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Abstract: We study the energy landscape of a model of a single particle on a random
potential, that is, we investigate the topology of level sets of smooth random fields on RV
of the form Xy (x) + % lx||?, where X y is a Gaussian process with isotropic increments.
We derive asymptotic formulas for the mean number of critical points with critical values
in an open set as the dimension N goes to infinity. In a companion paper, we provide
the same analysis for the number of critical points with a given index.

1. Introduction

In this paper we provide asymptotics for the number of critical points of Gaussian random
fields with isotropic increments (a.k.a. locally isotropic Gaussian random fields) in the
high dimensional limit. The definition of locally isotropic fields was first formulated
by Kolmogorov about 80 years ago [Kol41] for the application in statistical theory of
turbulence; see [Yag57] for an account of background and early history.

The model is defined as follows. Let By C RY be a sequence of subsets and let
Hy : By € RY — R be given by

Hy(x) = Xy(x) + %nxnz, (1.1)

where 1 € R, ||x|| is the Euclidean norm of x, and X is a Gaussian random field that
satisfies

1
E[(Xy () = Xy )2 = ND(5 v = yI?). x.y e RY.

Here the function D : R, — R, is called the correlator (or structure) function and
R4 = [0, 00). It determines the law of Xy up to an additive shift by a Gaussian random
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variable. Complete characterization of all correlators was given in the work of Yaglom
[Yag57] (see also the general form of a positive definite kernel due to Schoenberg
[Sch38]). In short, if D is the correlator function for all N € N, then Xy must belong
to one of the following two classes (see also [Klil12, Theorem A.1]):

1. Isotropic fields. There exists a function B : Ry — R such that

1
EXy () Xy ()] = NB( 5 llx = yI?)

where B has the representation
B(r) = ¢ +/ e u(dr),
(0,00

and ¢y € R, is a constant and v is a finite measure on (0, oo). In this case,
D(r) = 2(B(0) — B(r)).

2. Non-isotropic fields with isotropic increments. The correlator D can be written as
D(r) = / (1— efrlz)v(dt) +Ar, r € Ry, (1.2)
(0,00)

where A € R, is a constant and v is a o -finite measure with

t2
v(dr 00.
/(.O,oo) 1+12 ( ) =

See [Yag87, Section 25.3] for more details on locally isotropic fields. Case 1 is known
as short-range correlation (SRC) processes and case 2 as long-range correlation (LRC)
in the physics literature.

Here is a special example of B(r) and D(r), which we learned from Yan Fyodorov.

Example 1. We assume ¢p = 0 and A = 0. For fixed ¢ > 0 and y > 0, let
v(dx) = 2e= x2r =3y

The case y > 1 corresponds to SRC while the case 0 < y < 1 is LRC field. Indeed, if
y > 1,

e 'y —1
B(r) = / 2e et Y3 = Ty=b ,
0 (r +8)y71

while if 0 < y < 1, using integration by parts,

o
r
D(r) = / (e — e rremyyr-2gy = LW gy 1oy o1y,
0 -y
The case y = 1 can be obtained by sending y 1 1 and using the dominated convergence
theorem with the control function f(y) = (e — e~ *9Y)y~l for y < 1 and =

(e — e~y y=1/2 for y > 1. Then if y = 1, we have
D(r) = log(1 + r/e).

In the LRC case, we see that the long range covariance behaves like a high dimensional
analog of fractional Brownian motions.
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Remark 1.1. Observe that any Bernstein function vanishing at 0 is a structure function.
This is a consequence of the Lévy—Khintchine representation of Bernstein functions;
see e.g. the monograph [SSV12], which also contains a comprehensive list of com-
plete Bernstein functions. Conversely, any structure function is a Bernstein function. It
follows that any correlator function D must be concave, infinitely differentiable, and
non-decreasing on (0, +00). Moreover, we have D'(r) > 0, D”(r) <0, D"”'(r) > 0 for
r>0.

Remark 1.2. One should not confuse SRC/LRC with short-range/long-range depen-
dence. SRC here refers to the fact that E(Xy(x)Xy(y)) decays as |[x — y|| — oo
while for LRC it may not. Short-range dependence requires the autocovariance function
to have exponential decay.

1.1. Previous results. The Hamiltonian (1.1) has been considered in many papers, from
physics to mathematics, since the 1950s. In particular, the model was introduced by
Mezard—Parisi [MG91] and Engel [Eng93] among others as a model for a classical
particle confined to an impenetrable spherical box or a toy model describing elastic
manifolds propagating in a random potential [Fyo04]. A nice historical account can be
found in [FSO7] which also contains the phase diagram (7" — w relation) for the model
at positive temperature. At zero temperature, in the seminal paper [Fyo04], Fyodorov
considered the case of isotropic fields (SRC) and computed the mean total number
of critical points, finding a phase transition for different values of © and D”(0). In a
subsequent and impressive paper, [FW07] computes the mean number of saddles and
minima for SRC fields. This paper considered a more general model where | u ||% /2 is
replaced by NU (|ju ||% /N) for suitable confining potential U.

Still in the case of isotropic fields, [FN12] computed the mean number of minima and
studied the phenomena of topology trivialization and the relation of this quantity with
the Tracy—Widom distribution. More recently, [CS18] considered the mean number of
critical points of a fixed index and for finite N. After the first version of our paper (which
includes [AZ22]) appeared in arXiv, the paper [GK22] considered the phase transition
of annealed instability index for the isotropic fields, which is more closely related to our
companion paper [AZ22]. The reader is also invited to take a look at [BD07,YV18].

For a similar Hamiltonian defined on the N dimensional sphere, known as the spher-
ical p-spin model, the rigorous study of the complexity of saddles and minima started
in [ABAC13] and now has solid body of work including [ABA13,Sub17, BAMMNI19].
For the physics predictions of this model, the reader should consult [CL04, MPV86] and
the references therein.

All of the rigorous work above only considered isotropic Gaussian fields (SRC case)
or spherical spin glasses. Compared to the SRC case, LRC fields allow more flexibility in
modeling real world phenomena. Another aspect of the significance of LRC fields is that
at low temperature they belong to Full-step Replica Symmetry Breaking (RSB), while
SRC fields are 1-step RSB according to the physics literature. Therefore, LRC fields
represent the most complex landscape like valleys within valleys within valleys and are
certainly harder to study compared with SRC fields. The free energy of LRC Gaussian
fields was studied in a sequence of two remarkable physics papers [FS07,FB08] via
the replica method and then in a mathematical paper [Klil12]. The Hessian spectrum at
the global minimum, which is closely related to landscape complexity, was investigated
in [FLD18,FLD20] still using the replica approach for both SRC and LRC fields and
the more general elastic manifold model. However, the lack of symmetry in LRC fields
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imposes a difficult obstacle and no rigorous results on the complexity are currently
known.

The main purpose of this article and its companion paper is to close this gap by
providing a comprehensive rigorous study of the complexity of LRC Gaussian fields.
In this first paper, we focus on the high dimensional limit of the expected number of
critical points when the domain or value of the fields are constrained to any particular
set. In the companion paper [AZ22], we will provide information on local minima and
saddles with given indices.

A word of comment is needed here. One of the main differences between LRC and
SRC fields is the fact that the variance of an LRC field may change from location to
location and the gradient V Hy is no longer independent of Hy. The main novelty of
our two papers is the development of techniques to overcome this difficulty. Another set
of important techniques to deal with “non-invariant” fields was also recently developed
in [BBM21b,BBM21a]; these do not seem to apply to the model we consider.

1.2. Main results. To state our results, let By € RN and E C R be (a sequence of)
Borel sets. We define

1
Crty(E, By) =#{x € By : VHy(x) = 0, NHN(X) € E}.

Throughout the paper we will consider the following extra assumptions on X .

Assumption I (Smoothness). The function D is four times differentiable at 0 and it
satisfies

0 < |[DW(0)| < oo. (1.3)

Remark 1.3. By Kolmogorov’s criterion, Assumption I ensures that almost surely the
field Hy is twice differentiable. Moreover, Assumption I guarantees D’(0), D”(0) and
D"’ (0) exist and are non-zero. This implies that for r > 0

D(r)>0, D'(r)>0, D"(r) <0, D"(r) >0,

and in particular all these functions are strictly monotone. From here we also know
that D(r) < D’(0)r and when v in the representation (1.2) is not a finite measure (or
equivalently in case 2), lim,_, oo D(r) = oo.

Assumption II (Pinning). We have
Xn(0)=0.

Remark 1.4. Random fields with isotropic increments are high dimensional generaliza-
tions of stochastic processes with stationary increments in dimension one. It is acommon
practice to assume such processes (like Brownian motion or Poisson processes) to start
from 0. Therefore, Assumption II is a natural choice for studying random fields with
isotropic increments. Note that only the trivial isotropic field (X = 0) satisfies As-
sumption II.

