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Abstract. The last few decades have seen several hardware-level fea-
tures to enhance security, but due to security, performance, and/or us-
ability issues these features have attracted steady criticism. One such fea-
ture is the Intel Memory Protection Extensions (MPX), an instruction
set architecture extension promising spatial memory safety at a lower
performance cost due to hardware-accelerated bounds checking. How-
ever, recent investigations into MPX have found that is neither as per-
formant, accurate, nor precise as software-based spatial memory safety.
Given its ubiquity, we argue that it provides an under-utilized hardware
resource that can be salvaged for security purposes. We propose Simplex,
an open-sourced library that re-purposes MPX registers as general pur-
pose registers. Using Simplex, we demonstrate securely storing sensitive
information directly on the hardware (e.g. encryption keys). We evalu-
ate for performance, and find that deployment is feasible in all but the
most performance-intensive code, with amortized performance overhead
as low as about 1%.
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1 Introduction

Intel Memory Protection Extensions (MPX) is an instruction set architecture
(ISA) extension for modern Intel processors providing spatial memory safety us-
ing compile-time intentions. MPX is comprised of three key components working
in harmony: architectural support through a set of two configuration, one status,
and four bounds registers; compile-time instrumentation; and run-time support
integrated with the operating system. This run-time manages enabling and dis-
abling CPU interpretation of MPX instructions through the configuration reg-
isters, sets up a pointer bounds lookup table for spilling more objects’ bounds
than four registers can hold, interprets error codes indicated in the status regis-
ter, and coordinates with the operating system to handle memory management
and error handling.

In practice, MPX is unusable in its intended form. It was intended to be
performant, inter-operable with un-instrumented legacy code, and configurable
for both debug and release environments without rewriting the source. However,
Oleksenko et al. and Serebryany independently showed that MPX does not per-
form as well as software- and language-based memory safety, demonstrating a
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50% amortized performance overhead with good compiler optimizations, and a
400% worst-case performance overhead [24,32]. The GNU C Compiler (GCC)
recently removed its libmpx library and eliminated the instrumentation code,
while Linux recently removed its support for kernel compilation due to a lack
of community interest in maintaining the code. In short, MPX never achieved
widespread adoption as a memory safety tool as envisioned by its designers, even
as its architectural resources remain on on widely-deployed processors. Yet even
a conservative estimate puts the number of MPX-supported deployments at 100s
of millions worldwide, thus MPX is a ubiquitous – yet unused – resource.

In this paper, we leverage MPX as a general storage primitive–specifically
for storage of security-sensitive data such as cryptographic keys. Our contribu-
tion is named Simplex, which is comprised of a library enabling introspection
and manipulation of the MPX context, a minimalist runtime that avoids the
overhead associated with the compiler-provided MPX runtime, a test suite ver-
ifying correctness, and evaluations demonstrating the practicality of Simplex.
Furthermore, our contribution allows manipulation of the MPX context even in
the complete absence of support for compiler instrumentation or an operating
system’s runtime.

The Simplex library provides all necessary runtime components and func-
tions for instrumentation, and the MPX context is part of the broader XSAVE
context, thus it is still saved and restored on context switches even though Linux
formally removed all MPX support as of kernel version 5.6. Only a microcode
update from Intel would break Simplex by removing the CPU’s ability to in-
terpret the MPX opcodes, however we do not believe that this is likely to occur
because there are no extant attacks against a victim which do not also link to
an operating system’s runtime (i.e. the attack proposed by Dekel and Kasif [7]).

Because the ability to prevent disclosure is a valuable resource in security, we
emphasize applications of Simplex for moving information out of main memory.
For example, Hargreaves and Chivers, and Kazim et. al showed two different
techniques for extracting encryption keys from main memory [13,16]. On the
one hand, hiding data in the kernel is often impractical as it incurs performance
overhead due to the expensive transitions between user and kernel modes. On
the other hand, reserving registers (e.g. [18,20,21,34])) is undesirable for two
reasons: (1) it removes a register from the allocation pool, which could impact
performance due to sub-optimal register allocation [2], and (2) it affects interop-
erability when handwritten assembly or binaries not compiled using the modified
compiler may accidentally access or modify the reserved register. Because Sim-
plex uses the MPX bounds registers, and because the bounds registers are not
used unless the application was also explicitly compiled with MPX support, we
can ensure that no other code will access or modify the hidden data or pointer
stored inside the bounds register.

