonlinear-data-specific methods. Merely pre-processing

data and applying linear-model-specific methods are not reliable.
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Table 1: Simulation results of Setting (a). Each cell is in the form of

mean(standard error). For the metrics, D denotes the Hausdorff distance

defined in (3.10) and |K — K| denotes the absolute errors in estimating

the numbers of the change points. PDP uniformly outperforms the other

methods across a range of p values, reflecting the jump size.

Metric ~ p=10.15 p=0.20 p=0.25 p=030 p=0.35

PDP D 3.1(9.8) 1.1(1.0) 0.7(0.5) 0.6(0.5) 0.6(0.5)
SBS 282.6(69.1) 226.5(119.9) 114.7(130.8) 47.3(52.9) 9.3(21.3)
ECP 151.0(0.0)  151.0(0.0)  151.0(0.0) 151.0(0.0) 151.0(0.0)
VAR 131.16(6.33) 44.84(7.61) 100.12(6.16) 67.68(6.86) 60.28(8.01)
VAR(LR) 123.76(8.00) 30.24(7.52) 104.36(6.03) 72.68(7.19) 52.68(8.21)

PDP |IA( — K| 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

SBS 0.9(0.2) 0.7(0.4) 0.4(0.5) 0.5(0.5) 0.1(0.3)
ECP 300.0(0.0)  300.0(0.1)  300.0(0.5) 296.4(16.2) 287.2(31.4)
VAR 0.82(0.05)  0.22(0.06)  4.52(0.32) 1.20(0.14) 0.78(0.13)
VAR(LR) 0.82(0.05)  0.22(0.06)  4.52(0.32) 1.20(0.14) 0.78(0.13)
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Table 2: Simulation results of Setting (b).

Each cell is in the form of

mean(standard error). For the metrics, D denotes the Hausdorff distance

defined in (3.10) and |K — K | denotes the absolute errors in estimating

the numbers of the change points. PDP uniformly outperforms the other

methods across a range of T" values, reflecting the minimal spacing.

Metric T =180 T =240 T=300 T =360 T = 420

PDP D 115(62) 3.7(4.6)  25(4.6)  2.8(4.3) 1.2(3.6)
SBS 177.0(21.1) 233.3(38.1) 270.1(85.5) 243.8 (156.1) 263.5(185.2)
ECP 61.0(0.0)  81.0(0.0) 101.0(0.0) 121.0(0.0)  141.0(0.0)
VAR 58.08(1.16) 76.20(1.72) 87.92(4.08) 106.52(4.75) 126.04(4.84)
VAR(LR) 56.96(1.35) 76.00(1.66) 87.36(3.74) 104.36(5.02) 122.12(5.12)

PDP |K—K| 0.0(0.0) 00(0.0) 0.0(0.0)  0.0(0.0) 0.0(0.0)

SBS 2.000.2)  1.9(0.3)  1.9(0.4) 1.6(0.7) 1.6(0.6)
ECP 178.9(0.3) 238.9(0.3) 298.9(0.3) 358.8(0.4)  418.8(0.4)
VAR 1.92(0.06) 2.04(0.08) 1.94(0.15) 1.96(0.18)  2.30(0.28)
VAR(LR) 1.92(0.06) 2.04(0.08) 1.94(0.15) 1.96(0.18)  2.30(0.28)
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Table 3: Simulation results of Setting (c). Each cell is in the form of
mean(standard error). For the metrics, D denotes the Hausdorff distance
defined in (3.10) and |K — K| denotes the absolute errors in estimating
the numbers of the change points. PDP uniformly outperforms the other

methods across a range of M values, the dimension of the time series.

Setting (c)

Metric M =15 M =20 M =25 M = 30 M =35
PDP D 3.3(5.0) 3.6(5.5) 3.2(4.5) 50(12.4)  6.1(13.2)
SBS 401.4(112.8) 378.2(129.9) 411.3(101.7) 377.7(134.1) 375.4(134.5)
ECP 151.0(0.0)  151.0(0.0)  151.0(0.0)  151.0(0.0)  151.0(0.0)
VAR 134.24(4.19) 146.84(2.17) 148.40(0.95) 149.08(0.84) 146.78(2.79)
VAR(LR) 131.44(6.42) 146.64(2.87) 149.72(0.10) 149.88(0.07) 149.56(0.34)
PDP |K — K| 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
SBS 1.8(0.4) 1.7(0.5) 1.9(0.3) 1.8(0.4) 1.8(0.4)
ECP 448.6(0.5)  449.0(0.3)  449.0(0.1)  449.0(0.0)  449.0(0.0)
VAR 1.48(0.20)  1.74(0.07)  1.86(0.05)  1.94(0.03)  1.89(0.76)