We first consider the average of the fotal number of critical points of Hy confined
to domains that are appropriately scaled. Then we count the average number of critical
points of Hy with a given fixed critical value. The following condition is only needed
when the critical value is not restricted.
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Assumption III (Domain growth). Let z be a standard N dimensional Gaussian ran-
dom variable. There exist E or ® such that the sequence of sets By satisfies

1
Jim - logP(zy € [ulBy/v/D'(0) = —E <0, W£0, (14
— 00
1
li —log |By| = 0, =0. 1.5
Jim - log |By| n (1.5)

Remark 1.5. Assumption III serves to select domains in the right scale and it is less
restrictive than the shell domains considered in Theorem 1.2 when the field values are
also constrained. As seen in the proof of our main theorems, the reader could consider
other sequence of sets By provided some knowledge of their volumes. Probably the most
interesting choices of By are shells defined below due to rotational symmetry. Although
this special case of Theorem 1.1 can be obtained from Theorem 1.2, the formula and
proof for the former result are clearer, thus we state them separately. We hope this
organization provides a gentle introduction to the reader to appreciate the latter result,
where most of the novelty (and difficulty of the paper) resides.

Theorem 1.1. Under Assumptions I, II, and III, we have

1
lim — logE R, B
m - log Crty (R, By)

—g, lul > ~/=2D"(0),
_ Il 2 I =
= —logﬁ+$ﬁ(o)—j—u, 0 < |ul = /=2D"(0),

log /=2D"(0) — 1 — Ylog(27) — $1og[D'(0)] +©, p=0.

Remark 1.6. If welet J = /—2D"”(0) and E = 0 as in [Fyo04], the second case can be
rewritten as

1/ p? 1
EM,D:§<F—1>—1og730. (1.6)
which matches Fyodorov’s result for isotropic Gaussian random fields.

Next, we state our main result on the number of critical points with values in an open
set E C R and confined to a shell By (R, Ry) = {x e RN : R; < % < R»}. Thisis a

natural choice, as the isotropy assumption implies rotational invariance. To emphasize
the dependence on R; and R, we also write

Crty (E, (R1, Rp)) = Crty(E, By(R1, Rp)).
We will assume the following technical assumption:
Assumption IV. (3.8) and (3.9) hold for x € RN \ {0}.

This assumption is rather mild, and is satisfied by e.g. the so called Thorin—Bernstein
functions. It is likely that Assumption IV is redundant, as we do not know any structure
function violating this condition. At the time of this writing, we can only provide some
sufficient conditions, but cannot verify it for all structure functions; see Lemma 3.2 and
Remark 3.1 for more details.
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Theorem 1.2. Let 0 < Ry < Ry < 0o and E be an open set of R. Assume Assumptions
L 1L 1V, and || + RLZ > 0. Then

1 1 1
lim — logECrty(E, By(R1, R2)) = = lOg[—4D”(0)] — —log D/(O)
N—oco N 2 2

1
+5+ sup Yu(p,u,y)
(p,u,y)eF

where F = {(p,u,y) : y € R, p € (Ry, R2),u € E}, and the function v, is given
explicitly in (5.2).

The condition |u| + RLZ > O merely says Ry, < oo if u = 0, which is necessary to get
non-trivial asymptotics as we saw in Theorem 1.1. Heuristically, if i = 0 then the field
X n has comparable number of critical points for each increment due to stationarity so that
the mean total number would be infinity, while for i # 0, the condition VX y (x) = —ux
will be harder to satisfy “in an exponential way” as ||x || become larger since VX y (x)
are centered Gaussians with equal covariance (see Lemma A.1) so that the mean total
number of critical points tends to be finite. In Example 2 at the end of Sect. 5, we provide
details on how to recover Theorem 1.1 from Theorem 1.2 when By is a shell, which also
provides some insight on the location of the majority of critical points. In Example 3, we
consider the example D(r) = log(1+ %) and investigate the phase transition in confining
ball radius.

Let us end this section with a brief description of the proofs, highlighting the main
difference from previous results that also computed the mean number of critical points.
Similar to many results in this area, we use the Kac—Rice formula as a starting point.
Since our fields do not have constant variance and in particular Hy is correlated to
V Hy, we are unable to trace a direct parallel to random matrix theory as done in
[ABAC13,ABA13,Subl7] where the Hessian is distributed as a matrix from the Gaussian
Orthogonal Ensemble (GOE) plus a scalar matrix. This small difference actually provides
major obstacles. To go around this difficulty, we first find out the conditional distribution
of the Hessian after some matrix manipulations. The GOE matrix appears as a summand
of a principal submatrix which itself is correlated to the other element on diagonal. Then
we estimate from above and below the conditional expectation of the Hessian given Hy .
Matching upper and lower bounds only come after long and non-trivial calculations and
careful asymptotic analysis.

The rest of the paper is organized as follows. In Sect.2, we fix our notation and
provide some preliminary facts before giving the proof of Theorem 1.1. We find the
(conditional) distribution of the Hessian with some of the tools from random matrix
theory in Sect. 3 and establish various results on exponential tightness in Sect. 4, both of
which will serve as the starting point for computing complexity functions in this paper
and the companion paper [AZ22]. We prove Theorem 1.2 in Sect. 5.

2. Preliminary Facts and Proof of Theorem 1.1

Throughout, we regard a vector to be a column vector. We write e.g. C,, p for a constant
depending on p and D which may vary from line to line. For N € N, let us denote
[N1={1,2...., N}. Foravector (yi, ..., yy) € RY, we write L(y}) = & >N 8,
for its empirical measure. Recall that an N x N matrix M in the Gaussian Orthogonal
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Ensemble (GOE) is a symmetric matrix with centered Gaussian entries that satisfy
1+6; j
2N
We will simply write GOE y or GOE(N) for the matrix M. Denotingby A; < --- < Ay
the eigenvalues of M, we write Ly = L(A{V ) = % Z,ivzl 8;, for its empirical spectral
measure. From time to time, we may also use A; to denote the kth smallest eigenvalue
of GOE 41 or GOEy_;. This should be clear from context and should not affect any
results as we only care about the large N behavior eventually. For a closed set F' C R,

we denote by P(F) the set of probability measures with support contained in F. We
equip the space P(R) with the weak topology, which is compatible with the distance

E(M;j) =0, E(M}) = 2.1)

duoyi=swp | [ sau= [ rafsinie = tan =1} woer@,
(2.2)

where || f]loo and || f || denote the L norm and Lipschitz constant of f, respectively.
Let B(v, §) denote the open ball in the space P(R) with center v and radius é w.r.t. to
the distance d given in (2.2). Similarly, we write Bg (v, §) = Bx (v, 8) N P([—K, K])
for some constant K > 0. We denote by oy the semicircle law scaled to have support
[-v2,V2].

We will frequently use the following facts which are consequences of large devia-
tions. Using the large deviation principle (LDP) of empirical measures of GOE matrices
[BAGY97], for any § > 0, there exists ¢ = ¢(§) > 0and N5 > O such thatforall N > Ng,

P(LOY) ¢ B(oge, 8)) < eN’. 2.3)

On the other hand, the LDP of the smallest eigenvalue of GOE matrices [BADGO1]
states that A satisfies an LDP with speed N and a good rate function

Jl(x) = {fxﬁ«/zz——Zdz, X S _ﬁ’

00, x> —/2,
_ %logZ—%x\/xz—Z—log(—x+\/x2—2), x < —+/2, 2.4)
oo, x> —+/2. ‘

In particular, writing A*N = max;¢[n] |Ai| for the operator normof an N x N GOE matrix,
by [BADGO1, Lemma 6.3], there exists Nyo > 0 and Ko > 0 such that for K > Ko and
N > Ny,

P(Y, > K) < e VKO, 2.5)

This can also be seen directly from the LDP of A1, even though it was originally proved
as a technical input for the LDP of A;. It follows that there exists an absolute constant
C > 0 such that

E[1%5] < ¢ (2.6)

for any k > 0 and N > Ny. For a probability measure v on R, let us define

W (v, x):flog Ix —tu(dD),  Wi(x) = W(o, X). Q2.7)
R
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By calculation,

1 11 ¥
U, (x) = Exz— o 5105:{2—/:/E 2 = 2dy1{|x| = V2}
{ x2— 5 —1log2, x| < V2,
11

2
x2 - % —log2 — %|x|\/x2 —2+log(|x| +vx2=2), |x| > 2.
(2.8)
Note that W, (x) — )‘72 <—-3—3 log 2. Unless specified otherwise, we assume Assump-
tions I and II throughout.

Let us prove the result for the total number of critical points. The strategy we employ
is well-known and similar to the one developed in [ABAC13]: We start by applying the
Kac—Rice formula and we derive the asymptotics in high dimensions with the use of
random matrix theory and large deviation principles. The proof is somewhat straight-
forward since we do not face the main obstacle of the next sections, i.e., the dependence
of Hy and VHy.

