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Abstract—Social learning refers to the process by which
networked strategic agents learn an unknown state of the
world by observing state-related private signals as well as
other agents’ actions. In the classic study of social learning by
Bikhchandani, Hirshleifer, and Welch, it was shown that in this
setting, information cascades occur, in which agents blindly
imitate others’ behavior and as a result learning stops for the
whole community. Several proposals have been forwarded to
mitigate this detrimental phenomenon.

In this paper we consider the introduction of an information
coordinator to mitigate information cascades. The coordinator
commits to a contract and agents choose to enter the mechanism
or not. If they enter they pay a fee and inform the coordinator of
their private information (not necessarily truthfully). The
coordinator, in turn, suggests an action to the agents based on
his cumulative knowledge. We study a class of mechanisms that
possess properties such as individual rationality for agents (i.e.,
agents want to enter the mechanism), truth telling, and profit
maximization for the coordinator. We show the existence of
such a mechanism which strictly improves social welfare, and
results in strictly positive profit for the coordinator, so that
agents and the coordinator are willing to adopt this approach.
Furthermore, we analyze the performance of this mechanism
and show significant gains on both aforementioned metrics.

I. INTRODUCTION

Learning in general social networks is characterized by
the following salient features: there is an unknown state of
the world (e.g., the value of a new product or a new
technology) that agents want to estimate in order to improve
their well being. Agents themselves do not observe this
state of the world directly, but only indirectly through some
private signals (e.g., recommendations from friends, etc).
Since agents are selfish they may not want to share this
private information. Nevertheless, they take actions (e.g.,
buy the product or adopt the new technology) and these
actions are publicly observed in the network by all agents.
As a result, the action of each agent is based on the
public information available (e.g., buying actions of previous
agents) and their own private information. Through this
process, information about the state of the world, which is
beneficial for the entire community, is only partially revealed
through the actions of the agents. This partial revelation of
the private information may lead to catastrophic behavior in
social networks: although the community as a whole has
sufficient information to accurately estimate the state of the
world, because of the partial revelation of this information
through the agents’ actions, the actual information revealed
in the network is minimal. This scenario was studied in the
seminal works [1]–[3], with the key result being the existence
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of a phenomenon called information cascade which is shown
to occur almost surely in sequential social learning. When a
cascade occurs, each agent makes decisions based only on
the observed common history of the previous actions and
disregards her own private information. As a result there
is no signaling and learning stops completely in the
network. This results in a cascading event (i.e., a herding
behaviour). The results of these seminal works raise the
following question: if strategic agents are not allowed to
have direct communication with each other, are there any
approaches to disseminating information more efficiently
throughout the network?

A number of ideas have been developed to address this
question. In [4], [5] noisy observations (action error) and
extra observations (a review from previous agents) are intro-
duced, while in [6] agents are allowed to ask binary questions
thus achieving asymptotic learning. In [7] it is shown that
information cascades can be avoided by non-myopic agents.

In this paper we consider the introduction of a third party,
an information coordinator, to enable efficient information
dissemination. The coordinator commits to a mechanism,
which is a public contract specifying what the coordinator
will do during the social learning process. According to
this contract, each agent first decides whether to join the
mechanism and pay an entrance fee, or not to join. If the
agent joins, she privately shares her private information with
the coordinator, and in turn receives a recommendation from
the coordinator as to whether she should buy the product or
not. This process resembles a consultation in real life. The
client (agent) pays to meet the consultant (coordinator), tells
the consultant about her own situation, and asks for advice.
The consultant is experienced because he learns from past
consultations. Although he is not allowed to disclose others’
private information due to professional ethics, he can still
make recommendations based on what he knows. For this
approach to work, a number of concerns have to be taken
into account in the design process. On the agents’ side, due
to privacy concerns, they may not be willing to share their
information with the coordinator truthfully. Thus appropriate
incentives have to be introduced. Furthermore, for agents
to join the mechanism, an improvement in their utility has
to be guaranteed by design. On the coordinator’s side, the
contract has to be designed in such a way that it results
in some positive profit in order for him to have incentive
to maintain the mechanism. Moreover, as the information
accumulates, storing and sharing the information can be
costly. Therefore, the recommendation decision has to be
done in an economical way.

The key contributions of this work are as follows:
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 We introduce a class of mechanisms that we call
“feasible and profit maximizing” (FPM) that have the
following properties: they are individually rational (IR),
truth-telling (TT), have non-negative taxes (NT), and are
profit maximizing (PM).

 For FPM mechanisms we analyze the equilibrium be-
havior of agents and the coordinator.

 A specific FPM recommendation mechanism is con-
structed, which we call “no switch if indifferent” (NSII).
This mechanism improves the social welfare of the
agent’s community, and is strictly profitable for the
coordinator.

 An exact performance analysis of the NSII is performed,
based on which we provide numerical results that show
a substantial improvement on net social welfare compar-
ing to the case without a coordinator and a substantial
coordinator profit.

