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Integrated photonics, because of its intrinsic high speed, large bandwidth
and unlimited parallelism, is critical in the drive to ease the increasing data
traffic. Its technological enabler is high-precision lithography, which allows

for the fabrication of high-resolution photonic structures. Here, in complete
contrast to the state of the art, where photonic functions are predefined by
lithographically modulating the real index, we report a lithography-free
paradigm for an integrated photonic processor, targeting dynamic control
of spatial-temporal modulations of the imaginary index on an active
semiconductor platform, without the need for lithography. We demonstrate
animaginary-index-driven methodology to tailor optical-gain distributions
torationally execute prescribed optical responses and configure desired
photonic functionality to route and switch optical signals. Leveraging

its real-time reconfigurability, we realize photonic neural networks with
extraordinary flexibility, performing in situ training of vowel recognition
with high accuracy. The programmability and multifunctionality
intrinsically arising from the lithography-free characteristics canlead

to anew paradigm for integrated photonic signal processing to conduct

and reconfigure complex computation algorithms, accelerating the
information-processing speed to achieve long-term performance

requirements.

Photonics formsthebackbone of today’sinformationinfrastructure, pro-
cessing large datasets at unprecedented speed and with minimal energy
consumption by exploiting the intrinsic parallelism, elevated frequency
ratesand large bandwidths that inherently come with workingin the opti-
caldomain'®. Whentargeting insitusignal control, information process-
ing or general photonic computational operations, programmability
and multifunctionality are critical factors as photonicintegrated circuits
evolve into a new era’” . Recently, programmable photonic networks
with functions of reconfigurable switching and routing have become
possible through the heterogeneous integration of a range of materi-
als'™ (for example, phase-change materials) and structures™ (such as
microelectromechanical systems (MEMS)) with tunable optical proper-
tiesonsemiconductor photonic chips. However, with existing integrated
photonics platforms, control of optical signalsisimplemented by cascad-
ing discrete devices, where each device has a single functionality and a

distinct morphology that is predefined by high-precisionlithography of
multilayered structures and is specific for its task. Strategic node connec-
tionsbetweenindividual devices (suchas coupled waveguides, splitters,
filtersand phase shifters) must be included to realize on-chip networks' 2.,
When scaling up, the complexity of the architecture inevitably grows
exponentially as the number of connecting nodes and the number of
single devices both increase nonlinearly with the size of the chip?. As a
consequence, extremely complex architectures are inevitable for the
realization of fully reconfigurable, high-performanceintegrated photonic
processorsthatareabletohandle data-intensive tasks, suchasinsitutrain-
ing of modern artificial intelligence. Additionally, it remains a challenge
to precisely control nano-lithographic features during the manufacture
of very large-scale integrated photonics™**. Any lithographic imperfec-
tion may cause a defect that degrades or even completely deteriorates
the designed performance.
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Fig.1|Lithography-free integrated photonic processor for on-chip signal
processing and network training. a, Conceptualillustration of the imaginary-
index-driven processor with real-time feedback, together with signal encoding
and detection modules. With the signal encoded as the intensity of input light in
differentinput channels (/), the matrix operation based on the imaginary index,
T;i (si’"mag (r)), intraining epoch m, is fully programmed by an external pumping
pattern generated by a SLM. The pattern as a function of e::wg (r, I;, Ojf", O/T) is
real-time optimized to perform anin situ training of a photonic neural network,
based on the measured powers versus the targets in different output channels
(0}" versus OjT). b, Theinformation-processing area of the lithography-free
imaginary-index-driven processor is a layer of unpatterned InGaAsP. Its
networking connectivity and computational function can be dynamically
reconfigured by the spatial-temporal control of pumping patterns during the
training process. The bottom panels display a sequence of pumping patterns
updated after each training epoch.

Inthis Article we demonstrate acompletely new, lithography-free
paradigm for areconfigurableintegrated photonic processor that, as
aresult of its lithography-free nature, creates exceptional field pro-
grammability and functionality by fully eliminating the requirement
for connectingnodes. Our work delivers abrand new and ultra-flexible
integrated photonic paradigm for reconfigurable networking and
computing, with great potential to process large, non-local datasets
with high throughputs. Figure 1 illustrates the concept of the
lithography-free integrated photonic processor, which has a central
unpatterned area where dynamic control and spatial patterning of
opticalgain onanactive llI-Vsemiconductor platform* % providean
arbitrarily field-programmable photonic network. The absence of any
predefined features on this unpatterned wafer comprising InGaAsP
multiple quantumwells provides the convenience of reconfigurability,

