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ABSTRACT. In this paper, we consider a structurally damped elastic equation under hinged
boundary conditions. Fully-discrete numerical approximation schemes are generated for
the null controllability of these parabolic-like PDEs. We mainly use finite element method
(FEM) and finite difference method (FDM) approximations to show that the null controllers
being approximated via FEM and FDM exhibit exactly the same asymptotics of the asso-
ciated minimal energy function. For this, we appeal to the theory originally given by R.
Triggiani [20] for construction of null controllers of ODE systems. These null controllers are
also amenable to our numerical implementation in which we discuss the aspects of FEM and
FDM numerical approximations and compare both methodologies. We justify our theoretical
results with the numerical experiments given for both approximation schemes.

1. Introduction

The partial differential equations (PDESs) of plate dynamics ubiquitously arise in elasticity
to model and describe the oscillations of thin structures with large transverse displacements
[10]. Moreover, researchers of PDE control theory are often interested in devising control
input methodologies by which one can elicit some pre-assigned behavior with respect to
solutions of a given controlled plate or bean PDE system. In the course of constructing such
a control theory for the given damped or undamped plate PDE, its underlying characteristics
-hyperbolic or parabolic- must necessarily be taken into account [13].

For example, whereas in hyperbolic equations, we have the notion of finite speed of prop-
agation and evolution of singularities, the parabolic equations posses infinite speed of propa-
gation and smoothing effect. In consequence, the notion of exact controllability-i.e., steering
initial data to any finite energy state at some time (large enough) - is a reasonable object of
study for hyperbolic problems. On the other hand, the null controllability problem- steering
the initial data to the zero state at any time- makes sense for parabolic problems due to their
smoothing effects.

In particular, there has been a great interest in studying the null controllability of infi-
nite dimensional systems [1, 2, 3, 7, 11, 20] with a view towards attaining optimal estimates
for norms of minimal norm steering controls. In particular, null-controllability for deter-
ministic parabolic-like PDE dynamics plays a crucial role in connection with corresponding
stochastic parabolic differential equations. For example, it is known that the notion of null-
controllability is equivalent to the strong Feller property of the semigroup of transition of the
corresponding stochastic differential equation, which is obtained from the deterministic one
by simply replacing the deterministic control with stochastic noise [5, 6, 8].

This manuscript considers certain PDE dynamics which exhibit analytic, or “parabolic-
like” features. Since these dynamics are associated with an infinite speed of propagation
(see [12]), it seems natural to ask: “Is there any control function which steers the solution
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to the zero state after some certain time 7' > 07” This is the problem of “null controlla-
bility”. However, we must distinguish the “null controllability” concept between finite and
infinite dimensional (PDE) systems since while the issue of finding asymptotics for the as-
sociated minimal energy function defined in (1.5) has completely been characterized in the
finite dimensional ODE case [17, 18], the infinite dimensional PDE case is in general an open
problem. [17] provides a formula which describes the growth of the minimal norm control, as
time T"— 0 for ODE dynamics. This result depends on the Kalman’s rank condition, which
is the sufficient and necessary controllability condition in finite dimensions. In the case of
interior boundary control, it was proved in [20] there is a relation between the infinite dimen-
sional asymptotics and finite dimensional truncations such that a priori bounds manifested
by the approximating sequence of null controllers (for finite dimensional system) will lead to
the conclusion of a null controller for the (infinite dimensional) analytic PDE systems under
consideration. It was also shown in [20] that infinite dimensional null controllers will capture
the sharp asymptotics of the associated minimal energy function, which is defined through
the means of minimal norm controls (see (1.5)).

The numerical approximation of controlled PDEs has been a topic of longstanding interest
[7] however in contrast to the growing literature on theoretical results obtained for the null
controllability of parabolic-like plate equations, the knowledge about numerical approxima-
tion of the null controllability of PDE dynamics which exhibit analytic, or “parabolic-like”
features is relatively limited. In [1] semidiscrete finite element method (FEM) approximation
scheme were presented for the null controllability of non-standard parabolic PDE systems.
The key feature in [1] is that the approximating null controllers exhibit the asymptotics of
the associated minimal energy function for the fully infinite dimensional system.

In this manuscript, our main goals are to derive fully-discrete Finite Element Method
(FEM) and Finite Difference Method (FDM) numerical approximation schemes for a cer-
tain (nonstandard) analytic and parabolic-like PDE system, give numerical implementation,
and compare the respective FEM and FDM approximations for this controlled structurally
damped elastic equation. The main novelties of the current work are:

(i) Fully discrete FEM Approximation: The PDE model given in (1.1) below was
firstly studied in [1]. It was proved that certain finite element method (FEM) approxima-
tions {u} } and their limiting controller {u*} for the structurally damped PDE (1.1) manifest
the asymptotics (given in Theorem 1.1) of &, (T") defined in (1.5). However, in this work
no numerical implementation was provided for the derived FEM scheme. In the present
work, unlike the semi-discrete approximations, we use “fully-discrete” FEM approximation
and provide a numerical experiment to justify that the approximation of the null controllers,
within FEM numerical scheme framework, obey the same blow up rate of O(7~3/2) given in
Theorem 1.1. Moreover, we give an explicit formula for the approximate control functions.

(ii) Fully discrete FDM Approximation: We numerically analyze the null control-
lability problem for the given PDE (1.1) below by means of the finite difference method
approximation scheme. We see that Theorem 1.2 can be employed to justify the use of finite
difference method (FDM) approximations to numerically recover a solution to the said null
controllability problem. In particular, we provide a theoretical proof for our main result
Theorem 3.1 which essentially states that the approximating null controllers are uniformly
bounded “in N” by the minimal energy asymptotics for the fully infinite dimensional con-
trolled PDE system (1.1). Subsequently, using fully discrete FDM approximation scheme, we
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construct explicit control functions and give the numerical implementation.

(iii) Comparison of FEM vs. FDM: Since the numerical approximation of controlled
PDEs is a topic of longstanding interest, a natural question arises: which numerical approx-
imation method would give a better result to see that the infinite dimensional control uv*, a
control which inherits the finite dimensional asymptotics? Our numerical implementations for
FEM and FDM approximations yield that while the finite difference method scheme (FDM)
gives better results in approximating the control function at terminal time 7', the finite ele-
ment method scheme (FEM) is more stable in computing the control across different values
of T.