Our approach borrows ideas from “information design”
and “mechanism design”. In information design [8]–[11],
the designer, known as a sender, is allowed to reveal state-
relevant signals to agents (receivers) to influence agents’
actions. The designer commits to an information mechanism,
which specifies how the signals are generated conditioned on
the state. The agents then form a belief with signals and take
actions. In mechanism design [12], information flows in a
reverse direction. The designer (as a receiver), commits to a
mechanism specifying the allocation and taxes as functions
of agents’ reported messages. Our work contains both flows
of information. Agents possess private information, and the
designer has another set of information that agents don’t
have. In similar works [13], [14], the designer knows the
state. However, the designer in this paper is not aware of the
state of the world. Instead, he accumulates his private
information by learning from agents.

The remainder of the paper is organized as follows. The
model of social learning with a coordinator is described in
Section II. Section III characterizes the equilibrium behavior
of agents and the coordinator. Section IV presents results
regarding the increased social welfare and profitability of the
proposed mechanism, as well as an exact analysis of the NSII
mechanism. Numerical results are presented in Section V.
Section VI concludes the paper.

II. MODEL

The model in this work introduces a self-interested coor-
dinator into the basic observational learning model of [1]. In
the basic model, there is an unknown state of the world W 2
W =  f  1; 1g, which models for instance the (unobserved)
quality of a good. A sequence of agents t  =  1; 2; : : : are
coming to the marketplace, each at time t, take an action A t

2  A  =  f  1; 1g and then leave the marketplace forever. Every
agent’s objective is to match her action with the state of the
world, i.e., agent t’s utility is u(w; at) =  1w(at)1. The
prior belief P (W =  w) =  1=2 for w =  1 is a

1 1a (x) is an indicator function of x  such that it returns 1 if x  =  a, else 0.
For simplicity of exposition we are assuming a slightly different utility from
the one considered in [1] which was u(w; at ) =  w(at +  1)=2.

y t m t e t
Agent ( t  +  1)

Coordinator Agent t  
t  =  1

Agent t  Nature Agent t  
a t

Nature
( f  ; f  ) Agent t Agent ( t  +  1)

d =  0
y t a t

Fig. 1. Part of the game tree for the mechanism-induced game. The dashed
line for “Nature” indicates that the realization of yt is independent of dt .
The red node represents the next subgame for agent ( t  +  1).

common knowledge. In the original setting, each agent t
privately observes W through a binary symmetric channel
with a crossover probability p 2  (0; 1=2), and we denote the
private observation by Yt . We define Qy(yjw) :=  P (Y =
yjW =  w), so that Qy( wjw) =  p. We also denote
q :=  Qy(wjw) =  1 p. At each time t, only agent t  takes
action at based on her observation on the history a1:t 1 (here
xj : k  represents xj ; : : : ; xk , and sometimes we also use the
notation x k  =  x1:k ) and her private observation yt . Agents
are Bayesian learners, so agent t’s rationality dictates that

at 2  arg max P(W =  a j a1:t 1; yt): (1)

We now augment the original model of [1] with a coordi-
nator. Before the decision making process, the coordinator
first commits to a mechanism. A mechanism is a contract
between the coordinator and the agents, the contents of which
are known to all. The agents who sign this contract pay a
nonnegative service fee (tax) to the coordinator, report
necessary information, and receive recommended actions.
The overall process is depicted in Fig. 1 and is detailed
below. With this mechanism, before agent t  takes an action,
she decides whether to join the mechanism or not. This
decision is denoted by dt , with dt =  1 meaning “join”,
and dt =  0 meaning “not join”, based on agent t’s observed
history dt 1; at 1. Subsequently, agent t receives her private
signal yt . If she chooses not to join the mechanism, she
needs to take action at based only on dt 1; at 1; yt. If she
chooses to join, she pays an entrance fee f x (dt  1; at 1) and
reports a message m t  2  W (confidential to other agents)
directly to the coordinator. After that, agent t  receives a
recommendation et generated by the conditional distribution
f e(jdt 1; at 1 ; nt ; mt) 2  ∆(A)  based on the public history dt

1; at 1, private information m t  and a summary nt =

i = 1  m i  of m1: t  1, which is the difference between the
number of 1’s and -1’s in m1: t  1. Then, agent t takes action at

=  et
2. The two functions f e  and f x  constitute the contract

between the coordinator and the agents and in our setting the
coordinator commits to this contract (so that both functions
are know to the agents).

The mechanism induces a sequential game where both
the coordinator and agents are the players. As a result, the
timeline for the realizations of random variables can be
written as

W; : : : ; Dt; Yt; Mt; Et; At; Dt+1 ; : : : ;

2This type of behavior is called obedience. In our setting, it can be
achieved by imposing a large penalty term on tax for the disobedient agents.
This can be achieved since the coordinator knows et and also observes at .
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where Mt ; Et are not realized if Dt =  0.
With the introduction of the coordinator, if agent t joins

the mechanism, her net utility is u(w; at)  f x (dt  1; at 1),
and the coordinator’s profit is a sum of the taxes received
from each agent t (discounted by t  1,  2  (0; 1)).