= =

Proof of Theorem 1.1. Let E be a Borel subset of R. By the Kac—Rice formula [ATO07,
Theorem 11.2.1],

1
ECrty(E, By) = / E[| det VZHN(X)H{NHN()C) € E}Y[VHN(x) = 0]pvay ) (0)dx,

By
2.9)

where pv g, x)(f) is the p.d.f. of VHy (x) at z.

When E = R, the restriction on the range of Hy (x) disappears. By independence of
VHy and V> Hy (see Lemma A.1), the above formula simplifies to

ECrty (R, By) = / E[| det V2 Hy (x)|1pv ay (x) (0)dxx. (2.10)
Bn
The following lemma is a random matrix computation.

Lemma 2.1. Let M be an N x N GOE matrix and set

o
P=aM - |b+—=Z)1,
( VN )

where Z is a standard Gaussian random variable independent of M, I is the identity
matrix and a, b, o € R. Then

TN + DN N+ 1)x2 2
E|det P| = (X ,\),baz ]E/exp[%(l—%)
o

ﬁoN%eZTZ
VN(N + 1)axb

o2

+ :|LN+1(dx)-

Proof. Use [ABAC13, Lemma 3.3] with m = g, t = ﬁ, G = R and sum over the

eigenvalues. O
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From Lemma A.1, V2 Hy (x) and /—4D"(0)M — ( %Z — )1 have the same
distribution. Then with

= —u/+/—4D"(0),
from the Lemma above with a = /—4D"(0),b = —u, 0 = /—2D"(0) we obtain
E|det V2 Hy (x)|
_ V24D OIMPT (PR (N + D
JTNN/2¢ Nm?

From Lemma B.1, we see that for the asymptotic analysis we can replace the above
VN (N + 1) in the exponent by N + 1, leaving us to compute asymptotics of

1 2
o3 (N+Dw +2«/N(N+l)meN+1 (dw).

N+1
— (N+D)¢ (x) — (N+D)(2;)
Iy = E/€ Ly+1(dx) = Nl z;EGOE(N+1)e ,
1=

where
1, nx
X)=—=XxX" — ———.
¢(x) 7 570
This is obtained in the following Lemma.
Lemma 2.2. If |u| = /=2D"(0) then
lim llog1N= w +1 el 1,
N—oo N —4D"(0) «/ —2D"(0)
while if || < /—2D"(0) we have
1 2
lim —logly = M—.
N—oo N —2D"(0)

From Lemma A.1, we note that

w P By/vD'(0 0,
f PV Hy ) (0)dx = {m (zv € |uIBN /YD), n#
By

WWM =0,

where | By | is the Lebesgue measure of By and zy is a standard N dimensional Gaussian
vector. It follows from (2.10) that

1 1
i — log ECrty (R, By) = i —| 1 log I
M — log Crty (R, By) Nl_IflooN( ogCy +log N>,

where

[ —4p"onN/2r N+I N+1
AADOIEN N DB ey € |ul By /VDTO). 1 #0.
Cn = JIN Il (2.11)
V2[—4D" O1V/2T () (N+1)[By|

ﬁNN/Z(Zn)N/ZD’(o)N/Z )

n=0.
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From Assumption III and Stirling’s formula,

V=2D"(0) 2 1 =
lim ilog Cy = log " 4DM’/(0) 35 u#0,
N—oo N log /—2D"(0) — % — %log(Zn) — %log[D/(O)] +0, n=0.

The above computation combined with Lemma 2.2 finishes the proof of the Theorem.
|
We finish this section with the proof of Lemma 2.2.

Proof of Lemma 2.2. The proof follows from the large deviation principle for the ex-
treme eigenvalues of GOE. In short, in the case of small |u|, the maximum of ¢ is
attained in the bulk while in the case of large |u|, the extreme eigenvalue (A for u > 0
and An4 for © < 0) contributes to the asymptotics of Iy. We argue the first case
ln| > /—2D"(0). By symmetry, we only consider i > /—2D"(0). Since ¢ (x) is
bounded from above, by the LDP for A1 as in (2.4) and Varadhan’s Lemma,

(N+D)¢(r1)

1
— < liminf log [E
sup o (x) — Ji(x) < iminf === log EGorv+1)e

xeR

1
< lim sup ——— log Egorv+ne ™™ < sup ¢ (x) = /1 (x).
N—o0 xeR

2.12)

Note that

J=D7(0
argmax[f (1) — )] =~ =t O. n

Since Iy > ﬁEGOE(NH)e(N“)‘f’(M), it follows that

EGOE(NH)@(NHWM)]

o1 o1
1}\1}11)1;15 v log Iy > l}vni)lé‘lof N log[

N+1
> w + log K + 1
— —4D"(0) /=2D"(0) 2

On the other hand,

(N+Dp(— L)
Iy < Egop+ne™?010, > S VP IP’(M < —L).

V=D"(0) V=D"(0)

For an upper bound for the first term on the right-hand side, we have by (2.12),

1
lim — logE W+DéG1)
Nl—>ooN £ RBGOEWN+De

:¢<_ w «/T’(O))_](_ w \/T/(O))'

V—=4D"(0) w

JAD0) | n
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And for the second term, we find by (2.4)

1 (N+)p(——E—) nw
lim sup — lo [e V/=D"(0) IP’(M < ——)]
Voot N 08 J=D"(0)

=¢(- =m0 (- =ow)
w V—D"(0) % V=D"(0)
= ¢<_ J=aD"0)  n )_ ! (_ )

It follows that

J=4D"0) “

2

. 1 " 1
limsup —log Iy < +§.

n
+ 1o
Nooo N —4D"(0) T % /=2D70)
We have proved the claim.

For the second case || < «/—2D"(0), the maximum of ¢ (x) on R is achieved at

_ Kk _
X = NEEO) € ( «/5 «/5). Then for ¢ > 0 and N large enough,

— =t (N (- N+1 (— 2 )
E o e( ot */T/(O)H)LNH(dX) <In= @( e
.
/—D”(O)

> 0, it follows that

Since imy— o0 ELN4+1 ( — J—g”(O)’ _J—g’/(O) + 8)

MZ 82 1 1 2
———— — — <liminf —log Iy <limsup —logly < ———.
-2D"0) 2 N—oo N Nooo N —2D"(0)
The claim follows by sending ¢ — 0+. O

3. Conditional Law of V2 Hy with Constrained Critical Values

In this section, we provide the initial steps for computing complexity functions. Our
main result is a relation between a conditional Hessian V>Hy and the GOE given
in Proposition 3.3 which implies (3.20) in the Kac—Rice representation for structure
functions D that satisfy Assumptions I, IT and I'V.

Recall the Kac—Rice formula (2.9). Note that (Hy(x),d;Hy(x), dx
Hpy (x))1<i<N,1<k<i<n 1s a Gaussian field. A natural way to proceed is through con-
ditioning. From Lemma A.1, we have Var(Hy (x)) = ND(% lx||1?) and the means

E(Hy (x)) = %||x||2, E(VHy(x)) = px, E(V?Hy(x)) = ply.

Since Hy and (VHy, V?Hy) are not independent, our strategy is to first remove the
dependence of Hy on V Hy by subtracting from Hy a linear transform of VHy. Let

Yo1 = Cov(Hy(x), VHy (x)) = D’(%)xT and 211 = Cov(VHy(x)) = D' (0)Iy.
By the conditional distribution of Gaussian vectors, we know

Hy) D'(BE) S xiti Hy ()
N ND'(0)

1
Y= Sy () - 012, VHy(x)] =
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is independent from V Hy (x). Now we reduce the problem to understand the dependence
of V2Hy on Y, which contains information for both of Hy and V Hy. Since V Hy (x)
is independent from V2 Hy (x), by conditioning, we may rewrite (2.9) as

ECrty (E, By)

1 _
= / Il det V2 Hy ([1Y + S0 21, VHy () € ENYHy () = 01pv iy 00dx
By

_ / Ef] det V2 Hy (1) [1{Y € E}lpy o) (0)dx
Bn

_ (ufmy)2

1 2
= E(|det V2 Hy (0)||Y = ) ———e ¥ ) (0)dudx, 3.1
/I;N/E { N (O] )may PV Hy(x)(0) 3.1
where

2
plxl> pD 52
2N D'(0)N
2
1 )2 D)2 ||x||2)

G%ZVM(Y):N(D( A TN

my =E(Y) =

)

To proceed, we need the conditional distribution of V2 Hy (x) given ¥ = u. A crucial
difficulty arises here, however. Namely, one can check that the off-diagonal entries of
V2 Hy (x) given Y = u may have negative covariance, for example,

CovI(By; Hy (), 0yt Hy GDIY = ] = — - L5051 @0
\4 [ X), X = U| = ——
ij 1IN kI LIN N N N

O FE Gk FELAL Y £ kL

for some « defined below, which prevents using GOE directly. This conditional covari-
ance structure also motivates the introduction of rotation matrix U (x) defined below,
after close scrutiny and several guess and verify procedures.