where optical coding of patterned pumping light defines the gain-loss
distribution and thus spatially modulates theimaginaryindex, in place
of of real-index modulation by lithographically defined features. Note
that intrinsic material losses associated with unpumped areas corre-
spond to the imaginary index being negative, whereas optical gain
arising from active pumping turns the imaginary index positive, with
the modulation strength (-0.1 < &;,,,, < 0.03) being precisely controlled
by the intensity of the pumping light*®** (Supplementary Sections 1
and2). Thealgorithm-optimized spatialimaginary-index distribution
forms an on-chip imaginary-index-driven photonic network that
directly connectsinputs with outputs, performing optical information
processing according to the desired matrix-vector multiplication (that
is, 0; = 3, Tj;l;, where T; denotes the power transmission from input
portitooutput portj), where the signals are encoded by the light power
in each input and output channel. The advantage of this
imaginary-index-driven networkisits intrinsic reconfigurability associ-
ated with convenient pattern generation and real-time transformation
by optical coding using a spatial light modulator (SLM). Inthis scenario,
the measurement results for the output light power are monitored in
areal-time manner, and feedback from the detection is delivered
to the SLM to update the pumping pattern either for self error
correction or in situ training (Fig. 1b). Although there are typically a
very large number of variables to be carefully designed and tuned,
layer by layer, in a large-scale network architecture, a promising
feature of our lithography-free, reconfigurable integrated photonic
processor is that the information needed for pattern optimization
comprises just the measured power from each input (/;) and output
(Ojf") portforepochm, together withthe predefined target output (OJ.T).
Thisunique feature of global input-output connections substantially
simplifies the algorithm needed for pattern reconfiguration, thereby
enabling the acceleration of simulation-free, real-time reconfigurable
computing forinsitu training.

To efficiently generate and optimize the spatial imaginary-index
map for a specific functionality, we developed novel imaginary-
index-driven inverse design algorithms (assuming the real index
remains the same in the modulation region): an offline algorithm and
itsderived online algorithm, both following gradient-descent methods.
In both algorithms, a general loss function is defined for the target
function, and the algorithms minimize the loss function by estimating
the gradient over the variables, which is the spatial imaginary-index
profile. Figure 2a illustrates the two algorithms in flowchart form for
therealization of an arbitrary power transmission matrix between the
inputand output ports. Here, with animaginary-index-driven photonic
processor (thatis, the centralinformation processing areawithout any
lithographically patterned features) connected with four input (/,-/,)
andfouroutput (0,-0,) waveguides, we choose a4 x 4 triangular matrix
Tasaproofof concept:

025033051
025033050
025033 0 O
025 0 0O

The offline algorithm (Methods) is an inverse design®**' algo-

rithm based on an electromagnetic field simulation and the adjoint
method®>*, For Ninput channels, N parallel solvers are used to solve
two-dimensional Maxwell equations under excitation of each indi-
vidual waveguide (marked by red in Fig. 2a, excitation /;as an example)
by application of the finite-difference frequency-domain (FDFD)
method**. According to the solved field in solver i, a target-defined
loss function L;is calculated, which evaluates the deviation from the
target function. An adjoint field corresponding to the loss function
is subsequently simulated, similarly to the adjoint method for
real-index inverse design. The map of the negative gradient to the
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Fig.2|Imaginary-index-driveninverse design algorithmes. a, lllustration of the
two algorithms used to generate the imaginary-index maps to execute the target
matrix operation. The offline algorithm (top) is simulation-based. The flowchart
shows the procedure in one optimization iteration targeting a specific power
transmission matrix between the input and output ports. Electromagnetic fields
are simulated in the parallel FDFD solvers excited by each input channel (e; is
shown here for excitation /5). Next, the corresponding adjoint fields launched
from the outputs are simulated (egdj). The gradientinformation (-dL,/€;,) is
extracted from the product of the simulated field distribution and its adjoint
field. Finally, the change in the imaginary index, Ag;,,,(r) (shown on the right), is
achieved based on the global gradient from all parallel solvers and a step constant
6.Theonline algorithm (bottom) is measurement-based. N measurements are
performed rather than the computation-expensive large-scale electromagnetic
simulations. The power in all the output channels is measured with the input