In this problem, we restrict attention to mechanisms f  =
( f x ; f e ) with the following four properties:

 Individual Rationality (IR). For a Bayesian rational
agent, joining the mechanism brings an expected net
utility which is no worse than not to join.

 Truth-telling (TT). When joining the mechanism, agents
are willing to report m t  =  yt .

 Nonnegative Tax (NT). Tax f x (dt  1; at 1) is nonnega-
tive for any dt 1; at 1.

 Profit Maximization (PM). Suppose the mechanism is
IR and TT, then for a given f e ,  there is no other tax
scheme f x ′      

such that ( f x ′  ; f e ) satisfies IR, TT, and
f x ′  

 f x .

The nonnegativity restriction for tax is set for easing the
analysis. We will show later that even with imposing this
additional restriction on taxes, we can find a profitable
mechanism for the coordinator which results in a positive
social welfare improvement as well. The fourth property, PM,
refers only to the tax part f x  for a given f e .  Mechanisms
( f x ; f e ) satisfying IR, TT, NT and PM are called feasible
and profit maximizing (FPM) mechanisms. In some special
cases, an agent may be indifferent between joining and not
joining, or indifferent between telling the truth and not doing
so. For these scenarios, we further assume that ties are broken
in such a way that agents always choose to join and tell the
truth. This behavior can be justified by the positive effect to
the social welfare brought by the mechanism, which will be
shown in subsequent sections.

III. PERFECT BAYESIAN EQUILIBRIUM

We adopt perfect Bayesian equilibrium (PBE) as the
solution concept. To complete the definition of PBE, we
first introduce the agents’ strategy profile and information
sets (“infosets” for short). Let gt =  (gt  ; gt  ; gt  ) denote the
strategy of agent t, and g =  g1:1 .  Agent t would see the
following possible infosets:

1) Infoset hd =  (f ; dt 1; at 1) relating to decision Dt

gd(jhd).
2) Infoset hm  =  (f ; dt 1; at 1; dt =  1; yt) relating to

decision Mt  gm(jhm);
3) Infoset ht      =  (f ; dt 1; at 1; dt =  0; yt) relating

to decision A t   gt  (jht  ).
Observe that the coordinator’s strategy f  is included in the
infosets of agents. This is equivalent to saying that the
coordinator commits to the contract f .  Further define the
belief system  : H !  ∆(W  Z), where H is the collection
of infosets. The motivation for such beliefs is that the
coordinator’s suggestion E t   f e(jdt 1; at 1 ; nt ; mt) is
generated based on information dt 1; at 1 ,mt , which is
known to agent t, as well as the summary information nt

which is unknown to her. As a result, agent t puts a belief

on the unknown variable nt , as well as the state of the world w
in order to evaluate expected future rewards. We define the
PBE as follows.

Definition 1: A PBE is an assessment consisting of a
strategy profile (f ; g) and a belief system  satisfying

1) Sequential Rationality. On each infoset h, the strategy
given by the profile (f ; g) is a best response toward the
belief specified by , i.e., for every agent t (resp. the
coordinator) and infoset h of this player, the strategy
gt (resp. f )  maximizes her expected payoff under the
belief (jh).

2) Consistency on Path.  is consistent with the proba-
bility distribution induced by the strategy profile (f ; g)
at equilibrium. Consistency requires the belief update
on the equilirbium path satisfies Bayes’ rule.

3) Plausible Off-Path Belief. The conditional belief for
the off-path infoset should also be specified by , in a
reasonable way (specified later).

For the third requirement in Definition 1, there are various
interpretations on “a reasonable way” in the literature (see
[15, Chap. 8], [16, Chap. 5], and [17]). In this work, if the
coordinator deviates to some FPM strategy f ′ ,  since f ′  is
observed by agents, Bayes’ rule still works for the update of
. For agents’ deviation, if f  is FPM, then dt reveals no
information, and so the deviation on dt won’t play any role in
the update. The deviation on m t  is private, so it has no
influence on the belief update. Finally, although agents’ off-
path deviation on at may influence the successive beliefs,
since the purpose for the deviation analysis is for agent t  to
check if a profitable deviation exists, and the further belief
changes do not affect her payoff (since she only acts once),
the influence on belief brought by an off-path deviation on at

does not matter. For the rest of this section, we further
elaborate on the first two requirements of PBE.

A. Consistency

Denote by Pf ;g() the probability distribution induced by
strategy profile (f ; g). On the equilibrium path, a consistent
belief system  satisfies

(w; ntjht) =  
Pf;g(w; nt; ht) : (2)

t

These beliefs can be updated in an iterative fashion. By
Bayes’ rule, the belief at infosets ht      =  (hd; dt =  1; yt) can
be calculated by that of ht  as

Qy(ytjw)(w; ntjhd)
t       t

w; nt  
Qy(ytjw)(w; ntjht  )

and since dt is agent’s own decision, it won’t influence
agent’s belief over (w; nt), so on the off-path infosets ht  =
(ht  ; dt =  0; yt) we have

(w; ntjht  ) =  (w; ntjht  ): (4)

On the equilibrium path, the belief at infoset hd can be
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evaluated recursively as

