Program Obfuscation via ABI Debiasing

David Demicco
Computer Science
Binghamton University
United States
ddemiccl@binghamton.edu

ABSTRACT

The Itanium ABI is the most popular C++ ABI that defines data
structures essential to implement underlying object-oriented con-
cepts in C++. Specifically, name mangling rules, object and VTable
layouts, alignment, etc. are all mandated by the ABI. Adherence
to the ABI comes with undesirable side effects. While it allows
interoperability, past research efforts have shown that it provides
robust inference points that an attacker can leverage to reveal sensi-
tive design information through binary reverse engineering. In this
work, we aim to reduce the ability of an attacker to successfully
reverse engineer a binary. We do this via removal of what we call
ABI Bias, i.e., the reverse engineering bias that manifests due to a
compiler’s adherence to the ABL

Specifically, we identify two types of ABI biases that are cen-
tral to past reverse engineering works on C++ binaries: VTable
ordering bias and Function Pointer bias. We present compiler-based
techniques that can correctly and efficiently debias a given binary
from the aforementioned biases. We evaluate our proof-of-concept
implementation on a corpus of real world programs for binary size,
correctness and performance. We report an average increase of
1.42% in binary size compared to the baseline, very low performance
overhead and lastly, correct execution of evaluation programs in
comparison to the baseline. Finally, we demonstrate efficacy of our
approach by hindering DeClassifier, a state-of-the-art C++ reverse
engineering framework.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation.

KEYWORDS

C++, security, reverse engineering

ACM Reference Format:

David Demicco, Rukayat Erinfolami, and Aravind Prakash. 2021. Program
Obfuscation via ABI Debiasing. In Annual Computer Security Applications
Conference (ACSAC ’21), December 6-10, 2021, Virtual Event, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3485832.3488017

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC 21, December 06—10, 2021, Online, ACM, New York, NY USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8579-4/21/12...$15.00
https://doi.org/10.1145/3485832.3488017

Rukayat Erinfolami
Computer Science
Binghamton University
United States
rerinfol@binghamton.edu

146

Aravind Prakash
Computer Science
Binghamton University
United States
aprakash@binghamton.edu

1 INTRODUCTION

Interfaces, particularly ABIs, are central to software re-usability
and interoperability. As such, multiple factors play a role during
ABI design. Ease and feasibility of implementation, performance,
and compliance to existing standards are key considerations and
frequently debated topics during ABI design [13].

Once standardized, ABIs must withstand the test of time and
offer very little room (if any) for modification. While popular ABIs
(e.g., Itanium ABI) have been successful in meeting the functional
and performance goals of modern software, their inability to adapt
to evolving security threats has been a problem. For instance, dis-
cussions in the mailing list archives for the cxx-abi discussion
group [13] typically originate with a sample implementation and
lack discussion on security implications including reversibility of bi-
naries.

A binary’s adherence to an ABI provides robust security-
sensitive inference points for reverse engineers. There are two types
of information that are of interest to a reverse engineer. On the one
hand, there is the valuable program logic itself. There has been a
substantial amount of work in the field of decompilation that aims
at program logic recovery. However, there has also been concerted
effort at obfuscation that aims to deter program logic recovery [17].
On the other hand, there is the high-level design information (e.g.,
class inheritance) that is revealed by the very virtue of adherence
to an ABL In order to ensure interoperability, there can be no com-
promise on ABI adherance. In fact, recent efforts [7, 23, 28] have
shown that ABI adherence can indeed reveal sensitive high-level
semantics. For example, until recently, Itanium ABI [1] mandated
that secondary VTables of a complete-object VTable immediately
follow the primary VTable. While such a mandate may seem benign
and inconsequential, reverse engineers [7, 23] rely on such a strict
ordering of secondary VTables to recover valuable semantics (e.g.,
class inheritance graph) from the binary.

In fairness to the committee on Itanium ABI standard, the strict
ordering requirement has been recently relaxed (see [2] §2.5.2, last
para), however the relaxation is primarily motivated by performance
and ease of implementation, and not security and/or reversibility.
Furthermore, the LLVM and GCC compilers (two most popular
compilers that subscribe to the Itanium ABI) continue to emit VTa-
bles that conform to earlier versions of the ABI—i.e., secondary
VTables are emitted immediately after the primary VTable of a
complete-object VTable.

In this paper, we address the dichotomy that exists between a con-
stantly changing threat model and fairly stagnant ABIs. Specifically,
we define ABI-bias that aids in reverse engineering and present
compiler techniques that can eliminate bias—without compromising
the conformance of the binary to the ABL. We look at the C++ Itanium
ABI due to its wide commercial use and the attention it gets from

https://doi.org/10.1145/3485832.3488017
https://doi.org/10.1145/3485832.3488017

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

both attackers [4, 9, 25] and defenders [3, 14, 15, 19, 20, 22, 26, 27]
alike.

ABI Bias: We present the notion of ABI bias, a pro-reverse-
engineering bias that manifests due to a program’s conformance to
an ABI standard. Because these biases are inherent to ABI confor-
mance, they are impervious to obfuscation. While obfuscators can
hide program logic, conformance to ABI specification must be re-
tained in order to preserve interoperability. We focus on two specific
biases that are central to past reverse-engineering efforts on C++
binaries. First, there is the VTable ordering bias or VTBias that man-
ifests due to strong guarantees provided by the ABI regarding or-
dering of VTables of polymorphic classes. Past efforts [6, 21, 23, 28]
have relied on such an ordering to identify complete-object VTables
that uniquely represent polymorphic classes in the binary. Second,
there is the Function Pointer bias or FPBias that is a result of the
number of function pointers in a VTable. The number of function
pointers and their ordering reveal valuable inheritance information
in the binary. Past efforts [10, 11] have relied on this primitive to es-
tablish directionality of polymorphic inheritance graphs recovered
from C++ binaries.

We also present the notion of Lingering Bias. The idea that even
if an ABI is changed, programs that where created with the older
ABI can still leave important information available to reverse engi-
neers. This can happen when a change in the ABI[1] is backwards-
compatible.

We present principled compiler-based techniques to debias the
Itanium ABI By focusing on insensitive aspects of the ABI that
do not impact program interoperability or execution (more in Sec-
tion 3), our solution eliminates bias and poses significant hurdles
to reverse engineering while preserving backward compatibility.
Particularly, we implement debiasing solutions against VT bias and
FP bias on the LLVM compiler while incurring near-zero runtime
overhead.

We applied our solution to a wide range of real world applications
with varying complexities (ranging from 944 to 14635 polymorphic
classes). Our results show that the file size increase for eliminating
VT bias is less than 0.1% in most cases. The file size overhead
introduced by elimination of FP bias varies depending on other
optimizations that are in place, however it typically stays < 2%. We
found the median runtime overhead while debiasing FP bias to be <
1%. We also tested our solution against DeClassifier [7], a modern
reverse engineering tool, demonstrating that it breaks the VTable
groupings it relies on leading to incorrect groupings and results.
Our contributions can be summarized as follows:

(1) We present the notion of ABI bias, a bias that aids in reverse
engineering by very virtue of conformance to an ABL. We
identify 2 distinct biases: VTable bias and Function-Pointer
bias that arise from the ABI requirement for how VTables
and functions within them must be laid out.

(2) We present an implementation based on the LLVM com-
piler that eliminates VT and FP biases while ensuring that
backward compatibility is not lost.

(3) We evaluate our solution against a corpus of 7 real-world
programs (including 2 C++ programs from SPEC 2017 suite)
and demonstrate correctness, interoperability and low per-
formance overhead.

147

David Demicco, Rukayat Erinfolami, and Aravind Prakash

(4) We demonstrate the efficacy of our solution against DeClas-
sifier, a modern reverse engineering tool.