To overcome this difficulty, let us define

2D"(||x||>/N)

X2\ D'(xIZ/NY X2
\/D(T)_ DO N

D'(||x||>/N) — D'(0)

llx]? D/(Ix[2/N)? <1
\/D(T) - D’ (0) N

o =a(lx|?/N) =

B = BUIxI*/N) = (3.2)

Note that « < 0 and 8 < 0. One should think of « and 8 as O(1) quantities. Let us
define A = Ay = U(x)VZHy(x)U(x)" where U(x) isan N x N orthogonal matrix
such that

a”]f/”2+ﬂ0'--0

T N
B L BIUT = 9 ’3. 9 . 3.3)

U(
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In other words, we have for U = (u;;),

axpx; llx )1
§ ik ( + Bdk)u ji = adi18;1 ——— + Bdij. 3.4
7 N N

Indeed, such a U (x) can be found by imposing the first row to be ”XTT” for x # 0; and

if x = 0, U(x) can be arbitrary orthogonal matrix. It follows that E(A) = ply, and by
Lemma A.1,

Cov(Ayj, Ayj) = ) ikt jiuirpit iy Cov (D Hy (x). By Hy (x)
kLK I

_ —2D"(0)
- N

Cov(A;j, 9 Hy(x)) = ZuiauthOV(aabHN(x), g Hy(x)) =0,
a,b

Cov(Aij, Hy(x)) = Z“ia’/‘jh(
a,b
2D (IxI1*/N)8in s lx|1?
N N

(8ij8irjr + 8iir8jjr + 8ijrdir ),

2D"(||x|1>/N)xqaxp
N

+[D'(IIx]I*/N) — D'(0)1845)

+[D'(IxI?/N) — D'(0)15;;.

Since A and V2 Hy (x) have the same eigenvalues, by (3.1),

(ufmy)2
L
ECrtN(E,BN)=/ /E(ldetAHY:u) e PV pymyo(0)dudx.
By JE V2moy v

(3.5)
We need the conditional distribution of A given Y = u. Note that

2D"(Ix)*/N)8indjillx > [D(lx]I*/N) — D'(0)15i;
N2 * N '

Hy
Cov(A;j,Y) = Cov(A;j, 7) =
Then conditioning on ¥ = u we have

E(A,'j|Y = u) = E(A,‘j) +COV(A,'j, Y)(TY_Z(M —E(Y))

2
1D (55 |x)?

20" (B2 5,051 2 2
(e + D) — DOy - B + Tty

= dij + o o (B2 e )
R 2
L e
L ulsl? , mD S
M = RAY =0 =l + 22[ D (Hi-)u?(()))z\lv 2
llxl Aol
DR — —Dow -
w_,_l)’(w),l)/(o) 0
x N N ) , (3.6)
0 (/M) — D)1
Cov[(Aij, Airj)TIY = u] = Cov[(Ajj, Airj)T1 — Covl(Aij, A i), Yoy >CovlY, (Aij, A )]

o1
= Cov[(Ajj, Avjr) 1 — N
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(0551'15;'\}”XH“ + B8 )2 (05115;'\;\\16” + B5i; )(0’5x 18 lxl +B5ir}1)
5116 s/a/u & 8,181 Ix112 ’
(I i (PR ) I s

where Cov[(A;;, Ai,j,)T] denotes the 2 x 2 covariance matrix of A;; and A; ;s while
Cov[(A;j, Ai/j/)T, Y] denotes the 2 x 1 covariance matrix of (4;;, A,vj/)T and Y. From
here we see conditioning on Y = u,

Cov[(Ajj, Ajrj)|Y = u]

—2D"(0)(8;8;rjr + 8iv8jjr +8ij8ir ) 1 adindjillx|? adindjllx]?

= n — (R 4 B (e 4 B8 )
27O _ L (alel” +ﬂ>2, i=j=i"=j=1,
_2%(0)_%( 12]21751/:_]/, ori/:j/zl;éi:j,
—6D" (0 2 . . .
_ 150 -4 i=j=i'=j#1,
] —2p”0 2 . . . .
o £, Lgi=j#i=j#1,
72[1)\/(0)’ i:i’#j:j’,ori:j/;éj:i’,
0, otherwise.

Alternatively, one can find the above conditional covariances using spherical co-
ordinates, which could avoid the matrix function U (x). Observe that the conditional
variances are positive by definition. In order to draw connection with GOE, we first
have to check that all the quantities Cov[(A;;, A;/;/)|Y = u] are positive. Note that o
and B depend on x> and N through lx||2/N. Let us write p = py(x) = Ixl g6 that

N
a =a(p?) and B = B(p?).

. D2 D (62)2
Lemma 3.1. We have lim,_, . ;ﬁ ) _ D/E&;z = —%D”(O) and

. 2 . 4 .
lim B(pH)? =—=D"(0), lim a(p?)B(p?)p*=—=D"(0), lim [a(p?)p*]?
p—0+ 3 p—0+ 3 p—0+

8
=—-D"(0).
3D« )
Proof. Using I’Hospital’s rule together with D(0) = 0,
. D(p*)  D'(pH* . D'(pHp*—Dp*) 2D'(pHD"(p*) 3,
lim — = lim — = —=D"(0).
p—0+ p4 D/(O),O2 p—0+ p4 D’(0) 2

It follows that

D'(p2)—D'(0) 2]2

) I Y
Jim B(oP) = lim oty = =3 D),
T D'(0)p?
i 5 20 2 — i P — __D//
pl)rg+a(p ),B(p )p err(%+ D(p>) _ D'(p»)? 3 0),
ot D'(0)p?

[2D"(p*)]? 8
1 2 [ — ——D” .
lm [05(/0 )10 ] 0 D(pz) D/(pZ)Z 3 (O) O

ot D(0)p?
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In light of Lemma 3.1, we make the following observation. Following [SSV12, The-
orem 8.2], a function f : (0, co) — (0, 00) is a Thorin—Bernstein function if and only
if lim,_, 0+ f(x) exists and its derivative has a representation

, a 1
fx)=—=+b +/ ——o(dt), 3.7
(

X 0,00) X +1

where a,b > 0 and o is a measure on (0, co) satisfying f(O,oo) ﬁa(dt) < o00. In
particular, the functions D(r) = log(1 +r/¢e) and D(r) = (r + €)¥ — & are Thorin—
Bernstein functions. Recall the definitions of « and g as in (3.2). The proof of the
following analytical result is deferred to Appendix Sect. B.

Lemma 3.2. For any x € RV \ {0}, we have

—2D"(0) > <°‘”;”2 +ﬂ> B, (3.8)
D" <annﬁ )anxw
—4D"(0) > (o + B ) T (3.9)

provided any one of the following conditions holds:

1. Forall x # 0,
B < —%D”(O). (3.10)

2. Forally >0,
2D'(0)D"(»)[D(y) — D' (y)y] + D'(»)[D'(y) — D'(0)]* > 0. (3.11)

3. Forally >0

D'(y)y _D'(y)—D'(O)

D'(0) D"©0)  ~ G142
4. Forall y > 0,
D'(y) = D'(0)
o)t oy 2 (3.13)
5. Forally >0,
—D"(’+ D" WD’V _ | (3.14)

D//(y)z -

6. D is a Thorin—Bernstein function with a = 0 in (3.7).
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From now on, we always assume (3.8) and (3.9) (i.e. Assumption I'V), which implies
that o1, o2 below are well defined and Cov[(A;;, Aj/j)|Y = u] = O foralli,i’, j, j'.
Recalling (3.6), let us write

(u — 12 4 LD (2 D (p2) o2 + D' (p2) — D'(0))
D' (02)2p2 ’
D(pz) _ (/J/())/J

(u — 14~ + LD (D' (p) — D'(0))

mp=mi(p,u) =p+

my =m(p,u) = p+

Do - g
3 | =AD" (0) — (ap? + )op? 3 | =2D7(0) — (@p? + P)B
o1 =o01(p) = N , oy =02(p) = N ,
D’ 2\ 2 1 D’ 272 52
my =my(p) = “;’ %, oy =oy(p) = /N(Dwz) - %)
D" 2 D’ 2y _ D (0
o =a(p?) = (pD/) —, B =B(p>) = ) — (22 =, (3.15)
D(p?) — D(p?) — P

where p = k‘—l From time to time, we also use the following change of variable

_upt  uD(p)p?
T tThom - u—my

D/ 2 2
\/D(pz) (,0,()) v Noy

(3.16)

so that
mi = p+v(ap®+p), mr=u+vp. (3.17)
Let

G=Gu) = ! , (3.18
0 (s J=AD0)(,/ S GOE N — 241y o) <s G**) (5-18)

where with z1, z2, z3 being independent standard Gaussian random variables,

1 Jo
y=o1z1—oz+my, = —TN(())(GzZz + %& - mz), (3.19)

/"
and & is a centered column Gaussian vector with covariance matrix wl ~—1 which
is independent from zp, z2, z3 and the GOE matrix GOEx_;. The above discussion
yields our main result of this section.