Plan of the Paper. In Section 1, we introduce the PDE model under consideration and
describe the mathematical setting to be used throughout the manuscript. We also recall the
key theory given in [20] to which we will appeal in proving our results. Since one of our main
results is the numerical implementation of the finite element method approximation scheme,
we will refer to the semi-discrete variational formulations generated within this framework
in [1]. We provide the reader the entire FEM scheme in Section 2. Then in Section 3, we
consider the application of Theorem 1.2 within the Finite Difference approximation scheme.
For this, we prove Theorem 3.1 which guarantees the existence of null controllers for the
finite difference method (FDM) approximating system. Section 4 is devoted to the numerical
implementation of the both finite element method (FEM) and finite difference method (FDM)
approximation schemes. We also give the algorithmic description of those schemes. In Section
5 and 6, we give our numerical experiments and conclusions, respectively. We mainly compare
the two FEM and FDM numerical approximation schemes to understand which method is
more stable and gives better results in approximating the null controllers of corresponding
systems. In section 7, we give a very clean and easy to follow recipe to construct a numerical
test problem to the (homogeneous part) PDE (1.1) below. For this, we appeal to algebraic
theory to compute the matrix exponential that represents the solution to the PDE (1.1).

Throughout the paper the norms || - || are taken to be L?(D) for the domain D, and the inner
products in L?(D) is written (-,-). The space H*(D) will denote the Sobolev space of order
s, defined on a domain D, and H{(D) denotes the closure of C§°(D) in the H*(D) norm
which we denote by || - ||s,p. Also, C will denote a generic positive constant. For any 7" > 0,
we recall the space

L*(0,T; L*(D)) :={w: D x [0,T] = R : w(.,t) € L*(D),Vt € [0, T], /OT lw(t)|Z2(py dt < oo}

In what follows, Q C R? will be a bounded polygonal convex domain with Lipschitz continuous
boundary 02 =T" and we consider the following controlled PDE system:

(1.1a) wit + A%w — pAwy = u, on 2 x (0,7,
(1.1b) w=Aw=0, onI'x (0,7,
(1.1c) [w(0), wi(0)] = [wo, wil.

Here w = w(z, ) is the elastic plate variable which satisfies the “hinged boundary conditions”,
and the constant p > 0 (p # 2). The associated finite energy (Hilbert) space is given as

H = [H*(Q) N H}(Q)] x L*(Q).
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We observe that the system (1.1) can be rewritten as the ODE

d{w| [0 I w 0 w(.,0)
a2 il = e o 2] L) ) e
where A : D(A) C L?(Q) — L? is the (homogeneous) “Dirichlet Laplacian”
(1.3) Af =—Af,  D(A)=H*(Q)nHNQ).

Alternatively, the system (1.2) will be equivalent, via the change of variables
v=Aw, w = wy,

to the following ODE:
T PN Y = B R e R

An easy application of the Lumer-Phillips Theorem yields that there exists a unique so-
lution [v,w] € L?() x L?(Q) to (1.4) given that v € L2(0,T;L?(2)), and subsequently
[A™ v, w] = [w,w;] in (1.2) (or (1.1)) have the regularity [w,w;] € C([0,T]; H). The dynami-
cal system (1.4) was also shown to generate an analytic semigroup [9,10] which implies that

the null controllability problem is the steering problem to be considered. In this regard, it
was proved in [20, 11, 2] that the following problem is solvable:

NC: “Let terminal time T > 0 be arbitrary. Given initial data |wy,wi] € H, find u €
L2(0,T; L3(S)) such that the corresponding solution [w,w;] of (1.1) satisfies

[w(T), wi(T)] = 10,0].

What is more, one can find the minimal norm control asymptotics relative to (1.4). That is,
~find w}(0, T [wo, w1]) € L2(0,T; L*(R2)) such that u% solves the null controllability problem
and minimizes the L2-cost with respect to all possible null controllers— Thus, the following
“minimal energy function” is well defined:

(1.5) Emin(T) = sup ||U*T(X0)HL2(0,T;L2(Q))~

x0€H,||x0l| =1

The reader is referred to the references [20, 3] for detailed information, however we will recall
the following theorem that is related to the blow up rate of &pin (7).

Theorem 1.1. ([20, 3]). The null controllability problem (NC) admits of a solution, and the
associated minimal energy function Emin(T) given in (1.5) obeys the blow up rate O(T—3/2)
as T — 0. That is;

(16) Enin(T) = sup  ui(x0) o are) = O
X()EH,”X()”H:l

N|w

).

The proof of Theorem 1.1 was given in [20, 2, 3] via using different techniques. While
the weighted operator theoretic multiplier method and the analyticity of the corresponding
semigroups —based on a continuous line of argument— are utilized in [2, 3], the proof in [20]
depends upon a discrete approach which was also used for the validation of the spectral
truncations to the controlled dynamical system (1.1). Since our main goal here is to show
“numerically” that each finite dimensional approximating null controller (in the FEM and
FDM approximation scheme) and their limiting controller manifest the same asymptotics as
the minimal energy function &,,;,(T") for the infinite dimensional system (1.1), for the sake
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of clarity, we will provide below the following detailed theory that we will utilize:

Consider the following finite dimensional control system:
(1.7) YA{ = ANYn + ByUp, YN(O) = YN70 S R(k+1)N, N=12,..,

where Ay is (k + 1)N x (k + 1)N and By is (kK + 1)N x N matrices, and the control
Uy € L2(0,T;RN*1). Also, define the following (k +1)N x (k+ 1)N Kalman matrix Ky as

(1.8) Kn = [Bxn, AxBn, A% By, ..., A& By].

It was shown in [21] that if Ky has full rank for any N = 1,2, ..., then the system (1.7) is ex-
actly controllable by means of controls in L2(0, T; RY). Also, the control function u%;(¢) which
steers the initial data Y o to the origin in given time 7' > 0 was constructed in [19] as follows:

Define the scalar-valued function fr(t) and the (k+ 1)N vector u(t) as

(T —t)F (T k
(1.9) fri =G Cri= /0 (7 — t)* dt,
and
[ 110(t)]
pa(t)
(1.10) pn(t) = [H2() | = —KS ey fr(t),  0<t<T,
_Mk.(t)_

where each component p; is an N—vector. It was proved in [19] that the choice of the
following type of control function in (1.7) will indeed steers the initial data Yy ¢ to the origin.