The rest of the document is organized as follows. The Section 2
provides technical background necessary to understand the remain-
der of the paper, Section 3 presents an overview of our approach,
Section 4 and 5 present the technical details of our solution. Sec-
tions 6 and 7 present the evaluation and security analysis of our
work respectively. We present the related work in Section 8 and
finally conclude in Section 9.

2 BACKGROUND
2.1 Polymorphism in C++

Polymorphism is one of the features of C++ that allows functions to
behave differently depending on the runtime type of the object they
are invoked on. This capability can be implemented when there is
inheritance, that is one or more classes derived from one or more
other classes. A function in the base class can be overridden and
implemented differently in the derived class. Such functions must be
defined as virtual functions. A class that defines virtual function(s)
is referred to as a polymorphic class. The Itanium ABI [2] defines a
per-polymorphic-class structure called a VTable, which contains a
list of pointers to all virtual functions of that polymorphic class in
the order in which they are laid out in the source code. Function
pointers are used at runtime to dispatch virtual functions. Since
C++ permits a class to inherit directly from multiple classes (called
multiple inheritance), a class can comprise of more than one VTable
(or sub-VTables). The collection of all VTables belonging to a class
is referred to as a complete-object VTable. A class shares its primary
VTable with its primary base class and has secondary VTable(s)
corresponding to its secondary base(s).

An object of a class will contain multiple sub-objects if it inherits
from multiple bases. Like VTables, the derived class sub-object
is shared with the primary base and every secondary base has a
corresponding sub-object. The constructor of a class writes the
primary VTable pointer (vptr) into the primary sub-object and does
the same for the other sub-objects. Such patterns occur frequently
enough in practice to be a concern [8].

2.2 VTable Layout

A VTable contains some mandatory fields namely: OTT (offset-
to-top), RTTI (runtime type information) and one or more virtual
function pointers. The OTT specifies the offset that must be added
to the address of a sub-object to obtain the address of the com-
plete (derived) object. The OTT is zero for primary VTables and a
negative value for secondary VTables. The RTTI points to a struc-
ture that contains the class hierarchy information of a given class.
Specifically, it contains pointers to the RTTI of the base classes in
the order in which they occur in the class hierarchy. It is useful for
performing dynamic_cast to verify at runtime if the type an object
is to be cast is valid. RTTIs are generated only for polymorphic
classes. If RT Tl is disabled (using -fno-rtti flag on g++), the RTTI
field of the VTable contains value zero. Lastly the virtual function
pointer fields point to virtual functions.

The primary VTable of a class contains the pointers to all the
functions defined by the primary base class (with overridden func-
tions replaced with pointers to the overriding functions), followed

ABI Debiasing

by the functions defined by the derived class including overridden
functions of secondary base(s). A secondary VTable contains point-
ers to functions defined in the secondary base, with overridden
functions replaced with “thunks” that perform necessary adjust-
ment to the this pointer before transferring control to the overriding
function in the primary VTable.

2.3 Object Memory Layout and VTable Pointers

The first item in a newly constructed polymorphic object is a VTable
pointer. The pointer to the object is referred to as the this pointer,
and it points to the VTable that is associated with this class in
memory, giving it access to the function pointers that are members
of the class. The VTable pointer is then followed by any other data
members the object contains, initialized (or not) by the constructor
during construction.

In the case of inheritance however, the constructor has a bit more
to do, and the layout in memory can get more complex. Consider
the simple case seen in Figure 1. The object consists of a pointer
to C’s VTable, followed by the data members of A, then a second
pointer to the VTable of B::C, followed by B’s data members, and
finally c’s data members. The ordering and layout of the VTable is
specified by the ABL

class A {

int a;

virtual void F(){};
k
class B: public A{

intb;

virtual void G(){}
k
class C: publicA,B {

intc;

virtual void H(){}
k

Object € VTable of C
+0 vptr(C, A-in-C) 0 0
+8 &RTTI(C)
8 a 1 +16 &A::F
+16 vptr(B-in-C) 2 G
+32 -16
w24 b +40 GRTTI(B)
+48 &B::G
+28 ¢

Figure 1: Simple VTable layout in memory, showing VTable
Pointers.

2.4 ABI-Based Semantics Inference

The ABT’s specification on the implementation of certain aspects
of the C++ language provides robust means of inferring semantics
such as class hierarchy from the binary. Some existing hierarchy
recovery tools use analysis techniques that are based on such spec-
ifications.

VTable Scanning and Grouping. Almost all reverse engineering
efforts start by excavating VTables from binaries through a scan-
ning process, also known as VTable scanning (see Table 1, column
VTSc). First, distinct VTable signatures are derived from the ABI

148

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

Table 1: Binary level defenses and their adopted techniques.
VTSc: VTable scanning, VITG: VTable grouping, OA: Over-
write analysis, VTS: VTable size, CC: Constructor call.

Techniques adopted

Defense VTSc | VIG | OA | VIS | CC
DeClassifier [7] v v v v v
vfGuard [23] v v

Marx [21] v v

ROCK [18] v v v
SmartDec [10] v v v
VCI [6] 4 v

(based on layout and mandatory fields), then a static analysis ap-
proach is employed to scan the read-only sections of the binary and
excavate VTables. Because the signatures are robust and guaran-
teed by the compiler, they are relatively easy to identify following
a set of heuristics. First, VTables contain sensitive data in the form
of function pointers, and so must not be altered by program code
during runtime. As such, they are always allocated in read-only
sections of the binary. Second, the layout of a VTable is fixed. It
always begins with an OTT, followed by an RTTI value, followed
by some number of function pointers, and then any number of
sub-VTables, which follow the same layout. Third, these values
all have patterns and restrictions on what they can be. The OTT
must be zero for the primary VTable, and must decrease in all the
following sub-VTables. The RTTI field must be a valid pointer or 0.
Worth noting is that it is not necessary to check the information
the RTTI entry points to - in fact this can be detrimental - as some
programs simply do not have this information available for use.
The function pointers must all point to the beginning of a function
or thunk in the executable sections of the program, and so cannot
point to data. In some edge cases (caused by pure virtual functions
and abstract classes), the function pointers may point to an entry
corresponding to __purevirtual exception handling mechanism
provided by the C++ runtime. Most VTable scanning techniques
account for these edge cases in their heuristics.

From the scanned and identified VTables, VTable grouping can
then identify complete-object VTables that uniquely represent a
polymorphic class. According to the Itanium ABI, the primary
VTable of the derived class is followed by the secondary VTables of
its base classes (non-virtual bases before virtual bases). vfGuard [23]
and DeClassifier [7] use this information to group the VTables as-
sociated to a class into the complete object VTable. This is done by
first sorting VTables in increasing order of VTable addresses, then
grouping a primary VTable (with zero offset-to-top value) with
succeeding zero or more secondary VTables (with a negative OTT
value). VTable grouping is useful to identify the distinct number of
classes present in the binary. This also helps to build a clear and
concise class hierarchy graph where each node is a complete object
VTable.

VTable Size. The ABI mandates that a derived class VTable con-
tains all entries of the base class VTable (with appropriate replace-
ments in case functions are overridden) along with additional en-
tries introduced by the derived class. Therefore, the size of a derived
class VTable is at least equal to the sum of the sizes of its base
class(es) VTables.

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

clase ! VTable of A

int a; o

virtual void F(){}; 48 &RTTIA)
s . +16 &A:F
class B: public A{

int b;

virtual void G(){} VTable of B
I3 +0 0

+8 &RTTI(A)
+16 &A:F
+24 &B::G

class C: public A {
intc;

I3

VTable of C
+0 0
+8 &RTTI(A)

+16 &A:F

Figure 2: Simple VTable layouts demonstrating their con-
tents and size.

