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Lithography-free reconfigurable integrated 
photonic processor

Tianwei Wu    1, Marco Menarini2, Zihe Gao    1 & Liang Feng    1,2 

Integrated photonics, because of its intrinsic high speed, large bandwidth 
and unlimited parallelism, is critical in the drive to ease the increasing data 
traffic. Its technological enabler is high-precision lithography, which allows 
for the fabrication of high-resolution photonic structures. Here, in complete 
contrast to the state of the art, where photonic functions are predefined by 
lithographically modulating the real index, we report a lithography-free 
paradigm for an integrated photonic processor, targeting dynamic control 
of spatial-temporal modulations of the imaginary index on an active 
semiconductor platform, without the need for lithography. We demonstrate 
an imaginary-index-driven methodology to tailor optical-gain distributions 
to rationally execute prescribed optical responses and configure desired 
photonic functionality to route and switch optical signals. Leveraging 
its real-time reconfigurability, we realize photonic neural networks with 
extraordinary flexibility, performing in situ training of vowel recognition 
with high accuracy. The programmability and multifunctionality 
intrinsically arising from the lithography-free characteristics can lead 
to a new paradigm for integrated photonic signal processing to conduct 
and reconfigure complex computation algorithms, accelerating the 
information-processing speed to achieve long-term performance 
requirements.

Photonics forms the backbone of today’s information infrastructure, pro-
cessing large datasets at unprecedented speed and with minimal energy 
consumption by exploiting the intrinsic parallelism, elevated frequency 
rates and large bandwidths that inherently come with working in the opti-
cal domain1–6. When targeting in situ signal control, information process-
ing or general photonic computational operations, programmability 
and multifunctionality are critical factors as photonic integrated circuits 
evolve into a new era7–13. Recently, programmable photonic networks 
with functions of reconfigurable switching and routing have become 
possible through the heterogeneous integration of a range of materi-
als14–16 (for example, phase-change materials) and structures17,18 (such as 
microelectromechanical systems (MEMS)) with tunable optical proper-
ties on semiconductor photonic chips. However, with existing integrated 
photonics platforms, control of optical signals is implemented by cascad-
ing discrete devices, where each device has a single functionality and a 

distinct morphology that is predefined by high-precision lithography of 
multilayered structures and is specific for its task. Strategic node connec-
tions between individual devices (such as coupled waveguides, splitters, 
filters and phase shifters) must be included to realize on-chip networks19–21. 
When scaling up, the complexity of the architecture inevitably grows 
exponentially as the number of connecting nodes and the number of 
single devices both increase nonlinearly with the size of the chip22. As a 
consequence, extremely complex architectures are inevitable for the 
realization of fully reconfigurable, high-performance integrated photonic 
processors that are able to handle data-intensive tasks, such as in situ train-
ing of modern artificial intelligence. Additionally, it remains a challenge 
to precisely control nano-lithographic features during the manufacture 
of very large-scale integrated photonics23,24. Any lithographic imperfec-
tion may cause a defect that degrades or even completely deteriorates 
the designed performance.
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where optical coding of patterned pumping light defines the gain–loss 
distribution and thus spatially modulates the imaginary index, in place 
of of real-index modulation by lithographically defined features. Note 
that intrinsic material losses associated with unpumped areas corre-
spond to the imaginary index being negative, whereas optical gain 
arising from active pumping turns the imaginary index positive, with 
the modulation strength (−0.1 ≤ εimag ≤ 0.03) being precisely controlled 
by the intensity of the pumping light28,29 (Supplementary Sections 1 
and 2). The algorithm-optimized spatial imaginary-index distribution 
forms an on-chip imaginary-index-driven photonic network that 
directly connects inputs with outputs, performing optical information 
processing according to the desired matrix-vector multiplication (that 
is, Oj = ∑i TjiIi, where Tji denotes the power transmission from input 
port i to output port j), where the signals are encoded by the light power 
in each input and output channel. The advantage of this 
imaginary-index-driven network is its intrinsic reconfigurability associ-
ated with convenient pattern generation and real-time transformation 
by optical coding using a spatial light modulator (SLM). In this scenario, 
the measurement results for the output light power are monitored in 
a real-time manner, and feedback from the detection is delivered  
to the SLM to update the pumping pattern either for self error  
correction or in situ training (Fig. 1b). Although there are typically a 
very large number of variables to be carefully designed and tuned,  
layer by layer, in a large-scale network architecture, a promising  
feature of our lithography-free, reconfigurable integrated photonic 
processor is that the information needed for pattern optimization 
comprises just the measured power from each input (Ii) and output 
(Om

j ) port for epoch m, together with the predefined target output (OT
j ). 