/ 1" k
(1.11) Uk (1) = uolt) + 13 (1) + g (0) 4 -+ g (1),
That is, the solution Yy of (1.7) with control u}, (¢) satisfies the terminal condition Y (7") = 0.
With this type of control function w};(t) in mind, we recall the following result from [20] which
will be the main ingredient in the application of our numerical schemes:

Theorem 1.2. With reference to the system (1.7), assume that the following conditions hold:

(A1) The Kalman matriz Ky satisfies the Kalman rank condition with index k. That is,
Rank(Kn) = (k+1)N for N=1,2, ...

(A2) There exists Cy, > 0 independent of N such that

(1.12) ICR < G,

(A3) There exists a constant Dy such that

; D
J ANt k
Then the steering controls provided in (1.11) obey the estimate

" b gl
* 2 2 < *H N,0
(114) (] lora) <ot

(uniformly in N) j=0,1,.. k.

where C. is a positive constant independent of N = 1,2, ....
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2. Preliminaries

As mentioned in Section 1, it was theoretically (without any numerical experiment) shown
in [1] that Theorem 1.2 can be employed to justify the use of finite element method approxi-
mations to numerically recover a solution to the null controllability problem (NC). Our main
goal here is to compare two numerical approximation schemes FEM vs FDM to see that the
approximations {u}, } and their limiting controller u* manifest the same asymptotics of the
minimal energy function &, (7T) given in (1.5). For this, we will apply the FEM and FDM
methodologies to the finite dimensional control system (1.7) separately. The theoretical jus-
tification of the use of FEM approximation was already given in [1, Theorem 4]. Since we
will refer to this scheme in the FEM numerical implementation, for the completeness and the
convenience of the readers, we will remind it here:

2.1. Finite Element Method (FEM) Approximation Scheme for (1.7):

Application of Theorem 1.2. Let 7y be a triangulation (mesh) of Q, where N is the
number of vertices (nodes) in the triangulation 7x. For a triangle (element) K € Ty, we de-
note by hix = diam(K) and set h = maxge7, hx. We make the classical assumptions on the
family of meshes on Q (we refer the reader [4] for details): there exist constants cg, ¢1, co, c3
and ¢4, independent of any given mesh in the family, such that the following hold
e For any given mesh 7y in the family, let p7;, denotes the greatest number of elements
to which any of the nodes belongs. Then

PTn S €o-

e For any triangle (or element) K € Ty with area Ry,
C1 C2
— < R < —=.
N=TF=N

e For any triangle in the given mesh with diameter hg,

Also assume that {¢1, ..., ¢n} are the standard basis functions for the conforming H!-finite
element space Vi, that is

The restriction of any basis function ¢;(x,y),i = 1,2, ..., N to any element K € 7Ty is a polyno-
mial on K, i.e. ¢;(z,y),i =1,2,...,N is a piecewise polynomial in Q. Also, if {(x,,yl)}fil are

the nodes of Ty, then {¢1, ..., o} can be arranged such that ¢;(x;,y;) = di;,4,7 = 1,2,..., N.
Define the following positive definite symmetric matrices

(¢1a¢1) (¢1,¢N)
(2.2) (Mass) My = : : ’
(¢N,¢1) (¢N,¢N)
(Vor1,Ve1) -+ (Vo1 Von)
(2.3) (Stiffness) Sy = : :

(V. V1) - (Von,Vox)
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Then the FEM approximating matrix to the generator

— 0 A
o) A% A
of the system (1.4) is given by

~1
(2.5) AFE,N = [ ON My Sy ]

~Mxy'Sy  —pMy'Sn

where Oy is the N x N zero matrix. Given arbitrary [f,g] € R* and ¢ € L?(0,T;RY), if
we set

” O] tona [1] 4 [ vt [ 0

then the variables [¢(t), £(t)] satisfy the following ODE system:
5/

(2.7a) (t) = My SnE(®),
(2.7b) € (t) = —My'SnE(t) — pMy"SNE(L) + (L),
(2.7¢) [£(0),£(0)] = [f, 9] € R?N.

Observe that (2.7) is equivalent to the semidiscrete variational formulation of (1.4). That is,

(2.8a)  (vn(t),9n) = (Vun(t), Vibn), Von € Va,

(28b)  (wy(t),on) = =(Von (), Von) = p(Vun (), Ven) + (un(t), n),  Von € Vi,
(2.80) [’UN(O),'UJN(O)] = [UO,N7w0,N] c VN X VN,

where
N N ~ N
on(t) =Y &G(t)di wn(t) = &) un(t) = G(b)di,
=1 =1 i=1
and

N N
voN =Y fidi; won =Y giti.
i=1 i=1
The following Theorem for the approximating system (2.8) was given in [1, Theorem 4]:

Theorem 2.1. Suppose the classical mesh assumptions above are in place. Let also time
T > 0 be arbitrarily small. Then for the finite dimensional system (2.8) which approzimates
(1.4) there exists a sequence of null controllers {u%} C L?(0,T;RY), built upon the recipe
provided in [19], that converges weakly to u* as N — oo and obtains the following estimate
uniformly in N:

T 1
. 2 _3
(2.9) (/0 HUN(t)H2dt>2 < CT2||[vo,N, wo,n] | 2()x £2(9)

where the constant C' is independent of N.
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FIGURE 1. Finite difference grid h, x h, with n = 6.

3. Finite Difference Method (FDM) Approximation Scheme for (1.7)

Application of Theorem 1.2 Let Q = (0,a)?, a >0, and h = -47 for a positive integer n.
Also, let h; x hy be the uniform grid of €2, where h, : 0 = 29 < 21 < --- < 2, < Tp41 = @,
and hy :0=yo <1 < - < Yn < Ynt1 = a.

The finite difference method approximates the values of v and w in (1.4) at the grid points
{(zi,y;) : 4,7 = 1,...,n}. In particular, we use central difference formula to discritize the

spatial derivatives in (1.4) to get

/ dw;j — Wi—1j — Wit1,j — Wij—1 — Wi i1

(313) ,U’ihj = h2 5
, —4’1)'7‘—|—U‘_1,‘+’U‘+1"+’U'7‘_1+?}'7‘+1
(3.1b) wij = e T T b
—dw; j + wi—1j + Wwit1j + wij—1 + Wijq1
+p ,J =17 ;:é J ,J J+ + U,

where v; j, w; ;,u; j are the approximations of v, w,u at (z;,y;), respectively. With respect to
the finite difference (FDM) scheme, the FDM approximating matrix to the generator

(3.2) A= [_OA _fplA]

of the system (1.4) is given as

(3.3) Arp N = [ Oy Dv } )

—DNn —pDn
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where N = n? and Dy is the N x N block matrix given by

[ F, | 1,10, ] --- | 0,

—I, .

