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Abstract. In this paper, we consider a structurally damped elastic equation under hinged
boundary conditions. Fully-discrete numerical approximation schemes are generated for
the null controllability of these parabolic-like PDEs. We mainly use finite element method
(FEM) and finite di↵erence method (FDM) approximations to show that the null controllers
being approximated via FEM and FDM exhibit exactly the same asymptotics of the asso-
ciated minimal energy function. For this, we appeal to the theory originally given by R.
Triggiani [20] for construction of null controllers of ODE systems. These null controllers are
also amenable to our numerical implementation in which we discuss the aspects of FEM and
FDM numerical approximations and compare both methodologies. We justify our theoretical
results with the numerical experiments given for both approximation schemes.

1. Introduction

The partial di↵erential equations (PDEs) of plate dynamics ubiquitously arise in elasticity
to model and describe the oscillations of thin structures with large transverse displacements
[10]. Moreover, researchers of PDE control theory are often interested in devising control
input methodologies by which one can elicit some pre-assigned behavior with respect to
solutions of a given controlled plate or bean PDE system. In the course of constructing such
a control theory for the given damped or undamped plate PDE, its underlying characteristics
-hyperbolic or parabolic- must necessarily be taken into account [13].

For example, whereas in hyperbolic equations, we have the notion of finite speed of prop-
agation and evolution of singularities, the parabolic equations posses infinite speed of propa-
gation and smoothing e↵ect. In consequence, the notion of exact controllability-i.e., steering
initial data to any finite energy state at some time (large enough) - is a reasonable object of
study for hyperbolic problems. On the other hand, the null controllability problem- steering
the initial data to the zero state at any time- makes sense for parabolic problems due to their
smoothing e↵ects.

In particular, there has been a great interest in studying the null controllability of infi-
nite dimensional systems [1, 2, 3, 7, 11, 20] with a view towards attaining optimal estimates
for norms of minimal norm steering controls. In particular, null-controllability for deter-
ministic parabolic-like PDE dynamics plays a crucial role in connection with corresponding
stochastic parabolic di↵erential equations. For example, it is known that the notion of null-
controllability is equivalent to the strong Feller property of the semigroup of transition of the
corresponding stochastic di↵erential equation, which is obtained from the deterministic one
by simply replacing the deterministic control with stochastic noise [5, 6, 8].

This manuscript considers certain PDE dynamics which exhibit analytic, or “parabolic-
like” features. Since these dynamics are associated with an infinite speed of propagation
(see [12]), it seems natural to ask: “Is there any control function which steers the solution
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to the zero state after some certain time T > 0?” This is the problem of “null controlla-
bility”. However, we must distinguish the “null controllability” concept between finite and
infinite dimensional (PDE) systems since while the issue of finding asymptotics for the as-
sociated minimal energy function defined in (1.5) has completely been characterized in the
finite dimensional ODE case [17, 18], the infinite dimensional PDE case is in general an open
problem. [17] provides a formula which describes the growth of the minimal norm control, as
time T ! 0 for ODE dynamics. This result depends on the Kalman’s rank condition, which
is the su�cient and necessary controllability condition in finite dimensions. In the case of
interior boundary control, it was proved in [20] there is a relation between the infinite dimen-
sional asymptotics and finite dimensional truncations such that a priori bounds manifested
by the approximating sequence of null controllers (for finite dimensional system) will lead to
the conclusion of a null controller for the (infinite dimensional) analytic PDE systems under
consideration. It was also shown in [20] that infinite dimensional null controllers will capture
the sharp asymptotics of the associated minimal energy function, which is defined through
the means of minimal norm controls (see (1.5)).

The numerical approximation of controlled PDEs has been a topic of longstanding interest
[7] however in contrast to the growing literature on theoretical results obtained for the null
controllability of parabolic-like plate equations, the knowledge about numerical approxima-
tion of the null controllability of PDE dynamics which exhibit analytic, or “parabolic-like”
features is relatively limited. In [1] semidiscrete finite element method (FEM) approximation
scheme were presented for the null controllability of non-standard parabolic PDE systems.
The key feature in [1] is that the approximating null controllers exhibit the asymptotics of
the associated minimal energy function for the fully infinite dimensional system.

In this manuscript, our main goals are to derive fully-discrete Finite Element Method
(FEM) and Finite Di↵erence Method (FDM) numerical approximation schemes for a cer-
tain (nonstandard) analytic and parabolic-like PDE system, give numerical implementation,
and compare the respective FEM and FDM approximations for this controlled structurally
damped elastic equation. The main novelties of the current work are:

(i) Fully discrete FEM Approximation: The PDE model given in (1.1) below was
firstly studied in [1]. It was proved that certain finite element method (FEM) approxima-
tions {u⇤

N
} and their limiting controller {u⇤} for the structurally damped PDE (1.1) manifest

the asymptotics (given in Theorem 1.1) of Emin(T ) defined in (1.5). However, in this work
no numerical implementation was provided for the derived FEM scheme. In the present
work, unlike the semi-discrete approximations, we use “fully-discrete” FEM approximation
and provide a numerical experiment to justify that the approximation of the null controllers,
within FEM numerical scheme framework, obey the same blow up rate of O(T�3/2) given in
Theorem 1.1. Moreover, we give an explicit formula for the approximate control functions.

(ii) Fully discrete FDM Approximation: We numerically analyze the null control-
lability problem for the given PDE (1.1) below by means of the finite di↵erence method
approximation scheme. We see that Theorem 1.2 can be employed to justify the use of finite
di↵erence method (FDM) approximations to numerically recover a solution to the said null
controllability problem. In particular, we provide a theoretical proof for our main result
Theorem 3.1 which essentially states that the approximating null controllers are uniformly
bounded “in N” by the minimal energy asymptotics for the fully infinite dimensional con-
trolled PDE system (1.1). Subsequently, using fully discrete FDM approximation scheme, we
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construct explicit control functions and give the numerical implementation.

(iii) Comparison of FEM vs. FDM: Since the numerical approximation of controlled
PDEs is a topic of longstanding interest, a natural question arises: which numerical approx-
imation method would give a better result to see that the infinite dimensional control u⇤, a
control which inherits the finite dimensional asymptotics? Our numerical implementations for
FEM and FDM approximations yield that while the finite di↵erence method scheme (FDM)
gives better results in approximating the control function at terminal time T , the finite ele-
ment method scheme (FEM) is more stable in computing the control across di↵erent values
of T .

Plan of the Paper. In Section 1, we introduce the PDE model under consideration and
describe the mathematical setting to be used throughout the manuscript. We also recall the
key theory given in [20] to which we will appeal in proving our results. Since one of our main
results is the numerical implementation of the finite element method approximation scheme,
we will refer to the semi-discrete variational formulations generated within this framework
in [1]. We provide the reader the entire FEM scheme in Section 2. Then in Section 3, we
consider the application of Theorem 1.2 within the Finite Di↵erence approximation scheme.
For this, we prove Theorem 3.1 which guarantees the existence of null controllers for the
finite di↵erence method (FDM) approximating system. Section 4 is devoted to the numerical
implementation of the both finite element method (FEM) and finite di↵erence method (FDM)
approximation schemes. We also give the algorithmic description of those schemes. In Section
5 and 6, we give our numerical experiments and conclusions, respectively. We mainly compare
the two FEM and FDM numerical approximation schemes to understand which method is
more stable and gives better results in approximating the null controllers of corresponding
systems. In section 7, we give a very clean and easy to follow recipe to construct a numerical
test problem to the (homogeneous part) PDE (1.1) below. For this, we appeal to algebraic
theory to compute the matrix exponential that represents the solution to the PDE (1.1).

