
A Security Analysis of Labeling-Based
Control-Flow Integrity Schemes
David Demicco, Matthew Cole, Shengdun Wang and Aravind Prakash

Binghamton University
email:{ddemicc1,mcole8,swang206,aprakash}@binghamton.edu

Abstract—Secure and transparent policy enforcement by a
cloud provider is crucial in cloud infrastructures. Particularly,
enforcement of control-flow integrity (CFI) policy has been widely
accepted for stopping software-induced attacks. Using low-level
hardware metadata to encode CFI policy is a fairly recent
development. Besides moving enforcement out of the software
and into the hardware for performance benefit, tagging metadata
also offers other benefits in the precision of defenses. We evaluate
several different metadata layouts for CFI policy enforcement,
and examine the layouts’ effects on the number of valid forward
edges remaining in a RISC-V binary after policy enforcement.
Additionally we look at related work in tag-based tools that
provide CFI policy enforcement in order to get a sense of their
performance and the design trade-offs they make. We evaluate
our policy and the related works in terms of space and precision
trade-offs for forward- and backward-edge CFI, finding that
some trade-offs have a higher impact on the number of remaining
forward edges, notably return address protection. Additionally,
we report that existing backward edge protections can be highly
effective, reducing the number of remaining backward edges in
a protected binary to an average of 0.034% over an equivalent
coarse-grained CFI.

Index Terms—tagging architectures, control flow integrity,
RISC-V architecture, binary analysis

I. INTRODUCTION

Tagging is a technique that applies metadata to data and
code such that the metadata enacts a usage policy to that data,
similar to the capabilities model used in operating systems.
This usage policy typically has two halves: one half applied to
the instructions specifying what an instruction should have the
capability to do, and the other half applied to data specifying
how the data should be used. Combined, the two tags create
a “user-usage” relationship that can be monitored by specially
modified hardware as part of the instruction pipeline. Tagging
schemes are beneficial in two ways. First, they capture rich
program semantics that are typically lost during compilation.
Second, they can be directly consumed by the hardware and
therefore provide transparency and performance benefits over
software monitors [1].

In order to achieve these benefits, the tagging scheme must
be thoughtfully designed. Firstly, the designer must consider
the number of tags necessary to capture the desired policy
because this determines the number of bits required to encode
the tag. Secondly, the designer must choose the tag coverage,
whether a particular tag will apply to more than one instruction
or data item. Finally, they must decide whether multiple tags
will be compressed to fit within the quantum of addressable

space (e.g. byte addressable memory, or instruction width
in fixed-width instruction sets). Combined, these decisions
inform a design trade-off of greater or fewer number of bits
per tag, which has implications on the system as a whole:
more bits per tag comes at the cost of binary size increase,
performance overhead of processing wider tags, and pollution
in one or both of the data and instruction caches. Because a
designer may not be able to best decide this trade-off for all
users, they may wish to provide user-parameterized tagging
schemes instead of a fixed parameterization.

These trade-offs become clear when examining several
existing control-flow integrity (CFI) tagging schemes. Equiv-
alence classes are the set of destinations reachable from a
single control flow transfer, that is, these destinations would
check for a single common CFI label. Generally as tag width
increases, the number of possible CFI labels increases, and
thus the number of classes that can be labeled. If the tagging
scheme does not allocate sufficient width per tag, it might not
be able to handle the number of equivalence classes needed
by a particular program, with the result that one or more
equivalence classes must be congealed into a single super-
class, causing a concomitant decrease in security provided.
Conversely, if the tagging scheme allocates too wide of a tag,
it does not provide any additional security benefits, and does
so with the design cost of wider tags such as binary size
and/or cache pressure increases. We measured the number
of forward and backwards edges that form an equivalence
class for a particular configuration of several CFI tagging
schemes. Through these measurements, we wanted to find
an optimization in the design space for both the number
of equivalence classes and the density of functions across
these equivalence classes. Intuitively, the greater the density
of functions in a particular equivalence class, the greater the
degree of freedom that an attacker has to construct a code-
reuse attack that evades the CFI defense.

Through our work, we explore these design trade-offs and
make the following contributions:

• We evaluate various tag widths for encoding CFI labels
for a variety of programs. We find that there is a tendency
for a few equivalence classes (i.e. function signatures) to
dominate the distribution of labeled functions.