channels excited one by one. An approximate gradient (-—dL,/&;,,,) is extracted
by using only the measurement results and predefined spatial maps {F;(r)}. This
greatly resembles the precise gradient extracted by the offline algorithm. The
changein theimaginary index, Ag;,,(r) (right), is again achieved based on the
global gradient. b-e, Simulation results, providing an example of a robust
arbitrary power transmission matrix programmed by the imaginary-index-driven
inverse design algorithms. b, Target transmission matrix elements.c,
Transmission matrix and the spatial imaginary index calculated by the offline
algorithm only (inset outlined in red). d, The transmission matrix is perturbed by
arandom perturbation of the imaginary index (inset outlined in yellow). e, The
online algorithmis applied to compensate the random perturbation for the
revival of the target matrix. The imaginary-index spatial map (inset outlined in
green) corresponds to the change of the imaginary index optimized by the
online algorithm.

imaginary index (-dL,/&;,,s) is extracted from the results of these two
simulations, that is, the spatial amplitude distribution of the simu-
lated field e; and adjoint field egdj. The final imaginary-index map
Agimag(r), which conducts the transmission matrix 7 in the
imaginary-index-driven area, is generated according to the global
gradient by combining the gradient information from all N parallel
solvers. Note that the algorithm does not limit the coherency of light
between different input channels, but for the convenience of our
experimental demonstrations we focus on the case where the signals
from differentinput channels areincoherentand do nothave astable
phase relation. In this case, both the signal and the transmission
matrix are strictly positive real-valued.

The offline algorithmis precise and efficient in the realization of an
arbitrary transmission matrix, but the deviceis offline during the whole
process, so any mismatch between the simulation and the actual device
may deteriorate the device performance, especially when the scale of
the device becomes large. To bringimaginary-index-driven computing
into reality, an online algorithm must be realized in which the actual
deviceis online for real-time measurements during the entire optimiza-
tion process. Although the offline algorithm requires time-consuming
simulations and is thus not suitable for real-time optimizations, its
generated imaginary-index map guides the development of the online
algorithm (Methods), and the field profile connecting input { with

Nature Photonics | Volume 17 | August 2023 | 710-716

2


http://www.nature.com/naturephotonics

Article

https://doi.org/10.1038/s41566-023-01205-0

outputjintheimaginary-index-drivenareacanbe described asaseries
of analytical spatial maps

cos |keeRj; ()|, if R (r) <R
Fji (I') _ [ effVji ] \ji 0 (2)
0, else

where k. is the effective wavevector and R;(r) is defined as R;(r) = Ir—
rl+1r—ri-Ir;—r],wherer;and r;are the positions of the correspond-
ing input and output ports, respectively, and R, controls the spatial
range of the map depending on the actual pumping pixel resolution
(Supplementary Section 3). A series of spatial maps {F;(r)}, alongside
the measured power at the input and output channels, can yield an
approximate gradient map (-—dL,/&,,, With excitation/;, for example),
in excellent agreement with the exact one (-dL/&;y,,,) fromthe offline
algorithm. Similarly, aglobal approximate gradientis achieved by the
summation of all measurement results fromall input channels, produc-
ing the target imaginary-index map online. Here, we fully exploit the
aforementioned unique feature of global input-output connectionsin
theimaginary-index-driven matrix processing area to demonstrate the
simulation-free online algorithm, which enables real-time optimization
for reconfigurable photonic computing and dynamic online learning.

To realize a robust performance, a combination of the two algo-
rithms can be applied strategically, as validated by three numerical
simulations taking different scenarios into account (Fig. 2c-e). With
the target matrix in equation (1) displayed in Fig. 2b, an almost perfect
match (Fig. 2¢) is achieved using the offline algorithm. However, in
practical applications, the result may deviate from the offline simula-
tions because of a slight mismatch of index, an imperfect generation
of the pumping pattern, or any random noise. To mimic such errors
in a realistic experimental scenario, we introduce additional random
perturbations of theimaginary index with astandard deviation of 0.01
in the imaginary-index-driven area, which consequently perturbs all
the matrix elementsin 7, which deviate from the target result (Fig. 2d).
The online algorithmis applied to successfully compensate the adverse
influence of the perturbation based on only the output power, showing
the capability of real-time optimizations to revive the target matrix,
despite random noise (Fig. 2e).