Throughout the paper the norms || · || are taken to be L2(D) for the domain D, and the inner
products in L

2(D) is written (·, ·). The space H
s(D) will denote the Sobolev space of order

s, defined on a domain D, and H
s

0
(D) denotes the closure of C1

0
(D) in the H

s(D) norm
which we denote by k · ks,D. Also, C will denote a generic positive constant. For any T > 0,
we recall the space

L
2(0, T ;L2(D)) := {w : D ⇥ [0, T ] 7! R : w(., t) 2 L

2(D), 8t 2 [0, T ],

Z
T

0

kw(t)k2L2(D)
dt < 1}.

In what follows, ⌦ ⇢ R2 will be a bounded polygonal convex domain with Lipschitz continuous
boundary @⌦ = � and we consider the following controlled PDE system:

!tt +�2
! � ⇢�!t = u, on ⌦⇥ (0, T ),(1.1a)

! = �! = 0, on �⇥ (0, T ),(1.1b)

[!(0),!t(0)] = [!0,!1].(1.1c)

Here ! = !(x, t) is the elastic plate variable which satisfies the “hinged boundary conditions”,
and the constant ⇢ > 0 (⇢ 6= 2). The associated finite energy (Hilbert) space is given as

H = [H2(⌦) \H
1

0 (⌦)]⇥ L
2(⌦).
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We observe that the system (1.1) can be rewritten as the ODE

(1.2)
d

dt


!

!t

�
=


0 I

�A
2

�⇢A

� 
!

!t

�
+


0
u

�
,


!(., 0)
!t(., 0)

�
2 H,

where A : D(A) ⇢ L
2(⌦) 7! L

2 is the (homogeneous) “Dirichlet Laplacian”

(1.3) Af = ��f, D(A) = H
2(⌦) \H

1

0 (⌦).

Alternatively, the system (1.2) will be equivalent, via the change of variables

v = A!, w = !t,

to the following ODE:

(1.4)
d

dt


v

w

�
=


0 A

�A �⇢A

� 
v

w

�
+


0
u

�
,


v(0)
w(0)

�
=


v0

w0

�
=


A!0

!1

�
2 L

2(⌦)⇥ L
2(⌦).

An easy application of the Lumer-Phillips Theorem yields that there exists a unique so-
lution [v, w] 2 L

2(⌦) ⇥ L
2(⌦) to (1.4) given that u 2 L

2(0, T ;L2(⌦)), and subsequently
[A�1

v, w] = [!,!t] in (1.2) (or (1.1)) have the regularity [!,!t] 2 C([0, T ];H). The dynami-
cal system (1.4) was also shown to generate an analytic semigroup [9,10] which implies that
the null controllability problem is the steering problem to be considered. In this regard, it
was proved in [20, 11, 2] that the following problem is solvable:

NC: “Let terminal time T > 0 be arbitrary. Given initial data [!0,!1] 2 H, find u 2

L
2(0, T ;L2(⌦)) such that the corresponding solution [!,!t] of (1.1) satisfies

[!(T ),!t(T )] = [0, 0].

What is more, one can find the minimal norm control asymptotics relative to (1.4). That is,
–find u

⇤
T
(0, T ; [!0,!1]) 2 L

2(0, T ;L2(⌦)) such that u⇤
T
solves the null controllability problem

and minimizes the L
2-cost with respect to all possible null controllers– Thus, the following

“minimal energy function” is well defined:

(1.5) Emin(T ) = sup
x02H,kx0kH=1

ku
⇤
T (x0)kL2(0,T ;L2(⌦)).

The reader is referred to the references [20, 3] for detailed information, however we will recall
the following theorem that is related to the blow up rate of Emin(T ).

Theorem 1.1. ([20, 3]). The null controllability problem (NC) admits of a solution, and the
associated minimal energy function Emin(T ) given in (1.5) obeys the blow up rate O(T�3/2)
as T ! 0. That is;

(1.6) Emin(T ) = sup
x02H,kx0kH=1

ku
⇤
T (x0)kL2(0,T ;L2(⌦)) = O(T� 3

2 ).

The proof of Theorem 1.1 was given in [20, 2, 3] via using di↵erent techniques. While
the weighted operator theoretic multiplier method and the analyticity of the corresponding
semigroups –based on a continuous line of argument– are utilized in [2, 3], the proof in [20]
depends upon a discrete approach which was also used for the validation of the spectral
truncations to the controlled dynamical system (1.1). Since our main goal here is to show
“numerically” that each finite dimensional approximating null controller (in the FEM and
FDM approximation scheme) and their limiting controller manifest the same asymptotics as
the minimal energy function Emin(T ) for the infinite dimensional system (1.1), for the sake
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of clarity, we will provide below the following detailed theory that we will utilize:

Consider the following finite dimensional control system:

(1.7) Y
0
N = ANYN + BNUN , YN (0) = YN,0 2 R(k+1)N

, N = 1, 2, ...,

where AN is (k + 1)N ⇥ (k + 1)N and BN is (k + 1)N ⇥ N matrices, and the control
UN 2 L

2(0, T ;RN⇥1). Also, define the following (k+ 1)N ⇥ (k+ 1)N Kalman matrix KN as

(1.8) KN = [BN ,ANBN ,A
2

NBN , ...,A
k

NBN ].

It was shown in [21] that if KN has full rank for any N = 1, 2, ..., then the system (1.7) is ex-
actly controllable by means of controls in L

2(0, T ;RN ). Also, the control function u
⇤
N
(t) which

steers the initial data YN,0 to the origin in given time T > 0 was constructed in [19] as follows:

Define the scalar-valued function fT (t) and the (k + 1)N vector µ(t) as

(1.9) fT (t) =
t
k(T � t)k

CT,k

, CT,k =

Z
T

0

t
k(T � t)k dt,

and

(1.10) µN (t) =

2

666664

µ0(t)
µ1(t)
µ2(t)
...

µk(t)

3

777775
= �K

�1

N
e
AN t

YN,0fT (t), 0  t  T,

where each component µj is an N�vector. It was proved in [19] that the choice of the
following type of control function in (1.7) will indeed steers the initial data YN,0 to the origin.

(1.11) u
⇤
N (t) = µ0(t) + µ

0
1(t) + µ

00
2(t) + · · ·+ µ

(k)

k
(t).

That is, the solution YN of (1.7) with control u⇤
N
(t) satisfies the terminal condition YN (T ) = 0.

With this type of control function u
⇤
N
(t) in mind, we recall the following result from [20] which

will be the main ingredient in the application of our numerical schemes:

Theorem 1.2. With reference to the system (1.7), assume that the following conditions hold:

(A1) The Kalman matrix KN satisfies the Kalman rank condition with index k. That is,

Rank(KN ) = (k + 1)N for N = 1, 2, ...

(A2) There exists Ck > 0 independent of N such that

(1.12) kK
�1

N
k  Ck,

(A3) There exists a constant Dk such that

(1.13) kA
j

N
e
AN t

k 
Dk

tj
, (uniformly in N) j = 0, 1, ..., k.