For a clear example of how this works, consider the simplest
case shown in figure 2. The base class A has a total VTable size
of 24 bytes, containing the offset to top, RTTI, and the address
of function &A::F (F in A). However class B, derived from A, also
contains the address of the function &B::G (G in B) making its size
32 bytes. Should another class derive from B, it would also at least
contain B’s function pointers and A’s function pointer. Class C in
this case, does inherit from A, however it adds no function pointer
of its own, and so does not increase the size of the VTable, (this is
the case where the complete object VTable is equal in size to the
the base’s complete object VTable). Class D in Figure 3 has multiple
inheritance, and so has a sub-VTable as well as its primary VTable.
This sub-VTable makes the objects size 56 bytes, bigger than objects
of class A or B.

While the ABI does not specify that additional information can-
not be added to VTables, the implication is strong enough that
ROCK [18] and SmartDec [10] take advantage of VTable sizes to
assign direction of inheritance to related classes and to eliminate
impossible base classes respectively.

Constructor Analysis. The ABI specifies the object construction
process wherein base class sub-objects are recursively constructed
before constructing the derived object. It is a popular primitive
among past efforts (Table 1 column “CC") to infer inheritance order.
However, compilers are known to aggressively inline construc-
tors, and therefore constructor analysis is not a reliable source of
inheritance order.

3 ABIBIAS

Typical binary reverse-engineering work-flow emanates from re-
vealing factors that are discernible in the binary. For example, calls
to libc functions (e.g., strcpy) in a binary provide type information
regarding input variables to the function and therefore provide a
basis for further analysis (e.g., backward slicing). Similarly, in C++
reverse engineering, a complete-object VTable provides a clear and
unambiguous representation of a polymorphic class.

We define ABI Bias as an ABI property that results in unavoidable
revelation of forensically-relevant information by a binary due to
the very virtue of it adhering to an ABI. For example, until recently

149

David Demicco, Rukayat Erinfolami, and Aravind Prakash

Itanium ABI [2] mandated the layout and ordering of VTables, or-
dering of function pointers in the VTables, sizes of VTables, etc. A
conformant compiler was forced to adhere to the ABI and therefore
incorporates the ABI bias that aids in reverse engineering. Even
after it was changed, this bias lingers in compilers because it was
fully backwards compatible. In the case of C++ programs, using the
VTable as a starting point, a reverse engineer can: (1) reconstruct
polymorphic classes, (2) establish polymorphic member function
association by examining the function pointers in the VTable, and
(3) identify inheritance relationship by either examining the con-
struction/destruction order etc.

Bias sensitivity. Some biases are sensitive to change, i.e., they play
a significant role in ensuring correct functioning, backward com-
patibility, and interoperability of binaries. For example, encrypting
the virtual function pointers in VTables will cause interoperability
issues. That is, classes in binaries that encrypt function pointers
can not inherit from classes in binaries that do not encrypt function
pointers, and vice versa.

However, some biases are insensitive to change, and eliminating
or disrupting them does not cause errors. For example, the Itanium
C++ ABI used to require that the primary and secondary VTables
of a complete-object VTable to be laid out one after the other in
successive order of inheritance. Because the derived object and
base class sub-objects contain pointers to their respective VTables,
collocation of primary and secondary VTables has no benefit other
than implementation convenience. Eliminating or disrupting such
insensitive biases can substantially hinder reverse engineering while
ensuring no side-effects on program execution. In this work, we iden-
tify and target two specific forms of insensitive biases — VTable
bias and Function Pointer bias — in the ABI that aid in reverse
engineering.

Lingering biases. The Itanium ABI [2] was modified to remove
some of the requirements that lead to the Biases we identify in the
following sections. This change has not been reflected in the LLVM
or GCC compilers default compilation options. Instead both of these
continue to follow the outdated requirements, because the new ABI
specifications does not require a change, and instead simply adds a
paragraph removing a guaranty [2] §2.5.2, last para. This results
in the bias remaining as a security problem, even after it could be
removed in an ABI compliant fashion.

Virtual Table Bias (VIB). The VTable bias is an insensitive bias
that manifests due to two specific ABI mandates. First, the ABI re-
quires that primary and secondary VTables be laid out in order of
inheritance. That is, if class A inherits from classes B, C and D in
that order, then:

addryraple(a) = addryraple(B-in-a) < addryTapie(c-in-a) <
addryTaple(D-in-a) Second, the ABI previously required that the
primary VTable in memory be immediately followed by the sec-
ondary VTable(s) in the order of inheritance, and modern compilers
stick to this in default compilation.

A reverse engineer (see vfGuard [23]) takes advantage of these
requirements by (1) extracting all the VTables in the memory using
a signature based approach comprising of the offset-to-top field,
RTTI field and function pointers, (2) examining the offset-to-top

ABI Debiasing

virtual void vD2(){}

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

+8 &RTTI(D)

+16 pure_virt

class A {
int a; VTable of D Obiject D Vtable of B-in-D Vtable of B-in-D
v!rtual vo!d VA1()=0; 10 0 40 vptr(D, Ain-D)- 1 40 -16 g
virtual void vA2(){} +8 &RTTI(D) I +8 &RTTI(D) +8 &RTTI(D)
H 16 &B:vB1
l’,ass B{ +16 pure_virt +8 a 1> +16 &B:vBl D0 e vt
int b; +24 &A::vA2 : | +24 pure_ virt +32 pure_virt
! +16 tr(B-in-D) - — Lo +40 &F1
virtual void vB1(){} +32 &D::vD1 vptr(B-in-D) : iableofCind g a2
virtual void vB2()=0 [EZRRAPERYIbP) 424 b | Vtable of C-in-D +0 -32 +56 pure_virt
. +8 &RTTI(D)
h +48 -16 | +0 -32 +16 &C:vCl
cla.ss Cc{ +56 &RTT|(D) +32 vptr(C-in-D} - - | +8 &RTTI(D) +24 pure_virt
int c; . 1> +16 &CuvCl +32 &F3
virtual void VCl(){} +64 &BVBl +40 +40 pure_virt
" +72 pure_virt ¢ :
class D: public A, B, C _ Vtable of D, A-in-D
int d:) L +80 32 +48 d | Vtable of D, A-in-D e
o . +88 &RTTI(D) I
virtual void vD1(){} +96 &C:vCl | +0 0 +8 &RTTI(D)
I

5

Before Debiasing

Object Layout

d +16 pure_virt

+24 &A:vA2
+24 &A::vA2
+32 &D::vD1
+40 &D::vD2

+32 &D::vD1
+40 &D::vD2
+48 pure_virt

After Splitting +

After Splitting -
Expanding

Figure 3: VTable layouts and contents before and after debiasing. The RTTI field is optional and contains a value 0 if the

program is compiled with the -fno-rtti flag.

field to identify primary VTables wherein offset-to-top == 0, and
finally (3) grouping all the subsequent secondary VTables wherein
offset-to-top # 0.

Note that unlike VTable bias, offset-to-top being zero or non-zero
is a sensitive bias. Although offset-to-top does reveal information to
a reverse engineer, its integrity is essential for correct functioning
of the program, and therefore can not be changed.

Function-Pointer Bias (FPB). The function pointer bias is an in-
sensitive bias that manifests due to the ABI requirements on how
functions are laid out in the VTable. The ABI dictates the number of
function pointers in the VTable. Specifically, the number of function
pointer entries in a VTable is equal to the number of polymorphic
functions accessible by an object of the class to which the VTable
corresponds. This presents an inference point to a reverse engineer.
Past efforts (e.g., [10, 11]) have relied on the size primitive to infer
directionality of inheritance between classes. For example, given
two VTables for classes A and B, the ABI mandate guarantees that
B can only inherit from A if size of B’s VTable is larger than or
equal to the size of A’s VTable.

3.1 Debiasing

In this work, we aim to balance the playing field by eliminating
the lingering and insensitive VITB and FPB. We call this process
debiasing. We are guided by the following goals.