To experimentally confirm real-time optimizations of reconfig-
urable photonic routing, switching and networking using our infra-
structure, we next demonstrate the generation of an arbitrary matrix
processor by means of dynamically controlled pumping patterns,
with the correspondingintensity distribution equivalently translated
from the imaginary-index map obtained by the inverse design algo-
rithms. The reconfigurable imaginary-index-driven photonic pro-
cessor comprises a 300 pm x 240 um unpatterned area, connected
by four input and four output channels and based on the InGaAsP
multiple-quantum-wells platform, as shown in Fig. 3a. To take full
advantage of the active nature of InGaAsP, integrated microring lasers
were fabricated to directly encode information for a convenient signal
input. In the experiments, two pumping beams at a wavelength of
1,064 nm were applied as the matrix processor and signal encoder
(Methods). The first pumping beam, patterned by an SLM accord-
ing to the algorithm-optimized imaginary-index map, impinges on
the lithography-free, imaginary-index-driven area to define the pho-
tonic network and real-time-optimize the power transmission matrix.
The top and bottom regions outside the optimization area remain
unpumped and hence are dissipative and eliminate boundary reflec-
tions (similar to absorbing boundaries for perfect matched layers as
used in numerical simulations). The other separate pumping beam is
focused onindividual microring lasers to excite one signal channel at
atime. Note that, although the emissions from the microring lasers
all occur at 1,500 nm, they differ slightly from one another, with the
detuning measured in the range of 3 nm. As aresult, the input signals
fromdifferent channelsbecome intrinsicallyincoherent withrespectto

oneanother.Onthe other end, thenormalized output4 x 1vectoris col-
lected for power transmission, and grating couplers areimplemented
for efficient detection of the signal output in free space.

With the same target transmission matrix 7as given in equation (1)
(Fig. 3b), a pumping pattern according to the offline algorithm
was first generated and applied in the imaginary-index-
driven matrix processing area (Fig. 3¢, right). Although the offline
simulation yields a nearly perfect transmission matrix with a fidelity

_ s

VT Vo)
sionmatrix, T’ denotes the transpose of 7, and the square rootis applied
to each matrix element) of over 99%, the performance in real experi-
ments does not match the target (Supplementary Section4), yielding
afidelity of only 93% and thus leaving sufficient space for online opti-
mizations (Fig. 3c). Tocompensate the deviation, the online algorithm
isapplied to adjust the pumping patternaccording to the measurement
results inreal time, leading to an increased fidelity of the measured
transmission matrix (to 99.2%) after nine iterations (Fig. 3d). With the
accumulated optimization of the pumping distributionin the real-time
optimization process (Fig. 3e, top panels), the evolution of the trans-
mission matrix shows its gradual convergence to the target (Fig. 3e,
bottom panels). Theimprovement arising from measurement feedback
convincingly demonstrates the validity of our online algorithm, which
iscritical to preventerror cascadingin alarge-scale network. Because
the matrix processor is fully programmed by dynamic control of the
pumping pattern and its functionality does not rely on any
lithography-patterned structures, theimaginary-index-driven optical
coding scheme can be arbitrarily reconfigured and optimized in a
real-time manner for reconfigurable computing acceleration.

To exploit the demonstrated dynamic reconfigurability for the
acceleration of computing so as to handle data-intensive tasks, we
performed in situ machine learning, where the pumping pattern was
trained online to reconfigure in real time the network connectivity or
weight. A classical four-vowel (‘er’, ‘iy’, ‘0a’ and “ae’) classification task
was applied to demonstrate the concept. The dataset® consists of the
speech of different vowels (from both males and females), divided
into a training set and a testing set, each containing 64 audio files.
A fully connected neuro-photonic network was executed using an
imaginary-index-driven photonic processor with an unpatterned,
active area of 500 um x 324 pm (Fig. 4a). Despite a large amount of
redundantinformationin the audio files, eight prominent featuresin
frequency bands associated with the vowels were selectively extracted
to accurately represent the training database, to then be encoded as
inputsignals. In the inputlayer, any 8 out of 12 microring lasers could
beexcited, and the strength of each feature was encoded as the power
of the corresponding microring laser emission, which was precisely
controlled by the pumpingintensity. Aniterative method was applied
to guarantee that the power of the eight microring lasers perfectly
matched the featuresin the dataset, with an average encoding fidelity
0f 99.9% achieved in experiments (Supplementary Section 5). In the
output layer, the four vowels were categorized as output channels1to
4 (any 4 out of 12) corresponding to ‘er’, ‘iy’, ‘oa’ and ‘ae’, respectively.
The predicted class was directly indicated by the highest intensity
among the outputs.