Then the steering controls provided in (1.11) obey the estimate

(1.14)
⇣Z

T

0

ku
⇤
N (t)k2 dt

⌘ 1
2
 C

⇤
k

kYN,0k

T
k+

1
2

,

where C
⇤
k
is a positive constant independent of N = 1, 2, ....
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2. Preliminaries

As mentioned in Section 1, it was theoretically (without any numerical experiment) shown
in [1] that Theorem 1.2 can be employed to justify the use of finite element method approxi-
mations to numerically recover a solution to the null controllability problem (NC). Our main
goal here is to compare two numerical approximation schemes FEM vs FDM to see that the
approximations {u

⇤
N
} and their limiting controller u

⇤ manifest the same asymptotics of the
minimal energy function Emin(T ) given in (1.5). For this, we will apply the FEM and FDM
methodologies to the finite dimensional control system (1.7) separately. The theoretical jus-
tification of the use of FEM approximation was already given in [1, Theorem 4]. Since we
will refer to this scheme in the FEM numerical implementation, for the completeness and the
convenience of the readers, we will remind it here:

2.1. Finite Element Method (FEM) Approximation Scheme for (1.7):

Application of Theorem 1.2. Let TN be a triangulation (mesh) of ⌦, where N is the
number of vertices (nodes) in the triangulation TN . For a triangle (element) K 2 TN , we de-
note by hK = diam(K) and set h = maxK2TN hK . We make the classical assumptions on the
family of meshes on ⌦ (we refer the reader [4] for details): there exist constants c0, c1, c2, c3
and c4, independent of any given mesh in the family, such that the following hold

• For any given mesh TN in the family, let pTN denotes the greatest number of elements
to which any of the nodes belongs. Then

pTN  c0.

• For any triangle (or element) K 2 TN with area RK ,
c1

N
 RK 

c2

N
.

• For any triangle in the given mesh with diameter hK ,
c3

N
1
2

 hK 
c4

N
1
2

.

Also assume that {�1, ...,�N} are the standard basis functions for the conforming H
1-finite

element space VN , that is

(2.1) VN = Span{�1, ...,�N} ⇢ H
1

0 (⌦).

The restriction of any basis function �i(x, y), i = 1, 2, ..., N to any elementK 2 TN is a polyno-
mial on K, i.e. �i(x, y), i = 1, 2, ..., N is a piecewise polynomial in ⌦̄. Also, if {(xi, yi)}Ni=1

are
the nodes of TN , then {�1, ...,�N} can be arranged such that �i(xj , yj) = �ij , i, j = 1, 2, ..., N .
Define the following positive definite symmetric matrices

(2.2) (Mass) MN =

2

64
(�1,�1) · · · (�1,�N )

...
...

(�N ,�1) · · · (�N ,�N )

3

75 ,

(2.3) (Sti↵ness) SN =

2

64
(r�1,r�1) · · · (r�1,r�N )

...
...

(r�N ,r�1) · · · (r�N ,r�N )

3

75 .



NULL CONTROLLABILITY FEM VS FDM 7

Then the FEM approximating matrix to the generator

(2.4) A =


0 A

�A �⇢A

�

of the system (1.4) is given by

(2.5) AFE,N =


0N M

�1

N
SN

�M
�1

N
SN �⇢M

�1

N
SN

�

where 0N is the N ⇥ N zero matrix. Given arbitrary [f, g] 2 R2N and ⇣ 2 L
2(0, T ;RN ), if

we set

(2.6)


⇠(t)
⇠̃(t)

�
= e

AFE,N t


f

g

�
+

Z
t

0

e
AFE,N (t�s)


0
⇣(s)

�
ds,

then the variables [⇠(t), ⇠̃(t)] satisfy the following ODE system:

⇠
0
(t) = M

�1

N
SN ⇠̃(t),(2.7a)

⇠̃
0
(t) = �M

�1

N
SN⇠(t)� ⇢M

�1

N
SN ⇠̃(t) + ⇣(t),(2.7b)

[⇠(0), ⇠̃(0)] = [f, g] 2 R2N
.(2.7c)

Observe that (2.7) is equivalent to the semidiscrete variational formulation of (1.4). That is,

(v
0
N (t), N ) = (rwN (t),r N ), 8 N 2 VN ,(2.8a)

(w
0
N (t),'N ) = �(rvN (t),r'N )� ⇢(rwN (t),r'N ) + (uN (t),'N ), 8'N 2 VN ,(2.8b)

[vN (0), wN (0)] = [v0,N , w0,N ] 2 VN ⇥ VN ,(2.8c)

where

vN (t) =
NX

i=1

⇠i(t)�i; wN (t) =
NX

i=1

⇠̃i(t)�i; uN (t) =
NX

i=1

⇣i(t)�i,

and

v0,N =
NX

i=1

fi�i; w0,N =
NX

i=1

gi�i.

The following Theorem for the approximating system (2.8) was given in [1, Theorem 4]:

Theorem 2.1. Suppose the classical mesh assumptions above are in place. Let also time
T > 0 be arbitrarily small. Then for the finite dimensional system (2.8) which approximates
(1.4) there exists a sequence of null controllers {u

⇤
N
} ⇢ L

2(0, T ;RN ), built upon the recipe
provided in [19], that converges weakly to u

⇤ as N ! 1 and obtains the following estimate
uniformly in N:

(2.9)
⇣Z

T

0

ku
⇤
N (t)k2 dt

⌘ 1
2
 CT

� 3
2 k[v0,N , w0,N ]kL2(⌦)⇥L2(⌦),

where the constant C is independent of N.
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Figure 1. Finite di↵erence grid hx ⇥ hy with n = 6.

3. Finite Di↵erence Method (FDM) Approximation Scheme for (1.7)

Application of Theorem 1.2 Let ⌦ = (0, a)2, a > 0, and h = a

n+1
for a positive integer n.

Also, let hx ⇥ hy be the uniform grid of ⌦, where hx : 0 = x0 < x1 < · · · < xn < xn+1 = a,
and hy : 0 = y0 < y1 < · · · < yn < yn+1 = a.

The finite di↵erence method approximates the values of v and w in (1.4) at the grid points
{(xi, yj) : i, j = 1, ..., n}. In particular, we use central di↵erence formula to discritize the
spatial derivatives in (1.4) to get

v
0
i,j =

4wi,j � wi�1,j � wi+1,j � wi,j�1 � wi,j+1

h2
,(3.1a)

w
0
i,j =

�4vi,j + vi�1,j + vi+1,j + vi,j�1 + vi,j+1

h2
(3.1b)

+ ⇢
�4wi,j + wi�1,j + wi+1,j + wi,j�1 + wi,j+1

h2
+ ui,j ,

where vi,j , wi,j , ui,j are the approximations of v, w, u at (xi, yj), respectively. With respect to
the finite di↵erence (FDM) scheme, the FDM approximating matrix to the generator

(3.2) A =


0 A

�A �⇢A

�

of the system (1.4) is given as

(3.3) AFD,N =


0N DN

�DN �⇢DN

�
,
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where N = n
2 and DN is the N ⇥N block matrix given by

(3.4) DN =
1

h2

2

66666664

Fn �In 0n · · · 0n

�In
. . .

. . .
. . .

...

0n

. . .
. . .

. . . 0n

...
. . .

. . .
. . . �In

0n · · · 0n �In Fn

3

77777775

.

Here, In and 0n are the n ⇥ n identity and zero matrices, respectively, and Fn is the n ⇥ n

matrix given by

Fn =

2

66666664

4 �1 0 · · · 0

�1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . �1

0 · · · 0 �1 4

3

77777775

.