Proposition 3.3. Assume Assumptions I, Il and IV. Then we have in distribution
UVEHNUTI)Y =) £ G
To connect with (3.5), we have

E(|det A||Y = u) = / |deta|pajy (alu)da = E(| det G|). (3.20)
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Remark 3.1. Here we explain the necessity for Assumption I'V. Note that as a (condi-
tional) variance, we have

NVar(A|Y = u) = —6D"(0) — (ap” + B)*> > 0, (3.21)
which implies that
le?p*| < —6D"(0), B* < —6D"(0). (3.22)

Since Cov(Gii, Gjj) = %(—2D”(O) — B fori # j,i,j > 1, we need to introduce
the independent Gaussian variable z’; such that

N[—4D" (0)]Var(zy) = —2D"(0) — B2 > 0, for p > 0. (3.23)

The condition (3.22) and assumption (3.23) are sufficient in technical proofs in this
paper. However, we need the stronger assumptions (3.8) and (3.9) for the matrix model
(3.18), which is the cornerstone for the rest of the paper and the companion one [AZ22].
Indeed, since Cov(Gq1, G;;) = %[—ZD”(O) — (ap? + B)B] for i > 1, to extract the
dependence between G11 and G;;, we need (3.8) to introduce z, and decompose G
and G;;. For G;;, the remaining variance

Var(Gi;) — 07 = %[—40/%0) +app’]

can be explamed by a GOE diagonal term and v/a8p2z3 since afp® > 0 is known. Then
we can write z3 asin (3.19). Butto decompose G 11, we need to assume Var(G11) — 02 >
0 to write G11 as zl in (3.19), and this assumption is exactly (3.9).

4. Exponential Tightness

The purpose of this section is to prove several exponential tightness results so that our
future analysis will be reduced to the compact setting. Let £ C R be a Borel set.
Hereafter, for simplicity, let us assume By is a shell By (R, Ry) = {x € RN : R <

% < R»},0 < R; < Ry < 00. Recall that in this case we write Crty (E, (R1, R)) =
llx]

Crty (E, By(R1, R)). Using spherical coordinates and writing p = N’ by the Kac—
Rice formula we have

~w-my)?
ECrty (E, (R, Rz))_f fIE[ldetA||Y_u]r 27 pyy (o) (0)dudx
oy
s 1 (= mzy) 1 _N‘szz
- (N=D/2 2 s N—1
= Sy-1N /Rl ,/EE[ldetGl]\/ane v QmVED (N2 ¢ 20’0 pV~ldudp. (4.1)
N/2 . . . .

Here Sy—1 = FZETT/z) is the area of N — 1 dimensional unit sphere, G depends on u

implicitly. Using the Stirling formula, we have

1 - 1 1
Jim log(Sy_1N'T) = 5 log(2m) + 3. 4.2)
Recall the representation (3.18). Let A1 < --- < Any—_; be the eigenvalues of

GOEy_1. The eigenvalues of G, can be represented as {«/—4D”(O)((%)l/2ki —
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zé)}lN= _11. By the representation, we may find a random orthogonal matrix V which is

independent of the unordered eigenvalues 2 j»j=1,...,N—1and z’3, such that
(NT_I)I/ZXI —Z 0
Gux =/ —4D"(O)VT : : V. (43
0 s (MDA - 2

By the rotational invariance of Gaussian measures, V& is a centered Gaussian vector
—_ /! . . =~ .
with covariance matrix %I ~N—1 that is independent of 1’3 and A;’s. We can rewrite

VE 4 \/ —21])\]"(0) Z, where Z = (Zy,...,Zy—1) is an N — 1 dimensional standard
Gaussian random vector. Using the determinant formula for block matrices or the Schur
complement formula,

det G = det(G) (2} — 671G &) L [-4D" (01N =172} H(( L2, — 2
j=1
4D// 0 N/2
- ()] sz ]‘[((—)Wx —23).
k=1 j#k
4.4

It follows from (4.1) that

Ry
BCy (£, (R, R) = Sy-N Y2 [ [ 5([i-anron®vr H(( SUCYEA
E
N2 N (M_zmy)- -t
_ [4D"O)]" 4D”(0)] W2 oy e 200 Nl
;Zkgc(( 4= ey am R e
< Sy NVTURII(E, (R, R) + L(E, (Ry, R))], (4.5)
where
o1 (R Nt N —1
B(E. (R R = (=40" 01T [ [ B[] [T 150" - 23]
Ry JE i N
,(ufmzwz N2
e v e 2D°0) N—1
~ldudp,
V2roy QoNEDQONRP P
N N-—1
[— 4D“(0)]2
B(E. (Ri, Ry) = ————— Z/ B[22 [T, - =]
J#
_ (u=my)? 22
e 2")2' e Z,D (g)
N=ldudp. (4.6)

Varoy QoNED(O)N2P

In the following we will employ hard analysis to derive various estimates that would
reduce the problem to the compact setting.
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Lemma 4.1. For any p > 0, u € R, we have

1 Cp(1+p%) 1 _ Cndd +p%)

<
D'(0) — D'(p?) ~ p* 2 _ D22’ p?
/D) - 2y

u o uD'(p?)

i| < +C‘ +—
mil < il +Co| 5 = S+ =58

‘(1 +0Y), i=1,2. @47

= D"(0) and D’(p?) is strictly decreasing to 0 as

/(A2 /
Proof. Since lim,_, o, %}D@

p? tends to oo, we have the first assertion. By (3.22), we have

1 - /—=6D"(0) _Cnd +p?)
10A2N2 2 / _ / 2 - 2 ’
\/D(pz) — Drre D'(0) = D'(p%) P

which together with (3.22) again implies

w  uD'(p*) Cpp?
2

|ml| = |/’L| + ‘ D/(O) D/(O) _ D/(pZ)

o2
u p D' (p?) 2
< Cpl= — 24 B2 P
K1+ C| 5 = 5+ 55 1+ 0?)
w  uD'(p*) Cpp?
2 D'(0) ID'(0) — D'(p?)
w  uD'(p?)

u
<|ul+Cp|— — = +—— ‘ O
il +Col 5 = 5+ |+

u
mal < Il + | =5 —
P

Recall zl = 0121 — 0222 + M1, z3 (0222 + p?“ m3)/~/—4D"(0). Note that
the conditional distribution of 7| given z5 = y is given by

_ b?
/ ! ~ _
Zilzz =y N(a, N), (4.8)
where
5 05 (/=4D"(0)y + m>)
= m] —
"2 a?\f
2
B D”(O)otp (u ,UP + ILDD(K&)))P ) (X,szﬂ
(—2D"(0) — ﬂz)\/ D(p?) — 2ok (pz)z)” —2D7(0) -
_ (Z2D"(0) = B — app®)y=4D"O)y
—2D”(0) B?
b2 s oy —4D"(0) 2D (0)a2p*

- = + = =+ .
N T o e N T N(=2D"(0) - B2
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Note that if z is a standard Gaussian r.v. and & is the c.d.f. of z, then we have for
acR, b>0,

2 2b _ % 2
JEZb <Ela+bz| = Vb -5 +adE) — 1)< [Zb+lal. 49
7 JT b 7T

Lemma 4.2. Suppose i # 0. Then

1
lim sup lim sup ~ log ECrty ([—T, T1¢, (0, 00)) = —o0

T—o0 N—>o0

1
lim sup lim sup N log ECrty (R, (R, 00)) = —00

R—o0 N—o©

1
lim sup lim sup N log ECrty (R, (0, €)) = —o0

e—>0+ N—o0
Proof. (1) Note that b> < —4D”(0) and that

o " _ p2 N1
1+< 2D7(0) - B

Ell5V "1 = ¢V m)'- “IND'0) ) T = aemd T @0

/A uD'(p?)
RU(0)

4.8), (4.9), (2.6), Lemma 4.1 and the elementary fact m, < max{l, muN},

We write m,, = ||+ C D| [(1+ p?). Using the conditional distribution

B[l H ]

/ [|21| 1_[ |(

Vb —4AND’(0) exp{— %M}

5/( +1a] )EG3_; + D" v
R \VIN V2r(=2D"(0) — %)

< CNIE[(b + Imi | + Ima] + /=AD" O) 4D 0, N+ 141V

< CD(I +m, M,

—4ND"(0) exp{— N%m‘;@ }
V27 (=2D"(0) - B?)