This unique feature of global input–output connections substantially 
simplifies the algorithm needed for pattern reconfiguration, thereby 
enabling the acceleration of simulation-free, real-time reconfigurable 
computing for in situ training.

To efficiently generate and optimize the spatial imaginary-index 
map for a specific functionality, we developed novel imaginary- 
index-driven inverse design algorithms (assuming the real index 
remains the same in the modulation region): an offline algorithm and 
its derived online algorithm, both following gradient-descent methods. 
In both algorithms, a general loss function is defined for the target 
function, and the algorithms minimize the loss function by estimating 
the gradient over the variables, which is the spatial imaginary-index 
profile. Figure 2a illustrates the two algorithms in flowchart form for 
the realization of an arbitrary power transmission matrix between the 
input and output ports. Here, with an imaginary-index-driven photonic 
processor (that is, the central information processing area without any 
lithographically patterned features) connected with four input (I1–I4) 
and four output (O1–O4) waveguides, we choose a 4 × 4 triangular matrix 
T as a proof of concept:

T =
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The offline algorithm (Methods) is an inverse design30,31 algo-
rithm based on an electromagnetic field simulation and the adjoint 
method32,33. For N input channels, N parallel solvers are used to solve 
two-dimensional Maxwell equations under excitation of each indi-
vidual waveguide (marked by red in Fig. 2a, excitation I3 as an example) 
by application of the finite-difference frequency-domain (FDFD) 
method34. According to the solved field in solver i, a target-defined 
loss function Li is calculated, which evaluates the deviation from the 
target function. An adjoint field corresponding to the loss function 
is subsequently simulated, similarly to the adjoint method for 
real-index inverse design. The map of the negative gradient to the 

In this Article we demonstrate a completely new, lithography-free 
paradigm for a reconfigurable integrated photonic processor that, as 
a result of its lithography-free nature, creates exceptional field pro-
grammability and functionality by fully eliminating the requirement 
for connecting nodes. Our work delivers a brand new and ultra-flexible 
integrated photonic paradigm for reconfigurable networking and 
computing, with great potential to process large, non-local datasets 
with high throughputs. Figure 1 illustrates the concept of the 
lithography-free integrated photonic processor, which has a central 
unpatterned area where dynamic control and spatial patterning of 
optical gain on an active III–V semiconductor platform25–27 provide an 
arbitrarily field-programmable photonic network. The absence of any 
predefined features on this unpatterned wafer comprising InGaAsP 
multiple quantum wells provides the convenience of reconfigurability, 
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Fig. 1 | Lithography-free integrated photonic processor for on-chip signal 
processing and network training. a, Conceptual illustration of the imaginary-
index-driven processor with real-time feedback, together with signal encoding 
and detection modules. With the signal encoded as the intensity of input light in 
different input channels (Ii), the matrix operation based on the imaginary index, 
Tji (εmimag (r)), in training epoch m, is fully programmed by an external pumping 
pattern generated by a SLM. The pattern as a function of εmimag (r, Ii, O

m
j , O

T
j ) is 

real-time optimized to perform an in situ training of a photonic neural network, 
based on the measured powers versus the targets in different output channels 
(Om

j  versus OT
j ). b, The information-processing area of the lithography-free 

imaginary-index-driven processor is a layer of unpatterned InGaAsP. Its 
networking connectivity and computational function can be dynamically 
reconfigured by the spatial-temporal control of pumping patterns during the 
training process. The bottom panels display a sequence of pumping patterns 
updated after each training epoch.
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imaginary index (−dL3/εimag) is extracted from the results of these two 
simulations, that is, the spatial amplitude distribution of the simu-
lated field e3 and adjoint field eadj3 . The final imaginary-index map 
∆ε imag(r), which conducts the transmission matrix T  in the 
imaginary-index-driven area, is generated according to the global 
gradient by combining the gradient information from all N parallel 
solvers. Note that the algorithm does not limit the coherency of light 
between different input channels, but for the convenience of our 
experimental demonstrations we focus on the case where the signals 
from different input channels are incoherent and do not have a stable 
phase relation. In this case, both the signal and the transmission 
matrix are strictly positive real-valued.