Given arbitrary [f, g] 2 R2N and ⇣ 2 L
2(0, T ;RN ), if we set

(3.5)


⇠(t)
⇠̃(t)

�
= e

AFD,N t


f

g

�
+

Z
t

0

e
AFD,N (t�s)


0
⇣(s)

�
ds,

then the variables [⇠(t), ⇠̃(t)] satisfy the following ODE system:

⇠
0
(t) = DN ⇠̃(t),(3.6a)

⇠̃
0
(t) = �DN (⇠(t) + ⇢⇠̃(t)) + ⇣(t),(3.6b)

[⇠(0), ⇠̃(0)] = [f, g] 2 R2N
.(3.6c)

Observe that (3.6) is equivalent to the semidiscrete finite di↵erence scheme of (1.4), that is
[vN ,wN ]

v
0
N (t) = DNwN (t),(3.7a)

w
0
N (t) = �DN (vN (t) + ⇢wN (t)) + uN (t),(3.7b)

[vN (0),wN (0)] = [v0,N ,w0,N ] 2 R2N
,(3.7c)
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where

vN (t) =

2

666666666666666666664

⇠1,1(t)
...

⇠1,n(t)
⇠2,1(t)

...
⇠2,n(t)

...

...
⇠n,1(t)

...
⇠n,n(t)

3

777777777777777777775

; wN (t) =

2

6666666666666666666664

⇠̃1,1(t)
...

⇠̃1,n(t)
⇠̃2,1(t)

...
⇠̃2,n(t)

...

...
⇠̃n,1(t)

...
⇠̃n,n(t)

3

7777777777777777777775

; uN (t) =

2

666666666666666666664

⇣1,1(t)
...

⇣1,n(t)
⇣2,1(t)

...
⇣2,n(t)

...

...
⇣n,1(t)

...
⇣n,n(t)

3

777777777777777777775

;

v0,N =

2

666666666666666666664

f1,1(t)
...

f1,n(t)
f2,1(t)

...
f2,n(t)

...

...
fn,1(t)

...
fn,n(t)

3

777777777777777777775

; w0,N =

2

666666666666666666664

g1,1(t)
...

g1,n(t)
g2,1(t)

...
g2,n(t)

...

...
gn,1(t)

...
gn,n(t)

3

777777777777777777775

.

Here, ⇠i,j(t), ⇠̃i,j(t), ⇣i,j(t), fi,j(t), gi,j(t) are the approximations of ⇠, ⇠̃, ⇣, f, g at (xi, yj , t), re-
spectively. In the following Theorem, we state our first result which gives the existence of null
controllers for the finite di↵erence method (FDM) approximating system (3.7) that satisfies
the required blow up estimate in Theorem 1.1.

Theorem 3.1. Let terminal time T > 0 be arbitrarily small. Then for the finite dimensional
system (3.7) which approximates (1.4) there exists a sequence of null controllers {u

⇤
N
} ⇢

L
2(0, T ;RN ), built upon the recipe provided in [19], that converges weakly to u

⇤ as N ! 1

and obtains the following estimate uniformly in N:

(3.8)
⇣Z

T

0

ku
⇤
N (t)k2RN dt

⌘ 1
2
 CT

� 3
2 k[v0,N ,w0,N ]kR2N ,

where the constant C is independent of N.

Proof. Our proof hinges on showing that the hypotheses of Theorem 1.2 are satisfied under
the setting of finite di↵erence (FDM) approximation scheme.

The Kalman matrix of the system (3.7) is defined as the 2⇥ 2 block matrix

(3.9) KN = [BN ,AFD,NBN ] =


0N DN

IN �⇢DN

�
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where BN =


0N

IN

�
, AFD,N is the FDM approximating matrix given in (3.3), DN is the ma-

trix in (3.4). In order to show that the requirements (A1)-(A3) of Theorem 1.2 holds, we
will give the proof in two steps:

Step 1: Appealing to the theory of invertibility of 2 ⇥ 2 block matrices in [15], we observe
that the Kalman matrix KN defined in (3.9) will be invertible provided that the matrix DN

(see (3.4)) is invertible. Since it can easily be proved that DN is a symmetric positive definite
matrix it will be invertible which also yields that KN is invertible with inverse

(3.10) K
�1

N
=


⇢IN IN

D
�1

N
0N

�
.

Using the Invertible Matrix Theorem we also infer that KN will have the full rank 2N which
proves the first requirement (A1) of Theorem 1.2 with index k = 1. To show that the matrix
norm of the inverse matrix K

�1

N
has a uniform bound that is independent of N , we use the

special characterization of the matrix DN (see [14] for details)

(3.11) DN =
1

h2
(In ⌦ En + En ⌦ In),

where En is the n⇥ n matrix defined as

En =

2

66666664

2 �1 0 · · · 0

�1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . �1

0 · · · 0 �1 2

3

77777775

.

The eigenvalues of DN [14] are given as

{�i,j =
1

h2

�
4� 2

�
cos

� i⇡

n+ 1

�
+ cos

� j⇡

n+ 1

���
: 1  i, j  n}.

It can be observed that �i,j > 0 for all 1  i, j  n, and the smallest eigenvalue for DN is

�1,1 =
4

h2

�
1� cos

� ⇡

n+ 1

��
=

8 sin2
�
h⇡

2a

�

h2
!

2⇡

a2
as h ! 0,

which yields that the eigenvalues of the symmetric positive definite matrix D
�1

N
will be

bounded above uniformly in N and

kD
�1

N
k  C,

where the constant C is independent of N . Consequently, if


x1

x2

�
2 R2N , then we have that

����K
�1

N


x1

x2

�����
2

R2N

= k⇢x1 + x2k
2

RN + kD
�1

N
x1k

2

RN

 max(1, ⇢)(kx1k
2

RN + kx2k
2

RN ) + kD
�1

N
k
2
kx1k

2

RN

 max(1, ⇢)(kx1k
2

RN + kx2k
2

RN ) + C
2(kx1k

2

RN + kx2k
2

RN )

 C̃(kx1k
2

RN + kx2k
2

RN )



12 P. G. GEREDELI, C. GIVENS AND A. ZYTOON

where C̃ = 2max(1, ⇢, C2) is independent of N . This finishes the proof of requirement (A2)
in Theorem 1.2.

Step 2: Since the Kalman rank condition is satisfied with index k = 1, in this step, we
will show that there are constants Dj (j = 0, 1) which satisfy (uniformly in N) the following
inequalities:

(3.12) kA
j

FD,N
e
AFD,N t

k 
Dj

tj
, j = 0, 1.

We start with the case j = 0 : For this, we will show that the operator AFD,N is maximal
disipative:

a) Dissipativity: For [f, g] 2 R2N
,

⌧
AFD,N


f

g

�
,


f

g

��
= hDNg, fi � hDNf, gi � ⇢ hDNg, gi

= �⇢

���D1/2

N
g

���  0

(b) Maximality: Given [f, g] 2 R2N
, we consider the equation

[�I2N �AFD,N ]


vN

zN

�
=


f

g

�
.

This becomes
�vN �DNzN = f

�zN +DNvN + ⇢DNzN = g

which after applying �DN to the first equation, and multiplying the second one by � gives

��DNvN +D
2

NzN = �DNf

�
2
zN + �DNvN + ⇢�DNzN = �g

and we get
�
2
zN +D

2

NzN + ⇢�DNzN = �g �DNf.

Since Null(�2IN +D
2

N
+ ⇢�DN ) is empty then

zN = (�2IN +D
2

N + ⇢�DN )�1[�g �DNf ]

and

vN =
1

�
DN (�2IN +D

2

N + ⇢�DN )�1[�g �DNf ] +
1

�
f

this finishes the maximality of AFD,N . Since {e
AFD,N t

}t2R is a group of contractions, then

(3.13)
��eAFD,N t

��  1, for every t > 0, n 2 N
and the required estimate for the case j = 0 is obtained with the constant D0 = 1.

The case j = 1 is analyzed in a similar way to the argument given in the proof of [1, Theorem
4 (b)]. ⇤
Remark 3.2. By means of a limiting process, it can be justified from Theorem 2.1 that
there exists a null controller u⇤ = limn!1u

⇤
N

to the elastic plate system that satisfies (2.9).
Moreover, this control function will manifest the same asymptotics as that for the associated
minimal energy function Emin(T ).



