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Abstract: High-dimensional self-exciting point processes have been widely used in many applica-

tion areas to model discrete event data in which past and current events affect the likelihood of

future events. In this paper, we are concerned with detecting abrupt changes of the coefficient

matrices in discrete-time high-dimensional self-exciting Poisson processes, which have yet to be

studied in the existing literature due to both theoretical and computational challenges rooted

in the non-stationary and high-dimensional nature of the underlying process. We propose a

penalized dynamic programming approach which is supported by a theoretical rate analysis

and numerical evidence.
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stationarity; Penalized dynamic programming.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



1. INTRODUCTION

1. Introduction

Self-exciting point processes (sepps) are useful in modelling many types

of discrete event data in which past and current event help determine the

likelihood of future events. Such data are common in spike trains recorded

from biological networks [e.g. Brown et al., 2004, Pillow et al., 2008], in-

teractions within a social network [e.g. Zhou et al., 2013, Hall and Willett,

2016], pricing changes within financial networks [e.g. Chavez-Demoulin and

McGill, 2012, Aı̈t-Sahalia et al., 2015], power failures in networked electri-

cal systems [e.g. Ertekin et al., 2015], crime and military engagements [e.g.

Stomakhin et al., 2011, Blundell et al., 2012] and a variety of other settings.

Sepps were, arguably, first rigorously studied in a mathematical frame-

work by Hawkes [1971], where the eponymous Hawkes process was proposed.

Since the debut of the Hawkes process, there have been tremendous efforts

poured into different aspects of understanding and utilizing the univariate

Hawkes process; see Laub et al. [2015] and Reinhart [2019] for comprehen-

sive and contemporary reviews. More recently, due to the availability of

richer datasets and computational resources, attention has shifted to multi-

variate and even high-dimensional sepps, where different coordinates might

correspond to different geographic locations, different neurons in a biologi-

cal neural network, people in a social network, etc. See, for instance, Hall
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1. INTRODUCTION

et al. [2016], Mark et al. [2018], Chavez-Demoulin and McGill [2012] and

Ertekin et al. [2015].

In these high-dimensional settings, understanding how events in one

coordinate influence the likelihood of events in another coordinate provides

valuable insight into the underlying process. We call the collection of these

influences between pairs of coordinates a “network”, and this paper de-

scribes novel methods for detecting abrupt changes in this network with

theoretical performance bounds that characterize the accuracy of the change

point estimation and how strong the signals must be to ensure reliable es-

timation.

While change point detection has a long and rich history, we are un-

aware of any preexisting change point methodology that can be used to

detect changes in sepps in high dimensions. Some recent high-dimensional

change point detection work is briefly discussed as follows. Wang et al.

[2018] and Padilla et al. [2019] studied the change point detection in Bernoulli

networks and dynamic random dot product graphs, respectively. Cho and

Fryzlewicz [2015], Cho [2016], Matteson and James [2014], Wang and Sam-

worth [2018], Dette and Gösmann [2018] and others investigated high-

dimensional mean change problems. Wang et al. [2017], Aue et al. [2009]

and others were concerned with high/multi-dimensional covariance struc-
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1. INTRODUCTION

ture changes. Safikhani and Shojaie [2017] and Wang et al. [2019] exploited

the high-dimensional vector autoregressive models and provided change

point detection results thereof. Li et al. [2017] focused on a low-dimensional

Hawkes process setting in which the processes may be characterized by a

small number of parameters.

Given the abundant existing literature, we see a vacuum in the re-

search on high-dimensional integer valued time series change point detec-

tion, which on its own has already been of high demand in application

areas. For example, in a biological neural network, the recorded data are

spike trains recorded on neurons and are in the form of integers. It is of

increasing interest to detect and understand the underlying changes in such

a network. In a communication network, the data can be the number of

emails sent by individuals from a large firm and are again in the form of

integers. Estimating underlying changes in the communication network has

been used for legal investigation among many other uses.

This paper describes a computationally- and statistically-efficient method-

ology for detecting changes in the network underlying sepps. At the heart

of our method lies a penalized dynamic programming algorithm that esti-

mates the times at which each change occurs when the underlying network

is sparse, i.e. when the number of network edges is small relative to the
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1. INTRODUCTION

number of pairs of network nodes. In this paper, we also apply our method

to neuron spike train data sets to help pinpoint the times at which the

functional networks might change due to the changes of the state of con-

sciousness.

We would like to point out that in this paper, we address challenging

theoretical issues that go well beyond simply combining the existing results,

including two closely relevant papers Mark et al. [2018] and Wang et al.

[2019].

• Mark et al. [2018] addressed penalized regression for sepps, a frame-

work that does appear in this paper. However, there is no change in the

underlying distribution in Mark et al. [2018]. In contrast, in this paper,

it is essential that we characterize what happens when we perform penal-

ized regression over an interval that does contain a change point, i.e. when

there is more than one distribution governing the data generation. Such

analysis goes beyond the scope of Mark et al. [2018] and is a major tech-

nical contribution of our submission. More generally, it has been known

for decades in the change point detection community that consistency in

regression settings does not generally translate to the consistency in change

point detection.