The offline algorithm is precise and efficient in the realization of an 
arbitrary transmission matrix, but the device is offline during the whole 
process, so any mismatch between the simulation and the actual device 
may deteriorate the device performance, especially when the scale of 
the device becomes large. To bring imaginary-index-driven computing 
into reality, an online algorithm must be realized in which the actual 
device is online for real-time measurements during the entire optimiza-
tion process. Although the offline algorithm requires time-consuming 
simulations and is thus not suitable for real-time optimizations, its 
generated imaginary-index map guides the development of the online 
algorithm (Methods), and the field profile connecting input i with 
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Fig. 2 | Imaginary-index-driven inverse design algorithms. a, Illustration of the 
two algorithms used to generate the imaginary-index maps to execute the target 
matrix operation. The offline algorithm (top) is simulation-based. The flowchart 
shows the procedure in one optimization iteration targeting a specific power 
transmission matrix between the input and output ports. Electromagnetic fields 
are simulated in the parallel FDFD solvers excited by each input channel (e3 is 
shown here for excitation I3). Next, the corresponding adjoint fields launched 
from the outputs are simulated (eadj3 ). The gradient information (−dL3/εimag) is 
extracted from the product of the simulated field distribution and its adjoint 
field. Finally, the change in the imaginary index, ∆εimag(r) (shown on the right), is 
achieved based on the global gradient from all parallel solvers and a step constant 
δ. The online algorithm (bottom) is measurement-based. N measurements are 
performed rather than the computation-expensive large-scale electromagnetic 
simulations. The power in all the output channels is measured with the input 

channels excited one by one. An approximate gradient (~−dL3/εimag) is extracted 
by using only the measurement results and predefined spatial maps {Fji(r)}. This 
greatly resembles the precise gradient extracted by the offline algorithm. The 
change in the imaginary index, ∆εimag(r) (right), is again achieved based on the 
global gradient. b–e, Simulation results, providing an example of a robust 
arbitrary power transmission matrix programmed by the imaginary-index-driven 
inverse design algorithms. b, Target transmission matrix elements. c, 
Transmission matrix and the spatial imaginary index calculated by the offline 
algorithm only (inset outlined in red). d, The transmission matrix is perturbed by 
a random perturbation of the imaginary index (inset outlined in yellow). e, The 
online algorithm is applied to compensate the random perturbation for the 
revival of the target matrix. The imaginary-index spatial map (inset outlined in 
green) corresponds to the change of the imaginary index optimized by the  
online algorithm.

http://www.nature.com/naturephotonics


Nature Photonics | Volume 17 | August 2023 | 710–716 713

Article https://doi.org/10.1038/s41566-023-01205-0

output j in the imaginary-index-driven area can be described as a series 
of analytical spatial maps

Fji (r) = {
cos [keffRji (r)] , ifRji (r) ≤ R0

0, else
(2)

where keff is the effective wavevector and Rji(r) is defined as Rji(r) = |r − 
ri| + |r − rj| − |ri − rj|, where ri and rj are the positions of the correspond-
ing input and output ports, respectively, and R0 controls the spatial 
range of the map depending on the actual pumping pixel resolution 
(Supplementary Section 3). A series of spatial maps {Fji(r)}, alongside 
the measured power at the input and output channels, can yield an 
approximate gradient map (~−dL3/εimag with excitation I3, for example), 
in excellent agreement with the exact one (−dL3/εimag) from the offline 
algorithm. Similarly, a global approximate gradient is achieved by the 
summation of all measurement results from all input channels, produc-
ing the target imaginary-index map online. Here, we fully exploit the 
aforementioned unique feature of global input–output connections in 
the imaginary-index-driven matrix processing area to demonstrate the 
simulation-free online algorithm, which enables real-time optimization 
for reconfigurable photonic computing and dynamic online learning.

To realize a robust performance, a combination of the two algo-
rithms can be applied strategically, as validated by three numerical 
simulations taking different scenarios into account (Fig. 2c–e). With 
the target matrix in equation (1) displayed in Fig. 2b, an almost perfect 
match (Fig. 2c) is achieved using the offline algorithm. However, in 
practical applications, the result may deviate from the offline simula-
tions because of a slight mismatch of index, an imperfect generation 
of the pumping pattern, or any random noise. To mimic such errors 
in a realistic experimental scenario, we introduce additional random 
perturbations of the imaginary index with a standard deviation of 0.01 
in the imaginary-index-driven area, which consequently perturbs all 
the matrix elements in T, which deviate from the target result (Fig. 2d). 
The online algorithm is applied to successfully compensate the adverse 
influence of the perturbation based on only the output power, showing 
the capability of real-time optimizations to revive the target matrix, 
despite random noise (Fig. 2e).