NULL CONTROLLABILITY FEM VS FDM 13

4. Implementations of Numerical Schemes

This section is devoted to providing the algorithmic description of the finite element method
(FEM) and finite di↵erence method (FDM) schemes applied mainly on the system (1.4)
or the finite dimensional systems (2.8) and (3.7), respectively. We start with the FEM
approximations.

4.1. Implementation of the finite element method (FEM). Approximating solutions
to (1.4), using the finite element method will require time discretization of the variational
formulation (2.8). For this, let �t > 0 be a given time step and assume that u

j+1

N
2 VN

represents an approximation of u
⇤
N
(t) at t = tj+1 := (j + 1)�t. Then the fully-discrete

scheme of (2.8) reads: for j = 0, 1, 2, ..., let v
j

N
, w

j

N
, u

j+1

N
2 VN be given. Find v

j+1

N
, w

j+1

N

such that

(vj+1

N
, N ) = �t(rw

j+1

N
,r N ) + (vj

N
, N ), 8 N 2 VN ,

(4.1a)

(wj+1

N
,'N ) = (wj

N
,'N )��t((rv

j+1

N
,r'N ) + ⇢(rw

j+1

N
,r'N )� (uj+1

N
,'N )), 8'N 2 VN .

(4.1b)

It is easy to show that (4.1) has a unique solution v
j+1

N
, w

j+1

N
provided that �t <

1

⇢
, and

this solution is the approximation to the solution of (1.4) at t = tj+1. The crux of the

computations is to compute the approximation to the null controller u
j+1

N
. With respect to

the recipe given in (1.10) to construct the approximate controllers, we remind the following
notation: In finite element method (FEM) approximation scheme, with respect to (2.7), the
Kalman matrix KN and its inverse K

�1

N
are given by

(4.2) KN = [BN ,AFE,N ] =


0N M

�1

N
SN

IN �⇢M
�1

N
SN

�
, K

�1

N
=


⇢IN IN

S
�1

N
MN 0N

�

where BN =


0N

IN

�
, AFE,N is the FEM approximation matrix (see (2.5)) to the generator

defined in (2.4), and MN , SN are the mass and sti↵ness matrices defined in (2.2) and (2.3),
respectively. With the above notation now, referring to the formula (1.10) for the construction
of approximate controllers, we use the following:

Taking AN = AFE,N as the FEM approximation matrix, the scalar valued function fT (t)
as

(4.3) fT (t) =
t
k(T � t)k

CT,k

, CT,k =

Z
T

0

t
k(T � t)k dt,

and

(4.4) µN (t) =

2

666664

µ0(t)
µ1(t)
µ2(t)
...

µk(t)

3

777775
= �K

�1

N
e
AFE,N t


v0,N

w0,N

�
fT (t), 0  t  T,

where each component µj is an N�vector, we have then the approximate controllers

(4.5) u
⇤
N (t) = µ0(t) + µ

0
1(t) + µ

00
2(t) + · · ·+ µ

(k)

k
(t).
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We know that eAFE,N t


v0,N

w0,N

�
represents the solution to the homogeneous variational formu-

lation (2.8) (without the null controller term). That is,

e
AFE,N t


v0,N

w0,N

�
=


vN,h(t)
wN,h(t)

�

where vN,h(t), wN,h(t) 2 VN satisfies (for all t > 0):

(v
0
N,h

(t), N ) = (rwN,h(t),r N ), 8 N 2 VN ,(4.6a)

(w
0
N,h

(t),'N ) = �(rvN,h(t),r'N )� ⇢(rwN,h(t),r'N ), 8'N 2 VN ,(4.6b)

[vN,h(0), wN,h(0)] = [v0,N , w0,N ] 2 VN ⇥ VN .(4.6c)

To approximate vN,h(t), wN,h(t) in (4.6) at t = tj+1 , we discretize (4.6) in time with the
same time stepping �t used in (4.1) to get the following variational formulation:
For j = 0, 1, 2, ..., let vj

N,h
, w

j

N,h
2 VN be given. Find v

j+1

N,h
, w

j+1

N,h
such that

(vj+1

N,h
, N ) = �t(rw

j+1

N,h
,r N ) + (vj

N,h
, N ), 8 N 2 VN ,(4.7a)

(wj+1

N,h
,'N ) = (wj

N,h
,'N )��t((rv

j+1

N,h
,r'N ) + ⇢(rw

j+1

N,h
,r'N )), 8'N 2 VN .(4.7b)

Then, by the above setting, we get

(4.8)

µN (t) =


µ0(t)
µ1(t)

�
=


�⇢IN �IN

�S
�1

N
MN 0N

� 
vN,h(t)
wN,h(t)

�
fT (t) =


�(⇢vN,h(t) + wN,h(t))fT (t)

�S
�1

N
MNvN,h(t)fT (t)

�
,

where

fT (t) =
6t(T � t)

T 3
,

and T is a given terminal time. Since

u
⇤
N (t) = µ0(t) + µ

0
1(t),

we turn our attention to approximate µ0(t) and µ
0
1
(t) at t = tj+1, j = 0, 1, 2, .... We approx-

imate µ0(t) at t = tj+1 by

(4.9) µ0(tj+1) ⇡ µ
j+1

0,N
:= �(⇢vj+1

N,h
+ w

j+1

N,h
)fT (tj+1).

Since

µ
0
1(t) = �S

�1

N
MN (v

0
N,h

(t)fT (t) + vN,h(t)f
0
T (t)),

then for a fixed t > 0, µ
0
1
(t) can be understood as the solution to the following variational

formulation: Find µ
0
1
(t) 2 VN such that

(4.10) (rµ
0
1(t),r N ) = �(G(t), N ), 8 N 2 VN ,

where

G(t) = v
0
N,h

(t)fT (t) + vN,h(t)f
0
T (t).
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Because we are interested in approximating µ
0
1
(t) at t = tj+1, j = 0, 1, 2, ..., we approximate

G(t) at t = tj+1 by

(4.11) G(tj+1) ⇡ G
j+1

N
:=

(vj+2

N,h
� v

j+1

N,h
)

�t
fT (tj+1) + v

j+1

N,h
f

0
T (tj+1),

hence, we approximate µ
0
1
(t) at t = tj+1 by (µj+1

1,N
)0, where (µj+1

1,N
)0 solves the following varia-

tional formulation : Find (µj+1

1,N
)0 2 VN such that

(4.12) (r(µj+1

1,N
)0,r N ) = �(Gj+1

N
, N ), 8 N 2 VN .

Finally, we take u
j+1

N
:= µ

j+1

0,N
+ (µj+1

1,N
)0 to be the approximation of the null controller at

t = tj+1 and use it in (4.1). Now, we provide an algorithm to summarize our implementation
of the finite element method to solve (1.4):

Algorithm 1 : Let T > 0 (terminal time), m 2 N (m � 2 is number of time stepping),
and ⇢ > 2 be user selected. Set �t = T

m
, and [v0

N
, w

0

N
] = [v0

N,h
, w

0

N,h
] = [v0,N , w0,N ].

Then for j = 0, 1, 2, ...,m� 1:

(1) Construction of uj+1

N
: Solve (4.7) to find a solution [vj+1

N,h
, w

j+1

N,h
] and then use

it again in (4.7) to find [vj+2

N,h
, w

j+2

N,h
], that is: Find [vj+2

N,h
, w

j+2

N,h
] 2 VN ⇥ VN such

that

(vj+2

N,h
, N ) = �t(rw

j+2

N,h
,r N ) + (vj+1

N,h
, N ), 8 N 2 VN ,(4.13a)

(wj+2

N,h
,'N ) = (wj+1

N,h
,'N )��t((rv

j+2

N,h
,r'N ) + ⇢(rw

j+2

N,h
,r'N )), 8'N 2 VN .