Our evaluation shows that Simplex is practical, and confirms initial observa-
tions by Otterstad [27] and Oleksenko et al. [24] that the majority of MPX’s per-
formance cost comes from handling exceptions and interacting with the bounds
lookup table within the runtime. We avoid this overhead because Simplex avoids
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using the bounds lookup table by writing to the bounds registers directly using
the bndmk instruction and reading from the bounds registers using the bndmov

instruction to spill the contents into memory. We evaluated for performance
in two different ways. First, we created three custom benchmark fixtures: (1) a
microbenchmark testing the rate at which load and store operations can be com-
pleted to both the %r15 general purpose register and the %bnd0 MPX bounds
register, (2) a macro-benchmark simulating information unhiding by traversing
and combining two hidden half-buffers, and (3) implementations of a subset of
the string.h header. Second, we compiled sandboxed versions of two SPEC
CPU2017 benchmarks: 519.lbm, a particle-fluid simulation written in C, and
531.deepsjeng, a chess engine written in C++ to demonstrate practicality of
moving key data into the MPX bounds registers from global memory. Finally,
we evaluated for usability and correctness by modifying the OpenSSL Blowfish
cipher, then running the included integration and unit test suites.

The remainder of the paper is structured as follows: We discuss the history
of MPX and the reasons prohibiting its widespread adoption as a memory safety
tool in Section 2.1. Next, we examine the problems in information hiding con-
tinuing to plague security researchers in Section 2.2. An overview of our threat
model and necessary modifications to a compiler to support Simplex appears in
Section 3. We describe the implementation of the Simplex library, and answer
questions about MPX context behavior during common program behavior in-
cluding multithreading and system process lifecycles in Section 4. We present our
evaluation in Section 5, showing Simplex is both sound and practical. Finally,
we survey related work in Section 6 and conclude in Section 7.

2 Background

2.1 Intel MPX

In 2012, Intel introduced PointerChecker, which provides bounds checking
in the software layer through the Intel Composer XE development environment
for C and C++ [9]. Recognizing the potential for greatly improved performance
through hardware support, Intel moved much of the Pointer Checker func-
tionality into MPX, announced in 2013 [14] and subsequently debuted in the
Skylake architecture in 2015.

MPX is a combination of an instruction set extension, compiler and operat-
ing system support, and runtime library. It provides four new 128-bit bounds
registers (%BND0 through %BND3), each of which are split into an upper half and
lower half which have the purpose of holding an upper bound and lower bound
address. MPX also employs the %BNDCFGx register pair to hold user-space and
kernel-space configuration, and a %BNDSTATUS register to hold status informa-
tion in case of a bounds check failure. These additional registers are encompassed
in the larger Intel64 context, shown in Figure 1. Intel designed MPX with the
overarching goal of compatibility with un-instrumented code and unextended ar-
chitectures. Where an MPX-supported CPU encounters un-instrumented code,
such as a vendor-provided library, program execution continues with the cost
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Fig. 1: The MPX context as part of the larger Intel64 context. The blue pathway
shows how information is written to the bounds registers. The red pathway shows
how information is read from the bounds registers (including sanitizing the stack
afterwards).

that the CPU can no longer provide memory safety because the bounds checks
are not performed unless a bndcl, bndcu, or bndcn instruction is executed. Where
an MPX-unsupported CPU encounters instrumented code, or when MPX has
not been initialized by setting %bndcfg[0], the instructions are interpreted as
nop instructions instead of triggering unrecognized instruction exceptions.

Although MPX achieves a four- to five-fold speedup compared to Pointer
Checker, it suffers prohibitive penalties of worst-case 200% performance over-
head, 480% memory overhead, 5.4x more page faults [24], significant cache pres-
sure, and a 50% slowdown even when bounds checking instructions are idempo-
tent [32]. Furthermore, MPX cannot catch temporal memory safety issues [24],
suffers false positives from otherwise legal C idioms due to restrictions on struc-
ture memory layouts [24,32] and false negatives in response to undefined be-
haviors which cause inappropriate bounds loads [27], conflicts with other Intel
ISA extensions such as SGX and TSX [24], and it has no explicit support for
multithreading [24]. As a result, support for MPX bounds checking has virtually
ceased. Currently MPX’s only remaining compiler support is Intel’s own ICC
since version 15.0 and Microsoft’s Visual Studio 2015 Update 1.