To experimentally confirm real-time optimizations of reconfig-
urable photonic routing, switching and networking using our infra-
structure, we next demonstrate the generation of an arbitrary matrix 
processor by means of dynamically controlled pumping patterns, 
with the corresponding intensity distribution equivalently translated 
from the imaginary-index map obtained by the inverse design algo-
rithms. The reconfigurable imaginary-index-driven photonic pro-
cessor comprises a 300 µm × 240 µm unpatterned area, connected 
by four input and four output channels and based on the InGaAsP 
multiple-quantum-wells platform, as shown in Fig. 3a. To take full 
advantage of the active nature of InGaAsP, integrated microring lasers 
were fabricated to directly encode information for a convenient signal 
input. In the experiments, two pumping beams at a wavelength of 
1,064 nm were applied as the matrix processor and signal encoder 
(Methods). The first pumping beam, patterned by an SLM accord-
ing to the algorithm-optimized imaginary-index map, impinges on 
the lithography-free, imaginary-index-driven area to define the pho-
tonic network and real-time-optimize the power transmission matrix. 
The top and bottom regions outside the optimization area remain 
unpumped and hence are dissipative and eliminate boundary reflec-
tions (similar to absorbing boundaries for perfect matched layers as 
used in numerical simulations). The other separate pumping beam is 
focused on individual microring lasers to excite one signal channel at 
a time. Note that, although the emissions from the microring lasers 
all occur at ~1,500 nm, they differ slightly from one another, with the 
detuning measured in the range of 3 nm. As a result, the input signals 
from different channels become intrinsically incoherent with respect to 

one another. On the other end, the normalized output 4 × 1 vector is col-
lected for power transmission, and grating couplers are implemented 
for efficient detection of the signal output in free space.

With the same target transmission matrix T as given in equation (1) 
(Fig. 3b), a pumping pattern according to the offline algorithm  
was first generated and applied in the imaginary-index- 
driven matrix processing area (Fig. 3c, right). Although the offline  
simulation yields a nearly perfect transmission matrix with a fidelity 

f =
tr(√T′√M)

√tr(√T′√T)√tr(√M′√M)
 (where M represents the measured transmis-

sion matrix, T′ denotes the transpose of T, and the square root is applied 
to each matrix element) of over 99%, the performance in real experi-
ments does not match the target (Supplementary Section 4), yielding 
a fidelity of only 93% and thus leaving sufficient space for online opti-
mizations (Fig. 3c). To compensate the deviation, the online algorithm 
is applied to adjust the pumping pattern according to the measurement 
results in real time, leading to an increased fidelity of the measured 
transmission matrix (to 99.2%) after nine iterations (Fig. 3d). With the 
accumulated optimization of the pumping distribution in the real-time 
optimization process (Fig. 3e, top panels), the evolution of the trans-
mission matrix shows its gradual convergence to the target (Fig. 3e, 
bottom panels). The improvement arising from measurement feedback 
convincingly demonstrates the validity of our online algorithm, which 
is critical to prevent error cascading in a large-scale network. Because 
the matrix processor is fully programmed by dynamic control of the 
pumping pattern and its functionality does not rely on any 
lithography-patterned structures, the imaginary-index-driven optical 
coding scheme can be arbitrarily reconfigured and optimized in a 
real-time manner for reconfigurable computing acceleration.

To exploit the demonstrated dynamic reconfigurability for the 
acceleration of computing so as to handle data-intensive tasks, we 
performed in situ machine learning, where the pumping pattern was 
trained online to reconfigure in real time the network connectivity or 
weight. A classical four-vowel (‘er’, ‘iy’, ‘oa’ and ‘ae’) classification task 
was applied to demonstrate the concept. The dataset35 consists of the 
speech of different vowels (from both males and females), divided 
into a training set and a testing set, each containing 64 audio files. 
A fully connected neuro-photonic network was executed using an 
imaginary-index-driven photonic processor with an unpatterned, 
active area of 500 µm × 324 µm (Fig. 4a). Despite a large amount of 
redundant information in the audio files, eight prominent features in 
frequency bands associated with the vowels were selectively extracted 
to accurately represent the training database, to then be encoded as 
input signals. In the input layer, any 8 out of 12 microring lasers could 
be excited, and the strength of each feature was encoded as the power 
of the corresponding microring laser emission, which was precisely 
controlled by the pumping intensity. An iterative method was applied 
to guarantee that the power of the eight microring lasers perfectly 
matched the features in the dataset, with an average encoding fidelity 
of 99.9% achieved in experiments (Supplementary Section 5). In the 
output layer, the four vowels were categorized as output channels 1 to 
4 (any 4 out of 12) corresponding to ‘er’, ‘iy’, ‘oa’ and ‘ae’, respectively. 
The predicted class was directly indicated by the highest intensity 
among the outputs.