(4.13b)

Set

µ
j+1

0,N
= �(⇢vj+1

N,h
+ w

j+1

N,h
)fT (tj+1),(4.14a)

G
j+1

N
=

(vj+2

N,h
� v

j+1

N,h
)

�t
fT (tj+1) + v

j+1

N,h
f

0
T (tj+1).(4.14b)

Use G
j+1

N
(obtained in (4.14b)) to find (µj+1

1,N
)0 2 VN by solving the variational

formulation

(4.15) (r(µj+1

1,N
)0,r N ) = �(Gj+1

N
, N ), 8 N 2 VN .

Then set

(4.16) u
j+1

N
= µ

j+1

0,N
+ (µj+1

1,N
)0.

(2) Find [vj+1

N
, w

j+1

N
]: Use u

j+1

N
(obtained in (4.16)) to find [vj+1

N
, w

j+1

N
] by solving

the variational formulation (4.1), that is: Find [vj+1

N
, w

j+1

N
] such that 8 [ N ,'N ] 2

VN ⇥ VN ,

(vj+1

N
, N ) = �t(rw

j+1

N
,r N ) + (vj

N
, N ),(4.17a)

(wj+1

N
,'N ) = (wj

N
,'N )��t((rv

j+1

N
,r'N ) + ⇢(rw

j+1

N
,r'N )� (uj+1

N
,'N )).(4.17b)
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4.2. Implementation of the Finite Di↵erence Method (FDM). Similar to the FEM
implementation, approximating solutions to (1.4) using the finite di↵erence method will re-
quire time discretization of the finite di↵erence scheme (3.7). Given a time step �t > 0 as-
sume that uj+1

N
2 RN is the vector whose components represent the approximation of u⇤

N
(t)

at t = tj+1 and the grid points (xi, yj) as labelled in (3.7). Then the fully-discrete scheme of

(3.7) reads: For j = 0, 1, 2, ..., let vj

N
,wj

N
,uj+1

N
2 RN be given. Find vj+1

N
,wj+1

N
2 RN such

that

vj+1

N
��tDNwj+1

N
= vj

N
,(4.18a)

wj+1

N
+�tDN (vj+1

N
+ ⇢wj+1

N
) = �tuj+1

N
+wj

N
.(4.18b)

The solution vj+1

N
,wj+1

N
to (4.18) are the vectors whose components represent the approxi-

mation to the solution of (1.4) at t = tj+1 and the grid points (xi, yj) as labelled in (3.7).
Observe that (4.18) can be written as a linear 2⇥ 2 block system Ax = b, where

A =


IN ��tDN

�tDN IN + ⇢�tDN

�
; x =


vj+1

N

wj+1

N

�
; b =


vj

N

�tuj+1

N
+wj

N

�
.

The system (4.18) has a unique solution if the 2N⇥2N matrixA is invertible. Since the Schur
complement of A will be the matrix IN +⇢�tDN +(�tDN )2 which is invertible, appealing to
the theory of 2⇥2 matrices we infer that the matrix A is invertible. For a detailed discussion,
we refer the reader to [15].
Similar to the finite element scheme, the crux of the computations is to compute the approx-
imation to the null controller uj+1

N
.With respect to the recipe given in (1.10) to construct the

approximate controllers, we define the following matrices:
In finite di↵erence method (FDM) approximation scheme, with respect to (3.6), the Kalman
matrix KN and its inverse K�1

N
can be computed explicitly in terms of the matrix DN defined

in (3.4):

(4.19) KN = [BN ,BNAFD,N ] =


0N DN

IN �⇢DN

�
, K

�1

N
=


⇢IN IN

D
�1

N
0N

�
.

Here BN =


0N

IN

�
, and AFD,N is the FDM approximation matrix (3.3) to the generator

defined in (3.2). With the above notation now, referring to the formula (1.10) for the con-
struction of approximate controllers, we take AN = AFD,N as the FDM approximation
matrix, the scalar valued function fT (t) as

(4.20) fT (t) =
t
k(T � t)k

CT,k

, CT,k =

Z
T

0

t
k(T � t)k dt,

and

(4.21) µN (t) =

2

666664

µ0(t)
µ1(t)
µ2(t)
...

µk(t)

3

777775
= �K

�1

N
e
AFD,N t


v0,N

w0,N

�
fT (t), 0  t  T.
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Observe that eAN t
YN,0 in (1.10) becomes eAFD,N t


v0,N
w0,N

�
in the finite di↵erence setting, and

it represents the solution to the finite di↵erence scheme (3.7) without the null controller term.
That is,

e
AFD,N t


v0,N
w0,N

�
=


vN,h(t)
wN,h(t)

�
,

where vN,h(t),wN,h(t) 2 RN satisfies (for all t > 0):

v
0
N,h

(t) = DNwN,h(t),(4.22a)

w
0
N,h

(t) = �DN (vN,h(t) + ⇢wN,h(t)),(4.22b)

[vN (0),wN (0)] = [v0,N ,w0,N ] 2 R2N
.(4.22c)

To approximate vN,h(t),wN,h(t) in (4.22) at t = tj+1 , we discretize (4.22) in time using the
same time stepping �t we used in (4.18) to get the following finite di↵erence scheme: For
j = 0, 1, 2, ..., let vj

N,h
,wj

N,h
2 RN be given. Find vj+1

N,h
,wj+1

N,h
2 RN such that

vj+1

N,h
��tDNwj+1

N,h
= vj

N
,(4.23a)

wj+1

N,h
+�tDN (vj+1

N,h
+ ⇢wj+1

N,h
) = wj

N,h
.(4.23b)

Observe that the null control formula in the finite di↵erence setting becomes

µ(t) =


µ0(t)
µ1(t)

�
=


�⇢IN �IN

�D
�1

N
0N

� 
vN,h(t)
wN,h(t)

�
fT (t)

(4.24) =


�(⇢vN,h(t) +wN,h(t))fT (t)

�D
�1

N
vN,h(t)fT (t)

�
,

where

fT (t) =
6t(T � t)

T 3
,

and T is a given terminal time. Since

u
⇤
N (t) = µ0(t) + µ

0
1(t),

we turn our attention to approximate µ0(t) and µ
0
1
(t) at t = tj+1, j = 0, 1, 2, ... We approxi-

mate µ0(t) at t = tj+1 by

(4.25) µ0(tj+1) ⇡ µj+1

0,N
:= �(⇢vj+1

N,h
+wj+1

N,h
)fT (tj+1).

Since

µ
0
1(t) = �D

�1

N
(v

0
N,h

(t)fT (t) + vN,h(t)f
0
T (t)),

then for a fixed t > 0, µ
0
1
(t) can be visualized as the solution to the following finite di↵erence

scheme:

(4.26) DNµ
0
1(t) = �G(t),

where

G(t) = v
0
N,h

(t)fT (t) + vN,h(t)f
0
T (t).
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Since we are interested in approximating µ
0
1
(t) at t = tj+1, j = 0, 1, 2, ..., we approximate

G(t) at t = tj+1 by

(4.27) G(tj+1) ⇡ Gj+1

N
:=

(vj+2

N,h
� vj+1

N,h
)

�t
fT (tj+1) + vj+1

N,h
f

0
T (tj+1),

Using (4.27) we now approximate µ
0
1
(t) at t = tj+1 by (µj+1

1,N
)0, where (µj+1

1,N
)0 solves the

following finite di↵erence scheme:

(4.28) DN (µj+1

1,N
)0 = �Gj+1

N
,

Finally, we take uj+1

N
:= µj+1

0,N
+ (µj+1

1,N
)0 to be the approximation of the null controller at

t = tj+1 and use it in (4.18). We provide an algorithm to summarize our implementation of
the finite di↵erence method to solve (1.4):

Algorithm 2 : Let T > 0 (terminal time), m 2 N (m � 2 is number of time stepping),
and ⇢ > 2 be user selected. Set �t = T

m
, and [v0

N
,w0

N
] = [v0

N,h
,w0

N,h
] = [v0,N ,w0,N ].