2.2 Information Hiding

Information hiding techniques relying on probabilistic mechanisms can be de-
feated. Göktaş et al. demonstrated thread spraying [10] as a means of disclosing
the safe regions with a known structure (e.g. the safe stack region used in [18]).
By repeatedly creating objects that have both safe and regular allocations, then
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probing the space to find one of these hidden safe allocations, they can effectively
de-randomize the entire address space. They also discovered that information in
the thread local storage (TLS) and the thread control block (TCB) provide clues
to locating these stacks. Furthermore, Oikonomopoulos et al. introduced allo-
cation oracles which eliminate the need for probing [23]. The idea is that an
allocation oracle takes the size of an area to allocate as input, and if success-
ful returns the location allocated. From this information and applying a binary
search technique, an attacker can locate “holes” in the allocatable memory. If
the attacker has knowledge of how a defense’s sensitive data is laid out, then
these holes reveal where the sensitive data is not hidden. With enough queries to
the oracle, eventually the sensitive data can be located, and the process avoids
crashes or distinguishable behavior usable by a runtime detector. Likewise, Evans
et al. used timing side channels to read the contents of hidden metadata with
or without crashes (the former is faster, the latter is difficult to detect) [8]. Us-
ing this technique, they can de-randomize the location of libraries such as libc,
then use this to calculate the start of the safe region. Once complete, modify-
ing the contents of the safe region permits an attacker to violate at least one
implementation of Code Pointer Integrity (CPI).

State of the art defenses use registers to simulate segmentation as available
in the IA-32 architecture in order to provide deterministic rather than proba-
bilistic information hiding. One common point of these implementations is that
they would benefit from dedicated registers. For example, two of the implemen-
tations of CPI require a dedicated register for information hiding [18]. In the
reference implementation, %fs was reserved, however this may affect other le-
gitimate usages of the register. For example, operating systems sometimes use
this register to access TLS. Providing register storage via Simplex helps return
reserved general purpose registers to the compiler’s allocation list and restores
special purpose registers to their expected usage.

The dangers of storing secrets such as cryptographic keys in memory are
also well known. For example, CERT Secure Coding Standard MEM06-C warns
against writing sensitive data to disk, and Cold Boot Attacks [12,26] are a well
explored vector when the key is located in DRAM. As a result, these secrets are
often moved to un-swappable memory, such as registers or enclaves in order to
maintain secrecy.

3 Simplex

3.1 Threat Model

We assume a threat model similar to that offered by other work on informa-
tion hiding, namely Koning [17] and Yun [33]. Our system under threat has an
effective defense against code reuse, which in turn prevents an attacker from
arbitrarily calling the Simplex library functions, even though he or she may
have an arbitrary read or write primitive. Although Simplex might be used to
store a pointer to a hidden memory region, it does not itself provide isolation.
We presume that the programmer has a Trusted Code Base comprised of at
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least a privileged, trusted operating system and a trusted build toolchain used
to build the Simplex library. We concede that an attacker may be able to load
a Loadable Kernel Module (LKM) that enables or disables MPX at a privileged
operating system level (and in fact, we provide one such implementation within
the Simplex code base). However, this would imply a compromised kernel, which
is outside our scope. That said, we show in Section 3.4 that it is not sufficient for
an attacker to emplace values into the bounds registers or leak values from the
bounds registers in a way that is beneficial to the attacker. Finally, we assume
that Simplex is correctly implemented and is trusted by the programmer. We
release our code as open source, and offer a full test suite within that code base
as an assurance to that assumption.

3.2 Design Decisions

Previous works seeking to hide information from attackers have chosen one of
three options. 1) Storing information in the kernel or in pages that can only be
accessed in a privileged hardware mode (e.g. [15,11]) is secure as long as the
operating system is not compromised. However these schemes come with the
obligation of additional context switches for each query or update, hampering
performance. 2) A more performant choice is storing information in a hidden
region within the program’s address space (e.g. [6,18,21]). Yet it relies on ei-
ther probabilistic hiding measures which can be defeated if the attacker has
knowledge of the type of information being hidden, or if the attacker is able to
tolerate crashes and restarts while searching. 3) Alternatively, it is possible to
reserve registers from the compiler’s allocation pool and use these registers ex-
clusively for storing sensitive data. Once the registers are selected, the defender
can formally verify that no other code accesses these registers, guaranteeing se-
curity. Nonetheless, there is still the concern that available registers are limited
and may conflict with other defenses or dynamically linked code that use the
reserved register.

3.3 Simplex-Enabled Compilation

In our evaluations, we manually replaced global pointer objects and their refer-
ence/dereference statements with the necessary code to enable bounds register
usage. However, we do not feel this is scalable. Consider the modifications made
to the SPEC CPU2017 benchmarks: 519.lbm has just 1 KLOC and required 22
modifications, 531.deepsjeng has only 10 KLOC and required 173 modifica-
tions – these are very small code bases compared to 502.gcc (1.3 MLOC) and
526.blender (1.6 MLOC), the largest C/C++ benchmarks in CPU2017. Mak-
ing these modifications are expensive in terms of developer effort and time, re-
quiring both discovering and understanding the global variables’ utilization. For
example, modifying the two SPEC CPU2017 benchmarks took about two days
of development time each. If the number and complexity of changes necessary
were to scale, implementing the larger benchmarks by hand becomes infeasible.
Therefore, we have designed but not yet implemented a system using Clang’s
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annotation system to mark variables as candidates for placement in a bounds
register. This reduces the developer’s workload to simply recognizing which vari-
ables should go into a bounds register, applying annotations to the declarations,
then compiling the source code with the options necessary to enable Simplex.