VAR(LR) 1.48(0.20)  1.74(0.07)  1.86(0.05)  1.94(0.03)  1.89(0.76)
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Figure 1: A visualization of the mean Hausdorff distance metric D (3.10)
in Tables 1, 2 and 3. The methods concerned are: Algorithm 1, PDP;
SBS, SBS-MVTS; ECP, E-Divisive; VAR, VARDP. In each panel, the y-
axis represents the mean Hausdorff distance across 100 repetitions and the
x-axis represents the varying parameter in each setting. PDP uniformly
outperforms the other two methods across a range of parameter values,
including p (reflecting the jump size), T' (the number of samples), and M

(the dimension of the time series).
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3.2 Real data example

We consider the neuron spike train data set previously analyzed in Watson
et al. [2016a]. The three chosen data sets are from Watson et al. [2016b] and
each consists of wake-sleep episodes of multi-neuron spike train recording
sessions of one laboratory animal. Each wake-sleep episode includes at least
7 minutes of wake time followed by at least 20 minutes of sleep time. Note
that the wake and sleep periods were recorded so the true change point
in each dataset is the end of the wake period. For each data set, we first
compute the Firing Rate (FR) of each neuron using a 5-second discretization
time window and then apply Algorithm 1 with A = 800 and = log®(M)/2,
the same as in Section 3.1. For comparison, we also apply the SBS-MVTS
algorithm [Cho and Fryzlewicz, 2015], E-Divisive procedure [Matteson and
James, 2014] and the VARDP algorithm [Wang et al., 2019].

The subjects concerned are 20140528 565um, BWRat17_121912 and
BWRat19.032413. The numbers of neurons, i.e. the dimensions of the time
series M, are 24, 33 and 41, respectively. The total numbers of 5-second
time intervals, i.e. the total number of time points T" considered in Model 1,
are 3750, 2995 and 3920, respectively. The true change points are at point
788, 1184 and 2001, respectively.

The results are summarized in Table 4 and are depicted in Figure 2.
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Since the results of VARDP and its local refinement are very close, in
Figure 2, we only depict those of VARDP. Since E-Divisive procedure
outputs too many estimators, we omit them from Figure 2. As we can see
from the table and the figure, our PDP algorithm consistently outperforms

the other algorithms in these real data examples.

Table 4: The results of three algorithms on multi-neuron spike train data
sets. For the metrics, D denotes the Hausdorff distance defined in (3.10)
and |K — K| denotes the absolute errors in estimating the numbers of the

change points. PDP uniformly outperforms the other methods.

Subject Metric PDP SBS ECP VAR VAR(LR)

D 38 382 2966 708 646
20140528.565um
K—K|l 0 0 740 1 1

D 84 140 1816 1162 1138
BWRat17.121912
K—K| 0 0 5% 8 8

D 1 99 1996 1889 1989
BWRat19.032413
K—K| 0 0 773 12 12
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Figure 2: The true change points and the estimators provided by pPDP
and SBS-MVTS in the multi-neuron spike train data sets. FEach panel
corresponds to a subject. The y-axis represents the sum of the FRs across all
neurons and the x-axis represents the ordered time intervals. The estimators
of the E-Divisive procedure are not included because the corresponding K's
are too large. PDP uniformly outperforms the other methods. See Table 4

for detailed information.
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4. Discussions

In this paper, we studied piecewise-stationary discrete-time high-dimensional
self-exciting Poisson processes, which, or at least the theoretical properties
of which were not studied in the literature. The number of stationary seg-
ments in the whole time series is assumed to be an unknown constant. All
the other model parameters are allowed to be functions of the sample size
T. We proposed a computationally-efficient and theoretically-guaranteed
algorithm.

In the numerical experiments, we fix tuning parameters. One future re-
search direction is to investigate data-driven methods for tuning parameter
selection. Possible methods include variants of stationary bootstrap [Politis
and Romano, 1994] or variants of information criteria [e.g. Chen and Chen,
2012].

Another future research direction is to extend the techniques we de-
rived in this paper to other popular time series models. For instance, one
key feature of the SEPPs we are concerned in this paper is the varying vari-
ance structure and heavy tail behaviours. These share similarities with the

GARCH models, which are widely used in finance.
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