Zs—y]

where )‘7\14 is the operator norm of GOEy_1. Similarly,

N -1 - -
B[22 [T 105" =2l S EGa, +15DY 2 = V(1 + IV ).
J#iL1<j<N-1
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. / 2y_ D'(pH)?p? e :
Since D(r) < D’(0)r,wehave D(p )_D’—@) < D'(0) p~. Together with Lemma4.1,
we obtain after a change of variable u = pzs,

ECrty ([-T, T1°, (0, 00))
2
1 (u—mzy) 1
- CNS - 1+ o9 -
= LpoN l/ﬂ‘& ./;—T,T]C( mll)rgy (zﬂ)N/ZD/(O)N/Ze
D 2

- C,’YDSN-lf / [1+(1+p2N)| B, ,(p )‘N:I

’ Ry J[=T/p?.T/p?)¢ 2 DO

Na2?
2’0 pN=ldudp

D02
VN ( N'O (s = + /LD’(({)))))2) 1 *’Zﬁiﬁ? N+lg4ed
— - e 2200 p sdp
/27 /D(p?) — D’ (pz)2 2 2(D(p?) — %()02)/72) Qm)N/2D'(0)N/2

Sy—1vVN
uD N-1 / / / f [1+(1+p2N)(|V\+|M|) 1
(27_[) D/(O)N/Z JTTs /S

uD' (p* ))2+ 2
u?1p?
)pNHdpds.

(1+p2) ( NiGs— 5+ EO)
exp

2D'(0)

rea2
We need to find a good lower bound for (s — % + & g,((g) ))2. To save space, let

uD'(p?
NIGs = 5 + 5 ) +

2N 2N N N-1 N+1
Fls. 0% =11+ (1+ o2V ) (sl + )™ 1(0™ ™+ PV exp (= 2D°0)

2 x2
We will use the estimate f e 207 dy < "—e %7 repeatedly in the following.
D('O )| < %,wehave

Case I: s > 0.1If s > |/, since |§ ()

/(A2 1(n2
(-5 =0l ) = 7

Then

o0 o0
f / f(s, pHdpds
[l JJT/s
s2.2,2
_ N +ullp
/ / [+ G5+ D™ + s+ DY oV 1V + oV ye™ 300 dpds
lul JVTTs

8D 0)\ N+l 2D 0 -1/2
< ;41) () / /\/ ()) (1+ (s + [uhM)r3V L e=Nr 4pds
[l

S+l

21)’ (0)

N
N R S GV ot Ea S
NVT Jipy (82 +4p>)NV=D/2

CIYD © 1 NTs CND _ uINT
/ —e TR0 ds < P TR0,

T NVT Jjy 2 NVT

2
Here we have used the fact that ,/ T{(O) (7 + “T) > |l %,(0) so that we can always

choose T large to guarantee r > 1 and r* < " /2.
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2
If s < |p]|, using the trivial bound (s — — + 1D ))2 > 0, we have

D’(0)
[ul poo
f / f(s, pP)dpds
0 JT/s

[ 7N;/.2p2
< / / [+ s+ 1D + (s + 1D o2V 1oV 1 + pN*ye™ 25760 dpds
VT[Tl

. 2D 0)\3N/2
: CD/ / [T ( )) 1](1 + (s + |M|)N)r3N+1e,N,2drdS
p.

20’ (0)
CN ot
< MY T

T NJT

Case 2: s < 0. After change of variable s — —s, we can proceed in the same way
as the case s > 0 and find

0 00 00 00
/ / f(s. pP)dpds = / f F=s. pPP)dpds
V-T/s JT s
[4]
/ / / / f(=s, pHdpds
VT7s il JYTTs

< u D ( ~|RINT/[32D'O)]  ,~IuINT /14D’ <on),
NVT

Putting things together, we see that

N
ECity(—T, TT, (0,00)) £ 2 (e WNT/R2D/ Oy (= uINT/ED'O )
T NJT

From here the first assertion follows.
(2) The last two claims follow somewhat different strategy. By conditioning and
Young’s inequality,

E[ Iz} H =y, - 2]

scN*lE[<b+|m1|+|mz|+ —4D" ()25 Wy -y

< N+ |my N + ma V).

N—-1 /I N—1
+lz307 )]

Using Lemma4.1, (3.22) together with the change of variable formulas (3.16) and (3.17),
ECrty (R, (R, 00))

N _ (u—zmzy)2 Nuzpz
e 7 e 2D'(0)
< CNSN_I/ /(1+|m1|N+IM2|N) oV dudp
b r Jr V2roy Qm)N2D/(0)N/2
Nu2 N“zpz
e 200

N- 1dvd,o

SCIJXDSNfl‘/\ /[1+|U|N((X}0 +,B) ]\/_ (ZE)N/ZD/(O)N/ZIO
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N © _Moe
SCM,DSN—I/R e 0 pt " dp
CN SN 1 _ Nu2r?
< WD T w
- NR
for R large enough. Similarly,

e _nu?o? cN SN_18N
ECrin (R, (0, ) < C pSy— 1/ o3t pVtap < D
0

This completes the proof. O

We remark that we have actually proved the following stronger results with heavier
notations from (4.6):

lim sup lim sup % log[I,([-T, TI%, (0,00)) + L([—T, TI, (0, 00))] = —

T—o0 N—oo

1
lim sup lim sup v log[l1 (R, (R, 00)) + L(R, (R, 00))] = —00

R—o00 N—o0

lim sup lim sup — 10g[11 R, (0,&)) + L(R, (0,e)] = —

e—>0+ N—o0

The third claim also holds for u = 0 with the same argument. If & = 0, observing the
complexity function in Sect. 2, it is reasonable to require R, < co.

Lemma 4.3. Let 4 = 0 and R < oco. Then
1
lim sup lim sup — log ECrty ([—T, T1¢, [0, R)) = —0c0
T—o0o0 N—>o0 N

Proof. The argument follows that of Lemma 4.2 and is actually much easier. Indeed,
we find

ECrty ([—T, T1¢, (0, R))

& 1 e 1

< CNSn- L+ml o p™ldud
=N lf /TT-( ") oy ¢ (2n)N/21)’(0)N/2" e

CNS

_CBSwo1VN_ / / (10 (1 p2y M) 2D =57 p¥ -1
(271) D/(O)N/2

<M 4u<0m2
= T

The proof is complete. O
We need the following fact.

Lemma 4.4. Suppose || + % > 0. Then for any a > 0,¢ > 0,b,d € R satisfying
aN +b < cN +d, there exist constants Cy p.ap,c,a > 0, No > 0 such that for all
N > Ny,

N(s* + u?)p?
/ / (1 + |s]*N*Py exp( 2D'0) )pCN+ddsdp < C;IXR,D,a,b,c,d-
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Proof. If u # 0, changing the order of integration yields

o N(s% + p?)p?
aN+b _ cN+d
/ /(1 *ls] )eXp( 2D/(0) )p dsdp

/ / D (0) et 1+ |s|aN+b)rcN+de—Nr2/2drds

00 1+ |S|aN+b
N N
= CD,c,d/ ( 2)cN+d+l ds = CM,D,c,d’
s2+u

where in the last step we used the assumption aN +b < ¢N +d. If £ = 0, then R < o0
and we have

R
/ / (1+|s|aN+b)exp( ZD/(0)> LN+ddsdp < Cé\,,b’D/O\ (1+p_aN_b)pCN+ddp,

which completes the proof. O

To save space, for an event A that may depend on the eigenvalues of GOE and other
Gaussian random variables in question, let us write

N N-1
[-4D"(0)]2 4D”(0)]z fo
I(E, (R, R), A) = 2/ [ B[22 [TI 12, - i)
i=1 VR JE J#i
_lmmy)? N2
207 2070y
¢ ¢ N=-ldudp.

Varoy QmNED(O)N2P

Lemma 4.5. Suppose || + Rlz > 0. Then

1
lim sup lim sup v log L(E, (R1, Ry), {Ay_; > K}) = —o0,

K—oo N—oo

1
lim sup lim sup Nlog L(E, (R, R2), {Iz5 — E(z5)| > K}) = —00

K—o0 N—o©
Proof. Using (2.5) and choosing K large so that 2¢ < 118 for ¢ > K,

B[ Y 210y > K]

K 00
=/0 K57y > K)dt+/K (N =N P0y > nde

o
< KKe—(N—l)K2/9+f e—(N—l)tz/ISdt < 28—(N—1)K2/18. (4.11)
K
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If © # 0, using (4.10) and Lemma 4.1, we obtain

L(E, (R, Ro), (Wy_, > K)) scgfo /RIE[(an,oN 242V, > K

<CN —(N- 1)K2/18/ / %_ﬁ MD/(P )IN 2(1 4 p2V- 2))]
p 2 D(0)
(w=my)? 2,
\/27;710)/6 z"fy 7(271)N/2D’(0)N/26 20 <0) N— ldudp
< CaDe—(N—l)Kz/ls /OOO/R[] +sV2(1 +p2(1v—1))] exp(— N(s;;g)j)pz)pN_ldep'

Here in the last step we used the observation (1 + P2N=D)(1 4 p2) < 4(1 + p2N=D),

The assertion then follows from Lemma 4.4. Similarly, note that

N(=4D" (0) k2
P(|Z’; E(Z3)| > K) < 26 2(=2D" (0)— /32) < 2 —NK?