(3.4) DN—% 0, 0,
: R .
0, |- |0, -5 | By

Here, I,, and 0,, are the n x n identity and zero matrices, respectively, and F}, is the n x n
matrix given by

[ 4 ] -1]0 0
-1
Fo=1 0 0
: . .. ol =1
oo =14

Given arbitrary [f, g] € R*N and ¢ € L2(0,T;RY), if we set

(3.5) Egﬂ = eArp.Nt E ] + /O t eArp.N(t=s) [ C?s)] ds,

then the variables [€(t), £(t)] satisfy the following ODE system:

(3.6a) €' (t) = DnE(t),
(3.6b) €' (t) = —Dn(E(t) + pE(1)) + C(1),
(3.6¢) [£(0),£(0)] = [f.g] € R*Y.

Observe that (3.6) is equivalent to the semidiscrete finite difference scheme of (1.4), that is
[,UNa 'LUN]

(3.7a) vy (t) = Dywy(t),
(3.7b) wyy(t) = —Dy(vn(t) + pwn(t) + un(t),
(3.7¢) [on(0), wy(0)] = [vo,n, won] € R,
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where
i fl,l(t) 1 [ gl,l(t) 1 i C171(t) T
fl,r;(t) éln(t) Cl,r.z(t)
§2.1(t) §2.1(t) C2,1(%)
on(t) = | 622) | s w(t) = | En® | uy(t) = | Cnl®) |,
§n,1(t> fn,l(t) Cn,l(t)
o | Eunlt) | | Gun(®) ]
[ fia(t) ] [ g11(t) T
fralt) g1n(t)
f2,1(1) g2,1(t)
vor = | 200 |+ agy = | 2200
fn,;(t) gn,i(t)
L f’n,n(t) J L gnn.z(t) i

Here, gi,j (t)v 51,] (t)’ CZ,] (t)’ fi,j (t)? 9i,j (t) are the approximations of 57 5’ Ca fv g at ('Th Yj, t)v re-
spectively. In the following Theorem, we state our first result which gives the existence of null
controllers for the finite difference method (FDM) approximating system (3.7) that satisfies
the required blow up estimate in Theorem 1.1.

Theorem 3.1. Let terminal time T > 0 be arbitrarily small. Then for the finite dimensional
system (3.7) which approzimates (1.4) there exists a sequence of null controllers {uy} C
L2(0, T;RN), built upon the recipe provided in [19], that converges weakly to u* as N — oo
and obtains the following estimate uniformly in N:

1

T 1
(38) (] Tl dr)* < OT . w0l

where the constant C is independent of N.

Proof. Our proof hinges on showing that the hypotheses of Theorem 1.2 are satisfied under
the setting of finite difference (FDM) approximation scheme.
The Kalman matrix of the system (3.7) is defined as the 2 x 2 block matrix

Ox DN}

(3.9) ~N = [Bn, Arp,NBN] [IN Dy
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where By = N} , Arp n is the FDM approximating matrix given in (3.3), Dy is the ma-

Iy
trix in (3.4). In order to show that the requirements (A1)-(A3) of Theorem 1.2 holds, we
will give the proof in two steps:

Step 1: Appealing to the theory of invertibility of 2 x 2 block matrices in [15], we observe
that the Kalman matrix Ky defined in (3.9) will be invertible provided that the matrix Dy
(see (3.4)) is invertible. Since it can easily be proved that Dy is a symmetric positive definite
matrix it will be invertible which also yields that Iy is invertible with inverse

-1 |pIn IN
(3.10) Kyt = [DNl ON} .
Using the Invertible Matrix Theorem we also infer that I will have the full rank 2N which
proves the first requirement (A1) of Theorem 1.2 with index k = 1. To show that the matrix
norm of the inverse matrix lCX,l has a uniform bound that is independent of NV, we use the
special characterization of the matrix Dy (see [14] for details)

(3.11) Dy = %(In®En+En®In),
where F,, is the n X n matrix defined as
2 =10 ]~ |0 ]
-1
E, = ol .1~ 1" 1o
: .. .. =1
| 0O -] 0| -1} 2 |

The eigenvalues of Dy [14] are given as
1 s .
{)\i’j:ﬁ(4_2(cos(n+1 1))):1§z,]§n}.
It can be observed that \; ; > 0 for all 1 <4, j <n, and the smallest eigenvalue for Dy is

T _8sin2(g—”) 21
n—i—l))_ 2 g —)a—z as h—0,

g

)—i—cos(n

4
A1 = ﬁ(l — cos (

which yields that the eigenvalues of the symmetric positive definite matrix D&l will be
bounded above uniformly in N and

IDFI < €,
21

where the constant C' is independent of N. Consequently, if [m
2

v 2]

] € R2V then we have that

2
= llpz1 + @2llzy + | DY 21l

R2N

< max(1, p)(|e1 g + llz2llgy) + 1D P21 fn
< max(1, p) (o1 llgn + llz2llzn) + C*(letlln + llz2lly)

< C(llllzn + llz2llz)
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where C' = 2max(1, p, C?) is independent of N. This finishes the proof of requirement (A2)
in Theorem 1.2.

Step 2: Since the Kalman rank condition is satisfied with index & = 1, in this step, we
will show that there are constants D; (j = 0, 1) which satisfy (uniformly in N) the following
inequalities:
3.12 Al oty < D i =0,1
(3.12) | FD,NE T ”_F’ J=0,1L
We start with the case j = 0 : For this, we will show that the operator Arp n is maximal
disipative:

a) Dissipativity: For [f,g] € R*V,

<AFD,N [ ! } , { ! D — (Do, f) — (Dxf.g) — p(Dyg.)