In contrast to the computer-trained target matrix, dynamic online 
learning is used to process the training dataset with iterative measure-
ment feedbacks to in situ-identify the most appropriate matrix for the 
classification task of vowel recognition. Therefore, instead of starting 
with the pumping pattern from the offline algorithm, the photonic 
processor is initialized with a symmetric pumping pattern that con-
nects all input and output channels, which is subsequently 
in situ-trained using the online algorithm. In the mth training epoch, 
the error errmj, k  between the network prediction (measured outputs) 
and the ground truth (target scenario) can be calculated at output j for 
training data k, by which the variations of all the matrix elements 
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needed for the next epoch can be in situ-updated according to the error 

backpropagation: ΔTm
ji ∝ − ∂L

∂Tmji
= −∑

k
Ii, kerrmj, k. Here, L is the loss func-

tion, defined in a mean-square-error format, and Ii, k denotes the meas-
ured input power at input i for training data k. Consequently, with the 
preloaded analytical spatial maps {Fji(r)} in equation (2), the updated 
imaginary-index map can be online obtained in real time from

Δεmimag (r) = −δ ∂L
∂εmimag(r)

= −δ∑
i, j

∂L
∂Tmji

∂Tmji
∂εmimag(r)

= −δ ∑
i, j, k

Ii, kerrmj, kFji(r)
(3)

which guides the dynamic reconfiguration of the pumping pattern for 
the next in situ training epoch. Here, δ is a constant learning rate. In 
this scenario, the optical network is in situ-trained without the physi-
cally implemented error backpropagation and its associated complex 
algorithms (Methods). With dynamic online learning, our device dem-
onstrates high accuracy in vowel recognition (Fig. 4b). After carrying 

out 65 training epochs to achieve a classification accuracy of 98.4% 
for the training dataset, our device achieves a high accuracy of 93.8% 
for the testing dataset, in contrast to the initial accuracy of only 15.6%. 
More specifically, Fig. 4c,d shows the distribution of measured optical 
signals in the input and output layers, respectively, showing the high 
performance of in situ dynamic learning for this classification task. 
In the input layer, all four classes of data are mixed and overlapped 
with each other, making the recognition task challenging. In particu-
lar, vowels ‘oa’ (blue) and ‘ae’ (grey) have a significant overlap in the 
parameter space of input features, which leads to a small overlap (but 
distinguishable) between them in the output layer. Meanwhile, vow-
els ‘er’ (red) and ‘iy’ (green) are completely separated in the output 
layer. The performance of the classification results is quantitatively 
demonstrated based on the confusion matrix of the testing dataset 
in Fig. 4e, which defines the percentage of correctly identified vowels 
along its diagonal and the percentage of incorrectly identified vow-
els in the off-diagonal terms. The strong diagonal distribution high-
lights the impressive performance, showing the potential to handle 
data-intensive computing tasks in real time. The most unique feature 
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Fig. 3 | Experimental demonstration of an imaginary-index-driven arbitrary 
matrix processor. a, Optical microscope image of a 4 × 4 device on the InGaAsP 
platform, which consists of an unpatterned imaginary-index-driven area for 
signal processing, connected to four microring lasers for input signal encoding 
(I1 − I4) and four grating couplers for output signal detection (O1 − O4). b, The 
target transmission matrix. c, The measured transmission matrix (left), and 
the pumping pattern generated by the offline algorithm (right). d, The online 

algorithm is applied to improve the fidelity of the matrix operation. A fidelity 
of 99.2% is achieved after nine iterations. e, Evolution of the pumping profile 
change, ∆P (top panels), leads to the real-time optimization of the matrix 
operation (bottom panels). Although the lithography-free processor can in 
principle respond as fast as the carrier lifetime of InGaAsP (that is, ~200 ps;  
ref. 37), real measurements in one iteration (five frames) take ~100 ms, limited by 
the frame rate of the used infrared camera.
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associated with the in situ learning process, in contrast to any ex situ 
ones, is that the gradient information that drives the weight update 
is directly measured and extracted from the real device. Hence, this 
real-time optimization process, with the device in the loop, can assure 
high-performance computing in a large-scale network, instead of 
relying on either perfect fabrication or computationally expensive 
and complicated modelling.

We have demonstrated a new lithography-free integrated pho-
tonic processor, where the lithography-free nature provides the 
convenience of reconfigurability, demonstrated by optical coding of 
spatial-temporal modulations of the imaginary index on an active semi-
conductor platform. Dynamic control of the imaginary-index modula-
tion is used to reconfigure the global photonic network connectivity for 
in situ machine learning. Note that, although the photonic processor 
itself does not require any lithographically defined features inside, its 
connections with other devices for signal input and output (such as 
microring lasers and grating couplers in our experiment, which could 