First, the developer applies the necessary annotation at the variable’s decla-
ration. The compiler recognizes the annotation, and maps that variable to one
of the bounds registers, depending on its size or throws a compilation error if
no more register space is available. Next, the compiler pass replaces references
to these variables with appropriate Simplex function calls. If the variable is an
lvalue, it is replaced with a call to one of the mutator functions; if it is a rvalue,
it is replaced with a call to one of the accessor functions.

Developer annotation vs Automated discovery: On the one hand, devel-
oper annotation has the benefit of precisely capturing what is of security rele-
vance and importance as per software design, but on the other hand, developers
are prone to make mistakes. Therefore, we recommend three modes of operation
that make a trade off between security and performance.
Whitelisting: In this mode, we allow a developer to whitelist security-sensitive
data that is stored in the MPX bounds registers by the compiler. This is the
most conservative and performance-friendly, yet error-prone option.
Automatic inference: In this mode, the compiler employs a heuristic approach to
automatically profile and identify security sensitive information and accordingly
provisions MPX bounds registers to manage such sensitive data. One option is
to identify security-sensitive documented API functions and perform backward
slicing to identify data of interest. This is the most aggressive option that favors
security over performance.
Blacklisting: Finally, as an intermediate option, blacklisting allows a developer
to define data items that should not be stored in the MPX registers. While
blacklisting is just as prone to human error as is whitelisting, it is likely to have
less adverse effects on security as compared to mistakes in whitelisting.

3.4 Context Behavior

Motivated by the desire to provide confidentiality between processes and/or
threads – even when there is a relationship between the processes or threads
– we explored the behavior of the MPX context. At process creation, the child
inherits an identical MPX context to that of the parent because the MPX context
is itself part of the larger CPU context (see Figure 1).

Because Simplex provides methods to initialize and finalize its minimal MPX
context, the reader may question what would happen if a programmer or attacker
called these methods repeatedly (whether by accident or malice). We found that
each time the MPX context is initialized, the bounds registers’ lower bounds are
set to the system maximum unsigned value, and the upper bounds are set to 0.
In MPX’s design use case, this results in a guaranteed passed bounds check until
the bounds register is set to some allocated object’s bounds. In the Simplex
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use case, repeated initialization destroys the values inside the bounds registers
by resetting them to the conservative bounds values. Although this may allow
an attack against availability, it does not allow an attack seeking disclosure.
Furthermore, it is no more dangerous for code-reuse attacks than the numerous
xor %reg %reg instructions which are used by the compiler to place a zero value
in a register.

4 Implementation

4.1 Components of Simplex

Unfortunately, there is no means of directly accessing the MPX bounds registers
via a mov instruction. ICC does offer intrinsics, although these are only available
if a MPX runtime is available and providing bounds checking [29]. This means it
is not possible to use these intrinsics for accessing the bounds registers without
also suffering the continual risk of a bounds check clobbering the bounds regis-
ters. Therefore, within Simplex we provide a system readiness check, a minimal
runtime to enable and disable MPX execution, accessor and mutator functions,
and a test suite to verify proper operation of the library.

System Readiness Check Although it is possible for a user to test whether their
system can support MPX from the command line using commands such as lscpu
and sysctl, a program must be able to verify readiness itself and abort further
execution if it cannot prove its readiness. This is because CPUs that do not
support MPX will silently interpret these MPX instructions as NOP. We verify
that %CPUID[14] is set (indicating that the CPU supports the MPX extension),
and that %XCR0[3:4] are set (indicating that the CPU should include the MPX
registers as part of a context save and restore) during initialization.

Enabling and Disabling Functions We also provide a way of enabling and dis-
abling MPX operations within both kernel mode and user mode applications.
This can be done by setting flags on the %BNDCFGS and %BNDCFGU registers respec-
tively. %BNDCFGx[0] enables interpretation of the MPX instruction extension,
and %BNDCFGx[1] enables bounds register preservation when legacy instructions
are encountered. Unlike the GCC run-time, we do not set %BNDCFGx[63:12]

with the base address of the bounds table. This minimizes startup overhead,
and also provides a small measure of security since accidentally attempting to
access the bounds table will result in a segmentation fault rather than disclosing
the contents of a bounds register.