- ool <

(b) Maximality: Given [f,g] € R*¥, we consider the equation
Aoy — Arp.N] [ Zg ] = [ g } .
This becomes
Aoy — Dnen = f
AzN + Dyuy + pDnzy =g
which after applying —Dp to the first equation, and multiplying the second one by A gives
~ADyvy + Dizy = —Dnf

Azn + ADyoy + pADyzy = Ag
and we get
N2y + D¥zn + pADyzy = A\g — Dy f.

Since Null(\?Ix + D% + pADy) is empty then

an = (NIn + DR + pADN) " [Ag — D f]
and ) .

UN = XDN()\2IN + D3 + pADN) ' [Ag — DN f] + Xf

this finishes the maximality of App n. Since {eAF DNtk is a group of contractions, then
(3.13) HeAFDthH <1, foreveryt>0, neN

and the required estimate for the case j = 0 is obtained with the constant Dy = 1.

The case j = 1 is analyzed in a similar way to the argument given in the proof of [1, Theorem
4 (b)]. O

Remark 3.2. By means of a limiting process, it can be justified from Theorem 2.1 that
there exists a null controller u* = lim,_oou} to the elastic plate system that satisfies (2.9).
Moreover, this control function will manifest the same asymptotics as that for the associated
minimal energy function &, (7).
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4. Implementations of Numerical Schemes

This section is devoted to providing the algorithmic description of the finite element method
(FEM) and finite difference method (FDM) schemes applied mainly on the system (1.4)
or the finite dimensional systems (2.8) and (3.7), respectively. We start with the FEM
approximations.

4.1. Implementation of the finite element method (FEM). Approximating solutions
to (1.4), using the finite element method will require time discretization of the variational
formulation (2.8). For this, let At > 0 be a given time step and assume that uj]\;rl e Vn
represents an approximation of uj(t) at t = t;41 = (j + 1)At. Then the fully-discrete
scheme of (2.8) reads: for j = 0,1,2,..., let v?v,wfv,u%rl € Vi be given. Find fuﬁrl,wﬁl
such that

(4.1a)

S - .
(N ) = AUVw) T, VYn) + (0h,¥n), Vi € Vi,
(4.1Db)

" . o - 1
(Wi o) = (Wi, o) = AH(Vop™, Vo) + p(Vwl™, Ven) — (up™, on)),  Ven € Vi,
It is easy to show that (4.1) has a unique solution Uf\,ﬂ,wﬁ ! provided that At < %, and
this solution is the approximation to the solution of (1.4) at t = ¢;1;. The crux of the
computations is to compute the approximation to the null controller ujj\;r ' With respect to
the recipe given in (1.10) to construct the approximate controllers, we remind the following
notation: In finite element method (FEM) approximation scheme, with respect to (2.7), the
Kalman matrix K and its inverse ICX,l are given by

ON Mz\?lSN 1 pln In
(4.2) Kn = [BN,Are.N] = [IN —pM&lsN , Ky = SX;IMN O
where By = Ov , Arpp N is the FEM approximation matrix (see (2.5)) to the generator

In
defined in (2.4), and My, Sy are the mass and stiffness matrices defined in (2.2) and (2.3),
respectively. With the above notation now, referring to the formula (1.10) for the construction
of approximate controllers, we use the following:

Taking Ay = Apg n as the FEM approximation matrix, the scalar valued function fr(t)
as

(T — )k _ Tk k
(4.3) frin =g Orni= /0 (T — t)* dt,
and
[10(t)]
pa(t)
(4.4) pn(t) = | #2(8)| = —KcteArent mfv ] fr(t), 0<t<T,
(1)}

where each component p; is an N—vector, we have then the approximate controllers

(4.5) Wi (8) = po(t) + py(8) + iy (£) + -+ P (8).
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We know that eAFz.nt [Z)O’N} represents the solution to the homogeneous variational formu-
0,N

lation (2.8) (without the null controller term). That is,

oArE Nt |:U0,N] _ [UN,h(t)}

wo, N wy (1)

where vy 5 (t), wy n(t) € Vv satisfies (for all ¢t > 0):

(4.62) (Una(t), ¥n) = (Vona(t), Von), Von € Vx,
(4.6b) (W n (1), o) = —(Vuna(t), Von) — p(Vwna(t), Von), Yoy € Vi,
(4.60) [UNﬁ(O),wN,h(O)] = [UO’N,w()’N] € Vy x Vy.

To approximate vy p(t), wnx(t) in (4.6) at ¢ = tj41 , we discretize (4.6) in time with the
same time stepping At used in (4.1) to get the following variational formulation:
For j =0,1,2,..., let vf\,’h,wf\,’h € Vn be given. Find vﬁi,wﬁi such that

(472) (A5, 0n) = ALV, VUN) + (W, Un), Vi € Va,
(47b) (Wi, on) = (Wi on) — AV, Ven) + p(Vuly, Ven)), Ve € Vy.

Then, by the above setting, we get

(4.8)
_ (o) _ | —pIN  —IN| [vNa(D) _ [ (pvnn(t) +wnn(t)) fr(t)
“N(t)_[u?(t)]_ {—S;MN ON} [wjfv,},i(t)] fT(t)‘[ Sy Myon (D) fr(t) |
where
ety = 20,

and T is a given terminal time. Since

wie(t) = po(t) + py (2),

we turn our attention to approximate po(t) and ,ull (t)at t =tj41, j=0,1,2,.... We approx-
imate po(t) at t =tj11 by

j+1 j+1 j+1
(4.9) po(tjrn) = pyly = —(popty, +wny) frtjs).
Since

1y (t) = =Sy My (v () fr(t) + vnn(t) fr (1)),

then for a fixed ¢t > 0, u}(t) can be understood as the solution to the following variational
formulation: Find ) (t) € Viy such that

(4.10) (Viy(t), Vibn) = —(G(t),9n), Vibn € Vi,
where

G(t) = vy p () fr(t) + ona(t) f(t).
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Because we are interested in approximating ;/1 (t) at t =t;41, j=0,1,2,..., we approximate
G(t) at ¢t = L‘j+1 by

i+2 i1
( g\f,h - U?V,h)

41
(4.11) Gltjp) = GI = A

L
fr(ti) + ol fr(ti),

hence, we approximate () at t = t;,1 by (/ﬂlt\})’ , where (,ujlt\})’ solves the following varia-

tional formulation : Find (uﬁ\})’ € Vi such that

Finally, we take Wit = ,uj oy ,uj 1Y to be the approximation of the null controller at
N 0,N 1,N

t =tj4+1 and use it in (4.1). Now, we provide an algorithm to summarize our implementation
of the finite element method to solve (1.4):