• We evaluate PUMP [2], ZERØ [3], and RETTAG [4],
providing a quantitative metric for measuring additional
CFI precision per additional tag bit.

• We argue that there is a point of diminishing returns,

where increasing the number of tag bits does not sig-
nificantly increase fidelity of a tag-based CFI labeling
scheme.

Relevance in Cloud Scenarios: Modern cloud infrastructures
(e.g. Azure, AWS) heavily depend on customized systems and
hardware that can effectively enforce security in a manner
transparent to the hosted applications. A thorough and in-
depth evaluation of available protection mechanisms (such as
CFI) is a pressing need. Our work sheds light on the cohesive
interplay between software (tag policy and CFI labeling) and
hardware (tag and CFI enforcement) layers and the resulting
security benefits that are directly applicable in cloud scenarios.
Current and future cloud infrastructures (such as those built on
RISC-V) can readily benefit from the outcomes of our work.

II. BACKGROUND

A. Control-Flow Integrity
Control-flow integrity is a security property that requires a

program’s execution to follow a Control-Flow Graph (CFG)
specified ahead of time. The CFG is comprised of control-
flow transfer edges between two instruction vertices, and can
be enforced at the site of each forward-edge indirect control-
flow transfer and backwards-edge return. CFI’s enforcement
usually occurs by in-lined instrumentation. At each call site,
a label specifies which equivalence class of destinations is
permissible. Then at the call’s destination, a label ID is
encountered specifying to which equivalence class that block
of code belongs. If they match execution continues, but if they
do not match then the monitor will abort execution because it
has detected a malicious control flow.

A variety of metrics exist to quantify the efficacy of a CFI
defense, for example average gadget length [5], [6], gadget
reduction [7], backwards-edge return targets, [8], and Average
Indirect Branch Reduction (AIR) [7], [9], [10]. In this paper,
we focus on the number of remaining forward/backward edges
after the application of a defense.

B. Tagging Schemes
Tagging is the process of associating a piece of metadata –

the tag – with a piece of information (data or code). This tag
defines how the information should be used, whether applied to
an instruction or a data object. At run-time, special tag-aware
hardware ensures that the instruction’s execution satisfies its
tag, and a data object’s run-time type is consistent with its
type.

Tagging with CFI support incorporates CFI labels that
define allowable source-destination pairs for indirect control-
flow transfers. A unique CFI label indicates which specific
indirect call instruction(s) can call which specific function(s).
Practical CFI solutions depend on hardware protections to
ensure that code is not writable. This allows CFI to focus
on indirect and not direct control flow transfers. The key
difference between a CFI label and a tag is that the label is an
identification for CFI edges, whereas a tag can capture other
metadata (e.g. type information). Some defenses implement

CFI labels using hardware tagging, and in these cases labels
and tags may appear to be synonymous (i.e. PUMP [2] and
ZERØ [3]). The number of bits available to express tags
directly correlates to the quality of CFI defense. Too few bits
mean collisions in CFI labels, and too many imply unused bits
that increase bloat.

III. EVALUATION METHODOLOGY

We evaluate multiple implementations of CFI schemes and
their impact on the overall security of the system. We use
labeling for forward-edge protection and light-weight data
tagging for return address protection.

31 12 11 7 6 0

immediate rd=0 0 1 1 0 1 1 1

(a) lui instruction

Flg arg4 arg3 arg2 arg1 arg0 ret 5 args w/return

Flg arg3 arg2 arg1 arg0 ret 4 args w/return

Flg arg4 arg3 arg2 arg1 arg0 5 args no return

V
a
r
?

count

R
e
t
?

minimal

(b) Example immediate field values

Fig. 1: Bitfield diagrams for the label parameterizations. Width
of argument count and argument/return type fields are three
bits, Flg is two bits, and Var?/Ret? flags are 1 bit each.
Gray regions are bits obligatory to the immediate field but
unused by this label scheme.

We evaluate labels based on one of two parameters: the
type of the argument, and the size of the argument. For type-
based labels, we consider the type of the argument as one
of 8 types: void, 8, 32, and 64 bit integers, floats, arrays,
pointers, and other. Note that because we have eight types,
we need three bits per argument to encode its type. For size-
based labels, we use the argument’s sizeof(argument),
but with two special cases: void arguments are 0 (i.e. there is
no return type or no argument), and values whose size cannot
be statically determined are value 7 (“unsized”). This gives 8,
16, 32, 64, 128, and 256 as the possible argument sizes.