Goals.

o Program Obfuscation: Our primary goal is to debias program
binaries in order to hinder reverse engineering. Particularly,
we wish to eliminate VTable and function-pointer biases that
have proven crucial in C++ binary reverse engineering [12,
23, 25, 28].

150

e Zero false positives: Zero false positives is a necessary con-
dition for practical adoption of any solution. False posi-
tives arise when debiased binaries generate previously non-
existent faults. That is, our changes must ensure that the
process of eliminating bias does not interfere with the in-
tended use of the ABI or the program logic.
Backward Compatibility and Interoperability: We wish for
our changes to be transparent to other binaries that interact
with the debiased binary. That is, binaries hardened using
our techniques must seamlessly inter-operate with other
binaries including binaries that are already deployed on a
system as long as they adhere to the same ABIL
o Near-Zero Performance Overhead: Our solution does not mod-
ify the program logic. As such, any overhead imposed by
our debiasing is a result of micro-architectural differences
that are outside our control. In any case, we aim to achieve
close-to-zero performance overhead in both binary size and
program speed.

Obfuscation and Debiasing. Broadly, debiasing is an obfuscation
technique that modifies a binary to make reverse engineering more
challenging. It differs from traditional obfuscation techniques in
two key ways. First, obfuscation primarily focuses on manipulating
code and in a binary to hide program logic, whereas debiasing is
not concerned with program logic, but rather the interfaces. Sec-
ond, obfuscators must obey the rules of ABI. Therefore, irrespective
of the amount or levels of obfuscation, ABI-centric reverse engi-
neering will always yield inference points that are a result of ABI
bias. Debiasing aims to identify the bias introduced by the ABI and
systematically eliminate them. These differences make debiasing a

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

complementary and orthogonal technique to traditional obfusca-
tion approaches. Combining debiasing with traditional obfuscation
significantly increases reverse engineering challenges.

3.2 High-Level Approach

At a high level, our approach is comprised of two disjoint, orthogo-
nal phases. The VT Splitter phase is targeted at VT Bias and the VT
Expander phase is targeted at FP bias. An example of our approach
is presented in Figure 3. It contains a simple C++ inheritance struc-
ture where class D inherits from A, B and C. The object layout
for D where A-in-D sub-object shares the base with D and B-in-D
and C-in-D sub-objects are located at offsets base+16 and base+32
respectively. Notice how the complete object VTable for D contains
primary and secondary VTables that are collocated. There is no
logical basis to require collocation except for the ease of implemen-
tation.

VT Splitter. In the VT Splitter phase, a complete object VTable is
first split into primary and secondary sub-VTables, and these VTa-
bles are randomly distributed across the read only sections of the
binary. Because the vptrs in the object are the only legal reference
to the VTables, splitting and redistributing the VTables disrupts
reverse engineering. Particularly, VTable-grouping-based reverse
engineering approaches (e.g., vfGuard [23]) are disrupted while en-
suring correct functioning of the program including interoperability
and backward compatibility.

VTable grouping through object analysis: Because vptrs in the object
point to the respective secondary VTables, object analysis can be
applied to perform VTable grouping. However, it presents signif-
icant challenges. The vptrs are initialized in respective construc-
tors/destructors, and correct VTable grouping requires precise inter-
procedural static analysis, which can be hard. Moreover, construc-
tors are aggressively inlined by C++ compilers. So, distinguishing
between levels of inheritance can be hard. Specially in higher levels
of optimization, the compiler eliminates constructor calls that are
deemed trivial (e.g., default constructors). For example, the inlined
constructor sequences for example in Figure 3 and a case where
D inherits from A and B, and B inherits from X and C is indistin-
guishable. Whereas with collocated VTables, a reverse engineer
can clearly demarcate complete-object VTable boundaries. Finally,
some solutions [7] are known to rely on destructor analysis. But
destructor analysis is only reliable when destructors are virtual,
which may not be the case for all classes. Non virtual destructor
analysis is plagued by the same inlining and optimization problems
as constructor analysis.

VT Expander. This phase aims at disrupting FP bias where a
reverse engineer can rely on the size of a VTable (i.e., number of
function pointers in a VTable) in order to infer directionality of
inheritance. VT Expander adds additional unreachable function
pointer entries (i.e., dummy entries) into the VTable so as to ar-
tificially inflate the sizes of VTables. These function pointers are
added based on an expansion factor f that is designed to normalize
the sizes of the VTables in the binary. That is:

VTNew_Size = (1 + f) VTOIdeizes 0<

f=1

151

David Demicco, Rukayat Erinfolami, and Aravind Prakash

In Figure 3, the expanded VTables for primary and secondary VTa-
bles of D are presented. Notice how the number of entries have
expanded in each of the sub VTables. In our approach it is possible
for VTable for B-in-D to have more or less number of entries than
complete object VTable for B. This uncertainty in number of func-
tion pointers introduces further challenges in reverse engineering.

As a key requirement for correctness and in order to prevent in-
troducing attack space, the function pointers added by our solution
must be unreachable by user code. Yet it must be hard to statically
reason as unreachable functions, otherwise a reverse engineer could
simply exclude the function pointers as artificial.

As a solution, we derive insights from the fact that function
pointers in a VTable are never individually referenced and are
always referenced from the base of the VTable. Therefore, we ensure
that all references to VTables are unaltered and adjusted to refer to
the newly expanded VTable after debiasing. Furthermore, because
the expansion factor f normalizes the size of the VTable across all
the VTables in the binary, we are guaranteed that each function
pointer offset in every inflated VTable is a valid reachable offset
in some other VTable. Therefore, static binary analysis can not
exclude a particular function pointer offset as unreachable. Our
approach is confined to modifications to the VTables (data), so the
solution is orthogonal to other compiler-based security solutions
which rely on code modifications such as StackGuard [5].

4 DEBIASING VT BIAS

We debias VT bias through the process of VTable splitting, where
each complete-object VTable is separated into sub-VTables and
dispersed across the read-only section of the binary. Our implemen-
tation uses a multi-step LLVM Intermediate Representation (IR)
level pass which is enabled/disabled at the command line.

4.1 Identifying VTables in the IR

Algorithm 1 General workflow of VTable splitting LLVM pass

1: procedure VISPLITTER(modules)

2 for each module in modules do

3 for each global in module do

4: if isVT(g)&&hasSecVTs(g) then

5: subVTs « getSubVTs(g)

6: for each vt in subVTs do

7 newVT « createEmptyVT()

8: placeRandomlyInGlobal(newVT)
9: copyVT(newVT, vt)

10: replaceRefs(newVT, vt)
11: removeVT(vt)

12: end for

13: end if

14: end for

15: end for
16: end procedure

The first step in implementation is identifying the VTables in
the compilation unit, then separating the VTables that contain
subVTables. This process can be preformed by relying on LLVM
IR level name mangling rules. Finding a VTable requires finding a
symbol matching @_ZTV# which is the Itanium ABI-specified name
for a VTable. Next, in order to see if it has a sub-VTable, we check
the first field of that entry to see if it has multiple arrays as its type
as shown in appendix A. Once that is done, we check to see if it

ABI Debiasing

contains a secondary VTable structure. The name mangling rules
we rely on are tied to the Itanium ABI, so this process will function
on different versions of the compiler. Because it is possible to place
our pass before symbol stripping is done, this method works even
when the desired result is a stripped binary that will not contain
these symbols.

4.2 Creating Replacements and Randomizing
their Locations

Once all VTables are found, the next step is to create as many new
entries in the IR as necessary to break apart the VTables. One for
the primary VTable, whose size we know from the previous step.
And then one for each secondary VTable we are breaking apart.
To do this we create an IR entry of the correct size and type by
copying the type and linkage information from the original entry,
then assign it an arbitrary name. During the creation process of a
new global entry in the IR, we use the fact it may be placed after
any other global entry that already exists to place it into a random
location. Because LLVM lays out global objects in an order based
on where they appear in the IR, this is sufficient to move the sub-
VTable in the resulting binary. Once it is done and placed into its
new random location, we then copy all the information from the
secondary VTable to this new entry.