Algorithm 1 : Let 7' > 0 (terminal time), m € N (m > 2 is number of time stepping),
and p > 2 be user selected. Set At = %, and [o,w] = [U?V,h’w?\ﬂh] = [vo, N, wo,N].
Then for j =0,1,2,...,m — 1:

(1) Construction of ) 1': Solve (4.7) to find a solution [U?V—Fé ,wﬁ;] and then use

it again in (4.7) to find vj+2,wj+2 , that is: Find vj+2,wj+2 € Vy x V such
& N,h> " N,h N,h> UN.h

that

(4.13) (V477,0n) = AUV Vin) + (045 ¥n), Y € Vi,

(4.13b)
(wg\f-t_}?v SON) = (wg\;t—}i’ QON) - At((vvg\f—t_]fv VSDN) + P(Vw?vf;?’ VQON))a VQON € Vn.
Set

(4.14a) Mf)j\} = —(Pvafi + w]Nf;)fT(th)?

+1 (vaﬁf B U?\/Jrib i+1

(4.14b) Gy = Ay Jr(te) + Vi Frtisn).
Use Gg\f ! (obtained in (4.14b)) to find (,uﬁ\})’ € Vn by solving the variational
formulation

(4.15) (V) Vi) = (G 4w), Vb € V.
Then set

(4.16) ul =+ ()

(2) Find [vﬁl,wﬁl]: Use ug\;rl (obtained in (4.16)) to find [vﬁl,wﬁl] by solving

the variational formulation (4.1), that is: Find [v4", w)i'] such that ¥ [y, on] €
VN X VN,

(4.17a) (W3 on) = ALV, Vi) + (v, ),
(4.17b) (Wi on) = (Wi, on) — At(Voh, Ven) + p(Vul ™, Von) — (ul ™, on)).
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4.2. Implementation of the Finite Difference Method (FDM). Similar to the FEM
implementation, approximating solutions to (1.4) using the finite difference method will re-
quire time discretization of the finite difference scheme (3.7). Given a time step At > 0 as-
sume that ug\j ' € RY is the vector whose components represent the approximation of uwy(t)
at t = tj41 and the grid points (z;,%;) as labelled in (3.7). Then the fully-discrete scheme of
(3.7) reads: For j =0,1,2,..., let vf\,,wgv,uj;l € RY be given. Find 'vgvﬂ,'wf\;rl e RY such
that

(4.18a) vgvﬂ — AtDN’wg\?Ll = ’v?‘\,
(4.18b) wgVH + AtDN(vg\,Jrl + pwgvﬂ) = Atuj]\?rl + 'wg\,.
J+1 g+l

The solution vy, wy ~ to (4.18) are the vectors whose components represent the approxi-
mation to the solution of (1.4) at ¢ = t;4; and the grid points (z;,y;) as labelled in (3.7).
Observe that (4.18) can be written as a linear 2 x 2 block system Ax = b, where

1 ,
A — IN *AtDN . X — ’U?V ) . b— "Ulgv ' .
AtDyn Iy + pAtDy |’ 'wg\;r ’ Atug\;r + w);

The system (4.18) has a unique solution if the 2N x 2N matrix A is invertible. Since the Schur
complement of A will be the matrix Iy +pAtDy + (AtDy)? which is invertible, appealing to
the theory of 2 x 2 matrices we infer that the matrix A is invertible. For a detailed discussion,
we refer the reader to [15].

Similar to the finite element scheme, the crux of the computations is to compute the approx-
imation to the null controller u]]\?L ! With respect to the recipe given in (1.10) to construct the
approximate controllers, we define the following matrices:

In finite difference method (FDM) approximation scheme, with respect to (3.6), the Kalman
matrix Ky and its inverse ICX,1 can be computed explicitly in terms of the matrix Dy defined
in (3.4):

Oy Dy —1_ |pIN In
(4.19) Kn = [B~N,BNAFD N] = [IN —pDN] ; N = [D;]l ON] .
Here By = ?N] , and App n is the FDM approximation matrix (3.3) to the generator
N
defined in (3.2). With the above notation now, referring to the formula (1.10) for the con-

struction of approximate controllers, we take Ay = App,n as the FDM approximation
matrix, the scalar valued function fr(t) as

(4.20) fr(t) = W7 Cry = /OT t5(T —t)* dt,

and
[ 110()]
pa(t)

(4.21) i (t) = uz'(t) = —KjleArpat {Z‘;JJVV ] fr(t), 0<t<T.
_Nk;‘(t)_
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Observe that eAN'Y)y o in (1.10) becomes eArp.nt ;JJO’N in the finite difference setting, and
0,N

it represents the solution to the finite difference scheme (3.7) without the null controller term.
That is,

GArD Nt ['UO,N] _ ['UN,h(t)} ,

wo, N wy (1)

where vy p(t), wn () € RY satisfies (for all ¢ > 0):

(4.22a) vy (t) = Dywn(t),
(4.22D) wy ,(t) = =D (vnn(t) + pwna(t)),
(4.220) [’UN(O), 'wN(O)] = [U07N,TD07N] S R2N.

To approximate vy (), wy n(t) in (4.22) at t = ¢4 , we discretize (4.22) in time using the
same time stepping At we used in (4.18) to get the following finite difference scheme: For

i=0,1,2,..., let v ,, wy , € RV be given. Find Uﬁé,wﬁé € RY such that

(4.23a) 'vﬁ; - AtDng\# = 'va

(4.23b) wliy + AtDN (Vi + pwhiy) = wh .-

Observe that the null control formula in the finite difference setting becomes

iy = [1o0) = [2o% g [ 2] s

_ = (ponp(t) + wnn(t)) fr(t)
(4.24) B [ —Dy ona(t) fr(t) ] ’
where
fT(t) = 6t(?113_t)7

and T is a given terminal time. Since

un(t) = po(t) + pa(2),
we turn our attention to approximate po(t) and //1 (t) at t =tj41, j =0,1,2,... We approxi-
mate fi(t) at t =tj41 by
+1 j+1 j+1
(4.25) po(tjsr) = ph = —(pony, +wiy) frtjz).

Since

!