Accessor and Mutator Functions For each of the four bounds registers, a com-
mon accessor and mutator wrapper function provides a handle to the bounds
register. There are four varieties of each wrapper function: lower-half 64 bits only,
upper-half 64 bits only, all 128 bits, and a “quick” lower-half only which does
not attempt to save the upper-half nor clean the stack of any spilled values. The
applicable bounds register is selected through an enumerator with four values.
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When writing to the bounds registers, the value to be written is marshaled from
the function arguments into a bndmk instruction using sib-addressing. When ac-
cessing, the bounds register is atomically spilled onto the stack above the stack
pointer (i.e. at a lower address than the top of the stack) then moved into a
register because there is no bounds register-to-general purpose register instruc-
tion. This is accomplished using a bndmov instruction. As previously mentioned,
all accessor functions except the quick variants will sanitize this value on the
stack in case the value stored within the bounds registers is sensitive. We have
verified that our extended assembly statements to perform the sanitation are not
optimized by either GCC or Clang through manual inspection of disassembled
code. See Figure 1 for more information on data flows to and from the MPX
context.

4.2 Security Impact of the Simplex Implementation

Canella et al. recently reported a variety of Meltdown transient execution at-
tacks, one of which is the Meltdown-BR (Bounds Check Bypass) attack [4,19].
Dekel also describes a post-exploitation technique called BoundHook, which al-
lows an attacker to cause a bounds check exception in a user-mode context, and
then catch the exception to gain control over the thread execution [7]. With both
of these vulnerabilities, Simplex does not increase a program’s attack surface
because both require a #BR exception to be raised in order to initiate exploitation.
Since Simplex does not use the bndcl, bndcu, or bndcn instructions, no such
exception will be raised by our code. Additionally, because BoundHook requires
that the attacker has also already compromised machine administrator rights,
any attacker who can successfully execute a BoundHook intrusion can simply
observe and modify the MPX context without the need to further compromise
Simplex.

Considerations for Multi-Threaded Programs Because Simplex can be used
in multi-threaded applications, we must address the dangers that an attacker-
controlled thread could victimize a thread using Simplex to interact with the
MPX bounds registers during a brief period after spilling to the stack. We pro-
vide one mitigation in that Simplex will zero out the memory used by the
bndmov spill instruction immediately after copying to the destination register in
all accessor functions except for qgetbndl which is performance- rather than
security-optimized. We speculated an attacker-controlled victim thread or pro-
cess with a pointer to the bottom of the stack could read this memory in a
race condition assisted by a scheduler interrupt sometime between the spill from
the bounds register to the time the stack memory is sanitized. Therefore we in-
strumented our library using a PAPI API [1] software defined event to measure
the frequency of context switches within the Simplex accessor functions and
did not detect that such a sequence of events occurred. We hypothesize that
this is because the accessor functions do not require any system calls and are
very short-lived, and thus unlikely to trigger the scheduler’s watchdog timer.
Furthermore, we note that threads cannot directly access other threads’ stacks,
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therefore the risk is limited to an attacker causing a process or thread to disclose
its own bounds register values into shared memory during the window. We also
note that Simplex spills outside the red zone, and therefore the compiler should
not generate instructions that otherwise access this region without attacker in-
put, and therefore such gadgets in the intended instruction stream are extremely
rare.

5 Evaluation

We conducted our evaluation on an 8-core Intel Core i7-7700K CPU at 4.20 GHz
with 62.8 GiB RAM running Ubuntu 20.04 LTS and the Linux 5.4 kernel. The
system under evaluation conforms to POSIX.1-2017, and uses GNU libc and
POSIX thread implementation version 2.27.

5.1 Benchmarks

We authored two benchmark fixtures to evaluate whether Simplex attains per-
formance that is comparable to using general purpose registers.

Load-Store Benchmark First, we authored a micro-benchmark that tests load
and store performance when Simplex employs the %bnd0 MPX bounds register
compared to handwritten assembly using general purpose registers using %r15,
segmentation registers using %gs:0, and the MMX and SSE instruction set ex-
tension registers using %mm0 and %xmm1 respectively, see Figure 2. We find that
the mean of writing to the MPX bounds registers is comparable to writing to
the general purpose registers (1.00x), segmentation registers (1.01x), and MMX
registers (0.98x). This is because all four of these operations have a fast, dedi-
cated assembly instruction for writing to the register - either mov or bndmk. The
fastest assembly instruction option for writing to the SSE registers is movaps,
which moves four aligned, packed, single-precision floating point values to the
register. However, it incurs significant overhead compared to the mov instruc-
tion because of microarchitectural limitations and thus the rate of MPX bounds
register writes is 13.90x faster than these writes.