A. Parameterized Tagging Schemes
We consider the following specific parameterizations of

labeling schemes, shown in Figure 1:
• Type-based labels, with a generic pointer type. 5 argu-

ments and return.
• Size-based labels. 5 arguments and return.
• Size-based labels 4 arguments and return.
• Size-based labels, 5 arguments and no return.
• Type-based labels, with a generic pointer, and size-based

integers. (e.g. i8, i32, i64).
• Minimal label. Here, we count number of arguments (up

to seven), and append a 1 if there is a non-void return

type, or a 0 if there is a void return type. We use a total
of five bits: one bit for the variadic function signature
flag, three bits for the arguments count, and one bit for
the return type flag.

Additionally, for all parameterizations we add a 1-bit flag
for variadic function signatures (i.e. the final argument is a
varargs-receiving argument).

These schemes were carefully selected to investigate differ-
ent design trade-offs a scheme designer would have to make.
For type based labels, we needed a generic pointer to handle
cases where pointers are cast between different types. Size-
based labels are agnostic to the type, but still allow differen-
tiation between sizes of the underlying types. This addresses
a data attack that might seek to over-read or overwrite the
bounds of the object pointed to by the argument. We consider 8
possible types, and 8 possible sizes requiring 3 bits to encode.
Therefore, we need 15 or 12 bits of space in the arguments,
plus another three bits of space for the return type. We select
the RISC-V lui instruction’s immediate field to store our
label. We consider five, then four arguments to show the
effect upon precision of decreasing the number of arguments
contributing to the label encoding. We also consider a label
that does not include the return type to examine the effects
on precision by incorporating return type information in label
encoding. We consider a fifth scheme with a coalesced pointer
type but discriminated integer types because we observe that
functions taking pointer arguments usually do so with void*
type specified. We consider the minimal scheme to investigate
how much coverage and performance we can achieve while
dedicating as little space as possible for label encoding.

B. CFI Tagging
a) Forward-Edge Labeling: We add a function labeling

pass in the optimizer, changing the pass output for each
scheme to handle the differing number of arguments and flags
that may be present in the label. Ultimately, the function
labeling pass produces a single integer value representing the
label for each computed jump, address taken function, or
externally available function. This value is then emitted at the
appropriate location when a machine function is lowered into
the binary as part of an idempotent lui instruction.

b) Label Encoding: as discussed in Section III-A we
selected the idempotent lui x0 instruction due to its large
immediate field. This provides backwards compatibility and
20 bits of label space.

c) Backward-Edge Tagging: For backwards-edge tag-
ging, we add metadata tags to the return address push and pop
instructions with a return address usage (RA) tag, marking the
return address in memory, and allowing only instructions with
the return address usage tag to access the return address in
memory.

IV. EXPERIMENTAL RESULTS

A. Dataset
Along with the labeling schemes presented in Section III,

we consider three adjacent tools: PUMP [2], ZERØ [3], and

RETTAG [4]. We summarize both our label schemes and the
schemes of these tools in Table I. PUMP has a forward-
edge CFI that operates on a per-function labeling scheme
requiring a complete program CFG that has been verified [11].
For backward-edge, PUMP protects the return address on the
stack[12]. To do this it uses either a lightweight return address
protection scheme that marks return address in memory with
a single bit tag (we consider this as light hardware backing),
or a more powerful “static authorities” model, which protects
objects on the stack from access and use from outside the
stack frame by tagging them with an ID for the current frame,
and restricting access based on that tag. ZERØ’s CFI is a
subset of its pointer-flow integrity (PFI) model and encodes
each unique function type signature into 10 unused bits in the
pointer itself. The width of the unused bits limits ZERØ to
1024 unique function pointer types.

B. Experimental Setup

For this evaluation on our own labels, we used a modified
LLVM-10 RISC-V compiler to build musl-libc for each label
type variation specified in Section III. We then statically link
to that specific version of labeled musl-libc while building a
subset of the SPEC CPU2017 benchmark suite using the same
modified compiler at O0 and O2. Once completed, we load
each of these binaries into the Ghidra tool for data collection
and analysis. For our analysis we only use information that the
compiler has placed into the compiled binary and that Ghidra
is able to access.