4.3 Fixing References

After we construct each new VTable we must then go about fixing
all the references in the constructors, VT Ts (Virtual Table Table)
and anywhere else from the old global entry to the new location.
We do this by iterating over a list that LLVM maintains of users for
the old entry. If the entry is a Get Element Pointer (GEP) statement,
we examine it more closely. Because the old entry is constructed
like an array of pointers, and due to the way the GEP statement is
constructed, we have to check each instance to see if it is referring
to the index from which we copied the pointer. If it is, we create a
new GEP statement that holds the new VTable instead of the old
secondary VTable, and use that to overwrite the old GEP. Then
we move onto the next user of the old VTable, and repeat until
there are no more users. LLVM holds a complete list of users for
any given global data structure, so this approach does not miss any
potential adjustments to the new value.

4.4 Eliminating Old VTables

Once we have iterated over every user once for every new VTable
we have created, the old global will no longer have any users (objects
or instructions that point to it) and it can be safely removed. We then
repeat these steps until we can no longer find any more VTables in
the IR. With this done, we must then remove the old global entry,
as leaving it around would defeat obfuscation purposes completely.
To do this we have LLVM run its dead global code elimination
pass. With all references to the original entry removed, the dead
code pass will detect and delete the old entry as an unused global
code if nothing points to it anymore. Using this pass ensures that
if we somehow missed any references to the VTable it will not
be removed, and the program will still work correctly. However,
in that case this particular entry will not be protected by the VT
Splitter. Using the dead global code elimination pass additionally

152

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

ensures that if LLVM ever updates how global code is removed, our
pass will still be fully functional.

4.5 Applying the Pass

We created a custom build of LLVM 6.0, placed our pass in its
source tree, and scheduled the pass as part of the default pass
pipeline during compilation. We schedule our pass before LLVM
performs its global dead code elimination pass for reasons stated in
the previous section, and after all other code transformation passes
that LLVM schedules during compilation. Applying the pass to a
program’s source code requires compiling it using our modified
version of LLVM and Clang. This means there is no need to change
any Makefiles or CMake files to enable the pass, to load the pass’
library using LLVM opt or to give the pass’ library as an argument
to the Clang driver. This simplifies our testing procedure, and allows
us to evaluate against a large set of varied programs.

5 DEBIASING FP BIAS

We address FP bias by eliminating the predictability regarding sizes
of VTables and inheritance relationships. We achieve this through
VT Expander. It operates on a list of VTables (if the VTables are
split, then individual split VTables, if not, complete-object VTables),
and adds a number of extra VTable entries to it that increases the
size based on the configurable expansion factor f. In the case of a
VTable that contains one or more sub VTables that have been split
by VT Splitter, the extra entries are appended after each subVTable.

Algorithm 2 General workflow of VTable expander LLVM pass

1: procedure VTEXPANDER(mmodules)

2 userSeed «—getUserSeed

3 for each module in modules do

4: for each global in module do

5: if isVT(g)&&isDefined(g) then

6: newSize «— getNewSize(g, f, userSeed)
7 for newSize — size(g) do

8: newEntry « getRandomFunction()
9: appendEntry(g, newEntry)

10: updateUsers(g)
11: end for

12: end if

13: end for

14: end for

15: end procedure

5.1 Selecting Extra Function Pointers

In order to make the extra entries difficult to detect, they cannot
simply be copies of entries that are earlier in the VTable. They also
cannot be garbage values, if they don’t point to the beginning of
some function or thunk, then they can be discarded by any reverse
engineering effort. To combat that, we select two types of new
entries. The first is simply a function selected randomly from the
same module the VTable is in. While this can lead to obviously
incorrect choices (if it is pointing to the main function for example),
on the whole this selection makes it very difficult to tell where the
appended entries begin and end. The other type of entry we add
is a pure virtual function. The frequency of pure virtual function
added is configurable.

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

5.2 Cross Module VTables

In compilation the compiler will create dummy VTables for modules
where they would be used, but are not declared. These are LLVM
constant objects that hold a pointer to an array of i8% equal to the
size of the finished VTable (see appendix A). In normal compilation
these dummy VTables are replaced with the full VTables as long
as the size and type of the dummy VTables match. If the size and
types of these dummy VTables do not match, compilation fails. For
us, this means we need to pass a user-defined seed into the pass,
and we use this seed and a hash based on the mangled name of the
VTable in order to calculate a consistent random size for a given
VTable, even across modules.

5.3 Support for Virtual Inheritance

Our solution provides inherent support for virtual inheritance. Vir-
tual inheritance is an important feature in C++ that is used in
popular libraries (e.g., stream object in ostream). Due to the com-
plexities in supporting virtual inheritance, the ABI mandates ad-
ditional structures like construction VTables and VT Ts. Both VT
Splitter and VT Expander do not distinguish between the types
of VTables, and as such inherently split and expand all VTables
including construction VTables.

5.4 Integration with VT Splitter

To allow for the VT Expander to be run along side VT Splitter (which
causes extra entries to be appended onto the split off subVTables),
the only requirement is that the split VTables created with VT
Splitter have the same internal IR format as any other VTable. We
ensure this is true so we can run the VT Expander pass in exactly
the same manner as the splitter pass, setting it so the Expander
pass runs after the VT Splitter pass completes.

Table 2: Table showing the number of primary VTables, the
number of secondary VTables, and the combined total

Programs VTables
Primary Secondary Total VTables
VTables VTables
Doxygen 962 79 1041
FireFox/wlibxul | 14635 3911 18546
Xalancbmk_r 944 70 1014
parest_r 1590 222 1812
mysqld 4195 231 4426
Spidermonkey 1597 6 1603
Nodejs 3181 111 3292

6 EVALUATION

In this section, We evaluate VTable splitting and function pointer
reordering on binaries using three criteria; size, correctness and
performance. In addition we evaluated the impact of VTable split-
ting on DeClassifier, a modern reverse engineering tool and discuss
the results in section 7.

6.1 Experimental setup

We ran these experiments on Intel Core i7-4790 3.60Ghz x 8 cores
with 32GB of RAM on Ubuntu 16.04.7, with glibc 2.23(Ubuntu).
We modify LLVM 6.0 to add the VT Splitter and VT Expander

153

David Demicco, Rukayat Erinfolami, and Aravind Prakash

Table 3: Performance tasks for each binary

Program Execution Payload

Doxygen Doxygen on itself. Avg of 5 runs
FireFox/wlibxul | Dromaeo recommended tests
Xalancbmk_r runcpu

parest_r runcpu

mysqld Tests in the auth_sec suite
Spidermonkey | Test suite jit-test.py. Avg of 5 runs
Nodejs 12 benchmark tests

passes in-tree. For VT Expander and the combination of both passes
we chose an expansion factor f of between .1 and .4, which was
selected as a range large enough to prevent directional inference,
but small enough not to bloat the binary needlessly. The test set is
composed of 7 binaries 4, which were selected based on their range
of complexities and real world application. For size comparison we
elected to use Libxul.so, which is compiled as part of Firefox’s build
process as the Firefox binary itself is relatively small and has few
subVTables. Each was compiled with VTable splitting and function
expanding under -00, -O2 and -O3 optimization levels, along with
a ground truth case, and combined splitting and expanding. The
ground truth is obtained by compiling each of the programs with
default compiler options at their respective optimization levels. This
makes a total of 12 binaries per application. Lastly, we compare
the binary sizes and performance rate of the programs compiled
with each technique against the ground truth. We use a subset of
this set for our tests against DeClassfier. This subset consists of
binaries compiled at -O0, as the goal is simply to demonstrate that
VTable splitting interferes with its ability to correctly recover the
completed object VTable layout, even in its most ideal use case.