It follows that for K large enough,
E(|2y — B[N 21{|z; — E(2y)| > K}) < de VK2,
From here we deduce that
L(E, (R, Ro), {124 —E(zy)| > K}) < CQ/O AE[((AX_I)N*2+|E<zg>|N‘2

2
(u—my)
_wmmy)” 1

1 . _ Nu2p?
+125 — BN H|zs — B > K} —m=—e 7 ¢ 20 pNldudp

V2moy Qm)N2D'(0)N/2
<N _,NK /2/ / 1+|7 _ E uD'(p* )lN 2(1+,o2(N’2))}
= G D'(0)
(u=my)?
1 e _Nu2p? N1
oy ¢ 2D dud
JImoy . <2n>N/2D vz T S

The rest of argument is the same as above. The case © = 0 and Ry < oo follows the
same steps and is omitted. |

Lemma 4.6. Suppose || + RLz > 0. Then for any § > 0,

lim Sup%log L(E, (R, R, ALY ™) ¢ B(oge, 9)}) = —

N—o0

Proof. We only argue for the harder case u # 0. Using (4.10), the Cauchy—Schwarz
inequality and (2.3), we have

= ON—1
B[ TT 105"k = LG ™) ¢ Blow. )]
i=1,i#j
< CVE[(Wy_ DV 2+ 2V HULAY ) ¢ Blowe, DY
< CVES_)* N2 1 ZV N2 N ¢ B(og, §)'/?

2 _
u w o uD'(p?) N 2(1+,02(N_2))]e_%C(N_1)2.

SCMD[“ 22 27 Do)
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Together with Lemma 4.4, we deduce that

L(E, (Ri, R2), {LGY 1) ¢ B(og, &)
2 _
< C;ILVDE_CNZ/ / 1+ uw  uD'(p )‘N 2(1+p2(N—1))]
' Ry JE/p?

S =St o
Nl(s — & + 122" ))2+u2]p2>

D'(0)
D’(0)

N-—1
dsd
2D(0) poasep

exp (

N2 + 12102
<CN —cNZ/ / 1+|U|N 2(1 4 p2N- ”)]exp( [v=+ulp

2D’(0)
< CIIXDe_CNZ.

From here the assertion follows. O

For an event A, let us write

vt (R N1 N-—-1,
— [—4D” Ell7 | | G2
Li(E, (R, Ry), A) =[—4D"(0)] 2 /Rl /E [|Z1| 11 I( N ) AN

2

(u—my)
s e
e oy e 2D

N-—1
dudp.
Varoy QmNED(ON2P P

The argument in this part shares the same spirit as that for 1.

Lemma 4.7. Suppose || + Rlz > 0. Then we have

1
lim sup lim sup Vv log I1 (E, (R1, Ry), {Ay_, > K}) = —o0,

K—oo N—oo

),oN_ldvd,o

- Z/3|1A:|

1
lim sup lim sup ﬁlog L(E, (R, R2), {125 — E(z5)| > K}) = —00

K—o0o N—oo

Proof. The argument is similar to that of Lemma 4.5. As there, we only provide details
for the case u # 0. Note that b> < —4D”(0). By (4.11), (4.8), (4.9), Young’s inequality

and conditioning, we find

N—1
BIE |<—>1/2A — 4tk > K]
i=1
b i
= CNE[(er”a')W‘v-oN L1V OIG5> K

< CNEL(b + Im1| + Ima| +/=4D"0)|Z5D (0 _ N+ 1251V D1k

< CNem V=DK1 4 1y |V 4 |y V).

1 > K}l
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Using (3.22) and the change of variable formulas (3.16) and (3.17),

II(E7 (R11 R2)1 {)"*Nfl > K})

_u=my)? 2,2

Npzp
0 20)2/ e 2D(0)
< CNe_(N_l)Kz/IS/ / L+ |my Y + |ma VY ¢ N=ldud
o Nv2 _ Nup?
- e 2070
<V —(N—I)KZ/IS/ / Lo 1ol (@o? + BYN1E N-l4pd
=C,pe A ]R[ [v]™ (ap B8] o (zn)N/zD/(O)N/Z’O P
o0 22
<y [ o,
' 0

N _—(N—-1)KZ%/18
=Cupe :

From here the first assertion follows. The argument for the second one is in the same
fashion after observing |z5| < |25 — E(z5)| + |E(z5)| and

N—1
/ N—1 /
E[lel [T 155" = 41101z - B > K]

i=1
< CVE[(b + [my| + [ma| + v/ =4D"(0) |25 (G N+ 1251V D125 — E(Zy)] > K}

2
< CNe™ 21 4 [my |V + Ima V). O

Lemma 4.8. Let § > 0. Suppose || + Rlz > 0. Then we have

. 1 _
lim sup — log 11 (E, (R1, R2), {LONTY ¢ B(og, §))) = —o0.

N—o0

Proof. The proof is similar to that of Lemma 4.6 and we only provide the difference for
the case ;4 # 0. Conditioning as in the proof of Lemma 4.7, using Young’s inequality,
the Cauchy—Schwarz inequality and (2.3), we find

N-1
N -1 -
B[4 T 1= = SIHLGY ™) # Blowe. )]
i=1
2N)1/2ech2.

< N+ |my PN + ma)

The rest of argument follows verbatim that of Lemma 4.7. O

5. Proof of Theorem 1.2

For a probability measure v defined on R, recall the functions W (v, x) and W, (x) as in
(2.7). Let us define



978 A. Auffinger, Q. Zeng

Y. pit,y) = W, y) — =m0
’ 2(Deo) - Zgpr)
3 —2D"(0) ( N my )2
S0 - g\ Sao
2.2
- 2D ) +logp, (5.1

Vi(p,u, y) = ¥ (0sc, p, U, y).
Recalling the notations (3.15), ¥ (p, u, y) can be written explicitly as

2
(u — wo? +MD(,0)P )2

2 D' (0
W*(P, u, Y) Z\Ij*(y) - 5 D/(p(Z))Z
2(D(,0 ) - D’(0) )
_ —szz +logp — e )
20/(0) —2D"(0) — L2WH-D O
D(p?)— Bt

wo? + pD' (p*) p*

(y 1 [+(” 2 D/—@ND’(N)—D%O»])g

+
—4D"(0) K D(pz) D/(pz()z)pz

(5.2)

Lemma 5.1. For any u and y fixed, we have lim,_.o. ¥4 (p, u, y) = —oo. For any p
and u fixed, we have lim|y|— 00 Y« (0, u, y) = —00.

Proof. From Lemma 3.1, we know D(p?) — D/(Dp/z(g)z)pz ~ —%D”(O)/o4 as p — 0+. For
any ¢ > 0 and p € (0, ¢), we may find ¢, such that

R R
Ju,y) — v < - +1
Yo, u,y) () < DD D(pz)zp : ~ 300 ogp
u _ wD'(p*) )
_ @it o) @
< — — +logp.
—3c, D" (0) 2D'(0)

The right-hand side clearly tends to —oo as p — O+.

Since % > 1, from the definition it is clear to see lim|y|— 00 Vs (0, 1, y) =

—oo for fixed p and u. O

Let [€] = {i1,...,i¢} C [N — 1]. For any 1-Lipschitz function f, we have
1 = 1
TP IRl e ey S DL
j=1 JEIN—TI\[¢]
1
S(N—l)(N—l—Z) Z |(N—1—€)f()»j)+Zf(?»i)—(N—l)f()»j)l

jelN—11\[¢] iefe]

(5.3)

IA
~8
~. 8

el

>

I

>

<
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5.1. Upper bound.

Proposition 5.2. Suppose E is compact and 0 < Ry < Ry < oc. Under Assumptions I,
Il and IV, we have

1 1 1
lim sup ¥ log b(E, (R, Ry)) < = log[ —4D"(0)] — = logD 0)

N—o0

- = 10g(27t) + sup  Yu(p,u,y),
2 (p.u.y)EF

where F = {(p,u,y) : y € R, p € (R, R2),u € E} and V.(p, u, y) is given as in
(5.2).

Proof. Since

L(E, (Ri, R) = L(E, (Ri, R), (LGN ™) € Br (0w, 8), |25 — E(Z)| < K))
+ L(E, (Ry, Ry), (LAY ) ¢ By (05, )} U {125 — E(5)| > K)),

by Lemmas 4.5 and 4.6, we can always choose K large enough so that the second term
is exponentially negligible as N — oo, provided the first term yields a finite quantity in
the limit. We only need to consider the first term.