C. Forward Edge Data Collection

gc
c

mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng xz

na
md
pa

res
t

po
vra

y
lbm
ble

nd
er

im
ag

ick na
b
Mean

0

20

40

60

80

Pe
rc

en
ta

ge
(%

)

Size labels with return Size labels without return
Type labels with generic pointer Type labels with int size

Size labels with 4 args Minimal Label
ZerØ Pump

Fig. 2: Remaining forward edges for O2 optimization, defined
as the fraction of valid forward edges remaining when com-
pared to a coarse-grained CFI.

For the baseline (without CFI), we count any computed
call site as being able to be re-purposed to target any in-
struction, and draw a possible forward edge between them

Label Scheme Protection Bits Description
Type, 5 args Forward 20 Function’s first 5 arguments’ and return value’s type
Size, 5 args Forward 20 Function’s first 5 arguments’ and return value’s size
Type, integer size Forward 20 Function’s first 5 arguments’ type; integer return values are differentiated by size
Size, 4 args Forward 17 Function’s first 4 arguments’ and return value size
Size, no return Forward 17 Function’s first 5 arguments’ size; no return value considered
Minimal Forward 5 Variable argument flag, number of arguments, void/non-void return flag
Tool Protection Bits Description

ZERØ Forward 10 Stores a label for each unique function pointer, checks label on calls
Backward 1 Uses tag in memory to prevent overwrite of return address

RETTAG Backward 16 Stores PAC calculated from stack pointer and unique function ID

PUMP
Forward variable Stores source and destination ID in metadata, compares to CFG edges
Backward (Type 1) 1 Uses tag in memory to prevent overwrite to return address
Backward (Type 2) variable Uses static authorities. See Section IV-A

TABLE I: Table of schemes and tools evaluated in this work. Protection describes whether the tool provides forward or
backward edge protection. Bits is the number of encoding bits used. Variable-sized tags in PUMP are generally at least
pointer-sized per memory word, but can be compressed under certain optimized conditions.

(i.e. |forward edges| = |computed calls| ⇥ |instructions|). For
the tag-only forward edge numbers, we count any computed
call site as being able to target any valid function entry
point. The call site must have a call tag, and the target of
a call must have a target of a call tag (i.e. |forward edges| =
|computed calls| ⇥ |functions|). We collect the label-based
forward edge data using Ghidra to iterate over the computed
call sites in a compiled binary, retrieve the labels placed in
nop instructions preceding the call sites, and create a list of
caller labels. We follow this by iterating over all functions that
have received a label, and counting edges between call-sites
and functions that have a matching label. We compare this
number to the reduction from the tag-only CFI, quantifying
improvement over a basic coarse-grained approach for each
variation.

a) PUMP and ZERØ: For the forward edge reduction
results of PUMP and ZERØ, we use their reported results.
To estimate ZERØ’s reduction, we create one function label
per unique function signature to use the label emitted to the
binary. We then proceed as described above, matching labels
on computed call sites with labels on functions to generate the
number of forward edges remaining. Although its authors do
not provide a reference implementation, we estimate PUMP’s
reduction by the results of Ghidra’s instruction flow analysis.
Where Ghidra cannot determine the target of a computed call
site, we conservatively treat any function within the binary
that has its address taken as a possible target. This leads
to an overestimation in our results for forward edges for
the fine-grained CFI that PUMP describes. We explain this
overestimation further in Section IV-E2.

D. Backward Edge Data Collection
For the baseline backward-edge data we consider any

function return as having an edge with any location in the
code (i.e. |backward edges| = |returns| ⇥ |instructions|). This
is consistent with the attacker being able to overwrite the
return address on the stack with a simple buffer overflow,
and with no other protections being present. For the tag-only
measurements, we observe that the next instruction executed
after a return must be preceded by a call instruction (i.e