• Wang et al. [2019] does consider sparse regression over a time series
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1. INTRODUCTION

that might contain a change point, but it only considers linear models. In

contrast, the sepp model necessitates considering nonlinear models. There

is a wealth of literature on GLMs showing that fitting linear models to GLM

data without accounting for nonlinear link functions is highly problematic

both theoretically and empirically. More specifically, a key technical task is

to characterize the population quantity corresponding to fitting a nonlinear

model to a time series containing a change point in high dimensions. This

is a challenging task that has not been studied in any past paper of which

we are aware and which requires non-trivial arguments that go well beyond

combining or simply extending known results. In Section 3, we have pre-

processed the data and applied the methods developed in Wang et al. [2019].

We have shown the limitations of applying methods designed for linear data

to nonlinear data.

More comparisons with the aforementioned two papers can be found in

Section 2.2.

1.1 Problem formulation

The detailed model considered in this paper is introduced as follows.

Model 1. Let {X(t)}Tt=1 ⊂ ZM be a discrete-time Poisson process. For each

t ∈ {1, . . . , T}, let X (t) = (X(1), . . . , X(t)) ∈ RM×t consist of all the his-
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1. INTRODUCTION

tory up to time t. For each t ∈ {1, . . . , T −1} and m ∈ {1, . . . ,M}, suppose

that given X (t), all coordinates {Xm(t+ 1)} are conditionally independent

and the conditional distribution of Xm(t+ 1) is a Poisson distribution, i.e.

Xm(t+ 1)|X (t) ∼ Poisson(exp{λm(t)}), (1.1)

where

λm(t) = v + A∗
m(t)gt{X (t)}, (1.2)

the matrix A∗(t) ∈ RM×M is the coefficient matrix at time point t, A∗
m(t)

is the m-th row of A∗(t) and gt(·) : RM×t → RM is an M-dimensional

vector-valued function.

Suppose that there exists an integer K ≥ 0 and time points {ηk}K+1
k=0 ,

called change points, satisfying 1 = η0 < η1 < . . . < ηK ≤ T < ηK+1 = T+1

and A∗(t) ∕= A∗(t− 1), if and only if t ∈ {ηk}Kk=1. Let the minimal spacing

and the minimal jump size be defined as ∆ = mink=1,...,K+1(ηk − ηk−1) and

κ = mink=1,...,K )A∗(ηk) − A∗(ηk − 1))F, respectively, where ) · )F denotes

the Frobenius norm of a matrix.

Compared to the abundance of the existing literature, we would like

to highlight that Model 1 allows for change points in a high-dimensional

integer-valued time series. In Model 1, we assume that up to time t, we

observe a series of discrete events associated with M nodes. For each node
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1. INTRODUCTION

m ∈ {1, . . . ,M}, we model the marginal distribution of Xm(t + 1) using a

point process with time-varying rate function exp(λm(t)) that reflects how

many events at time point t + 1, node m is expected to participate. In

order to incorporate the temporal dependence of the time series, we further

assume that λm(t) is a linear function of X (t) = [X1(t), . . . , Xm(t)]. We

remark that Model 1 resembles the high-dimensional vector autoregressive

(AR) model, with the main difference being that all of our observations

X (t) are vectors of integers. So we use generalized linear regression instead

of linear regression to establish the temporal dependence between X (t) and

X (t+ 1).

Remark 1 (The intercept). In Model 1, we assume that the intercept v

stays constant across coordinates and the time course. We remark that in

many applications, the intercept plays the role of background noise and it is

common practice in the existing literature to treat it as a constant. On the

other hand, allowing the intercept to vary across coordinates and/or time

indeed increases the flexibility of the model. With additional assumptions

imposed on the intercepts, the varying intercept case can be seen as a special

case of our results through a simple change of variable argument. We will

consider allowing for varying intercept in the future work.

It is worth mentioning that {X(t)}Tt=1 defined in Model 1 is an sepp,
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1. INTRODUCTION

where each Xm(t) is conditionally distributed as a Poisson random variable.

We therefore refer to (1.1) as a self-exciting Poisson process. When there is

no ambiguity, we will also refer to self-exciting Poisson processes as sepps.

In fact, Model 1 is a generalization of a stationary sepp process, which

assumes that the coefficient matrices A∗(t) = A∗(1), t ∈ {1, . . . , T}. Sta-

tionary sepp models have been well-studied in the existing literature, in-

cluding Hall et al. [2018] and Mark et al. [2018], where it has been shown

that the coefficient matrix of the point process can be estimated by an

ℓ1-penalized likelihood estimator.

Given {X(t)}Tt=1 satisfying Model 1, our main task is to estimate {ηk}Kk=1

accurately. To be specific, we seek estimators {!ηk} !K
k=1 such that as the sam-

ple size T diverges, with probability tending to 1, it holds that

!K = K and %/∆ = ∆−1 max
k=1,...,K

|!ηk − ηk| → 0. (1.3)

For the change point estimators satisfying (1.3), we call them consistent

change point estimators. We will also call % the localization error.