be replaced by lensed fibre systems) may still require elementary-level 
lithography. Nevertheless, it is worth emphasizing that the optical 
signals here are fully on-chip-processed in a lithography-free core 
driven by spatial-temporal control of the imaginary index. Accord-
ingly, in this scenario, the need for high-precision lithography in inte-
grated photonics can be drastically reduced. With the gain spectrum 
of the active semiconductor over 100 nm (Supplementary Section 6), 
the imaginary-index-driven photonic processor holds potential for 
broadband operation. Moreover, beyond the demonstrated recon-
figurable computing in the linear regime, the carrier dynamics in the 
active semiconductor platform could be further explored to create 
optical nonlinearity36, for example, with saturable gain or loss where 
the imaginary-index modulation becomes nonlinear with respect to 
photon density (Supplementary Section 7). The successful realiza-
tion of optical nonlinearity in integrated photonics could further 
enhance neural-photonic computing acceleration for high-throughput, 
data-intensive applications.
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Fig. 4 | In situ training for vowel recognition. a, Optical microscope image of 
the device and the schematic for in situ training of a four-class vowel recognition 
task. Eight input channels (purple) and four output channels (red, green, blue 
and grey, corresponding to the different vowel classes) are used. The features 
extracted from the raw audio files are applied as the input neurons, which are 
encoded by the microring lasers and monitored by the camera through the laser 
output, from the left (see the inset for details). The central yellow box indicates 
the imaginary-index-driven photonic processor for this in situ training task, 
where the pumping pattern is updated after each training epoch by the online 
algorithm. b, Evolution of the recognition accuracy of the training (black) and 
testing (red) data with iterative training epochs. c,d, Scattering plots of the 

measured power at the input (c) and output (d) ports for all 64 testing data after 
training. The four vowel classes are shown in different colours corresponding to 
the colour identification in a. For each vowel class, its associated interquartile 
range (indicated by the boxes) is featured in all the input and output ports. 
The coloured line inside each box denotes the median, and the black whiskers 
connect the upper (lower) quartile to the non-outlier maximum (minimum), 
marked by the horizontal black lines. The scatters that are more than 1.5× 
the interquartile range away from the edges of the boxes are considered to 
be outliers. e, Confusion matrix for the testing data, where the values are 
normalized in each row.
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Methods
Offline algorithm
For a processor with N input ports, N parallel solvers work simultane-
ously, and each of them simulates a case with one excited channel. The 
total loss function is defined as

L =
N
∑
i=1

Li =
N
∑
i=1

1
2 ∑j

(Oj, i − TjiIi)2

where Oj, i is the power in output port j when only input port i is excited, 
and T is the target transmission matrix. To find a spatial imaginary-index 
modulation that gives the target transmission, the gradient informa-
tion ∂L/∂εimag(r) is critical. The adjoint method used in real-index inverse 
design was adapted for our imaginary-index-driven photonic processor 
for gradient extraction. First, two-dimensional Maxwell equations are 
solved to obtain the field ei(r), where the sources are incorporated using 
the total-field/scattered field (TF/SF) formulation. The fields are then 
used to calculate the derivative ∂L/∂ei(r), which is applied as the excita-
tion source for the adjoint field eadji (r) following Maxwell’s equations 
in the same system:

μ−10 ∇ × ∇ × eadji (r) − ω2ε0εr (r) eadji (r) = − ∂L
∂ei(r)

where εr(r) is the complex relative permittivity. Once the original and 
adjoint fields are obtained, the gradient in one solver is given by

∂Li
∂εimag(r)

= 2ω2ε0Im {eadji (r)ei(r)}

where Im represents the imaginary part of the complex value. The 
global gradient is calculated by the summation of the results from all 
parallel solvers:

∂L
∂εimag (r)

=
N
∑
i=1

∂Li
∂εimag(r)

To reduce the number of evaluations of the original and adjoint 
fields, the imaginary index is updated using a limited-memory 
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) optimization algorithm 
that improves the convergence rate without substantially increas-
ing the memory requirements by providing an approximate inverse 
Hessian matrix38. Supplementary Video 1 shows the optimization 
process. The simulations are performed in a processor with dimen-
sions of 150 µm × 90 µm. The grid size used for the FDFD method is 
100 nm × 100 nm for a signal with a free-space wavelength of 1,500 nm. 
The pixel resolution of the spatial imaginary-index modulation is lim-
ited to 2 µm × 2 µm, consistent with the feasibility in our experiments 
(Supplementary Section 3).