Incontrast to the computer-trained target matrix, dynamic online
learningis used to process the training dataset with iterative measure-
ment feedbackstoinsitu-identify the most appropriate matrix for the
classification task of vowel recognition. Therefore, instead of starting
with the pumping pattern from the offline algorithm, the photonic
processor is initialized with a symmetric pumping pattern that con-
nects all input and output channels, which is subsequently
in situ-trained using the online algorithm. In the mth training epoch,
the error errf’"k between the network prediction (measured outputs)
andtheground truth (target scenario) can be calculated at output; for
training data k, by which the variations of all the matrix elements

(where Mrepresents the measured transmis-
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Fig.3 | Experimental demonstration of animaginary-index-driven arbitrary
matrix processor. a, Optical microscope image of a4 x 4 device on the InGaAsP
platform, which consists of an unpatterned imaginary-index-driven area for
signal processing, connected to four microring lasers for input signal encoding
(I, - 1,) and four grating couplers for output signal detection (O, - 0,).b, The
target transmission matrix. ¢, The measured transmission matrix (left), and
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0f 99.2%is achieved after nine iterations. e, Evolution of the pumping profile
change, AP (top panels), leads to the real-time optimization of the matrix
operation (bottom panels). Although the lithography-free processor canin
principle respond as fast as the carrier lifetime of InGaAsP (that is, ~200 ps;
ref.37), real measurementsin one iteration (five frames) take ~-100 ms, limited by
the frame rate of the used infrared camera.

needed for the nextepoch can beinsitu-updatedaccordingtotheerror

backpropagation: AT’" « _W =— Eli,kerrjf"k.Here,L istheloss func-
. :

tion, defined inamean-square-error format, and/; , denotes the meas-
ured input power atinputifor training data k. Consequently, with the
preloaded analytical spatial maps {F;(r)} in equation (2), the updated
imaginary-index map can be online obtained in real time from

oL _ R
bs"’ (r) ar"' oM ()

imag imag

lmag (n=
(3)

=-0 Z I; kerr Tk Fii(r)
ij,k

which guides the dynamic reconfiguration of the pumping pattern for
the next in situ training epoch. Here, § is a constant learning rate. In
this scenario, the optical network isin situ-trained without the physi-
callyimplemented error backpropagationandits associated complex
algorithms (Methods). With dynamic online learning, our device dem-
onstrates highaccuracy invowel recognition (Fig. 4b). After carrying

out 65 training epochs to achieve a classification accuracy of 98.4%
for the training dataset, our device achieves a high accuracy of 93.8%
for the testing dataset, in contrast to the initial accuracy of only 15.6%.
More specifically, Fig. 4c,d shows the distribution of measured optical
signalsintheinputand output layers, respectively, showing the high
performance of in situ dynamic learning for this classification task.
In the input layer, all four classes of data are mixed and overlapped
with each other, making the recognition task challenging. In particu-
lar, vowels ‘0a’ (blue) and ‘ae’ (grey) have a significant overlap in the
parameter space of input features, which leads to asmall overlap (but
distinguishable) between them in the output layer. Meanwhile, vow-
els ‘er’ (red) and ‘iy’ (green) are completely separated in the output
layer. The performance of the classification results is quantitatively
demonstrated based on the confusion matrix of the testing dataset
inFig.4e, which defines the percentage of correctly identified vowels
along its diagonal and the percentage of incorrectly identified vow-
elsin the off-diagonal terms. The strong diagonal distribution high-
lights the impressive performance, showing the potential to handle
data-intensive computing tasksinreal time. The most unique feature
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Fig. 4 |Insitu training for vowel recognition. a, Optical microscope image of
the device and the schematic for in situ training of a four-class vowel recognition
task. Eightinput channels (purple) and four output channels (red, green, blue
and grey, corresponding to the different vowel classes) are used. The features
extracted from the raw audio files are applied as the input neurons, which are
encoded by the microring lasers and monitored by the camera through the laser
output, fromthe left (see the inset for details). The central yellow box indicates
the imaginary-index-driven photonic processor for this in situ training task,
where the pumping patternis updated after each training epoch by the online
algorithm. b, Evolution of the recognition accuracy of the training (black) and
testing (red) data with iterative training epochs. c,d, Scattering plots of the
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measured power at the input (c) and output (d) ports for all 64 testing data after
training. The four vowel classes are shown in different colours corresponding to
the colour identificationina. For each vowel class, its associated interquartile
range (indicated by the boxes) is featured in all the input and output ports.