11 (t) = =D (o () Fr(t) + onu(t) fr(t),

then for a fixed t > 0, ,ull (t) can be visualized as the solution to the following finite difference
scheme:

(4.26) Dypy(t) = =G(b),

where

G(t) = vy (1) fr(t) + vn (L) fr(t).
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Since we are interested in approximating ,ull (t) at t = tj41, j = 0,1,2,..., we approximate
G(t) at ¢t = L‘j+1 by
j+2 J+1
j+1 (vN,h - ’UNJL) i1
(4.27) Gltjn) = Gy = —— o fr(tjin) + on, fr(tin),

/

Using (4.27) we now approximate u;(t) at t = tj,1 by (u{’;\})’, where (p,jlt\}) solves the

following finite difference scheme:

j+1 j+1
(4.28) D) = G,
Finally, we take u]]\f b= ugt\} + (u]f;\})’ to be the approximation of the null controller at

t = tj+1 and use it in (4.18). We provide an algorithm to summarize our implementation of
the finite difference method to solve (1.4):

Algorithm 2 : Let 7' > 0 (terminal time), m € N (m > 2 is number of time stepping),
and p > 2 be user selected. Set At = L and [vQ,wd] = [v%,, 0% ,] = [vo,n, woN].
Then for j =0,1,2,...,m — 1:
(1) Construction of ug\,H: Solve (4.23) to ﬁnd thg solution [v?&,wﬁé] and then
use this solution again in (4.23) to find [v47, wi 7). That is,

find [vf\;r}f ,wﬁf] € RY x RY such that

(4.29a) vﬁi - AtDNw{Vfi = v%fl}b,
(4.29Db) wﬁg - AtDN(vafz - pw?vf,f) = 'wf\;r;

Set
(4.302) N = —(pvky + Wi (i),

( 3V+i? B vg\;r}b 1
- 7 7 o

(4.30b) Gy = — Ay Jrlt) + on Frti)-

Use G' (obtained in (4.30b)) to find (ud'y)" € RN by solving
(4.31) Dn(uly) = -G{.

Then set
(4.32) wl = u{)j\,l + (uﬁ\})'

(2) Find [v{vﬂ,wg\,ﬂ]: Use uj]\;rl (obtained in (4.32)) to find [v{vﬂ,w{vﬂ] by solving
the system (4.18). That is, find [’v?\;rl,wf\,+ ' such that

(4.33a) v = AtDywl Tt = vl

(4.33b) wi™ + AtDy () + pwl) = At 4w

5. Numerical Experiments

In this section, we perform some numerical experiments and compare the results with the
theoretical ones given in the previous sections. We consider an example where the data is
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TABLE 1. Errors and rates of convergence for example (5.1) with time step
At = 0.2 using Algorithm 1.

T Novn(DI? +llwxa(DIP rate  [lupll22@yor) —rate
21 5.6144E-02 — 2.8778E-01 —

22 1.5294E-02 1.876 8.0441E-02 1.838
23 3.9255E-03 1.962 2.1203E-02 1.923
24 9.9397E-04 1.981 5.4391E-03 1.962
25 2.5006E-04 1.991 1.3771E-03 1.981
26 6.2713E-05 1.995 3.4646E-04 1.991

TABLE 2. Errors and rates of convergence for example (5.1) with time step
At = 0.1 using Algorithm 1.

T TonaDF + Twna@)[F tate [uj[2@epor Tate
21 4.2633E-02 — 3.0454E-01 —

22 1.1209E-02 1.927 8.4262E-02 1.854
23 2.8385E-03 1.981 2.2117E-02 1.929
24 7.1412E-04 1.991 5.6627E-03 1.966
25 1.7909E-04 1.995 1.4324E-03 1.983
26 4.4843E-05 1.998 3.6021E-04 1.992

taken to be Q = (0,7)%, p = 2 and the initial condition to (1.4) is given as

(5.1) (Z?)((:;:Z;))) - (g sin(Qx(; sin(2y))

We use the exact solution to the homogeneous part of the system (1.4) which is derived in
Section 7.

5.1. Finite element scheme. By the use of Algorithm 1,
(onp(8), wn (1) = (v (t), wn () and up(t) = un (),

in tables 1, 2, and 3, denote the computed solution pair and the null controller for (1.4),
1

respectively. The mesh size is taken to be h = 55 (or N = 3338) on a Delaunay triangulation
using continuous functions on 7x that are polynomials of degree one when restricted to any
element K € Ty.

Tables 1 and 2 show that (vy4(T), wnp(T)) — 0 when T is relatively big. Recall that
the formula in (1.10) is an approximation to the control function that will lead the solution
(un(t), wn(t)) = (0,0).

Table 3 shows that the computed null control obeys the blowup rate in Theorem 2.1 as
T — 0. Also, the logarithmic graph in Figure 2 shows that the blowup rate for the computed

null control wj (t) is similar to the graph of y = 7.
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TABLE 3. Errors and rates of convergence for example (5.1) with time step
At = ﬁ using Alg. 1.

104

10°

102

10!

109

T Nona(DIP +wva(DI? rate  [ujpll22@por) rate
24 1.0363E 00 — 2.0955E+01 —
275 1.3295E 00 -0.35  3.5071E+01  -0.74
26 1.5819E 00 -0.25  5.7895E+01  -0.72
2-7 2.0669E 00 -0.38  1.0233E+02  -0.82
28 3.7593E 00 -0.86  2.1864E+02  -1.09
279 1.1112E+01 -1.56  6.2465E4+02  -1.51

| 1 == llona(DII? + lwnn (T)]?
i 1] luh | 2222 (@):0,1)
i ] y = r—3/2
F ‘ ‘ ‘ E
10722 1072 10715
T

FIGURE 2. Logarithmic plots of [|on 5 (T)||*+[|wnn (T)I1? vs. |luj |l 1212007

VS =T

—3/2

using Alg. 1.

5.2. Finite difference scheme. By using Algorithm 2,
(N a(t), wna(t)) = (vn(t), wn(t)) and up(t) ~ un(t)

denote the computed solution pair and the null controller for (1.4), respectively in tables 4,

5, and 6. The grid size is taken to be n = 32.