Performance testing. For performance, we measured the average
change in execution time for varying tasks suited to each program,
listed in table 3. We ran tasks that did not include multiple sub
tasks (i.e., were not part of a test suite) five times and averaged the
results.

6.2 Binary Size

In this section we show the change in binary size of programs com-
piled with VT Splitter only, VT Expander only, and both techniques
combined. For VT Splitter 4, we record an average increase of 0.02%.
This is expected since we keep the same number of overall VTable
entries in the binary. The small overall size increase comes pri-
marily from the code required to use the VTables in constructions
being slightly larger, because they cannot be loaded from their base
VTables address via an offset.

For VT Expander 4 we record an average increase of 1.40%. This
falls within our expected results as we are increasing the overall
number of VTable entries in the binary by a range between 10% and
40%. Table 2 shows the total number of VTables that VT Expander
is acting on, and we expect an absolute size increase to any given
binary relative to the number of VTables that are expanded. For
binaries compiled with both techniques, we record an average
percentage change of 1.42%, which is consistent with our other
results.

ABI Debiasing

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

Binary Size Change

5.00%

4.00%

3.00%

2.00%

1.00%

LI

o0l 02 O3 00 /02103 |00 02 O3
Doxygen FireFox/wlibxul | Xalancbmk_r

0.00%
o0 | 0z

-1.00%

i

03

parest_r

W Splitting
W Expanding
Combined

00 0oz O3
mysqld

o0 02! 03
Spidermonkey

00 0z 03
Nodejs

Figure 4: Binary size overheads for splitting, expanding, and a combination of the two.

Preformance Change

6.00%

4.00%

0.00%
-2.00%

11‘ |

oo™ | 02 03| 00 02 O3 |00 02 O3

Doxygen FireFox/wilibxul Xalancbmk_r

i, '“.H.'

o0 | 02

parest_r

o3

W Splitting
W Expanding
Combined

00 |02 | 03|00 ©O2 O3 00| 02 O3

mysqld Spidermonkey Nodejs

Figure 5: Performance overheads for splitting, expanding, and a combination of the two.

Negative change in binary size. Several of the -O0 results indicate
a negative file size change, and in general the -O0 size increase
appears quite low across almost all of the tests. This is due to the
fact that our implementation takes advantage of LLVM’s dead global
elimination pass to safely and cleanly remove old VTables from
the IR after they have been updated. Because we force this pass to
run after VTable splitting or expanding it also removes any other
dead globals it can detect. For the baseline -O0 this pass is not run,
leaving the dead globals in the binary.

Identical baseline size. We observed an anomaly in our evalua-
tion for spidermonkey at -O2 and -O3. Despite adding the correct
optimization flags, we observe that the binary sizes for this program
remain identical across two optimization levels. However despite
the identical file sizes, the hash for each of these binaries is differ-
ent, we can only surmise that there is some part of the compilation
process which enforces this similarity.

154

6.3 Correctness and Performance

VT Splitter, VT Expander and both combined were evaluated for
correctness and performance (figure 5). For correctness all the tests
and benchmarks run passed and functioned as expected. This jus-
tifies our claim that both VTB and FPB are insensitive biases. For
VT Splitter, we record an average decrease in the execution time
for the selected tasks of -0.01%. This low performance overhead is
expected due to the low impact that splitting the VTables apart in
memory has on the code generated by the compiler. This code needs
to use larger instructions to load the sub-tables in a very limited
number of places. Likewise for VT Expander we observe an average
penalty of 0.48%, In this case the overhead is from locality issues
caused by the larger VTable sizes. Lastly, for binaries compiled with
both techniques, we record an average increase of 0.66%, which is
consistent with a combination of the overheads when the passes
are taken separately.

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

Negative performance overhead. Several of the programs show
negative results in overall performance overheads. Doxygen demon-
strates a fairly consistent gain of around 3% under expanding and
combined expanding and splitting. Or investigation of this phenom-
enon has shown no specific reason why this might be the case. The
layout of VTables in memory does not seem to affect performance,
and the number of references to the expanded VTables inside the
code does not seem to be affected in any significant way (i.e., the
number of times the VTable is dereferenced). No additional func-
tion inlining gets enabled by this technique, nor are there shorter
code sequences for each dereference. That is, the location of the
sub-VTable is still loaded, and then an offset is used as part of the
call instruction. Given these findings, we can only conclude that
the negative performance overhead is due to the margins of errors
for most of our tests being greater than the overall change in perfor-
mance, which leads to variance around the average case’s relatively
lower overhead.

7 SECURITY ANALYSIS

In this section, we discuss the security implications and potential
ways a reverse engineer/attacker can detect or take advantage of
the debiasing efforts of VT Splitter and VT Expander.

7.1 Impact on Reverse Engineering

By design, VT Splitter and VT Expander do not alter program
logic, as such the reversibility of program logic is unaltered by
our solution. Further, since VT-Expander inflates VTables with
unreachable function pointers, its efficacy depends on the reverse
engineer’s ability to identify newly added function pointers. If an
analyst can delineate real and inflated function pointers, they can
simply exclude the inflated pointers and apply size comparisons to
infer inheritance direction.

VT-Expander ensures that only reference to all function pointers
in all VTables are through the base of the VTables. Therefore, any
possible information leakage through code references are avoided.
Second, it is possible that an analyst can detect function pointer
offsets at virtual function callsites (e.g., vfGuard [23] or VTInt [28]).
However, these offsets will only reveal that there exists some VTable
in which the detected offset is valid. Because VT-Expander normal-
izes VTable sizes across all VTables in the binary, each inflated
offset will also be a legal offset in some VTable in the binary. There-
fore, no additional information is revealed to the analyst. Finally, by
inserting pure_virtual functions as function pointers in the inflated
VTables, VT-Expander introduces an additional dimension of un-
certainty with respect to inheritance. Although not a requirement,
it is common for pure virtual functions defined in base classes to
be overridden by concrete implementations in the derived class. By
randomly introducing pure_virtual function pointers in the VTable,
any such inference mechanisms are hindered.

7.2 DeClassifier

We demonstrate the effectiveness of VT Splitter against DeClassi-
fier by running it against the subset of binaries selected is shown
in table 4. While VT Splitter does not prevent DeClassifier from
recovering the correct number of primary VTables, it does cause it

155

David Demicco, Rukayat Erinfolami, and Aravind Prakash

Table 4: Table showing the number of groups DeClassfier
found in the baseline compiler, and the total groups found
after applying VT Splitter, broken up into correct and incor-
rect grouping

Programs Baseline VTSplitter Incorrect Correct
Groups Groups Groups Groups
Doxygen 65 44 37 7
Xalancbmk | 17 27 13 14
Parest 82 90 71 19

to misidentify the groupings that these VTables belong to. This pre-
vents DeClassifier from being able to recover the correct completed
object VTable for the incorrect groups as part of the scanning and
grouping process described in 2.4. Without these completed object
VTables you cannot match the VTable group to a single class in the
source code. The incorrect groupings may also lead to an incorrect
understanding of how the binary being examined functions.

7.3 Reachability and VT Expander

By performing a reachability analysis on a binary that has been
modified by VT Expander, an attacker may discount some — if not
all - of the added dummy entries. Consider object D in Figure 3. A
call to virtual function &B::vB1 invoked on object B-in-D would
appear in the code as follows:
load rdi, <address of B—in-D>
// this pointer
// setup args
load

call

of VTable B-in-D>
qword ptr[rax + 16]
// VT_Offset(&B:: vB1)==16

rax, <address

Through static analysis, an attacker can (a) extract all virtual
function callsites [23], (b) identify invoking object and correspond-
ing vtable (through overwrite analysis [21]), and (c) identify VTable
offset that is accessed [23]. By excluding offsets that were refer-
enced at callsites for a particular object type, the dummy VTable
entries introduced by VT Expander can be identified.