Loading from the MPX bounds registers is a different story. Additional over-
head results because the MPX extension does not contain an instruction to move
from a bounds register directly to another register, whether a bounds register
or otherwise; bndmov only provides a bounds register to memory spill operation.
Therefore load operations from a bounds register require that the data is first
spilled to the quadword above the stack pointer through a bndmov instruction,
then recovered through two additional mov instructions. General purpose regis-
ter, segmentation register and MMX register loads can all be accomplished by
a single mov instruction and thus MPX bounds register loads are only 0.74x,
0.32x, and 0.73x as fast, respectively. Segmentation register loads are particu-
larly fast when repeatedly executed because of cache effects. Conversely, MPX
bounds register loads are 1.69x faster than SSE register loads because these loads
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also must spill to stack, and because of the aforementioned micro-architectural
limitations of the apsmov instruction.

Our findings also confirm the micro-architectural analysis of Oleksenko et
al. [24] which found that it was not necessarily the MPX bounds operations
that were particularly expensive, but rather the management of the bounds
table through a two-level table lookup – particularly the bndstx and bndldx

instructions. Simplex uses neither of these instructions and thus avoids their
associated performance overhead.

General
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Fig. 2: Rate of load and store operations. Box and whisker plot shows median,
minimum/maximum, and first/third quartile operation rates. We use %r15 for
General, %gs:0 for Segmentation, %mm0 for MMX, %xmm1 for SSE and %bnd0 for
MPX. The test consisted of 104 runs, with 106 iterations per run. We report the
steady-state rate of operations accomplished per second.

String Operations We also evaluated the block memory operations from the
string.h header using reference implementations of libgcc. We excluded the
string-specific functions so that we could randomly fill buffers from test run-to-
run without the concern of whether the buffer formed a single valid C string, and
because our choice of functions does not include trivial functions that do not op-
erate on buffers (e.g. strerror). We then refactored these functions for Simplex
to replace any passed argument that contains the address of a buffer with calls to
instead load it from the corresponding bounds register. These benchmarks show
that the performance cost of Simplex is easily amortized, as we found that the
maximum overhead was only 5.86%, and a 0.69% overall geometric mean. In the
specific case of these function implementations, benchmarks that do not short-
circuit (i.e. memcpy, memmove and memset) are able to amortize the cost fully
compared to functions that do short-circuit (i.e. memcmp, memchr). We do not
claim that there is a performance benefit to Simplex, simply that if there is a
performance cost, it is small enough to be unnoticeable to the user and that it is
offset by the utility of the additional registers provided by Simplex. We report
specific data for each benchmark in Figure 3.
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Fig. 3: String.h benchmarks’ performance overhead when modified to pass
pointer arguments in bounds registers. A negative percentage indicates the Sim-
plex-modified code ran in less time than the reference implementation.

5.2 Modifications to Existing Codebases

SPEC CPU2017 We hand-modified two SPEC CPU2017 benchmarks,
519.lbm which simulates fluid flow through lattices, and 531.deepsjeng which
plays chess. In both cases, we selected the two global pointers to data struc-
tures that had the highest number of uses in order to fully stress the Simplex
library, showing an example of these modifications in Figure 4. Although we
selected global objects, it should be emphasized that Simplex is not limited to
just globals; heap or local objects could also be placed in the bounds registers.
Using the SPEC benchmarks proves both correctness – the output is verified
against a known correct output – and demonstrates performance cost of using
Simplex. We measured the performance rate ratio between runs with an un-
modified benchmark and one where frequently used pointers to global variables
were placed into a bounds register. This performance ratio was between 1.000
and 1.006 for 519.lbm, and 0.975 and 0.985 for 531.deepsjeng (see Table 1).
Higher performance rate ratios indicate faster execution, but differ from per-
formance overhead measurements since performance rate takes into account the
number of threaded copies running simultaneously.

OpenSSL We then modified the OpenSSL Blowfish symmetric key cipher to
demonstrate how Simplex might be used in a security application. In our mod-
ified Blowfish cipher, the address of the cipher’s global key schedule structure
is stored in a bounds register. Therefore wherever an encryption or decryption
function would ordinarily receive a pointer to the key schedule as a function
parameter, we instead pass a null value as the parameter and thus de-reference
the bounds register at each usage of the parameter. Although the OpenSSL test
suite provides test run time in its output, the Blowfish correctness test is very
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#include <sys/stat.h>
+#include "simplex.h"

-static LBM_GridPtr srcGrid , dstGrid;

void MAIN_initialize(const MAIN_Param* param) {
+ process_specific_init ();