Tables 4 and 5 show that (vy ,(T), wn n(T)) — 0 as T gets large. Recall that the formula
in (1.10) is an approximation to the control that will lead the solution (vx (t),wn(t)) — (0,0).
Table 6 shows that the computed null control fluctuates around the blowup rate in Theorem
3.1 as T — 0. Also, the logarithmic graph in Figure 3 shows that the blowup rate for the

computed null control uj () is similar to the graph of y = z%.
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TABLE 4. Errors and rates of convergence for example (5.1) with time step
At = 0.2 using Alg. 2.

T |lown %N + HwNth%N rate [lupl|eno) rate
21 4.7354E-06 — 2.1344E 00 —

22 0.0000E 00 - 5.8009E-01  1.879
23 0.0000E 00 - 1.5152E-01  1.937
24 0.0000E 00 - 3.8729E-02  1.968
25 0.0000E 00 - 9.7906E-03  1.984
26 0.0000E 00 - 2.4613E-03  1.992

TABLE 5. Errors and rates of convergence for example (5.1) with time step
At = 0.1 using Alg. 2.

T (onpllzs + lwonsllzy rate Jlupllr22)07) rate
21 3.9361E-06 — 3.6379E 00 -

22 0.0000E 00 — 9.5927E-01 1.923
23 0.0000E 00 - 2.4645E-01 1.961
24 0.0000E 00 - 6.2465E-02 1.980
29 0.0000E 00 —~ 1.5724E-02 1.990
20 0.0000E 00 —~ 3.9446E-03 1.995

TABLE 6. Errors and rates of convergence for example (5.1) with time step

At = ﬁ using Alg. 2.

T flonnlgs +lwvallzy  rate  uplliee@por —rate
21 3.5527E+05 - 8.9903E+05 —
270 1.5122E+06 -2.090  2.8531E+06  -1.666
26 2.6687E+06 -0.819  7.6917TE+06  -1.431
27 2.9605E+06 -0.150  1.9956E+07  -1.375
278 4.2870E+06 -0.534  5.5401E4+07  -1.473
279 1.2655E+07 -1.561  1.8020E+08  -1.701

6. Conclusion

The approximation of the null controller using both numerical schemes obey the same blow
up rate of O(T~3/2). We also see that while the finite difference scheme (FD) gives better
results approximating the solution at terminal time 7', the finite element scheme (FE) is more
stable computing the solution across different values of T'.



22 P. G. GEREDELI, C. GIVENS AND A. ZYTOON

S

o |lonnllEn + lwnalZy
——lup 222 @):0,1)

y = 2-3/2

108
107

106
10°
10*
103
102

| | |
1072.5 1072 1071.5
T

FIGURE 3. Logarithmic plots of [|[uyallix + lwnnllin vs. ujllr22)0m)
vs.y = 23/ using Alg. 2.

7. A Numerical Test Problem

In this section, we will derive an exact solution to problem (1.4) without the controller
term u, that is

o0 2l 8-l
where
(7.2) A= [_OA _;1 A]

and the operator A is the Laplacian defined in (1.3). The unique solution to (7.1) is given by

o i) = o)

In order to derive an explicit solution to (7.3), we need to compute the exponential matrix

eAl. Let {Xi, ¢: 132, be the eigenvalues and orthonormal eigenvectors for the operator A
defined in (7.2). Then

must solve y () = Ay(t). Since

for some functions «;, B; we then have

- b e I |
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By orthonormality, Vi = 1,2, 3, ...,

d 1> Oéi(t)qﬁi] [ai(t)@}
7.5 — g = M, ,
(7.5) dt [Zi Bi(t) s Bi(t) i
where
0 A .
(7.6) M; = [_)\i _P)\i:| i=1,2,3,...
The eigenpairs for M; are
_p 1 2 _ _p_1 2 _

(7.7) {771‘,1,[ 2 +21 pr-d }U{mg,[ A P }
where

A 5

77i,1=—§(P+ p? —4),
i

Denoting the similarity matrix

(7.8) g | Eravi—4 G5V

using the change of variables Sz = y, and the diagonalization argument gives us

S2 = yl = M;Sz.

or
2 = STIM;Sz = Az
where
_imia O ~ feiqemint
A= [ 0 771',2] T [Cz‘ze""'zt
Here
Cin 1
Tl =2(0)=8 0
) =20 =570

are constants. Observe that the constants ¢; 1, c¢; 2 can be found explicitly for i = 1,2, ...

(7.9) [01,1] _ g1 [ai(o)] _ b ai(0)+ @(ij \/,027—4)
| o BiO] 2 =4 |—ai(0) - B2 (p— /2 —4) |

Subsequently, we have an explicit formula for {%185)) ] as
a;i(t)] _ o [eipem?t
(7.10) [ @“J =S Lwew] :
From (7.10), the solution y(¢) in (7.3) can be written explicitly as
v(t) At | Vo o [ai(t)os
7.11 t) = = = .
) s [w@J ‘ [wo] 2 [@-(tm

Now, let Q = (0,7)? and consider the problem

23

as
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d {v(t)|  —|v() v(.,,0)| 0
(7.12) pr [w(t)} =A [w(t) » {w(,0)] T |sin(2e) sin(2y) |
Recall that the Dirichlet Laplacian eigenpairs in 2 are

2
{Amn = m? 4+ n2, Gmn = - sin(maz) sin(ny) }o; n=1-
The initial data will be associated with

2
Aog = 22 422 =8, ¢y = = sin(2x) sin(2y),
7r
and subsequently we have for 7,5 = 1,2, ...

T i=0=j
s(0) =0, 1,0 ={ & /

otherwise

Bij(t)
Now, we are in position to explicitly write the exact solution for the problem (7.12) which
will be used in our numerical experiments:

Hence, the use of (7.9) and (7.10) would give us the functions [ai’j (t)} .

7.13
( U()t) (e—“(p—\/ﬁj) - e—4t(9+m>) sin(2x) sin(2y)
[ ] (( ) ~4t(p+/p?~4) (F - g)e—w—\/ﬁ)) sin(2z) sin(2y)
If we take p = 3, then the expression (7.13) simplifies to
(7.1 [v(t)} _ (e‘4t — e_lﬁt) sin(2z) sin(2y)
w(t) (26_1& - %e“”) sin(2z) sin(2y)

Remark 7.1. We emphasize that the damping parameter restriction p # 2 will not change
our conclusion for this section. For example, taking p = 2 in (7.7) will change the form of
the similarity transformation, but not the final conclusion.
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