(w; nt+1 jht +1)

m  (w; nt+1  mtjhd)Qy (mtjw)
 f e(at jdt 1at 1 ; nt+1  mt ; mt )

w;n ; m  (w; ntjhd)Qy(mtjw)f e(atjdt 1at 1 ; nt ; mt) (5)

Therefore, the belief update of (jhd) on the equilibrium

path can be described by an update function ϕ f e  

() as

(jht +1) =  ϕt  
e  

((jht  ); dt =  1; at):

The belief at off-path hd can also be evaluated, but since for
deviated agent t ′  < t, the future at does not influence her
profit at all, in the analysis of unilateral deviation in equi-
libria, we don’t have to consider the future off-path belief.
Thus, for off-equilibrium paths, the beliefs can be defined in
an arbitrary way, which won’t affect the subsequent analysis.

As it turns out, (w; ntjht  ) has a special structure. The
following Lemma 1 shows that one can recover the joint
belief (w; ntjht  ) from the marginal (ntjht  ), and so it
suffices to track the belief (ntjht  ).

Lemma 1: (w; ntjhd) =  h(wjnt)(ntjhd), where

h(1jnt) =  
(q=p

)p) 
+  1

; h( 1jnt) =  
(q

=p
)nt +  1

:

Proof: The proof is a direct consequence of the fact

(1; ntjhd)=( 1; ntjhd) =  (q=p)nt : (6)

Now, define t(nt) :=  (ntjhd), which is a variable of
public belief on nt based on public hstory hd up to time t. t
can be updated recursively as t + 1  =  T (t ; dt =  1; at):

t+1 (nt+1 ) =

y  t (nt+1  yt) w  h(wjnt+1  yt)Qy(ytjw)

 f e(at jdt 1at 1 ; nt+1  yt; yt)
Pf ;g (dt =  1; atjhd)

where the denominator is the same as (5) but replacing  with
t(nt)h(wjnt). In the following we use the shorthand notation
t + 1  =  T (t ; at).

B. Rationality

Fix an FPM mechanism f  =  ( f x ; f t  ) and a belief system
. Since only the on-path infosets ht  ’s are of our interest, we
depict agent t’s rationality in the subgame starting from a on-
path hd. The analysis of this subsection serves two
purposes: it unravels agents’ rationality, and also uncovers
the constraints for IR, TT, NT and PM requirements.

The analysis is done in a backward recursive manner. First
consider the decision m t  at infoset ht      =  (ht  ; dt =
1; yt). The expected utility for choosing a certain m t  is

Ut(mt jht  ) =  P f ;g (At =  W j hm ; mt )  f x (dt  1; at 1);
(8)

where the above probability can be derived by analyzing the
corresponding joint probability

f ;g

∑
n  Pf ;g(at; mt ; yt ; nt ; w j hd)

t t t
Pf ;g (yt ; mt j hd)

n t  
(w; ntjhd)Qy(ytjw)f e(atjdt 1; at 1 ; nt ; mt)

w ;n  (w; ntjhd)Qy(ytjw)
(9)

The expected utility is therefore

Ut(mt jht  )

w n t  
(w; ntjhd)Qy(ytjw)f e(wjdt 1; at 1 ; nt ; mt)

w ; n t  
(w; ntjhd)Qy(ytjw)

 f x (dt  1; at 1):
(10)

Sequential rationality implies that if gt  (mt jht  ) > 0 for
some mt ,  then

m t  2  arg max Ut(mjhm): (11)

Since f  is FPM, TT requires Ut(ytjht  )  Ut( yt jht  ). This
indeed provides TT constraints for all on-path h :
∑ ∑

( w ; n t j h t  )Qy(ytjw)
(
f e(wjdt 1at 1nt; yt)

w       n t (12)
 f e(wjdt 1at 1nt;  yt)  0:

We now consider the infoset at the decision for at in the
case that the user did not join the mechanism, ht  =  (ht  ; dt =
0; yt). The expected utility for choosing at at ht  is

n  (w =  at; ntjhd)Qy(ytjat) t

t       t t
w;n  (w; ntjht  )Qy(ytjw)

(13)

Therefore, if ga(atjha) > 0 for some at , then

at 2  arg max Ut(ajha): (14)

Since Ut(atjht  ) depends on ht  through t() =  (jht  ), gt

(atjht  ) can be written as gt  (atjt ; yt).
We now consider the decision to join the mechanism or

not. For this decision, agent t  compares the expected payoff
for joining with the expected payoff for not joining. Since
f  is FPM, IR requires gt  (1jht  ) =  1, which requires the
following for all on-path h ,

Ef ;g 
{

Ut(Ytjhd; dt =  1; Yt)jhd
} 

}

Ef ;g ga(atjt ; Yt)Ut(atjhd; dt =  0; Yt)jhd ;
(15)

a t

which is simplified to
∑ ∑ ∑

(w; ntjht  )Q (ytjw)
y t         w       n t

 f e(wjdt 1; at 1; nt; yt)  ga(wjt; yt)  f x (dt  1; at 1):
(16)

Notice that the tax function f t       is not involved in
TT constraints (12), and has an upper bound given by IR (16).