We propose two approaches to make static analysis hard:

1) Use of pure virtual functions: We introduce pure_virtual entries
in the VTable. These entries are not reachable (by definition) and
are meant to be overridden in a derived class. One or more pure
virtual function pointers that follow legitimate entries in a VTable
can not be excluded as dummy entries through static analysis.

2) Dead code addition: We propose adding statically indeterminable
yet dead code into the binary that comprise of virtual function
invocation to the dummy function pointers. For example, calling
& F1 in B-in-D’s VTable would take the form of if(expr){ d->F1(); }.
The expression expr is carefully chosen such that it always resolves
to false at runtime, but can not be proven to be false through static
analysis. Ideally, the dead code would be instrumented into the
IR. To further complicate static analysis, the expression could be
modeled as a function of user input and/or indirectly referenced
memory.

ABI Debiasing

7.4 Impact on Exploitation

Exploits in the past have leveraged function pointers in VTables as
gadgets in order to execute code-reuse attacks [25]. Therefore, in-
flated VTables generated by VT Expander—in its current form—may
increase the overall gadgets available to such attacks. However, the
techniques incorporated by VT Expander are generic and extensible.
VT Expander can be modified to emit both functions and pointers
to those functions in the debiased VTables such that the functions
do not perform any meaningful execution (as opposed to gadgets
in code reuse attacks that must perform some useful action).

8 RELATED WORKS

Generally, binary analysis tools rely on the ability to recover se-
mantics from the binary based on the specifications of the ABL
SmartDec [10] attempts to statically recover multiple C++ specific
language constructs including classes, inheritance tree, virtual and
non-virtual member functions, calls to virtual functions and excep-
tion handling. Most of the proposed techniques are dependent on
the ABI specification.

VTI [3] uses the new ABI VTable rules to break apart the com-
plete object VTables and re-arrange them in process memory in
order to protect against VTable hijacking. While their work splits
VTables apart, the reordering they perform does not remove in-
formation from the binary, only changes the layout in a different
predictable manner.

VCI [6] recovers class hierarchy from a binary by performing
constructor analysis. This analysis is based on the specification
which states that the constructor of a derived class calls those of its
bases. Constructor analysis simply identify such constructor calls
to recover at least a partial class hierarchy tree. Similarly, Marx [21]
performs overwrite analysis which is also based on the operations
performed in constructors/destructors. Overwrite analysis is more
robust than constructor-only analysis since it is largely unaffected
by inlining which is as a result of optimization.

DeClassifier [7] is built to recover class hierarchy from opti-
mized binaries. It combines multiple techniques to recover as much
information as is present in the binary. It performs constructor/de-
structor analysis, overwrite analysis, and object layout analysis.
Overwrite analysis allows Marx to only group related classes into
sets with no direction of inheritance, while object layout analysis
allows DeClassifier to assign direction of inheritance relationships
identified using overwrite analysis.

ROCK [18] performs both statistical and behavioral analysis to
recover class hierarchy from the binary. The behavioral analysis is
based on the ABI specifications such as constructors, VTable size,
position of virtual function pointers in the VTable.

vfGuard [23] proposed the VTable identification analysis which
it uses to enforce CFI policy at indirect callsites in the binary. The
VTable identification analysis is based on the well defined structure
of the VTable which makes identifying them robust.

OOAnalyzer [24] and OB]Digger [16] recover methods and group
them into classes. While OBJDigger adopts symbolic analysis and
inter-procedural data flow analysis to achieve this, OOAnalyzer,
a more recent tool adopts Prolog-based reasoning combined with
binary and symbolic analysis. OB]JDigger tracks the usage and
propagation of the this pointer to identify related methods. Like

156

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

OBJDigger, OOAnalyzer first identifies methods called using the
same this pointer and then uses reasoning rules to decide if they
belong to the same class.

TVIP [12] and VTint [28] are defenses against VTable hijacking
attacks. VTint recovers VTables and appends IDs to each of them
to ensure that only valid VTables are used at runtime. Like TVIP,
VTint also ensures that allowable VTables point to read only section
of the binary.

9 CONCLUSION AND FUTURE WORK

In this work we present the notion of ABI Bias which an attacker can
exploit to reverse engineer a binary. Further we classify ABI biases
as sensitive and insensitive. We identify two ABI Biases which are
insensitive to change but give away crucial security information,
VTable ordering bias and function pointer bias. We present the
notion of lingering bias: bias which remains until corrected due
to backwards compatibility. We present an LLVM compiler-based
solution that can eliminate these insensitive and lingering biases.
Our evaluation shows that the techniques introduced have little
impact on the binary size and performance. Finally we argue that
moving forward, the design of ABIs should take these biases and
the information they can introduce into the binary into account.

The insensitive biases we discuss in depth within this paper
are the ones for which we have developed an automated solution.
Future work will focus on other forms of biases we feel are also
insensitive, such as function pointer ordering. We also wish to
investigate possible defenses against Overwrite Analysis, which is
a reverse engineering technique we did not address in this paper.
Finally we would like to explore the information these biases can
reveal about the original source code, potentially including scoping
information which is generally considered lost by the field of reverse
engineering.

ACKNOWLEDGMENTS

We would like to thank our shepherd Zhiqiang Lin and the anony-
mous reviewers for their valuable feedback. This research was
supported in part by Office of Naval Research Awards #N00014-
17-1-2929 and #N6833521C0446, and DARPA award #81192. Any
opinions, findings and conclusions in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies.

REFERENCES

[1] 2016. Itanium C++ ABI change.
abi/pull/7.

[2] 2017. Itanium C++ ABIL http://itanium-cxx-abi.github.io/cxx-abi/abihtml.

[3] Dimitar Bounov, Rami Gékhan Kici, and Sorin Lerner. 2016. Protecting C++

dynamic dispatch through vtable interleaving. In Proceedings of the 23rd Annual

Network and Distributed System Security Symposium (NDSS’16).

Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco

Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.

2015. Losing Control: On the Effectiveness of Control-Flow Integrity Under Stack

Attacks. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and

Communications Security.

Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve

Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-

Guard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks.

In 7th USENIX Security Symposium (USENIX Security 98).

Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou. 2017. Strict Virtual Call

Integrity Checking for C++ Binaries. In Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security.

https://github.com/itanium-cxx-abi/cxx-

4

ACSAC 21, December 06-10, 2021, Online, ACM, New York, NY USA

(71

&=

=

[10

[11]

[12

[13]

[14

[15

[16]

[17]

[18]

[19

[20]

[21

[22

[23

[24

[25]

[26

[27]

[28

Rukayat Ayomide Erinfolami and Aravind Prakash. 2019. DeClassifier: Class-
Inheritance Inference Engine for Optimized C++ Binaries. In Proceedings of
the 2019 ACM Asia Conference on Computer and Communications Security (Asi-
aCCS’19).

Rukayat Ayomide Erinfolami and Aravind Prakash. 2020. Devil is Virtual: Re-
versing Virtual Inheritance in C++ Binaries. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security (Virtual Event,
USA) (CCS °20). Association for Computing Machinery, New York, NY, USA,
133-148. https://doi.org/10.1145/3372297.3417251

Reza Mirzazade Farkhani, Saman Jafari, Sajjad Arshad, William Robertson, Engin
Kirda, and Hamed Okhravi. 2018. On the Effectiveness of Type-based Control
Flow Integrity. In Proceedings of the 34th Annual Computer Security Applications
Conference (ACSAC’18).