The coloured line inside each box denotes the median, and the black whiskers
connect the upper (lower) quartile to the non-outlier maximum (minimum),
marked by the horizontal black lines. The scatters that are more than 1.5x
theinterquartile range away from the edges of the boxes are considered to

be outliers. e, Confusion matrix for the testing data, where the values are
normalized in each row.

associated with the in situ learning process, in contrast to any ex situ
ones, is that the gradient information that drives the weight update
is directly measured and extracted from the real device. Hence, this
real-time optimization process, with the deviceintheloop, canassure
high-performance computing in a large-scale network, instead of
relying on either perfect fabrication or computationally expensive
and complicated modelling.

We have demonstrated a new lithography-free integrated pho-
tonic processor, where the lithography-free nature provides the
convenience of reconfigurability, demonstrated by optical coding of
spatial-temporal modulations of the imaginary index on an active semi-
conductor platform. Dynamic control of theimaginary-index modula-
tionisusedtoreconfigure the global photonic network connectivity for
in situ machine learning. Note that, although the photonic processor
itself does notrequire any lithographically defined featuresinside, its
connections with other devices for signal input and output (such as
microringlasers and grating couplersin our experiment, which could

bereplaced by lensed fibre systems) may still require elementary-level
lithography. Nevertheless, it is worth emphasizing that the optical
signals here are fully on-chip-processed in a lithography-free core
driven by spatial-temporal control of the imaginary index. Accord-
ingly, in this scenario, the need for high-precision lithography ininte-
grated photonics can be drastically reduced. With the gain spectrum
of'the active semiconductor over 100 nm (Supplementary Section 6),
the imaginary-index-driven photonic processor holds potential for
broadband operation. Moreover, beyond the demonstrated recon-
figurable computing in the linear regime, the carrier dynamics in the
active semiconductor platform could be further explored to create
optical nonlinearity*®, for example, with saturable gain or loss where
the imaginary-index modulation becomes nonlinear with respect to
photon density (Supplementary Section 7). The successful realiza-
tion of optical nonlinearity in integrated photonics could further
enhance neural-photonic computing acceleration for high-throughput,
data-intensive applications.
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Methods

Offline algorithm

For a processor with Ninput ports, N parallel solvers work simultane-
ously, and each of them simulates a case with one excited channel. The
total loss functionis defined as

Mz

N1
L=2Li=2752(0-
J

i=1

I
—_

i

where O; ;isthe power inoutput portjwhen only input portiis excited,
and Tisthe target transmission matrix. To find aspatialimaginary-index
modulation that gives the target transmission, the gradient informa-
tion AL/0;,,(r) is critical. The adjoint method used inreal-index inverse
designwas adapted for ourimaginary-index-driven photonic processor
for gradient extraction. First, two-dimensional Maxwell equations are
solved to obtain the field e,(r), where the sources are incorporated using
the total-field/scattered field (TF/SF) formulation. The fields are then
used to calculate the derivative dL/de;(r), whichis applied as the excita-
tion source for the adjoint field efdj(r) following Maxwell’s equations
inthe same system:

oL

-1 adj 2 adj - _
Hy VXV xe "(r)—wee (r)e; " (r) e,

where g,(r) is the complex relative permittivity. Once the original and
adjoint fields are obtained, the gradient in one solver is given by
alL;
agimag(r)

= 202eolm |} (nei(n)]

where Im represents the imaginary part of the complex value. The
global gradient is calculated by the summation of the results from all
parallel solvers:

aL N

a"‘:imag r

Z; aglmag(’)

To reduce the number of evaluations of the original and adjoint
fields, the imaginary index is updated using a limited-memory
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) optimization algorithm
that improves the convergence rate without substantially increas-
ing the memory requirements by providing an approximate inverse
Hessian matrix*. Supplementary Video 1 shows the optimization
process. The simulations are performed in a processor with dimen-
sions of 150 pm x 90 pm. The grid size used for the FDFD method is
100 nm x 100 nm for asignal with a free-space wavelength of 1,500 nm.
The pixel resolution of the spatial imaginary-index modulationis lim-
ited to 2 um x 2 pm, consistent with the feasibility in our experiments
(Supplementary Section 3).