0 50 100 150 200 250

100

101

102

103

104

105

106

107

Label Rank

Ed
ge

s

blender
xalancbmk

gcc
parest

imagick
povray

Fig. 3: Log-scaled plot showing count of forward edges for
any given label corresponding to a function signature. All
benchmarks were compiled with -O0 optimization level and
using the “general pointer with integer sizes” labeling scheme.
Edges is the count of source-sink edges using that label. Rank
is the ordering of number of edges for a function signature. In
other words, a rank of 1 indicates this is the label appearing
in the most edges.

|backward edges| = |returns| ⇥ |call sites|). To collect an
estimate for this data in Ghidra we count the number of calls,
and treat any return as having an edge with the instruction that
follows any call.

a) Light Hardware Enforcement: For this evaluation, we
consider hardware capable of protecting the return address
on the stack from being overwritten such as ZERØ [3] and
PACSTACK [13]. Because no return address can be overwrit-
ten by an attacker, they are limited to addresses already on
the stack. We use the statically-determined call depth as a
lower bound estimation of the number of return addresses on
the stack at any given time. Gathering this count in Ghidra
requires traversing the programs backward-edge call-graph
through examining the code references to a function entry
point. We use the depth of the call graph as an estimation for
the number of valid backward edge targets from any return.

-O0 -O2

Benchmark Tag Only Light Hardware PUMP & RetTag Tag Only Light Hardware PUMP & RetTag
gcc 3.77 0.00896 0.00057 4.76 0.01363 0.00077
mcf 2.21 1.38266 0.13793 2.44 1.30556 0.13889
omnetpp 5.63 0.03510 0.00146 5.80 0.01191 0.00200
xalancbmk 5.78 0.00707 0.00078 6.12 0.00719 0.00164
x264 1.99 0.18284 0.01866 2.17 0.15689 0.02320
deepsjeng 2.15 0.76921 0.06693 2.42 0.83743 0.08036
xz 2.19 0.27583 0.04876 2.55 0.36968 0.06888
namd 3.15 0.03692 0.00187 2.56 0.31398 0.01162
parest 6.49 0.01037 0.00032 4.84 0.01709 0.00064
povray 3.80 0.06800 0.00470 3.96 0.24272 0.00556
lbm 1.93 1.62250 0.16313 2.29 1.58423 0.16207
blender 3.38 0.00712 0.00058 4.02 0.00361 0.00070
imagick 3.13 0.05338 0.00287 4.23 0.06443 0.00372
nab 2.99 0.24656 0.02873 3.56 0.22042 0.02871
Mean 3.47 0.33618 0.03409 3.69 0.36777 0.03777

TABLE II: Remaining return address edges percentages for SPEC CPU2017 C and/or C++ benchmarks compiled at two
compilation levels for three levels of defense. Mean is the geometric mean of the remaining edges without weighting for the
count of return addresses in each benchmark.

As with the forward edge results, we compare these numbers
to the “tag only” results, not to the “no CFI” results.

b) PUMP and RETTAG: PUMP and RETTAG have
powerful return address protection schemes, which also pro-
tects against overwrites or reads from return addresses in
different stack frames. Due to this, the estimates for their
backward edge counts are one per call-site.

E. Key Results

1) Forward Edge: We found that even basic tag protection
reduces the attack surface available to an attacker by an
average of 99.208% leaving just 0.792% of forward edges
remaining. Using that as our baseline for all further compari-
son, we find the best performing label scheme out of the ones
we tested was type-based labeling with integer sizes, leaving
4.772% of the forward edges remaining. This is consistent
with the observation that of the varying types present in
the LLVM IR, integer types are the one whose sizes differ
most from function argument to function argument. The worst
performing scheme depends on the program being examined,
with the minimal scheme sometimes performing better than a
size-based labeling scheme that does not consider the return
argument. This result occurs in several of the benchmarks
including omnet, blender, and povray. The full results for
each scheme at O2 optimization level are presented with
comparative results for ZERØ and PUMP in Figure 2.

2) PUMP & ZERØ: By relying on Ghidra’s analysis –
instead of being able to examine binaries with PUMP’s CFI
– the need for a conservative estimation can cause the number
of unknown target computed calls and the number of address
taken functions to grow so large as to overwhelm the edge
reduction provided by one-to-one source and target pairs.
This is especially true in C++ programs that have a large
number of virtual method tables and virtual function calls
(a common source of address taken functions and unknown
target calls, respectively). Our results for programs where
these properties hold true demonstrate this flaw clearly: omnet

(66.60%), povray (79.22%), and parest (62.61%). For source
files with fewer address-taken functions, more accurate results
can be obtained, as seen in gcc (3.34%). This is a limitation
of our analysis, not PUMP’s CFI scheme.