- LBM_allocateGrid (( double **) &srcGrid );
- LBM_allocateGrid (( double **) &dstGrid );
+ double* ptr;
+ LBM_allocateGrid (&ptr);
+ qsetbndl(BND0 ,( uint64_t) ptr);
+ ptr = 0;
+ LBM_allocateGrid (&ptr);
+ qsetbndl(BND1 ,( uint64_t) ptr);
+ ptr = 0;

- LBM_initializeGrid (* srcGrid );
- LBM_initializeGrid (* dstGrid );
+ LBM_initializeGrid (*(( LBM_GridPtr)qgetbndl(BND0 )));
+ LBM_initializeGrid (*(( LBM_GridPtr)qgetbndl(BND1 )));
}
void MAIN_finalize(const MAIN_Param* param) {
- LBM_freeGrid (( double **) &srcGrid );
- LBM_freeGrid (( double **) &dstGrid );
+ double* p0 = (double *) qgetbndl(BND0);
+ double* p1 = (double *) qgetbndl(BND1);
+ LBM_freeGrid (&p0);
+ p0 = 0;
+ LBM_freeGrid (&p1);
+ p1 = 0;

+ process_specific_finish ();
}

Fig. 4: An example of modifications needed to store global pointers in bounds
registers from the lbm benchmark. In this example, the global pointers srcGrid
and dstGrid are placed in BND0 and BND1 respectively.

short in duration. As a result, our observed runtime overheads are smaller than
the reported measurement resolution and not particularly useful as a metric of
performance (see Table 2). We conclude that register repurposing presents min-
imal performance cost for cryptographic applications. We also emphasize that
although we placed a pointer to a key schedule structure in the bounds registers
for this evaluation, this structure is stored on the heap in the unmodified Blow-
fish cipher and therefore we have not introduced attack surface in our modified
cipher. Additionally, some other OpenSSL ciphers’ keys are less than 512 bits
in size and would fit entirely within the bounds registers. The MPX bounds
registers can hold any value, not just pointer values.

6 Related Work

Existing Evaluations Explorations of Intel MPX generally find MPX to be flawed
as a memory safety tool, and thus inspired our investigation as to whether MPX
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Table 1: Simplex SPEC CPU2017 evaluation data. Run time refers to how long
the benchmark took to complete. Base Rate refers to the raw performance of
this benchmark relative to the SPEC CPU2017 reference machine and thus pro-
vides insight into the underlying system under test. Ratio refers to the ratio of
the modified benchmark’s multi-threaded performance to the unmodified bench-
mark’s multi-threaded performance. Ratio < 1 implies the modified benchmark
ran slower than the unmodified benchmark.

Variables in Bounds Register Copies Run Time Base Rate Ratio
519.lbm_r

None 1 202 5.21
None 4 605 6.96
srcGrid !bnd0 1 201 5.24 1.006
srcGrid !bnd0 4 605 6.96 1.000
srcGrid !bnd0, dstGrid !bnd1 1 202 5.23 1.004
srcGrid !bnd0, dstGrid !bnd1 4 606 6.96 1.000

531.deepsjeng_r
None 1 283 4.04
None 4 290 15.8
state !bnd0, gamestate !bnd1 1 288 3.98 0.985
state !bnd0, gamestate !bnd1 4 297 15.4 0.975

Table 2: Simplex OpenSSL evaluation data. Measurements were obtained using
time(1), and presented columns reflect its output.

Variables in Bounds Register usr sys cusr csys cpu

05-test_bf.t

None 0.02 0.00 0.03 0.00 0.05
BF_KEY *schedule →bnd0 0.01 0.00 0.03 0.00 0.04

Overhead -50.0% 0.0% 0.0% 0.0% -20.0%

could be repurposed. Serebryany unfavorably evaluated the performance of In-
tel MPX versus the Address Sanitizer memory safety tool [31,32]. Notably, he
discovered not only up to a 2.5x performance slowdown and 4.0x memory over-
head on some benchmarks, but that the MPX instructions still exhibit a 50%
slowdown even when they should be ignored on a system which does not have
MPX support or has disabled it. He also identifies three categories of false pos-
itives that Address Sanitizer does not have: atomic pointers, un-instrumented
bounds changes, and those caused by compiler optimizations after instrumen-
tation. Otterstad examined the effectiveness of early implementations of MPX,
identifying eight new categories of false positives and false negatives beyond
those explored by Serebryany [27]. Furthermore, he demonstrates at least one
toy program which can be victimized by ROP attacks because of these false posi-
tives and false negatives. Oleksenko et al. performed a study of the performance,
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security guarantees, and usability issues of MPX after it became available in
production hardware [24]. Furthermore, their empirical study was backed by an
exhaustive investigation of how MPX is actually implemented at the hardware,
operating system and software levels, supporting their experimental findings.