To the best of our knowledge, we are the first to study the high-

dimensional sepps with change points. In addition to the mathematical

introduction of the model, we investigate the consistency of the abrupt

change point location estimators, under minimal conditions. The proposed

penalized dynamic programming approach in Section 2 is computationally
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2. THE PENALIZED DYNAMIC PROGRAMMING ALGORITHM

efficient and tailored for this novel setting.

Notation. For any integer pair (t1, t2) ∈ Z2, let [t1, t2] denote the

integer interval [t1, t2] ∩ Z. Same notation applies to open intervals. For

any matrix A ∈ RM×M , let Am denote the mth row of A and Am,m′ denote

the (m,m′)th entry of A. With some abuse of notation, for any vector v and

any matrix M , let )v)2, )v)1, )M)F and )M)1 be the ℓ2- and ℓ1-norms of

v, the Frobenius norm ofM and the ℓ1-norm of vec(M), respectively, where

vec(M) is the vectorized version of M by stacking all the columns of M .

For any v(t) : [1, T ] → Rm, let )Dv)0 =
"T

t=2 I{v(t − 1) ∕= v(t)}, where

I{·} ∈ {0, 1} is the indicator function. For any set S ⊂ {(m,m′) : m,m′ =

1, . . . ,M}, let AS ∈ RM×M satisfy (AS)m,m′ = Am,m′ , if (m,m′) ∈ S,

and (AS)m,m′ = 0, otherwise. Given any A(t) : [1, T ] → RM×M and any

I ⊂ [1, T ], if A(·) is unchanged in I, then we denote A(I) = A(t), t ∈ I.

2. The Penalized Dynamic Programming Algorithm

To detect the change points in Model 1, we propose the penalized dynamic

programming (pdp) algorithm, stated in (2.7) with necessary notation in

(2.4), (2.5) and (2.6). The pdp consists of two layers: estimation of the

coefficient matrices A∗(t), t ∈ [1, T ], and estimation of the change points.

For the coefficient matrix estimation, we let !A(I) be the penalized log-
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2. THE PENALIZED DYNAMIC PROGRAMMING ALGORITHM

likelihood estimator of the coefficient matrix over an integer interval I ⊂

[1, T ], i.e.

!A(I) = argmin
A∈C

H(A, I), (2.4)

where H(A, I) and C are the penalized log-likelihood function and the con-

strained domain of the coefficient matrices, respectively. To be specific,

with a pre-specified tuning parameter λ > 0 and I = [s, e], let

H(A, I) =
e−1#

t=s

M#

m=1

$
exp [v + Amgt{X (t)}]

−Xm(t+ 1)[v + Amgt{X (t)}]
%
+ λ|I|1/2)A)1 (2.5)

and

C =

&
A ∈ RM×M : max

m=1,...,M
)Am)1 ≤ 1

'
. (2.6)

The loss function H(·, ·) is a penalized negative logarithmic conditional

likelihood function, recalling that Xm(t + 1) given X (t) follows a Poisson

distribution with intensity exp [v + Amgt{X (t)}]. The penalty term λ|I|1/2

in (2.5) is introduced in a way such that the tuning parameter λ is indepen-

dent of the interval length. The term |I|1/2 reflects the order of the standard

error of the sum of |I| marginal log-likelihood functions. We elaborate on

this scaling factor and its derivation in Lemma S8 and its proof.
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2. THE PENALIZED DYNAMIC PROGRAMMING ALGORITHM

The constraint on C is to ensure that the sepp process as vector-valued

time series is stable [see e.g. Lütkepohl, 2005]. As for stationary sepp

estimation, Mark et al. [2018] proposed a constraint similar to (2.6).

Given the above framework, we can now consider estimating change

points by setting

!P = argmin
P

(
#

I∈P

H( !A(I), I) + γ|P|
)
, (2.7)

where γ > 0 is a tuning parameter, the minimization is over all possible

interval partitions of [1, T ] and P denotes one such partition. To be specific,

an interval partition has the form P = {Ik, k = 1, . . . , KP} and satisfies

Ik′∩Ik = ∅ and
*KP

k=1 Ik = [1, T ]. Once !P is at hand, we let !K = | !P|−1 ≥ 0,

η !K+1 = T + 1 and

!P =
+
{1, . . . , !η1 − 1}, . . . , {!ηk, . . . , !ηk+1 − 1} !K

k=1

,
.

We call {!ηk} !K
k=1 the change point estimators induced by !P .

The optimization problem in (2.7) is known as the minimal partitioning

problem on a linear chain graph and can be solved using dynamic program-

ming [e.g. Friedrich et al., 2008] with the worst case computational cost

of order O{T 2Cost(T )}, where Cost(T ) denotes, in our case, the compu-

tational cost of computing !A(I) in the interval I with |I| = T . Using

coordinate decent, one can achieve Cost(T ) = O(TM2). We remark that
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2. THE PENALIZED DYNAMIC PROGRAMMING ALGORITHM

there has been a line of attack on the computational aspect of optimizing

the minimal partition problem, including Killick et al. [2012] and Maidstone

et al. [2017], among others. Some variants [e.g. the PELT algorithm pro-

posed in Killick et al., 2012] of the minimal partition problem can have a

linear computational cost, under stronger model assumptions. We remark

that in practice, one may use these variants to solve (2.7), but the theoret-

ical results in this paper only hold when the minimal partition algorithm is

executed.