ZERØ’s results are due to its unique function labels based
on LLVM’s function type; these do not take into account casts
between pointer types. Due to this approximation, the results
range from good (deepsjeng: 2.42% remaining), to very good
(namd: 0.142% remaining). However this means that there will
also be missed control flow edges in the program that other
defensive policies must handle.

3) Label Histograms: Earlier we observed that there was
little difference between the “five arguments” and “four ar-
guments” schemes, but a large difference between the “five
arguments with return” scheme, and the “five arguments
without return” scheme. We plotted the count of the number
of edges for each signature plotted as ticks along the x-axis in
Figure 3. Here |edges| = |sources|⇥|targets| where sources are
the call sites with a given label, and targets are the functions
with that label. The logarithmic y-axis emphasizes that the
number of edges is dominated by a few function signatures
such as (void)(*, *) and (*)(*,*).

4) Backward Edge Results: We found the remaining back-
ward edges after tag-only reduction (i.e. returns must only
target call preceded instructions) to be 3.55%. With light
hardware backing we estimate the further reduction from
the tag-only approach to have only 0.352% of backward
edges remaining from the tag only approach. PUMP’s and
RETTAG’s backward edge remainder is only 0.035%. We
elaborate upon these results in Table II.

V. RELATED WORK

Memory tagging is not the only approach considered by
recent papers. MORPHEUS [14] presents an cryptographic sys-
tem that protects data on the stack and heap by encrypting and
decrypting it during normal program operation. This approach
requires churning (re-encrypting) the program at intervals

in order to keep the data safe. Protection of the backward
edge has often been performed by shadow stacks [15], [16].
Shadow stacks have high costs associated with them, and
much work has been done recently on alternate designs such
PUMP [2], [12] and RETTAG [4], two works whose backward
edge protections we do examine in this paper. Further, a
recent effort codenamed STAR [1] is a full-stack defense
mechanism that incorporates inlined instruction tagging as a
key novelty in order to achieve superior performance. While
STAR does provide forward- and backward-edge CFI defense
using instruction and data tags, we do not evaluate STAR in
this effort.

One comparable examination to ours is CSCAN [17],
which is a generic dynamic analysis tool that attempts to
measure the number of valid control flow transfers at any given
indirect control transition. This dynamic approach suffers from
coverage issues. Since they evaluated CSCAN on SPEC
CPU2006 instead of SPEC CPU2017, we cannot directly
compare it to our binary analysis using Ghidra.

Burow et al. performed a study [18] of existing CFI im-
plementations which combined a qualitative categorization of
the implementations’ supported control flow transfers, static
analysis precision, and performance overheads. Most similar to
our own work, the authors also considered quantitative security
guarantees by counting the number and measuring the size of
equivalence classes after applying each of the available de-
fenses. Our work extends their study into equivalence classes
in two ways: First, we use a more modern, larger benchmark
set (SPEC CPU 2017 versus SPEC CPU 2006) considering
all C and C++ benchmarks in the suite instead of just four
benchmarks. Second, we studied tag-based defenses not then
available (PUMP, ZERØ, RETTAG) and also consider the
implications of their tag specifications.

VI. CONCLUSION

We draw the following conclusions: (1) There are dimin-
ishing returns in terms of equivalency classes for using label
space to track additional return arguments; (2) not taking the
return address of an argument into account when constructing
equivalency classes leads to large growth in remaining forward
edges; (3) most of the remaining forward edges come from just
a few of the equivalency classes; (4) all return edge protections
are very effective at stopping attacks by reducing the number
of available backward edges.

ACKNOWLEDGMENT

This research was supported in part by Office of Naval
Research Grant #N00014-17-1-2929, National Science Foun-
dation Awards #2047205 and #2146212, and DARPA award
#81192. Any opinions, findings and conclusions in this paper
are those of the authors and do not necessarily reflect the views
of the funding agencies.