Online algorithm
Different from the real-index inverse design, we apply approxima-
tions to the imaginary-index-driven inverse design to substantially  
simplify the gradient extraction. Starting from the precise  
adjoint method, the excitation source of the adjoint field at the output 
port j is

badj
i (rj) = − ∂Li

∂ei (rj)
= − ∂Li

∂Oj, i

∂Oj, i

∂ei (rj)
∝ − ∂Li

∂Oj, i
e∗i (rj)

where the output power at port j is Oj,i ∝ ∑rj e
∗
i (rj)ei(rj). The precise gradi-

ent can be divided into an amplitude term and a phase term:

∂Li
∂εimag(r)

∝ Im {eadji (r) ei (r)} = ||e
adj
i (r) ei (r)|| sin [φ

adj
i (r) + φi (r)]

where φadj
i  and φi(r) are the phase of the adjoint field and the original 

field, respectively. The sine term for the phase is important, as it con-
trols the sign of the value and thus determines the imaginary index and 
thus either gain or loss for the next iteration. At the position of the 
output ports, the phase relation of these two fields is fixed, because 
the excitation source of the adjoint field is proportional to the conjuga-
tion of the original field. By considering the phase difference of −π/2 
between the excitation and the field, we obtain

sin [φadj
i (rj) + φi (rj)] = ±1

where the sign on the right side remains the same as the sign of ∂Li/∂Oj, i. 
Due to the dimensions of our device (about two orders of magnitude 
greater than the wavelength) and the relatively weak imaginary-index 
modulation, point-source approximations, located at the position ri 
and rj marked by red and blue circles in Extended Data Fig. 1a, can be 
safely applied for the incidence of the original and adjoint field. In this 
way, we can approximately write the phase term as

sin [φadj
i (r) + φi (r)] = ±cos [keffR (r)]

where keff is the effective wavevector and R(r) is defined as 
R(r) = |r − ri| + |r − rj| − |ri − rj|. Because the excitation of the original field 
is normalized and the adjoint field intensity is proportional to the error, 
errj, i = ∂Li/∂Oj, i = (Oj, i − TjiIi), which can be calculated by the measured 
output and input power in the experiments, the gradient is simplified 
as

∂Li
∂εimag (r)

≈ C∑
j
errj, i cos [keffR (r)]

where C is a constant. The cosine term gives a series of elliptical con-
tours lines (Extended Data Fig. 1b). By considering the actual pumping 
resolution, we are only interested in the sparse pattern near the line 
connecting the corresponding input and output ports. A spatial map

Fji (r) = {
cos [keffRji (r)] , ifRji (r) ≤ R0

0, else

is finally used to describe the approximate gradient:

∂Li
∂εimag (r)

≈ C∑
j
errj, iFji(r)

Because the spatial maps {Fji(r)} are analytical and can be 
preloaded, the system can be optimized based only on the measure-
ments of the light power in each port, without the application of the 
computationally expensive offline algorithm. Supplementary Video 2 
shows the optimization process using the online algorithm, where the 
simulated output powers at each port are used to mimic the measure-
ments. A range parameter R0 =

5
4
λeff  is used (marked by the white 

dashed ellipse in Extended Data Fig. 1b). Although the convergent 
speed is slower than the offline algorithm, a perfect performance is 
also reached at the end, convincingly validating the performance of 
the online algorithm for the optimization.

Sample preparation
A wafer consisting of 220-nm-thick InGaAsP multiple quantum wells 
on an InP substrate was used to fabricate the lithography-free photonic 
processor and its connected signal input/output modules. On this 
active semiconductor platform, we performed electron-beam lithogra-
phy (EBL) to pattern the sample, including the central lithography-free 
area, as well as the microlasers for signal input and the grating couplers 
for signal output. Hydrogen silsesquioxane solution in methyl isobutyl 
ketone was used as a negative resist. After exposure, the wafer was 
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developed using tetramethylammonium hydroxide solution (MFCD-
26) and rinsed in deionized water. The exposed and developed resist 
thus served as a mask for the subsequent inductively coupled plasma 
reactive ion etching by BCl3:Ar plasma. After dry etching of the InGaAsP, 
the remaining resist was removed by immersing the sample in buffered 
oxide etchant. A 3-µm-thick cladding layer of Si3N4 was then deposited 
on the patterned structures alongside the unpatterned main processor 
area, using plasma-enhanced chemical vapour deposition. Finally, the 
sample was bonded to a piece of glass slide, and the InP substrate was 
selectively removed by wet etching with a mixture of HCl and H3PO4.