A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina. 2011. SmartDec: Ap-
proaching C++ Decompilation. In Reverse Engineering (WCRE), 2011 18th Working
Conference on.

A. Fokin, K. Troshina, and A. Chernov. 2010. Reconstruction of Class Hierarchies
for Decompilation of C++ Programs. In 2010 14th European Conference on Software
Maintenance and Reengineering. 240-243.

Robert Gawlik and Thorsten Holz. 2014. Towards Automated Integrity Protection
of C++ Virtual Function Tables in Binary Programs. In Proceedings of 30th Annual
Computer Security Applications Conference (ACSAC’14).

CXX-ABI Discussion Group. [n.d.]. CXX-ABI-Dev mail archives.
https://www.mail-archive.com/cxx-abi-dev@codesourcery.com/index.html.
Istvan Haller, Enes Goktas, Elias Athanasopoulos, Georgios Portokalidis, and Her-
bert Bos. 2015. ShrinkWrap: VTable Protection without Loose Ends. In Proceedings
of the 31st Annual Computer Security Applications Conference (ACSAC’15).
Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2014. SafeDispatch: Securing
C++ Virtual Calls from Memory Corruption Attacks. In Proceedings of 21st Annual
Network and Distributed System Security Symposium (NDSS’14).

Wesley Jin, Cory Cohen, Jeffrey Gennari, Charles Hines, Sagar Chaki, Arie
Gurfinkel, Jeffrey Havrilla, and Priya Narasimhan. 2014. Recovering C++ Objects
From Binaries Using Inter-Procedural Data-Flow Analysis. In Proceedings of ACM
SIGPLAN on Program Protection and Reverse Engineering Workshop (PPREW’14).
Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. 2015. Obfuscator-
LLVM - Software Protection for the Masses. In Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection, SPRO’15, Firenze, Italy, May 19th,
2015, Brecht Wyseur (Ed.). IEEE, 3-9. https://doi.org/10.1109/SPR0O.2015.10
Omer Katz, Noam Rinetzky, and Eran Yahav. 2018. Statistical Reconstruction of
Class Hierarchies in Binaries. In Proceedings of the 23rd International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’18).

Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. 2015. Type
casting verification: Stopping an emerging attack vector. In 24th USENIX Security
Symposium (USENIX Security 15).

Nathan Burow and Derrick McKee and Scott A. Carr and Mathias Payer. 2018.
CFIXX: Object Type Integrity for C++ Virtual Dispatch. In Proceedings of the 25th
Annual Network and Distributed System Security Symposium (NDSS’18).

Andre Pawlowski, Moritz Contag, Victor van der Veen, Chris Ouwehand,
Thorsten Holz, Herbert Bos, Elias Athanasopoulos, and Cristiano Giuffrida. 2017.
MARX : Uncovering Class Hierarchies in C++ Programs. In Proceedings of the
24th Annual Network and Distributed System Security Symposium.

Pawlowski, Andre and van der Veen, Victor and Andriesse, Dennis and van
der Kouwe, Erik and Holz, Thorsten and Giuffrida, Cristiano, and Bos, Herbert.
2019. VPS: Excavating High-Level C++ Constructs from Low-Level Binaries
to Protect Dynamic Dispatching. In Proceedings of the 35th Annual Computer
Security Applications Conference (ACSAC’19).

Aravind Prakash, Xunchao Hu, and Heng Yin. 2015. vfGuard: Strict Protection for
Virtual Function Calls in COTS C++ Binaries. In Proceedings of the 22nd Annual
Network and Distributed System Security Symposium (NDSS’15).

Edward J. Schwartz, Cory F. Cohen, Michael Duggan, Jeffrey Gennari, Jeffrey S.
Havrilla, and Charles Hines. 2018. Using Logic Programming to Recover C++
Classes and Methods from Compiled Executables. In 2018 ACM SIGSAC Conference
on Computer and Communications Security.

Felix Shuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming,
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In
Proceedings of 36th IEEE Symposium on Security and Privacy (Oakland’15).
Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In Proceedings of 23rd USENIX Security Symposium
(USENIX Security’14).

Chao Zhang, Scott A Carr, Tongxin Li, Yu Ding, Chengyu Song, Mathias Payer,
and Dawn Song. 2016. VTrust: Regaining Trust on Virtual Calls. In Proceedings of
the 23rd Annual Network and Distributed System Security Symposium (NDSS’16).
Chao Zhang, Chengyu Song, Zhijie Kevin Chen, Zhaofeng Chen, and Dawn Song.
2015. VTint: Defending Virtual Function Tables’ Integrity. In Proceedings of the

David Demicco, Rukayat Erinfolami, and Aravind Prakash

22nd Annual Network and Distributed System Security Symposium (NDSS’15).

A VTABLES IN LLVM-IR

Listing 1: Virtual inheritance dimond structure in LLVM-IR
broken up to show the individual sub-vtables

@_ZTV1D = unnamed_addr constant {
[6 x i8+], [5 x i8+], [4 x i8+],
[5 x i8+] } {

[6 x i8+] [i8+ inttoptr (i64 48 to
i8+), i8+ inttoptr (i64 32 to i8
%), 18+ inttoptr (i64 16 to i8«)
, 18+ null, i8+ bitcast ({ 18+,
i8«, 132, i32, i8x, i64, i8 =,
i64 }» @_ZTIID to i8+), i8«

bitcast (void (%struct.Dx)=«
@_ZN1D1fEv to i8+)],

[5 x i8+] [i8+
i64 16 to

null , 18+
i8+), i8+

inttoptr (
inttoptr (
i64 —-16 to i8+), 18+ bitcast ({
i8+, 18+, 132, i32, i8«, i64, i8
+, 164 }+» @_ZTIID to i8+), i8«
bitcast (void (%struct.Cx)=«
@_ZN1B1gEv to i8+«)],

[4 x i8+] [i8«
i8+), i8+

(i64 -32 to
(i64 -32 to
i8+), i8+« bitcast ({ i8=«, 18+,
i32, 132, i8+, i64, 18+, i64 }«
@_ZTI1D to i8+), i8+ bitcast (
void (% struct .D«)«

@ _ZTv0_n24 N1D1fEv to

inttoptr
inttoptr

i8«)],

[5 x i8+] [i8«
i64 —-16 to
i64 —48 to i8+), i8+ bitcast ({
i8«, i8«, 132, 132, i8«, 164, i8
+, 164 }» @_ZTIID to i8+), i8«
bitcast (void (%struct.Cx)=«
@_ZN1C1gEv to i8+«)]

null , i8«
i8+), i8+

inttoptr (
inttoptr (

}, align 8

https://doi.org/10.1145/3372297.3417251
https://doi.org/10.1109/SPRO.2015.10

	Abstract
	1 Introduction
	2 Background
	2.1 Polymorphism in C++
	2.2 VTable Layout
	2.3 Object Memory Layout and VTable Pointers
	2.4 ABI-Based Semantics Inference

	3 ABI Bias
	3.1 Debiasing
	3.2 High-Level Approach

	4 Debiasing VT Bias
	4.1 Identifying VTables in the IR
	4.2 Creating Replacements and Randomizing their Locations
	4.3 Fixing References
	4.4 Eliminating Old VTables
	4.5 Applying the Pass

	5 Debiasing FP Bias
	5.1 Selecting Extra Function Pointers
	5.2 Cross Module VTables
	5.3 Support for Virtual Inheritance
	5.4 Integration with VT Splitter

	6 Evaluation
	6.1 Experimental setup
	6.2 Binary Size
	6.3 Correctness and Performance

	7 Security Analysis
	7.1 Impact on Reverse Engineering
	7.2 DeClassifier
	7.3 Reachability and VT Expander
	7.4 Impact on Exploitation

	8 Related Works
	9 Conclusion and Future Work
	Acknowledgments
	References
	A VTables in LLVM-IR