Then for j = 0, 1, 2, ...,m� 1:

(1) Construction of uj+1

N
: Solve (4.23) to find the solution [vj+1

N,h
,wj+1

N,h
] and then

use this solution again in (4.23) to find [vj+2

N,h
,wj+2

N,h
]. That is,

find [vj+2

N,h
,wj+2

N,h
] 2 RN

⇥ RN such that

vj+2

N,h
��tDNwj+2

N,h
= vj+1

N,h
,(4.29a)

wj+2

N,h
+�tDN (vj+2

N,h
+ ⇢wj+2

N,h
) = wj+1

N,h
.(4.29b)

Set

µj+1

0,N
= �(⇢vj+1

N,h
+wj+1

N,h
)fT (tj+1),(4.30a)

Gj+1

N
=

(vj+2

N,h
� vj+1

N,h
)

�t
fT (tj+1) + vj+1

N,h
f

0
T (tj+1).(4.30b)

Use Gj+1

N
(obtained in (4.30b)) to find (µj+1

1,N
)0 2 RN by solving

(4.31) DN (µj+1

1,N
)0 = �Gj+1

N
.

Then set

(4.32) uj+1

N
:= µj+1

0,N
+ (µj+1

1,N
)0.

(2) Find [vj+1

N
,wj+1

N
]: Use uj+1

N
(obtained in (4.32)) to find [vj+1

N
,wj+1

N
] by solving

the system (4.18). That is, find [vj+1

N
,wj+1

N
] such that

vj+1

N
��tDNwj+1

N
= vj

N
,(4.33a)

wj+1

N
+�tDN (vj+1

N
+ ⇢wj+1

N
) = �tuj+1

N
+wj

N
.(4.33b)

5. Numerical Experiments

In this section, we perform some numerical experiments and compare the results with the
theoretical ones given in the previous sections. We consider an example where the data is
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Table 1. Errors and rates of convergence for example (5.1) with time step
�t = 0.2 using Algorithm 1.

T kvN,h(T )k2 + kwN,h(T )k2 rate ku
⇤
h
kL2(L2(⌦);0,T ) rate

21 5.6144E-02 – 2.8778E-01 –
22 1.5294E-02 1.876 8.0441E-02 1.838
23 3.9255E-03 1.962 2.1203E-02 1.923
24 9.9397E-04 1.981 5.4391E-03 1.962
25 2.5006E-04 1.991 1.3771E-03 1.981
26 6.2713E-05 1.995 3.4646E-04 1.991

Table 2. Errors and rates of convergence for example (5.1) with time step
�t = 0.1 using Algorithm 1.

T kvN,h(T )k2 + kwN,h(T )k2 rate ku
⇤
h
kL2(L2(⌦);0,T ) rate

21 4.2633E-02 – 3.0454E-01 –
22 1.1209E-02 1.927 8.4262E-02 1.854
23 2.8385E-03 1.981 2.2117E-02 1.929
24 7.1412E-04 1.991 5.6627E-03 1.966
25 1.7909E-04 1.995 1.4324E-03 1.983
26 4.4843E-05 1.998 3.6021E-04 1.992

taken to be ⌦ = (0,⇡)2, ⇢ = 5

2
and the initial condition to (1.4) is given as

✓
v0(x, y)
w0(x, y)

◆
=

✓
0

3

2
sin(2x) sin(2y)

◆
(5.1)

We use the exact solution to the homogeneous part of the system (1.4) which is derived in
Section 7.

5.1. Finite element scheme. By the use of Algorithm 1,

(vN,h(t), wN,h(t)) ⇡ (vN (t), wN (t)) and u
⇤
h
(t) ⇡ uN (t),

in tables 1, 2, and 3, denote the computed solution pair and the null controller for (1.4),
respectively. The mesh size is taken to be h = 1

32
(or N = 3338) on a Delaunay triangulation

using continuous functions on TN that are polynomials of degree one when restricted to any
element K 2 TN .

Tables 1 and 2 show that (vN,h(T ), wN,h(T )) ! 0 when T is relatively big. Recall that
the formula in (1.10) is an approximation to the control function that will lead the solution
(vN (t), wN (t)) ! (0, 0).

Table 3 shows that the computed null control obeys the blowup rate in Theorem 2.1 as
T ! 0. Also, the logarithmic graph in Figure 2 shows that the blowup rate for the computed

null control u⇤
h
(t) is similar to the graph of y = x

�3
2 .
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Table 3. Errors and rates of convergence for example (5.1) with time step
�t = 1

1536
using Alg. 1.

T kvN,h(T )k2 + kwN,h(T )k2 rate ku
⇤
h
kL2(L2(⌦);0,T ) rate

2�4 1.0363E 00 – 2.0955E+01 –
2�5 1.3295E 00 -0.35 3.5071E+01 -0.74
2�6 1.5819E 00 -0.25 5.7895E+01 -0.72
2�7 2.0669E 00 -0.38 1.0233E+02 -0.82
2�8 3.7593E 00 -0.86 2.1864E+02 -1.09
2�9 1.1112E+01 -1.56 6.2465E+02 -1.51

10�2.5 10�2 10�1.5

100

101

102

103

104

T

kvN,h(T )k2 + kwN,h(T )k2

ku
⇤
h
kL2(L2(⌦);0,T )

y = x
�3/2

Figure 2. Logarithmic plots of kvN,h(T )k2+kwN,h(T )k2 vs. ku⇤hkL2(L2(⌦);0,T )

vs.y = x
�3/2 using Alg. 1.

5.2. Finite di↵erence scheme. By using Algorithm 2,

(vN,h(t), wN,h(t)) ⇡ (vN (t), wN (t)) and u
⇤
h
(t) ⇡ uN (t)

denote the computed solution pair and the null controller for (1.4), respectively in tables 4,
5, and 6. The grid size is taken to be n = 32.

Tables 4 and 5 show that (vN,h(T ), wN,h(T )) ! 0 as T gets large. Recall that the formula
in (1.10) is an approximation to the control that will lead the solution (vN (t), wN (t)) ! (0, 0).
Table 6 shows that the computed null control fluctuates around the blowup rate in Theorem
3.1 as T ! 0. Also, the logarithmic graph in Figure 3 shows that the blowup rate for the

computed null control u⇤
h
(t) is similar to the graph of y = x

�3
2 .
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Table 4. Errors and rates of convergence for example (5.1) with time step
�t = 0.2 using Alg. 2.

T kvN,hk
2

RN + kwN,hk
2

RN rate ku
⇤
h
k(R2N ;0,T ) rate

21 4.7354E-06 – 2.1344E 00 –
22 0.0000E 00 – 5.8009E-01 1.879
23 0.0000E 00 – 1.5152E-01 1.937
24 0.0000E 00 – 3.8729E-02 1.968
25 0.0000E 00 – 9.7906E-03 1.984
26 0.0000E 00 – 2.4613E-03 1.992

Table 5. Errors and rates of convergence for example (5.1) with time step
�t = 0.1 using Alg. 2.