For completeness, we summarize the pdp procedure in Algorithm 1

below. The quantities and functions involved are defined in (2.4), (2.5)

and (2.6).

2.1 Localization rate of the PDP estimators

In order to establish the consistency of the change point estimators re-

sulting from the pdp procedure detailed in Algorithm 1, we first impose

Assumption 1.

Assumption 1. Let {X(t)}Tt=1 ⊂ ZM be a discrete-time sepp generated

according to Model 1 and satisfying the following.

A1. There exists a subset S ⊂ {(m,m′) : m,m′ = 1, . . . ,M} such that for

all t ∈ [1, T ], A∗
m,m′(t) = 0, if (m,m′) /∈ S. Let d = |S|.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2. THE PENALIZED DYNAMIC PROGRAMMING ALGORITHM

Algorithm 1 Penalized Dynamic Programming. PDP({X(t)}nt=1,λ, γ)
INPUT: Data {X(t)}Tt=1, tuning parameters λ, γ > 0.

Set B = ∅, p = (0, . . . , 0)- ./ 0
T

, B = (∞, . . . ,∞)- ./ 0
T

and B0 = −γ. Denote Bi to

be the i-th entry of B.

for r in {1, . . . , T ]} do

for l in {1, . . . , r]} do

b ← Bl−1 + γ +H( !A(I), I)), where I = [l, . . . , r];

if b < Br then

Br ← b;

pr ← l − 1.

end if

end for

end for

To compute the change point estimates from p ∈ NT , k ← T .

while k > 0 do

h ← pk;

B = B ∪ h;

k ← h.

end while

OUTPUT: The estimated change points B.
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2. THE PENALIZED DYNAMIC PROGRAMMING ALGORITHM

A2. It holds that

max
t=1,...,T

max
m=1,...,M

)A∗
m(t))1 ≤ 1.

A3. For any ξ > 0, there exist absolute constants C∆,1, C∆,2 > 0 such that

∆ ≥ C∆,1T and ∆ ≥ C∆,2 log
2+ξ(TM)d2max{κ−2, κ−4}.

A4. There exist absolute constants p ∈ Z+ and ω > 0 such that for any t,

the matrix

E[gt{X (t)}gt{X (t)}⊤|X (t− p)]− ωIM

is positive definite, where IM ∈ RM×M is an identity matrix. In

addition, v and )gt(·))∞, for all t, are uniformly upper bounded by an

absolute constant Cg > 0.

Model 1 and Assumption 1 completely characterize the problem with

model parametersM (the dimensionality of the time series), d (the sparsity

parameter indicating an upper bound of the number of nonzero entries

in all the coefficient matrices), ∆ (the minimal spacing between change

points), and κ (the minimal jump size), along with the sample size T . The

consistency we are to establish is based on allowingM and d to diverge and

κ to vanish as the sample size T diverges unbounded.

The number of parameters at each time point is of order M2, which

is allowed to well exceed the sample size. A sparsity constraint therefore
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comes into force in Assumption A1, which is a standard assumption in the

high-dimensional statistics literature. Note that the set S is the union of all

(m,m′) pairs with a nonzero entry in any coefficient matrix. Assumption

A2 echoes the imposition of the constraint domain C (2.6) in the optimiza-

tion (2.4), to ensure the stationarity of the sepp. In fact, the constant one

in the upper bound can be relaxed to any absolute constant and is set to

be one in this paper for identification issue. To be specific, what goes into

the model is the product of Am(t) and gt{X (t)}, and the latter is assumed

to be upper bounded in sup-norm in Assumption A4.

Assumption A3 can be regarded as a signal-to-noise assumption. It

is required that the minimal spacing ∆ is at least of a constant fraction

of the total sample size, which implies the number of change points is of

order O(1). This might appear to be strong compared to other change point

detection literature, however, the problem we are facing here is challenging

due to the nonlinearity of the sepp model. In order to estimate the change

points accurately, one needs to estimate the underlying distribution. In

the analysis, one needs to deal with intervals, say I, containing more than

one underlying distributions, and control the estimation error ) !AI −A∗
I)F,

where !AI is the penalized estimator and A∗
I is the population coefficient

matrix for the whole interval I. With nonlinear models, such as the sepp
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model considered here, it is hard to characterize A∗
I . As a consequence, we

resort to the current minimal spacing condition, which is still the sharpest

in the existing literature. The number of change points can grow with n

if we assume knowledge of the minimal spacing between change points, ∆.

In this case, we can repeat our proposed pdp method in every segment of

length C∆, where C > 1 is an absolute constant. Thus we focus in the

below on the setting where ∆ is unknown.

In fact, Assumption A3 is a mild condition and covers some challenging

scenarios. For instance, Assumption A3 holds if M ≍ exp(T 1/2), d ≍ T 1/4

and κ ≍ log(T ). The quantity ξ can be set arbitrarily small and it ensures

the consistency of the estimator which will be explained after Theorem 1.

Assumption A4 can be interpreted as the restricted eigenvalue con-

dition for sepp processes. We refer readers to Section 4 of Mark et al.