Online algorithm
Different from the real-index inverse design, we apply approxima-
tions to the imaginary-index-driven inverse design to substantially
simplify the gradient extraction. Starting from the precise
adjoint method, the excitation source of the adjoint field at the output
portjis

5 (1) = - L, _ A

00; .
M aL, “(r)
Eé,- (’:/)

60,, oe; (rj) 00;; *

where the output power at port/is 0;; « Z e; (r)e;(r;) The precise gradi-
entcanbedividedintoan amplltude termanda phase term:

oL;

W «Imfet¥ (re; (0} = e (e (n)sin [0} (0 + ¢: ()]

where gaadJ and @,(r) are the phase of the adjoint field and the original

field, respectively. The sine term for the phase is important, as it con-
trols the sign of the value and thus determines theimaginary index and
thus either gain or loss for the next iteration. At the position of the
output ports, the phase relation of these two fields is fixed, because
the excitation source of the adjoint field is proportional to the conjuga-
tion of the original field. By considering the phase difference of —1/2
between the excitation and the field, we obtain

sm[(pd’( D+ ;i (7, )]_+1

where the sign onthe right side remains the same as the sign of 0L,/00; ;
Due to the dimensions of our device (about two orders of magnitude
greater than the wavelength) and the relatively weak imaginary-index
modulation, point-source approximations, located at the position r;
and r;marked by red and blue circles in Extended Data Fig. 1a, can be
safely applied for the incidence of the original and adjoint field. In this
way, we can approximately write the phase term as

sin [goadJ )+ @ (r)] = 205 [KeeR (r)]

where k. is the effective wavevector and R(r) is defined as
R(r) = |r = r;| + |r — rj| - |r; — r|Because the excitation of the original field
isnormalized and the adjoint field intensity is proportional to the error,
err;; = 0L,/00; ; = (0;; — T;l;), which can be calculated by the measured
outputand|nputp0werlntheexperiments,thegradientissimplified
as

oL;

m ~ CZ ert; ; cos [kegeR ()]

where Cis a constant. The cosine term gives a series of elliptical con-
tourslines (Extended DataFig. 1b). By considering the actual pumping
resolution, we are only interested in the sparse pattern near the line
connecting the corresponding input and output ports. A spatial map

cos [kegrR;; ()], ifR; () < Ro

Fii (1) =

, else

is finally used to describe the approximate gradient:

oL;
—— x~C
aslmag (r) ;errl i jl(r)

Because the spatial maps {F;(r)} are analytical and can be
preloaded, the system can be optimized based only on the measure-
ments of the light power in each port, without the application of the
computationally expensive offline algorithm. Supplementary Video 2
shows the optimization process using the online algorithm, where the
simulated output powers at each port areused to mimic the measure-
ments. A range parameter R, = —Aeff is used (marked by the white
dashed ellipse in Extended Data Flg 1b). Although the convergent
speed is slower than the offline algorithm, a perfect performance is
also reached at the end, convincingly validating the performance of
the online algorithm for the optimization.

Sample preparation

A wafer consisting of 220-nm-thick InGaAsP multiple quantum wells
onanlInPsubstrate was used to fabricate the lithography-free photonic
processor and its connected signal input/output modules. On this
active semiconductor platform, we performedelectron-beam lithogra-
phy (EBL) to pattern the sample, including the central lithography-free
area, aswell as the microlasers for signal input and the grating couplers
for signal output. Hydrogen silsesquioxane solutionin methylisobutyl
ketone was used as a negative resist. After exposure, the wafer was
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developed using tetramethylammonium hydroxide solution (MFCD-
26) and rinsed in deionized water. The exposed and developed resist
thus served as a mask for the subsequent inductively coupled plasma
reactiveionetching by BCl;:Ar plasma. After dry etching of the InGaAsP,
theremaining resist was removed by immersing the sample inbuffered
oxide etchant. A 3-pm-thick cladding layer of Si;N, was then deposited
onthe patterned structures alongside the unpatterned main processor
area, using plasma-enhanced chemical vapour deposition. Finally, the
sample was bonded to a piece of glass slide, and the InP substrate was
selectively removed by wet etching with a mixture of HCl and H,PO,.