Measurements of the transmission matrix
The optical set-up is shown in Extended Data Fig. 2a. The pumping 
beam is from a nanosecond pulse laser (wavelength of 1,064 nm). The 
pump is divided into two paths by a beamsplitter. The one modulated 
by SLM 1 is used to generate the pattern that programs the transmission 
matrix of the processor (average pumping power of 1.5 mW). A toolbox 
(OTSLM39) for structured light methods is used to generate the holo-
gram for the target pumping pattern based on the Gerchberg–Saxton 
(GS) algorithm. The numerical aperture (NA) of the ×10 objective is 0.45, 
which guarantees a pumping pixel resolution of 2 µm (Extended Data 
Fig. 2b). The other path, modulated by SLM 2, is used for microring laser 
excitation and input signal encoding. The radii and widths of the micro-
ring lasers are designed to lase at a single longitudinal mode around 
1,500 nm. A typical spectrum collected at one input channel is shown 
in Extended Data Fig. 2c. The lasing wavelengths of the microrings for 
different channels are slightly detuned, with a measured range of 3 nm. 
The signal emitted from the chip is collected by a ×20 objective, and the 
photoluminescence (PL) is first filtered by the bandpass filter centred 
at 1,500 nm with a bandwidth of 12 nm. The intensities of the output 
ports are captured by an infrared charge-coupled device camera. The 
image with only the pumping pattern from SLM 1 applied (no microlaser 
is excited) is captured as a reference. A reference subtraction was used 
eliminate the influence of the PL. The PL subtraction method was con-
firmed by the spectrum collected at one output port (Extended Data 
Fig. 2d), with the off-resonant PL signal remaining the same level with 
and without an input signal from a microlaser. To operate in a real-time 
manner, the signals are recorded by the camera rather than spectrum 
measurements during online optimization. Extended Data Fig. 2e–h 
presents images for when the microlasers for different input channels 
are excited one by one under the same pumping pattern, optimized by 
the online algorithm. The power in each output port is integrated over 
the area marked by the light dashed boxes and the output vector is then 
normalized over all output ports. The normalized values are used as 
the transmission matrix elements instead of the absolute transmis-
sion, defined as the power ratio of output to input. The transmission 
matrix elements extracted from the four images are shown in Fig. 3 
(Fig. 3e, iteration 9).

In situ training for vowel recognition
A total of 128 samples of audio data for four vowel classes (from dif-
ferent male and female individuals) were randomly picked from the 
vowel dataset. The data were randomly divided into a training set and 
a testing set. The audio files were recorded with a sampling rate of 
16 kHz. To remove the redundant information, the bark spectra were 
extracted by a feature extraction function from the MATLAB Audio 
Toolbox. The eight features from the spectra were used as the input 
vector to the processor.

In the in situ training for vowel recognition in the experiments, 
the loss function for the training is L = 1

2
∑k∑j err

2
j, k , with the error 

defined by errj, k = Oj, k −OT
j, k . Here Oj, k  and OT

j, k  are the measured and 
target power intensities in output port j for training audio data k. The 
target is defined as OT

k, j = β + (1 − 4β)δjlk, where lk is the true label for the 
training data k, and β is a constant. For one layer of the linear matrix 

operation, the output contrast for different vowel classes is expected 
not to reach a significantly high level, so a bias of β = 0.15 is introduced 
to make the training focus more on the overall performance. Similar 
to the optimization of the power transmission matrix, the online algo-
rithm was applied to update the imaginary index according to only the 
measurement results of the light power at the inputs and outputs after 
each training epoch. Note that the pumping pattern was only updated 
according to the training set, and the testing set was only applied to 
record the accuracy in each epoch. The in situ training process can be 
described by the flowchart shown in Extended Data Fig. 3. The training 
was performed until the training accuracy reached a desired target, at.
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Extended Data Fig. 1 | Illustration of the online algorithm. a, The illustration of 
the geometry related to input port i and output port j. b, The spatial function f(r). 
The isovalue contours are the ellipses with 2 focal points at the point sources of 
the original (red circle) and adjoint field (blue circle). The contours become 

denser in the place far from the line connecting 2 ports. The white dashed  
ellipse shows the range R(r) ≤ R0 =

5
4
λeff , which is used for simulations in 

Supplementary Video 2.
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Extended Data Fig. 2 | Transmission measurements. a, Dual-pump optical 
setup. The 1064 nm pump laser (green trace) is split into two paths for the 
patterned pumping and the microlaser excitation. The signal around 1500 nm 
(red trace) is collected by the infrared camera. VA: variable attenuator, OBJ: 
objective lens, DM: dichroic mirror, PH: pinhole, FM: flip mirror, BPF: band pass 
filter. b, Target pumping pattern and the pattern generated in experiment. The 
light spot on the top of the experimental pattern is the zero-order beam from 

SLM, which does not affect the performance as it is far away from the center.  
c, Spectrum collected at an input port. d, Spectrum collected at one output port 
with (red) and without (black) microring lasers excited. e-h Images with different 
excitation channels. The red and white boxes mark the position of individual 
microring laser and the output grating. The yellow box indicates the whole 
imaginary-index-driven area.
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Extended Data Fig. 3 | Flow chart of the in-situ training. The initial pattern can be an arbitrary connection between the inputs and the outputs. In each epoch, the 
inputs and outputs related to all the samples in the dataset are measured. The pumping pattern is updated based on the measurements in the epoch until the accuracy 
reaches the target.
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