[2018] for a number of common self-excited point process models satisfying

Assumption A4.

In what follows, we show the consistency of pdp in Theorem 1.

Theorem 1. Let {X(t)}Tt=1 ⊂ ZM be an sepp generated from Model 1 and

satisfying Assumption 1. Let {!ηk} !K
k=1 be the change point estimators from

the pdp algorithm detailed in Algorithm 1 with tuning parameters

λ = Cλ log(TM) and γ = Cγ log
2(TM)d

$
1 + dκ−2% , (2.8)
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where Cλ, Cγ > 0 are absolute constants, depending only on p, ω, C∆,1, C∆,2

and Cg. We have that

P
&
!K = K and max

k=1,...,K
|!ηk − ηk| ≤ C$d

2 log2(TM)max{κ−2,κ−4}
'

≥ 1− 2(TM)−1,

where C$ > 0 is an absolute constant only depending on p, ω, C∆,1, C∆,2

and Cg.

The proof of Theorem 1 is deferred to Section S2, where it can be seen

that the order of the estimation error is of the form

λ2d

κ2
+

λ2d2

κ4
+

γ

κ2
.

Due to the signal-to-noise ratio condition in Assumption A3, we have that

maxk=1,...,K |!ηk − ηk|
∆

≲ d2 log2(TM)max{κ−2,κ−4}
∆

≲ d2 log2(TM)max{κ−2,κ−4}
d2 log2+ξ(TM)max{κ−2,κ−4}

→ 0,

as T → ∞. This explains the role of the quantity ξ in Assumption A3 and

shows the consistency of the pdp algorithm. In fact, if we let d = 1 and

assume κ > 1, then the localization error we derived here coincides with

the optimal localization error in the univariate mean change point detection

problem [e.g. Wang et al., 2020].

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2. THE PENALIZED DYNAMIC PROGRAMMING ALGORITHM

Two tuning parameters are involved, where λ is used in the optimiza-

tion (2.5) to recover the sparsity in estimating high-dimensional coeffi-

cient matrices, and γ is involved in optimizing (2.7) to penalize the over-

partitioning. The order of λ required in (2.8) is a logarithmic quantity in T

and M , which is resulted from a union bound argument applied to a sub-

exponential concentration bound. The requirement on γ is essentially that

γ ≍ λ2 (d+ d2κ−2), which can be intuitively explained as an upper bound on

the difference between H( !A(I1), I1)+H( !A(I2), I2) and H( !A(I1∪I2), I1∪I2),

where I1 and I2 are two relatively long, non-overlapping and adjacent in-

tervals, and there is no true change point near the shared endpoint of I1

and I2. In this case, one would not wish to partition I1 ∪ I2 into I1 and I2.

If we only focus on the log-likelihood functions, over-estimating will result

in that

H( !A(I1), I1) +H( !A(I2), I2) < H( !A(I1 ∪ I2), I1 ∪ I2).

The penalty we impose through γ will therefore avoid this over-partitioning.

2.2 Comparisons with related work

In a broad sense, there have been numerous existing papers on different as-

pects of sepps. Another related area is the analysis of piecewise-stationary

time series models, where we also see a vast volume of existing papers. The
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two most related papers are Mark et al. [2018], which is concerned with a

stationary, high-dimensional sepp, and Wang et al. [2019], which studies a

piecewise-stationary high-dimensional linear process.

Mark et al. [2018] studied a stationary version of Model 1 with K = 0.

The penalized estimator of the coefficient matrix developed there is almost

identical to the ones summoned in our problem in (2.4). There are a few

fundamental differences between this paper and Mark et al. [2018]. (1) Due

to the piecewise-stationarity assumed in Model 1, when estimating the co-

efficient matrices in (2.4) and (2.5), it is possible that there exists a true

change point in the interval of interest and the estimator we seek is an es-

timator of a mixture of different true coefficient matrices. (2) We provide

a more refined analysis as an improved version of Mark et al. [2018], for

instance, the optimization constrain domain C defined in (2.6) is a cleaner

version of its counterpart in Mark et al. [2018]; a subspace compatibility

condition is required in Mark et al. [2018] to control the ratio of differ-

ent norms of the coefficient matrix, and this assumption is shown to be

redundant in our new analysis.

The other closest-related work is Wang et al. [2019], where the change

point localizing problem in the piecewise-stationary vector autoregressive

models is investigated and a penalized dynamic programming approach was
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deployed there. The main differences between this paper and Wang et al.

[2019] come from the underlying model. The vector autoregressive model

is a linear model in the sense that given X (t) the history data up till time

point t, the conditional expectation of X(t + 1) is a linear combination of

the columns of X (t), which is not the case here. The self-exciting point

process is a nonlinear model, and as we have mentioned, the logarithm

of the conditional intensity is a linear function of the history. Another

key difference is that Wang et al. [2019] are concerned with sub-Gaussian

innovation sequences, while the counting processes we study here determine

the heavy-tail properties of the data.

3. Numerical Experiments

In this section, we further examine the performances of the pdp algorithm

by numerical experiments, with simulated data analyzed in Section 3.1 and

a real data set in Section 3.2.