REFERENCES

[1] R. Gollapudi, G. Yuksek, D. Demicco, M. Cole, G. Kothari, R. Kulkarni,
X. Zhang, K. Ghose, A. Prakash, and Z. Umrigar, “Control flow and
pointer integrity enforcement in a secure tagged architecture,” to appear
in 2023 IEEE Symposium on Security and Privacy.

[2] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M.
Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Architectural
support for software-defined metadata processing,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
487–502. [Online]. Available: https://doi.org/10.1145/2694344.2694383

[3] M. T. Ibn Ziad, M. A. Arroyo, E. Manzhosov, and S. Sethumadhavan,
“ZerØ: Zero-overhead resilient operation under pointer integrity attacks,”
in 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 999–1012.

[4] Y. Wang, J. Wu, T. Yue, Z. Ning, and F. Zhang, “Rettag: Hardware-
assisted return address integrity on risc-v,” in Proceedings of the 15th
European Workshop on Systems Security, ser. EuroSec ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 50–56.
[Online]. Available: https://doi.org/10.1145/3517208.3523758

[5] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-
Ghazaleh, “Scrap: Architecture for signature-based protection from code
reuse attacks,” in 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), 2013, pp. 258–269.

[6] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity,” in 2015 Network and Distributed Sys-
tem Security (NDSS), 2015.

[7] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 577–587. [Online].
Available: https://doi.org/10.1145/2594291.2594295

[8] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin, “Hafix: Hardware-assisted flow integrity extension,”
in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
2015, pp. 1–6.

[9] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow
integrity in GCC & LLVM,” in 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX Association,
Aug. 2014, pp. 941–955. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/tice

[10] M. Zhang and R. Sekar, “Control flow integrity for COTS
binaries,” in 22nd USENIX Security Symposium (USENIX Security
13). Washington, D.C.: USENIX Association, Aug. 2013, pp.
337–352. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/Zhang

[11] A. A. d. Amorim, M. Dénès, N. Giannarakis, C. Hritcu, B. C. Pierce,
A. Spector-Zabusky, and A. Tolmach, “Micro-policies: Formally veri-
fied, tag-based security monitors,” in 2015 IEEE Symposium on Security
and Privacy, 2015, pp. 813–830.

[12] N. Roessler and A. DeHon, “Protecting the stack with metadata policies
and tagged hardware,” in 2018 IEEE Symposium on Security and Privacy
(SP), 2018.

[13] H. Liljestrand, T. Nyman, L. J. Gunn, J.-E. Ekberg, and N. Asokan,
“PACStack: an authenticated call stack,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug. 2021,
pp. 357–374. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/liljestrand

[14] A. Harris, T. Verma, S. Wei, L. Biernacki, A. Kisil, M. T. Aga,
V. Bertacco, B. Kasikci, M. Tiwari, and T. Austin, “Morpheus ii: A risc-
v security extension for protecting vulnerable software and hardware,”
in 2021 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), 2021, pp. 226–238.

[15] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost
of shadow stacks and stack canaries,” p. 555–566, 2015. [Online].
Available: https://doi.org/10.1145/2714576.2714635

[16] N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow
stacks,” pp. 985–999, 2019.

[17] Y. Li, M. Wang, C. Zhang, X. Chen, S. Yang, and Y. Liu,
Finding Cracks in Shields: On the Security of Control Flow
Integrity Mechanisms. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1821–1835. [Online]. Available:
https://doi.org/10.1145/3372297.3417867

[18] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Comput. Surv., vol. 50, no. 1, apr 2017. [Online]. Available:
https://doi.org/10.1145/3054924

https://doi.org/10.1145/2694344.2694383
https://doi.org/10.1145/3517208.3523758
https://doi.org/10.1145/2594291.2594295
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://www.usenix.org/conference/usenixsecurity21/presentation/liljestrand
https://www.usenix.org/conference/usenixsecurity21/presentation/liljestrand
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1145/3372297.3417867
https://doi.org/10.1145/3054924

	Introduction
	Background
	Control-Flow Integrity
	Tagging Schemes

	Evaluation Methodology
	Parameterized Tagging Schemes
	CFI Tagging

	Experimental Results
	Dataset
	Experimental Setup
	Forward Edge Data Collection
	Backward Edge Data Collection
	Key Results
	Forward Edge
	PUMP & ZERØ
	Label Histograms
	Backward Edge Results

	Related Work
	Conclusion
	References