By
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IR and PM, for a fixed f e ,  this upper bound must be reached
by f x (dt  1at 1). At the PBE of interest, the coordinator’s
expected discounted revenue is defined by

{  
1

}

E f e ;g t  1 f x (Dt 1 ; At 1) ; (17)
t = 1

and by equation (16), f x  is determined by f e  at equilibrium.
Once f t  is fixed to satisfy PM, the other two constraints left
are TT and NT. TT is (12), and NT implies the LHS of (16)
is nonnegative.

IV. MAIN RESULTS

This section presents the results that justify the intro-
duction of a coordinator in sequential social learning from
different viewpoints. For the agents’ community, they will
have a strong motivation to accept a mechanism if there are
individual and social welfare improvements. For the
coordinator, he has incentive to operate the mechanism only if
the mechanism brings a positive revenue. In this section, we
will explicitly propose an FPM mechanism that meets the
above requirements. For the proposed mechanism we will
provide an exact analysis for both social welfare and
coordinator profit.

To characterize the improvement of the overall welfare of
the community, we define the gross social welfare (GSW) as
agents’ total income before tax as follows:

GSW =  
∑

t  1ut(w; at); (18)
t = 1

and the net social welfare (NSW) as the GSW minus taxes.
In this paper, we want to compare the social welfare

with a coordinator to that of a non-coordinator system (we
refer to the baseline non-coordinator system of [1] as the
Bikhchandani, Hirshleifer, and Welch (BHW) system). In
BHW environments, agents’ decisions are based on a public
belief and private information. However, the public belief
dominates the decision making process after a certain number
of consecutive same actions, and the actions no longer reveal
new information. When it happens, the estimation of state of
the world is never reverted even if it is incorrect, which halts
social learning. This is known as an information cascade.

Definition 2 (Information cascade without a coordinator):
In the sequential Bayesian learning without a coordinator, a
belief t(w) =  (wjhd) is said to be an information cascade
if at equilibrium agent’s response toward (t ; yt) does not
depend on the private information yt .

From the result of [1], regardless of the p value, agent t
chooses at based on yt as long as the absolute difference
between actions 1 and  1 among at 1 is strictly less than 2.
Once the absolute difference reaches 2, the information
cascade occurs, and the successive agents follow the herd. A
mechanism f B ; e  (“B” represents BHW) can be constructed

to simulate agents’ behavior in BHW scenario3:

B ;e t  1 1 m t  (et); j
∑

= 1  aj  1;

1sign(
∑ t      1  a  )(et); otherwise;

(19)
and correspondingly, f B ; x (dt  1; at 1)  0. f B  is an FPM
mechanism because for every agent, f B  recommends the
optimal action based only on the observable information
for this agent with no charge, which means it is both
harmless and profitless for an agent to join the mechanism
and meaningless to lie to the mechanism.

We further define a special type of public histories for
mechanism construction.

Definition 3: The public history dt 1; at 1 is said to be
a transparent action sequence (TAS) w.r.t. BHW if 8  t, 9y
1, P f B  

(y 1jd 1a 1) =  1y      1  (y 1).
The meaning of this definition is that when we are faced

with a TAS, we can infer the agents’ private information a.s.,
i.e., no information cascade has occured up to time t.

Next, we propose a mechanism which has strict social
welfare improvement and positive expected revenue.

A. NSII Mechanism

We construct an FPM mechanism f N ; e  (“N” is the first
letter of “NSII”) by appropriately modifying the BHW mech-
anism. In order to ensure no loss in social welfare before a
cascade occurs, we set f N ; e  =  f B ; e  for TAS histories.
Then, once the information cascade occurs, the mechanism
switches to the following recommendations dependent only
on nt and mt : {

N ;e 11(et); nt +  m t  > 0 or nt > 0,
t t       t t

1 1(et); otherwise:
(20)

Note that given yt and m t  =  yt , the likelihood ratio of the
state is (q=p)nt +mt  . If nt +  m t  > 0, the best estimation is
w =  1. If nt +  m t  =  0, it is indifferent to choose 1. In
this case, if nt > 0 (i.e., nt =  nt 1 + m t  1 > 0), then f N ; e

recommends 1, which is the same as the recommendation
at t   1. Similar analysis can be done for the cases with
nt +  m t   0. Thus, we call the mechanism f N ; e  as “no
switch if indifferent” (NSII) mechanism.

The NSII mechanism receives no taxes when f N ; e  =  f B ; e .
Since the NSII mechanism f N ; e  depends on hd through t

after switching to (20), the tax function in (16) simplifies to

f N ; x (dt  1at 1) =  
∑ ∑ ∑

Q y ( m t j w ) (w ; n t jh d )
w      m t       n t (21)

(f N;e(wjnt ; mt)  ga(wjt; mt)):

Theorem 1 shows that the NSII mechanism is FPM.
Theorem 1: f N  is an FPM mechanism.