3.1 Simulated data analysis

We generate data according to Model 1 and Assumption 1. In particular, we

adopt the setting in Mark et al. [2018] and assume that the design function
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gt(·) is defined to be

gt{X (t)} = (min{X1(t), Cg}, . . . ,min{XM(t), Cg})⊤ ∈ RM , (3.9)

where Cg > 0 is a constant, X (t) is an M × t matrix and Xm(t) denotes the

mth row of X (t), m ∈ {1, . . . ,M}. For the two tuning parameters λ and

γ defined in (2.5) and (2.7), respectively, with the theoretical guidance in

Theorem 1, we fix λ = 90 log(TM) and γ = log2(M)/2 in all experiments

in this section.

Remark 2 (The robustness of γ). Note that the tuning parameter γ is

crucial in terms of determining the number of estimated change points. In

our analysis, we in fact conducted identical analysis to a range of γ in all

simulation settings. To be specific, we let γ ∈ {0.2, 0.5, 1, 1.3, 2}× log2(M)

and they returned identical numerical results. We therefore omit presenting

them separately but we remark the robustness of the choice of γ in our

algorithms.

Since the piecewise-stationary sepp model is first introduced here, we

do not have direct competitors. For illustration purpose, however, we

compare our pdp algorithm with the SBS-MVTS algorithm [Cho and Fry-

zlewicz, 2015], E-Divisive procedure [Matteson and James, 2014] and VARDP

algorithm [Wang et al., 2019], all of which are designed to detect abrupt
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change points in multivariate time series, but none is designed specifically

for the scenarios we are studying here. Having said this, there are some rea-

sons we choose these competitors. The SBS-MVTS algorithm can identify

covariance changes in the high-dimensional autoregressive time series and

the E-Divisive procedure can estimate of both the number and locations

of change points under mild assumptions on the first or second moments

of the underlying distributions. Since Poisson random variables have the

same means and variances, these two competitors may be able to detect

the changes in Poisson processes with piecewise-constant parameters. The

VARDP adopts the same ℓ0-penalization framework and can detect change

points in the regression coefficients in the high-dimensional vector autore-

gressive models. In order to apply the VARDP, we add independent noise

(Uniform[0, 0.01]) to every univariate data point Xi(t), i ∈ {1, . . . ,M} and

t ∈ {1, . . . , T}, then apply the logarithm transform on the resulting data.

We remark that there is an optional local refinement (LR) second step to

VARDP. It improves the results of VARDP, provided that VARDP produces

consistent estimators.

In all the simulated experiments, the tuning parameters for SBS-MVTS

algorithm and E-Divisive procedure are selected according to the information-

type criteria and permutation tests in the R [R Core Team, 2017] pack-
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ages wbs [Baranowski and Fryzlewicz, 2019] and ecp [Nicholas A. James

and Matteson, 2019], respectively. The tuning parameters for VARDP

are selected based on a cross-validation procedure (https://github.com/

darenwang/vectordp).

Let {!ηk} !K
k=1 and {ηk}Kk=1 be a collection of change point estimates and

a collection of true change points, respectively. We evaluate the estimators’

performances by the absolute error |K − !K| and their Hausdorff distance.

The Hausdorff distance between two sets A and B is defined as

D(A,B) = max{d(A|B), d(B|A)}, (3.10)

where

d(A|B) = max
a∈A

min
b∈B

|a− b|.

In the sequel, we consider three settings. Recall that T is the total

number of time points, M is the dimensionality of the time series and Cg is

the threshold used in the design function gt(·), which is specified in (3.9).

Every setting is repeated 100 times. Additional setting details are listed

below.

(a) One change point and varying jump size. Fix T = 450, M = 30,
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Cg = 6 and the intercept v = 1/2, which is defined in (1.2). Let

A∗(t) =






(ρv1, ρv2, 0M×(M−2)) ∈ RM×M , t ∈ [1, 150],

(ρv2, ρv1, 0M×(M−2)) ∈ RM×M , t ∈ [151, 450],

where v1 ∈ RM with odd coordinates being 1 and even coordinates

being −1, v2 = −v1, 0M×(M−2) ∈ RM×(M−2) is an all zero matrix and

ρ ∈ {0.15, 0.20, 0.25, 0.30, 0.35}.

(b) Two change points and varying minimal spacing. Let

T ∈ {180, 240, 300, 360, 420},

M = 40, Cg = 8 and the intercept v = 1/4. Let the coefficient

matrices satisfy (A∗(t))ij = 0, |i− j| > 1, t ∈ [1, T ],

(A∗(t))ij =











0.15 t ∈ [1, T/3] ∪ (2T/3, T ],

−0.15 t ∈ (T/3, 2T/3],

i = j,






−0.15 t ∈ [1, T/3],

0.15 t ∈ (T/3, T ],

i− j = −1,






0.15 t ∈ [1, 2T/3],

−0.15 t ∈ (2T/3, T ],

i− j = 1.
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(c) Two change points and varying dimension. Let T = 450, Cg = 4,

v = 1/5 and M ∈ {15, 20, 25, 30, 35}. Let

A(t) =






(v1, v2, v3, 0M×(M−3)), t ∈ [1, 150],

(v2, v3, v3, 0M×(M−3)), t ∈ [151, 300],

(v3, v2, v1, 0M×(M−3)), t ∈ [301, 450],

where v1, v2, v3 ∈ RM are

v1 = (−0.075, 0.15, 0.3,−0.3, 0, . . . , 0)⊤,

v2 = (0, . . . , 0- ./ 0
4

, 0.375,−0.225,−0.075, 1.5, 0.225, 0, . . . , 0)⊤,

v3 = (0, . . . , 0- ./ 0
8

,−0.15,−0.075, 0.45,−0.225, 0, . . . , 0)⊤.