Other Uses of Intel MPX We are not the only members of the community to
propose repurposing MPX. Code Pointer Integrity (CPI) maintains a safe re-
gion to protect function pointers, return addresses and other pointers to code
called a “safe stack” [18]. The authors propose one implementation of CPI us-
ing MPX to store the safe region’s metadata, gaining performance benefits by
moving some of the implementation into MPX’s hardware accelerated checks.
Burow further investigates using MPX to isolate CPI’s shadow stacks and pro-
vide a highly-efficient implementation [3]. We note that Simplex performs much
of the management functionality they described, and could be used in conjunc-
tion with their defenses. Opaque Control-Flow Integrity (O-CFI) combines fine-
grained code layout randomization with coarse-grained CFI in order to defeat
sophisticated attacks seeking in-memory layout information to launch code-reuse
attacks [21]. O-CFI uses MPX instructions to perform branch instrumentation,
where legal branch targets are “chunked” together into a minimal address range,
similar to a buffer. Oleksenko proposes a system combining MPX for hardware
fault detection with Intel Transactional Synchronization Extensions (TSX) for
fault rollback [25]. The underlying principle is that if a pointer’s value is cor-
rupted by a fault, then it will likely point to a dramatically different address
outside the bounds of the referent object. MemSentry is a deterministic memory
isolation framework addressing the threats of allocation oracles, thread spraying,
crash-resistant memory disclosure primitives, and various side channels [17]. The
authors use MPX and Intel Memory Protection Keys (MPK) to describe a more
efficient method of intra-process isolation, similar to that provided by the kernel
through mprotect and Software Fault Isolation (SFI). CFIXX is a C++ defense
for virtual table pointers providing Object Type Integrity (OTI) [3]. CFIXX pro-
tects against corruption attacks against OTI by protecting the memory region
containing the OTI metadata with selective MPX instrumentation. By reimagin-
ing the layout of the address space, they are able to halve the number of bound
checks compared to a full memory safety solution provided by MPX. BOGO
extends the MPX bounds tables to not only provide spatial memory safety, but
also temporal memory safety [35]. Since MPX already initializes bounds table
entries at allocation, BOGO additionally invalidates these entries upon deallo-
cation and thus gains temporal memory safety. Since doing this operation at
every deallocation can be expensive, the authors also introduce more efficient
techniques for managing the deallocation metadata updates and for scanning
the bounds table. DataShield provides three methods for coarse-grained bounds
checks for non-sensitive pointer dereferences, one of which utilizes MPX to avoid
the need to information hide the non-sensitive data regions [5]. Up to four of
these regions’ addresses are initialized in the MPX bounds register at program
startup, with each pointer dereference in order to assure that the pointer does
not escape the non-sensitive region. The Linux kernel can be protected against
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Just-in-Time code reuse attacks by kRˆX, which hardens benign read operations
that an attacker might reuse to disclose code to find useful JIT gadgets [28]. In-
tel MPX is used in one implementation of kRˆX to accelerate the execute-only
range checks to reduce the performance overhead. The Spons & Shields Frame-
work (SSF) for Intel SGX trusted execution environments uses the MPX bounds
check instructions to verify memory accesses, however it does so outside of the
traditional MPX runtime [30].
Repurposing Hardware Registers The idea of repurposing hardware registers as
with Simplex is not unique. TRESOR is a patch that implements the AES
encryption algorithm for the Linux kernel, and also provides additional security
by utilizing the Intel AES-NI instruction set extension plus keeping encryption
keys in the x86 debug registers instead of in RAM [22]. Ginseng keeps secrets
in an encrypted secure stack until they are needed, then moves the secret into
dedicated registers [33]. This has the effect of reducing the amount of sensitive
data kept in the ARM TrustZone Trusted Execution Environment (TEE) and
thus reduces the TEE’s attack surface and does not require placing the operating
system within the trusted computing base.

7 Conclusion

Simplex is an open-source library repurposing the Intel MPX instruction set
extension. We present evidence that suggests that MPX is ubiquitous, and show
that MPX bounds registers can be repurposed as general purpose storage. In
particular, they can be used to hide security sensitive data. We demonstrate
that although the MPX ISA lacks a dedicated instruction to move data directly
to and from the bounds registers, it is still possible to do so through the available
spill and fill instructions, bndmk and bndmov. Furthermore, we show that such
operations are not overly-burdensome, especially once the operations are amor-
tized across the entire execution of a program. We do this through a collection
of refactored programs and a partial implementation of the C standard library.
Finally, we make Simplex available to the community as open-source software
at https://github.com/bingseclab/simplex.
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