T kvN,hk
2

RN + kwN,hk
2

RN rate ku
⇤
h
kL2(L2(⌦);0,T ) rate

21 3.9361E-06 – 3.6379E 00 –
22 0.0000E 00 – 9.5927E-01 1.923
23 0.0000E 00 – 2.4645E-01 1.961
24 0.0000E 00 – 6.2465E-02 1.980
25 0.0000E 00 – 1.5724E-02 1.990
26 0.0000E 00 – 3.9446E-03 1.995

Table 6. Errors and rates of convergence for example (5.1) with time step
�t = 1

1536
using Alg. 2.

T kvN,hk
2

RN + kwN,hk
2

RN rate ku
⇤
h
kL2(L2(⌦);0,T ) rate

2�4 3.5527E+05 – 8.9903E+05 –
2�5 1.5122E+06 -2.090 2.8531E+06 -1.666
2�6 2.6687E+06 -0.819 7.6917E+06 -1.431
2�7 2.9605E+06 -0.150 1.9956E+07 -1.375
2�8 4.2870E+06 -0.534 5.5401E+07 -1.473
2�9 1.2655E+07 -1.561 1.8020E+08 -1.701

6. Conclusion

The approximation of the null controller using both numerical schemes obey the same blow
up rate of O(T�3/2). We also see that while the finite di↵erence scheme (FD) gives better
results approximating the solution at terminal time T , the finite element scheme (FE) is more
stable computing the solution across di↵erent values of T .
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10�2.5 10�2 10�1.5

102

103

104

105

106

107

108

T

kvN,hk
2

RN + kwN,hk
2

RN

ku
⇤
h
kL2(L2(⌦);0,T )

y = x
�3/2

Figure 3. Logarithmic plots of kvN,hk
2

RN + kwN,hk
2

RN vs. ku
⇤
h
kL2(L2(⌦);0,T )

vs.y = x
�3/2 using Alg. 2.

7. A Numerical Test Problem

In this section, we will derive an exact solution to problem (1.4) without the controller
term u, that is

(7.1)
d

dt


v

w

�
= A


v

w

�
,


v(0)
w(0)

�
=


v0

w0

�
=


A!0

!1

�
2 L

2(⌦)⇥ L
2(⌦).

where

(7.2) A =


0 A

�A �⇢A

�

and the operator A is the Laplacian defined in (1.3). The unique solution to (7.1) is given by

(7.3)


v(t)
w(t)

�
= e

At


v0

w0

�

In order to derive an explicit solution to (7.3), we need to compute the exponential matrix

e
At. Let {�i,�i}

1
i=1

be the eigenvalues and orthonormal eigenvectors for the operator A

defined in (7.2). Then

y(t) =


v(t)
w(t)

�

must solve y
0
(t) = Ay(t). Since

y(t) =

P
i
↵i(t)�iP

i
�i(t)�i

�

for some functions ↵i, �i we then have

(7.4)
d

dt

P
i
↵i(t)�iP

i
�i(t)�i

�
=


0 A

�A �⇢A

� P
i
↵i(t)�iP

i
�i(t)�i

�
.
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By orthonormality, 8i = 1, 2, 3, ...,

(7.5)
d

dt

P
i
↵i(t)�iP

i
�i(t)�i

�
= Mi


↵i(t)�i
�i(t)�i

�
,

where

(7.6) Mi =


0 �i

��i �⇢�i

�
i = 1, 2, 3, ...

The eigenpairs for Mi are

(7.7) {⌘i,1,


�

⇢

2
+ 1

2

p
⇢2 � 4

1

�
} [ {⌘i,2,


�

⇢

2
�

1

2

p
⇢2 � 4

1

�
}

where

⌘i,1 = �
�i

2

�
⇢+

p
⇢2 � 4

�
,

⌘i,2 = �
�i

2

�
⇢�

p
⇢2 � 4

�
.

Denoting the similarity matrix

(7.8) S =


�

⇢

2
+ 1

2

p
⇢2 � 4 �

⇢

2
�

1

2

p
⇢2 � 4

1 1

�

using the change of variables Sz = y, and the diagonalization argument gives us

Sz
0
= y

0
= MiSz.

or
z
0
= S

�1
MiSz = ⇤z

where

⇤ =


⌘i,1 0
0 ⌘i,2

�
, z =


ci,1e

⌘i,1t

ci,2e
⌘i,2t

�

Here 
ci,1

ci,2

�
= z(0) = S

�1
y(0)

are constants. Observe that the constants ci,1, ci,2 can be found explicitly for i = 1, 2, ... as

(7.9)


ci,1

ci,2

�
= S

�1


↵i(0)
�i(0)

�
=

1p
⇢2 � 4

"
↵i(0) +

�i(0)

2

�
⇢+

p
⇢2 � 4

�

�↵i(0)�
�i(0)

2

�
⇢�

p
⇢2 � 4

�
#
.

Subsequently, we have an explicit formula for


↵i(t)
�i(t)

�
as

(7.10)


↵i(t)
�i(t)

�
= S


ci,1e

⌘i,1t

ci,2e
⌘i,2t

�
,

From (7.10), the solution y(t) in (7.3) can be written explicitly as

(7.11) y(t) =


v(t)
w(t)

�
= e

At


v0

w0

�
=

1X

i=1


↵i(t)�i
�i(t)�i

�
.

Now, let ⌦ = (0,⇡)2 and consider the problem
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(7.12)
d

dt


v(t)
w(t)

�
= A


v(t)
w(t)

�
,


v(., 0)
w(., 0)

�
=


0

sin(2x) sin(2y)

�
.

Recall that the Dirichlet Laplacian eigenpairs in ⌦ are

{�mn = m
2 + n

2
, �mn =

2

⇡
sin(mx) sin(ny)}1m,n=1.

The initial data will be associated with

�22 = 22 + 22 = 8, �22 =
2

⇡
sin(2x) sin(2y),

and subsequently we have for i, j = 1, 2, ...

↵i,j(0) = 0, �i,j(0) =

⇢
⇡

2
, i = 0 = j

0, otherwise

Hence, the use of (7.9) and (7.10) would give us the functions


↵i,j(t)
�i,j(t)

�
.

Now, we are in position to explicitly write the exact solution for the problem (7.12) which
will be used in our numerical experiments:
(7.13)

v(t)
w(t)

�
=

2

4

⇣
e
�4t(⇢�

p
⇢2�4)

� e
�4t(⇢+

p
⇢2�4)

⌘
sin(2x) sin(2y)

⇣⇣p
⇢2�4

2
+ ⇢

2

⌘
e
�4t(⇢+

p
⇢2�4) +

⇣p
⇢2�4

2
�

⇢

2

⌘
e
�4t(⇢�

p
⇢2�4)

⌘
sin(2x) sin(2y)

3

5 .

If we take ⇢ = 5

2
, then the expression (7.13) simplifies to

(7.14)


v(t)
w(t)

�
=

2

4

⇣
e
�4t

� e
�16t

⌘
sin(2x) sin(2y)

⇣
2e�16t

�
1

2
e
�4t

⌘
sin(2x) sin(2y)

3

5 .

Remark 7.1. We emphasize that the damping parameter restriction ⇢ 6= 2 will not change
our conclusion for this section. For example, taking ⇢ = 2 in (7.7) will change the form of
the similarity transformation, but not the final conclusion.
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Department of Mathematics, Iowa State University, Ames, IA 50011
Email address: peling@iastate.edu
Email address: cmgivens@iastate.edu
Email address: zytoon@iastate.edu