Proof: Given (w; mt 1jhd), the correct probability
for an estimator f (jnt ; yt) 2  ∆(W ) with inputs nt; yt is

Pcorrect = Qy(mtjw)(w; ntjhd)f (wjnt; yt): w
m t       n t

3This version of the BHW resolves ties in a way that maximizes the
expected social welfare over all BHW-like systems.
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From Maximum A Posteriori(MAP) rule, if nt; yt are
known, the optimal estimate of W is determined by the
likelihood (q=p)nt +yt  , so we declare 1 if nt + yt  > 0, declare
0 if nt + y t  < 0, and both are fine if nt + y t  =  0. Thus, f N ; e  is
an optimal estimator if m t  =  yt . The case with m t  =   yt is
another estimator. Comparing the correct probabilities of
these two estimators shows TT constraints hold. Then, for
NT, ga(jhd; dt =  0; yt) is also an estimator without utilizing
nt . Note that the tax f N ; x  is indeed the difference of correct
probabilities, by comparing the correct probabilities of f N ; e

and gt  , the nonnegativity of f x  is shown.
In the following we show the existence of an FPM

mechanism with strict improvement on welfares and positive
profit by checking whether NSII possesses these properties.

B. Welfare Improvement and Positive Profit

Theorem 2 shows the motivation for an agent community
to accept the NSII mechanism.

Theorem 2: The following are true for NSII:

1) NSII improves expected individual welfares.
2) NSII strictly improves the expected net social welfare.

Proof: Fix a realization of y1:t. In BHW, if dt 1at 1 2
TAS, then a =  y for   t  1. Under the mechanism f e ,  since
we assume f N ; e  =  f B ; e  for TAS histories, one can verify

by induction that a =  y still holds. In this case, f N ; e

does not change agent t’s utilities. If dt 1at 1 2= TAS,
information cascade occurs at some t ′  < t. In BHW, agent t
knows y1:t ′  1 from public a1:t ′  1, and yt as private informa-
tion, but no further information about yt ′  1:t 1. In contrast,
agent t  under f N ; e  may infer further information about
yt ′  1:t 1. They choose from (i) using their own rational ga ,
or (ii) receiving an optimal estimation from f N ; e  and pay a
service fee. From IR, (ii) is at least as good as (i), and even
if (i) brings a weak improvement in individual welfare since
under f N ; e  the estimation is based on a weakly larger set of
information than BHW, so the first statement is proved.

For the second statement, consider trajectories with y1:2 =
1, y3:5 =   1. Under BHW a1:5 =  1, but for NSII, a1:4 =  1,
a5 =   1. For agent 6 under NSII, she pays zero tax and
plays a6 =   1, which is an optimal estimation conditioned on
y1:6 regardless of y6, but under BHW she plays 1, which is not
the optimal if y6 =   1. As a result, her expected utility is
strictly improved if y6 =   1. Since every one’s welfare is
weakly improved from statement 1, and there are trajectories
leading to strict improvements, statement 2 is proved.

Next, we prove that the NSII mechanism is strictly prof-
itable for the coordinator.

Theorem 3 (Profitability): The mechanism f N ; e      has a
positive expected revenue.

Proof: Under the same trajectory y1:4 =  1; 1;  1;  1,
a1:3 =  1 for both BHW and NSII systems. Then, BHW
system gets into an information cascade, and NSII system
switches to f N ; e  in (20). From the definition, a4 =  1 in
both systems. For agent 5, if she joins NSII, the mechanism
will guide her to a better estimation a5 =   1 when y5 =
 1, because in BHW, agent 5 doesn’t know y3:4 =   1;  1
so she would play a5 =  1. From this utility surplus, the

coordinator earns a positive profit f N ;e(d4 =  1; a4 =  1) >
0. The trajectories with y1:4 =  1; 1;  1;  1 has a positive
probability, so NSII has a positive expected revenue.

Theorem 3 shows strict profitability, but we don’t know
whether the profit is infinitestimally above 0. In Section IV.C
we present an exact analysis of the NSII mechanism. This
analysis, together with the numerical results in Section V
show that coordinator’s profit is substantial as long as private
information is neither too informative nor too uninformative.

C. Exact Analysis of NSII Mechanism

In this part, we investigate NSII mechanism in order to
characterize the expected coordinator’s revenue and social
welfare. The NSII mechanism has two stages in imple-
mentation. It simply follows f B ; e  when action sequence is
transparent, and then switch to (20). Define indicator zt

zt =  1fdt  1at 1 2  TASg: (22)

We will show that (t ; zt) is a Markov chain. If zt =  1, the
Markovianity is guaranteed by BHW. Once t  =  12 or 1 2,
zt+1 flips to 0, and f N ; e  switches to (20). Next, we look
into the state transition after t  =  12 or 1 2.

Lemma 2: For NSII mechanism, starting from t 0      =  12

or 1 2, the following statements are true:

1) For time t  t0, the support of t  either contains nt

0, or nt  0, but does not have nt > 0 and n′ < 0
simultaneously. Accordingly, the states can be
catagorized into phase  1 and 1 (where t  assigns
probability to nt  0 and nt  0 respectively).