We collect the simulation results in Tables 1, 2 and 3, for Settings (a),

(b) and (c), respectively. Each cell contains the mean and standard errors

of 100 repetitions. The Hausdorff distances are visualized in Figure 1 to im-

prove readability. These three settings have ranged over various situations.

It is clearly that pdp outperforms both competitors in all settings on both

metrics. We notice that, pdp outperforming VARDP demonstrates that it

is crucial to develop nonlinear-data-specific methods. Merely pre-processing

data and applying linear-model-specific methods are not reliable.
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Table 1: Simulation results of Setting (a). Each cell is in the form of

mean(standard error). For the metrics, D denotes the Hausdorff distance

defined in (3.10) and | !K − K| denotes the absolute errors in estimating

the numbers of the change points. pdp uniformly outperforms the other

methods across a range of ρ values, reflecting the jump size.

Metric ρ = 0.15 ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35

PDP D 3.1(9.8) 1.1(1.0) 0.7(0.5) 0.6(0.5) 0.6(0.5)

SBS 282.6(69.1) 226.5(119.9) 114.7(130.8) 47.3(52.9) 9.3(21.3)

ECP 151.0(0.0) 151.0(0.0) 151.0(0.0) 151.0(0.0) 151.0(0.0)

VAR 131.16(6.33) 44.84(7.61) 100.12(6.16) 67.68(6.86) 60.28(8.01)

VAR(LR) 123.76(8.00) 30.24(7.52) 104.36(6.03) 72.68(7.19) 52.68(8.21)

PDP | !K −K| 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

SBS 0.9(0.2) 0.7(0.4) 0.4(0.5) 0.5(0.5) 0.1(0.3)

ECP 300.0(0.0) 300.0(0.1) 300.0(0.5) 296.4(16.2) 287.2(31.4)

VAR 0.82(0.05) 0.22(0.06) 4.52(0.32) 1.20(0.14) 0.78(0.13)

VAR(LR) 0.82(0.05) 0.22(0.06) 4.52(0.32) 1.20(0.14) 0.78(0.13)
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Table 2: Simulation results of Setting (b). Each cell is in the form of

mean(standard error). For the metrics, D denotes the Hausdorff distance

defined in (3.10) and | !K − K| denotes the absolute errors in estimating

the numbers of the change points. pdp uniformly outperforms the other

methods across a range of T values, reflecting the minimal spacing.

Metric T = 180 T = 240 T = 300 T = 360 T = 420

PDP D 11.5(6.2) 3.7(4.6) 2.5(4.6) 2.8(4.3) 1.2(3.6)

SBS 177.0(21.1) 233.3(38.1) 270.1(85.5) 243.8 (156.1) 263.5(185.2)

ECP 61.0(0.0) 81.0(0.0) 101.0(0.0) 121.0(0.0) 141.0(0.0)

VAR 58.08(1.16) 76.20(1.72) 87.92(4.08) 106.52(4.75) 126.04(4.84)

VAR(LR) 56.96(1.35) 76.00(1.66) 87.36(3.74) 104.36(5.02) 122.12(5.12)

PDP | !K −K| 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

SBS 2.0(0.2) 1.9(0.3) 1.9(0.4) 1.6(0.7) 1.6(0.6)

ECP 178.9(0.3) 238.9(0.3) 298.9(0.3) 358.8(0.4) 418.8(0.4)

VAR 1.92(0.06) 2.04(0.08) 1.94(0.15) 1.96(0.18) 2.30(0.28)

VAR(LR) 1.92(0.06) 2.04(0.08) 1.94(0.15) 1.96(0.18) 2.30(0.28)
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Table 3: Simulation results of Setting (c). Each cell is in the form of

mean(standard error). For the metrics, D denotes the Hausdorff distance

defined in (3.10) and | !K − K| denotes the absolute errors in estimating

the numbers of the change points. pdp uniformly outperforms the other

methods across a range of M values, the dimension of the time series.