Measurements of the transmission matrix

The optical set-up is shown in Extended Data Fig. 2a. The pumping
beamis fromananosecond pulse laser (wavelength of1,064 nm). The
pumpisdividedinto two paths by abeamsplitter. The one modulated
by SLM1isused to generate the pattern that programs the transmission
matrix of the processor (average pumping power of 1.5 mW). A toolbox
(OTSLM*) for structured light methods is used to generate the holo-
gram for the target pumping pattern based on the Gerchberg-Saxton
(GS) algorithm. The numerical aperture (NA) of the x10 objectiveis 0.45,
which guarantees a pumping pixel resolution of 2 um (Extended Data
Fig.2b). The other path, modulated by SLM 2, is used for microring laser
excitationand input signal encoding. The radii and widths of the micro-
ring lasers are designed to lase at a single longitudinal mode around
1,500 nm. A typical spectrum collected at one input channel is shown
inExtended DataFig. 2c. The lasing wavelengths of the microrings for
different channels are slightly detuned, withameasured range of 3 nm.
Thesignalemitted fromthe chipis collected by a x20 objective, and the
photoluminescence (PL) is first filtered by the bandpass filter centred
at 1,500 nm with a bandwidth of 12 nm. The intensities of the output
ports are captured by aninfrared charge-coupled device camera. The
image with only the pumping patternfromSLM1applied (no microlaser
isexcited) is captured as areference. Areference subtraction was used
eliminate theinfluence of the PL. The PL subtraction method was con-
firmed by the spectrum collected at one output port (Extended Data
Fig.2d), with the off-resonant PL signal remaining the same level with
and without aninput signal from amicrolaser. To operateinareal-time
manner, the signals are recorded by the camerarather than spectrum
measurements during online optimization. Extended Data Fig. 2e-h
presentsimages for when the microlasers for different input channels
areexcited one by one under the same pumping pattern, optimized by
the onlinealgorithm. The powerineach output portisintegrated over
the areamarked by the light dashed boxes and the output vectoris then
normalized over all output ports. The normalized values are used as
the transmission matrix elements instead of the absolute transmis-
sion, defined as the power ratio of output to input. The transmission
matrix elements extracted from the four images are shown in Fig. 3
(Fig.3e, iteration 9).

Insitu training for vowel recognition

A total of 128 samples of audio data for four vowel classes (from dif-
ferent male and female individuals) were randomly picked from the
vowel dataset. The datawere randomly divided into a training set and
atesting set. The audio files were recorded with a sampling rate of
16 kHz. To remove the redundant information, the bark spectra were
extracted by a feature extraction function from the MATLAB Audio
Toolbox. The eight features from the spectra were used as the input
vector to the processor.

In the in situ training for vowel recognition in the experiments,
the loss function for the training is L = % DN e"f,k , with the error
defined by err; « = 0; - O], . Here 0; , and O], are the measured and
target power intensities in output portj for training audio data k. The
targetis defined as OLJ. = B+ (1-4pP)6;, wherel,isthetruelabelfor the
training data k, and f is a constant. For one layer of the linear matrix

operation, the output contrast for different vowel classes is expected
notto reach asignificantly highlevel, so abias of = 0.15isintroduced
to make the training focus more on the overall performance. Similar
tothe optimization of the power transmission matrix, the online algo-
rithmwas applied to update theimaginary index according to only the
measurement results of the light power at the inputs and outputs after
eachtrainingepoch. Note that the pumping pattern was only updated
according to the training set, and the testing set was only applied to
record the accuracy in each epoch. Theinsitu training process can be
described by the flowchart shownin Extended DataFig. 3. The training
was performed until the training accuracy reached adesired target, a..
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Extended DataFig. 1| Illustration of the online algorithm. a, Theillustrationof ~ denserinthe place far from the line connecting 2 ports. The white dashed
the geometry related to input portiand output portj. b, The spatial function f(r). ellipse shows therange R(r) < Ry = %/Ieﬁr, whichis used for simulations in
Theisovalue contours are the ellipses with 2 focal points at the point sources of Supplementary Video 2.

the original (red circle) and adjoint field (blue circle). The contours become
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Extended Data Fig. 2| Transmission measurements. a, Dual-pump optical
setup. The 1064 nm pump laser (green trace) is splitinto two paths for the
patterned pumping and the microlaser excitation. The signal around 1500 nm
(red trace) is collected by the infrared camera. VA: variable attenuator, OBJ:
objective lens, DM: dichroic mirror, PH: pinhole, FM: flip mirror, BPF: band pass
filter. b, Target pumping pattern and the pattern generated in experiment. The
light spot on the top of the experimental pattern is the zero-order beam from
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SLM, which does not affect the performance asiit is far away from the center.

¢, Spectrum collected ataninput port. d, Spectrum collected at one output port
with (red) and without (black) microring lasers excited. e-h Images with different
excitation channels. The red and white boxes mark the position of individual
microring laser and the output grating. The yellow box indicates the whole
imaginary-index-driven area.
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Extended Data Fig. 3| Flow chart of the in-situ training. The initial pattern can be an arbitrary connection between the inputs and the outputs. In each epoch, the
inputs and outputs related to all the samples in the dataset are measured. The pumping pattern is updated based on the measurements in the epoch until the accuracy
reaches the target.
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