2) Once phase flips from  i to i,  collapses to 1i(). 3)
If for t   t0, t  is in phase i, then agent t  and

the coordinator are indifferent to 1i() and any other
outside strategy gt  (jht  ; yt) of agent t.

Proof: For 1), at t  =  t0, 12 or 1 2 satisfies 1). If
t  satisfies 1), assume  assigns probability 1 to n  1
without loss of generality. Then, from (20), at =  1 implies
nt+1 =  nt + m t   0; at =  0 implies nt+1  0, so 1) is true.

For 2), consider a flipping from phase 1 to  1, the reverse
direction is similar. If t  is of phase 1 but t + 1  is of phase

 1, then nt  0 and nt + m t  < 0, which implies m t  =   1,
and nt =  0. Therefore, nt+1 has to be  1.

For 3), suppose t  =  11, then for agent t,she knows nt =  1,
so the likelihood ratio toward w is (q=p)1+yt0 +1      1. Thus,
playing 1 is rational regardless of yt . Similar proof apply to
t  =  1 1, 12 and 1 2.

Next, consider general t . From 2), a sequence t  of phase
i can only start from 1i or 12i (right after f N ;e ’s switch).
Here we consider phase 1 starting from 11, the other three
cases are similar. If t 0  =  11, then by NSII, at0  =  1. As a
result, t 0 + 1  contains the same information as t 0  , so agent t0

+  1 would play 1 if not to join NSII. If t 0 + 2  is still in phase
1, then nt 0 +2 =  1 or 3. In a couple system with NSII up to
t0 + 2 where the coordinator is muted, agent t > t0 +  2 has
a likelihood ratio (q=p)n t 0 + 2 +y t       (q=p), because any yt
cannot reverse the action from 1 to  1, so the actions after t0
+  2 are uninformative (cascade). As a result, agents t  > 3
make decisions based only on y1; y3. In
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contrast, under NSII mechanism, agents t  > t0 + 2 have extra
information from at0 +2: t  1 induced by recommendations. If
at0 +2: t  1 =  1, it means n + y   0 for all  2  [t0 +2; t  1], which
is more supportive for state W =  1. Therefore, agent t > t0

+ 2 in the system with a coordinator is more confident about
W =  1 than that in the couple system. Hence, agent t plays
outside action at =  1 regardless of yt .

Under the NSII mechanism, before it switches to (20), zt

stays 1, and t  jumps among 1k for k =   2; : : : ; 2,
depending on the realization of yt . Once t  reaches 12 (or 1
2 resp.), due to information cascade, t + 1  =  13 (or 1 3 resp.)
and zt+1 =  0. From Lemma 2, before phase 1 flips (similar
for phase  1 resp.),  takes value from (k =  2; : : :)

of f B ; e  and earns no profit. If zt =  0, suppose t  =  ( ik ) ,  by
(21) the instantaneous reward is

f x (dt  1; at 1) =  
1

(q  p)(ik)(0) =:  rik ; (27)

and we can define rik for i k  resp. The MRP has 3 stages in
a temporal order due to the structure of Markov chain: (1)
zt =  1, (2) zt =  0 but (t ; zt) is transient, (3) zt =  0, (t ; zt) is
recurrent. Any ( ; 0) is transient, and ((ik) ; 0) is
recurrent. Use R i k  to denote the expected reward-to-go at
(ik ; 0), R i k  to denote that of (ik ; 0), and R i k  to denote that
of (1ik ; 1). By symmetry, R i k  =  R  i k  ( means empty,
“0” or “B”), so it suffices to focus on R  with k 2  N0.
These R’s can be characterized by recursive equations:

Stage 1: for k =  0; 1; 2,

R0 =  R1 ;                                                (28a)

R1 =  2qpR0 +  (q2 +  p2)R2 ;              (28b)

Stage 2: for k =  2; 3; : : :,
( + k )  :=  T (k  1) ((+2) =  12 ; a1:k 1 =  +1): (23) R k  =  rk +  (q k ;k +1 R0

+1 +  (1  qk;k+1)R1); (28c)

Once at =   1, a flip occurs, t + 1  =  1 1, and before next
flip to phase 1,  takes value from (k =  1; : : :)

Stage 3: for k =  1; 2; : : :,

R k  =  rk +  (q k ;k +1 Rk +1 +  (1  qk;k+1)R1); (28d)
(  k )  :=  T (k  1)((0) =  1 1; a1:k 1 =   1); (24)

where T (k  1) means recursively impose T on (0) for (k 1)
times. Then, once at =  1, t + 1  =  11. The case for the
opposite phase is similar.