Setting (c)

Metric M = 15 M = 20 M = 25 M = 30 M = 35

PDP D 3.3(5.0) 3.6(5.5) 3.2(4.5) 5.0(12.4) 6.1(13.2)

SBS 401.4(112.8) 378.2(129.9) 411.3(101.7) 377.7(134.1) 375.4(134.5)

ECP 151.0(0.0) 151.0(0.0) 151.0(0.0) 151.0(0.0) 151.0(0.0)

VAR 134.24(4.19) 146.84(2.17) 148.40(0.95) 149.08(0.84) 146.78(2.79)

VAR(LR) 131.44(6.42) 146.64(2.87) 149.72(0.10) 149.88(0.07) 149.56(0.34)

PDP | !K −K| 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

SBS 1.8(0.4) 1.7(0.5) 1.9(0.3) 1.8(0.4) 1.8(0.4)

ECP 448.6(0.5) 449.0(0.3) 449.0(0.1) 449.0(0.0) 449.0(0.0)

VAR 1.48(0.20) 1.74(0.07) 1.86(0.05) 1.94(0.03) 1.89(0.76)

VAR(LR) 1.48(0.20) 1.74(0.07) 1.86(0.05) 1.94(0.03) 1.89(0.76)
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Figure 1: A visualization of the mean Hausdorff distance metric D (3.10)

in Tables 1, 2 and 3. The methods concerned are: Algorithm 1, pdp;

SBS, SBS-MVTS; ECP, E-Divisive; VAR, VARDP. In each panel, the y-

axis represents the mean Hausdorff distance across 100 repetitions and the

x-axis represents the varying parameter in each setting. pdp uniformly

outperforms the other two methods across a range of parameter values,

including ρ (reflecting the jump size), T (the number of samples), and M

(the dimension of the time series).
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3.2 Real data example

We consider the neuron spike train data set previously analyzed in Watson

et al. [2016a]. The three chosen data sets are from Watson et al. [2016b] and

each consists of wake-sleep episodes of multi-neuron spike train recording

sessions of one laboratory animal. Each wake-sleep episode includes at least

7 minutes of wake time followed by at least 20 minutes of sleep time. Note

that the wake and sleep periods were recorded so the true change point

in each dataset is the end of the wake period. For each data set, we first

compute the Firing Rate (FR) of each neuron using a 5-second discretization

time window and then apply Algorithm 1 with λ = 800 and γ = log2(M)/2,

the same as in Section 3.1. For comparison, we also apply the SBS-MVTS

algorithm [Cho and Fryzlewicz, 2015], E-Divisive procedure [Matteson and

James, 2014] and the VARDP algorithm [Wang et al., 2019].

The subjects concerned are 20140528 565um, BWRat17 121912 and

BWRat19 032413. The numbers of neurons, i.e. the dimensions of the time

series M , are 24, 33 and 41, respectively. The total numbers of 5-second

time intervals, i.e. the total number of time points T considered in Model 1,

are 3750, 2995 and 3920, respectively. The true change points are at point

788, 1184 and 2001, respectively.

The results are summarized in Table 4 and are depicted in Figure 2.
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Since the results of VARDP and its local refinement are very close, in

Figure 2, we only depict those of VARDP. Since E-Divisive procedure

outputs too many estimators, we omit them from Figure 2. As we can see

from the table and the figure, our pdp algorithm consistently outperforms

the other algorithms in these real data examples.

Table 4: The results of three algorithms on multi-neuron spike train data

sets. For the metrics, D denotes the Hausdorff distance defined in (3.10)

and | !K −K| denotes the absolute errors in estimating the numbers of the

change points. pdp uniformly outperforms the other methods.

Subject Metric PDP SBS ECP VAR VAR(LR)

20140528 565um
D 38 382 2966 708 646

| !K −K| 0 0 740 1 1

BWRat17 121912
D 84 140 1816 1162 1138

| !K −K| 0 0 595 8 8

BWRat19 032413
D 1 99 1996 1889 1989

| !K −K| 0 0 773 12 12
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Figure 2: The true change points and the estimators provided by pdp

and SBS-MVTS in the multi-neuron spike train data sets. Each panel

corresponds to a subject. The y-axis represents the sum of the FRs across all

neurons and the x-axis represents the ordered time intervals. The estimators

of the E-Divisive procedure are not included because the corresponding !K’s

are too large. pdp uniformly outperforms the other methods. See Table 4

for detailed information.
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4. DISCUSSIONS

4. Discussions

In this paper, we studied piecewise-stationary discrete-time high-dimensional

self-exciting Poisson processes, which, or at least the theoretical properties

of which were not studied in the literature. The number of stationary seg-

ments in the whole time series is assumed to be an unknown constant. All

the other model parameters are allowed to be functions of the sample size

T . We proposed a computationally-efficient and theoretically-guaranteed

algorithm.

In the numerical experiments, we fix tuning parameters. One future re-

search direction is to investigate data-driven methods for tuning parameter

selection. Possible methods include variants of stationary bootstrap [Politis

and Romano, 1994] or variants of information criteria [e.g. Chen and Chen,

2012].

Another future research direction is to extend the techniques we de-

rived in this paper to other popular time series models. For instance, one

key feature of the sepps we are concerned in this paper is the varying vari-

ance structure and heavy tail behaviours. These share similarities with the

GARCH models, which are widely used in finance.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



REFERENCES

Supplementary Materials

All the proofs are in the Supplementary Materials.

References

Yacine Aı̈t-Sahalia, Julio Cacho-Diaz, and Roger JA Laeven. Modeling

financial contagion using mutually exciting jump processes. Journal of

Financial Economics, 117(3):585–606, 2015.
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