Lemma 3: (t ; zt)t induced by f N ; e  is a Markov chain.
Proof: If zt =  1, f N ; e  =  f B ; e ,  t  takes value among 1n

for n =   2; : : : ; 2. Given t  =  1n ; zt =  1, one can verify:

P f N ; e  

(t+1 ; zt+1 j1:t ; z1:t)

= h(wjn) Qy (yt jw)11n + y t  
( t+1)1z  (zt+1): (25)

w                         y t

where z =  1 if jn +  ytj  2, and otherwise 0.
If zt =  0, f N ; e  has switched to (20), zt+1 =  0. Suppose

=  ik , i =  1, k =  2; : : :, from Lemma 2, is either
( i ( k +1 ) )  or (  i) . t + 1  =  (  i )  only if nt =  0 and yt =   i. It
turns out that

P f N ; e  

(t+1 ; zt+1 j1:t ; z1:t)
∑

=10(zt+1) 1(     i ) ( t + 1 ) t(0)h(wj0)Q( 1jw)

( w ) ]

+  1 ( i ( k + 1 ) )  ( t+1) 1  t(0)h(wj0)Q( 1jw)
w

=P f N ; e  

(t+1 ; zt+1 jt ; zt):
(26)

Similarly, if =  ik , one only needs to remove the
subscript “0” in “( )”.

The Markov process (t ; zt) with the tax f N ; x () forms a
Markov reward process (MRP). If zt =  1, f N ; e  is indifferent

where R2 :=  R2 , q k ;k +1 is defined by (26) as a transition
probability from ( k )  to (k +1) .  R0 is the expected revenue.
Now evaluate the gross social welfare through another

MRP. Since f B ; e  and f N ; e  in (20) would provide indif-
ferent expected welfare before cascade, one may use (20)
as f N ; e  for all stages for analysis of GSW. By symmetry,
E[GSW jW =  w] =  E[GSW ] for any w. Thus, we consider
w =  1 only. Conditioned on w =  1, nt is a Markov chain
with the state transition: nt+1 =  nt +  yt , and Yt+1 =  1;  1
with probability q; p resp. (Fig. 2). Let R s  be the expected
reward-to-go for nt =  n (“s” represents “society”). Then,

R s  =  1 +  (q Rn+1 +  pRn  1);     n > 0;            (29a)
R n  =  (q Rn+1  +  pRn  1);     n < 0;                   (29b)

R s  =  q +  (qR1 +  pR 1); (29c)

The closed form of E[GSW ] can be derived from the
difference equations, which is omitted due to limited space.
The expected gross social welfare E[GSW ] under NSII will
be compared with that under f B ; e ,  which is

2

E[GSW ] =  
2(1  )(1  pq2)

: (30)

V. NUMERICAL ANALYSIS

The numerical analysis for the performance of the NSII
mechanism is done with discount factor  =  0:9 and
crossover probabilities p ranging from 0.005 to 0.495, nor-
malized by multiplying (1   ). For all p’s, the expected
revenue of the coordinator and the gross expected social
welfare (the amount without taxes) under the NSII mech-
anism are evaluated by (28), (29) using value iteration; the
expected social welfare of [1] (“BHW” for short, but note
that the utility function here is slightly different) is calculated
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asymmetry improves utilities. Hence, if private information is
too informative, agents’ private information is close to full
information, which leaves less room for asymmetry. On the
other side, if private information is close to uninformative
case, the coordinator’s cumulative information won’t grow
to an informative one in a short term. As a result, the
improvement brought by NSII is more significant under
intermediate informative cases rather than the extreme cases.
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Fig. 3. Social welfares (SW) comparison between [1] and NSII mechanism.
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Fig. 4. The coordinator’s profit and the percentile of the SW improvement
w.r.t. [1].

by (30). The expected net social welfare for NSII is the
amount after tax. All the percentage numbers are calculated
with respect to the social welfare of BHW. Fig. 3 shows the
social welfare for BHW and NSII, and the percentages of the
social welfare improvements (gross and net). The results
corroborate the social welfare improvement stated in
Theorem 2. Both the gross and net social welfares of NSII
are better than that of BHW. The improvement is substantial
under crossover probabilities away from 0 (fully-informative)
and 0:5 (uninformative). At crossover probability p =  0:37,
the percentage improvement reaches 7:60% for the gross,
and 6:84% for the net.

Fig. 4 presents the coordinator’s profit (in absolute and
relative terms). The results show that the NSII coordinator
gains a nontrivial proportion of profit under the crossover
probabilities away from p =  0 and p =  0:5 as well. At
p =  0:37, the percentage of the profit comparing to BHW
social welfare is 0:76%.

By further comparison on Fig. 3 and 4, we find that the
percentages of net social welfare improvement and the
coordinator’s profit share a similar shape, in which both
obtain a larger value when private information is neither
too informative nor uninformative. This somehow reveals
the essence of the recommendation mechanism. By utilizing
the mechanism, the coordinator assembles previous private
information to build an information asymmetry against fu-
ture agents. The motivation for agents to join is that this

VI. CONCLUSION

We introduced a class of recommendation mechanisms to a
sequential Bayesian learning system, and investigated a spe-
cific mechanism named NSII. The NSII mechanism improves
the social welfare, so the community of agents has motivation
to join; it is strictly profitable, so the coordinator is willing to
deploy it. The performance of NSII was characterized, and
we demonstrated the benefits of introducing the mechanism
through numerical analysis.

Despite that NSII mechanism is beneficial for agents
and the coordinator, it may not be the optimal one from the
perspective of the coordinator. Characterization of the
optimal mechanism, as well as methods for evaluating the
optimal recommendation mechanism are open problems for
future research.
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