Using (5.3), if L(A ) € Bk (og,6), we may choose N large enough so that
L((NNl)l/Z/\’,v 11/#) € BK(USC, 28). Then for any i € [N — 1],

NSL

[T 155" = SULGL" € By (0, 8)) < oM Pty V03,

J=1j#
54

By Lemma 3.1 and (3.23), we have cp g, := infg,<p<g, —2D"(0) — B% > 0 where
B = B(p?) was defined in (3.2). It follows that

/—AND0) —2ND"(0)(y + =)’
DO 28 <_ 11 \/ﬁ )

V21 (=2D"(0) — B2) =2D"(0) - B

_ VEANDO) (- —2ND"(0)(y + J;;'Dzi,,@>2>

= Jmeom 7 —2D7(0) — B '

Let

F@®) = {0 p.u.y) v e Be(ose. ).y | -

mo my
—K.- K|
J/—4D"(0) J=aD"0) }

,oe(Rl,Rz),ueE_}. (5.5)
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Using ,02 < R% and the fact that all summands of ¥ (v, p, u, y) in (5.1) are bounded
from above on F(§), we deduce from Lemma 4.1

L(E, (Ri, R), {LON ™) € By (0xc, 8), 125 — E(z5)| < K})

Ry ,
: [_4D”(°)]N/2/ / R A (ER EATEN 9
Ry E

_ Nu—my)?
D' (0222 ] Np?p?

2)_ _
/Ne Z[D(”) D’(0) e 2D'(0)

o
7(n2\2 52 N/2 1y N/2
\/2]T(D(p2) - %) 2m)N/=D’'(0)

Nfldudp

N+1
2

- Cp.ro EIN[=4D"(0)]

N+2 N exXp [(N - 3) sup ‘/f(V, p,u, )’)],
(2r) 2 D'(0)2

(v.p.u,y)eF(26)

where | E| is the Lebesgue measure of E. Since ¥ (v, p, u, y) is an upper semi-continuous
function on F'(2§) and attains its maximum on the closure F(25), we have

lim sup sup Y, p,u,y) < sup Ye(p,u, y).
50+ (v,p,u,y)EF(28) (p,u,y)EF(0)

By Lemmas 4.5 and 5.1, the continuous function v, (p, u, y) attains its maximum in F
at some point (s, Uy, yx) With p, > 0. Therefore we may choose K large enough in
the beginning so that

sup Y (0, U, ¥) = V(s U, Ys)-
(p,u,y)EF(0)

This justifies that sup, , yyer ¥«(p, u, y) > —00 and the proof is complete. O

Proposition 5.3. Suppose E is compact and 0 < Ry < Ry < oo. Under Assumptions I,
Il and IV, we have

1 1 1
limsup - log /1 (E. (R1. Ry)) < 5 log[—4D"(0)] — - log D'(0)

N—00

1
— —log2m)+ sup Yu(p,u,y),
2 (p.u.y)eF

where F = {(p,u,y) : y € R, p € (R, R2),u € E} and V¥.(p, u, y) is given as in
(5.2).

Proof. By the remark after Lemma 4.2, we know
1 1
limsup — log I1 (E, (0, R2)) = lim sup — log 1 (E, (e, R2))
Nooo N Nooo N

by choosing ¢ > 0 small enough. Hence, we may assume R; > 0. Similar to the proof
of Proposition 5.2, since

L(E, (Ri, R)) = II(E, (R1, R), {LOWY ™Y € By (0, ), 124 — E(Z3)] < K))
+11(E, (R, R), {LON ™YY ¢ By (05, )} U {lzs — E(Z5)] > K},
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thanks to Lemmas 4.7 and 4.8, by choosing K large enough, it suffices to consider
the first term. Since 0 < R} < Ry < 00, using continuity of functions in question,
conditioning with (4.8) and Lemma 4.1 for oy,

L(E, (R, R, (L") € Bi (0w, 8), |25 — B(z3)| < K})

_ Ry
< [-4D"(0)]"F" sup (b+ lmy | + Imal + V=AD" ©O)]y]) / /
Rliprz,MEE,\y’r\/%,,(m\fK R JE

)
— lmy)” mr ) _ Nu?p?
20y e 2D7(0)

«/70')/ (271)N/2D/(O)N/2p

B[V Penginen VOS24 ~ By < K} ~ldudp

N
C ;[—4D"(0)]7
< ~RuRnDEE exp[(N=3)  swp oy pu )],
D/(O) 5 v,p,u,y)EF ()

where F(8) is given as in (5.5) and the supremum of |m |+ |m2| may depend on R;. The
assertion follows from the upper semi-continuity of ¥ (v, p, u, y) on F(§) by sending
N — oocand § — 0+. O

5.2. Lower bound.

Proposition 5.4. Suppose E is an open setand 0 < Ry < Ry < o0. Under Assumptions
L Il and IV, we have

| 1 1 p
l}vnl)lgof N log ECrty (E, (R1, R2)) > 3 + 3 log[—4D" (0)]

1
— =logD'(0)+ sup V(o u,y),
2 (o,u,y)eF

where F = {(p,u,y) : y € R,p € (R, R),u € E} and Yu(p,u,y) is given as in
(5.2).

Proof. Using (4.9) and (4.8), we know

, c 2 r—4D"(0) 2D"(0)a2p*  q1/2
]E[|Zl — h(Z3)||Z3 = y] > \/;I: N + N(—ZD”(O) — ’32)] s (56)

where /(z5) only depends on z5. By conditioning, using (4.4) and (3.18),
E(| det G|) = E(| det Gusll2) — &' G, ED)

-1
— 40" 01" Efl det(( Y= 1)1 2GOE 1 — A In_DIE(Z; — TG EIIGOEN_1, &, 24)]

" N1 21— D”(O) 2D”(0)0{ 4 1/2
> [—4D"(0)]"2 \/;[ 5 +N( D0 ﬂz)}

/" 2
N( 4D"(0)) / / 1/2 _ _ —4ND (0)(y+ m) d
22D (0) — f?) Jrr- H () s = ylexp | 2(=2D"(0) - B%) Jos

PGOE (X1, - ., XN-1) 1_[ dx;

where pgog(x1, ..., Xxny—1) 1s the joint density of the unordered eigenvalues of GOE.
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Without loss of generality we assume E is non-empty. Choose (0, U, yx) as thatin
the proof of Proposition 5.2; i.e., it is a maximum of ¥, (o, u, y) on [R], Ry] x E x R.
If there are multiple points for ¥, to attain its maximum, we just choose one to be
(px, Ux, y+).Recall that p, > 0.Then (o, —38', px+8)N[R}, Ry]and (us—48', us+8)NE
must be non-empty forany 8’ > 0. If p, and u, are both interior points, we choose §' > 0
small enough so that (o, — &, px +8’) C (R1, R2) and (uy — &', u, +8’) C E. If either
P+ OF Uy is a boundary point, by abuse of notation we still write (ps — &', px +8’) and
(uyx — &', uy + 8") with the understanding that one endpoint should be replaced by p, or
uy so that we always have (ps — &', px +68’) C (Ry, Rp) and (uy — 8, us +8') C E.
Using (3.23), the right-hand side of (5.6) attains strictly positive minimum for p €
[os — &', ps« + 8']. By restricting to small intervals, we find

B i me
E(|det G 200 _— 700 oNldud
/R / (IdetG) ——— g N D (O)N/2 p udp

p*+8 u*+§ )*+31
> [—ap" )7 /2 /
*_5/ *_5 *_51

—4D"(0) 2D"(0)ap 12 N(—4D"(0))
[ "]

N N(=2D"(0) - V27 (=2D"(0) — p?)

_ ” my 2

/ l_[ I( ‘/2x —ylexp[— INDT OO i) ]
vt L ’ 2(—2D"(0) — B?)
_ u=my)? 22
1 _Nup
202 7 N-1

PGOE(X1, ..., XN—1) 1_[ dx; —— \/—GY Y W@ 200y p dydudp

=: £, 81),

where §; > 0 will be specified in the following. We consider two cases.

Case I: y, ¢ [—ﬁ, \/5]. In this case, there exists ¢ > 0 small enough so that
Vi & [—«/E — 3¢y, V2 + 3e1]. We can choose §; small enough so that y, + §; <
—J2 - 2¢e1 if y, < —2or Ve — 81 > V2 + 2¢eq if yy > V2. According to our choice,
if x € (v« — 81, yo +81), then x ¢ [—v/2 — 2¢1, v/2 +2¢1]. With these considerations in
min;ii, cllay restricting the empirical measure of GOE eigenvalues to B N (0sc, 8) first,
we fin

5(82602[—41)”(0)]”7"\/» (e )I/ZAN D eB s, (0 9)

st /u*ﬂs’ /y*+51 (N=1) inf\)eBﬁ (oees) V.3) [ —4ND”(O) (y + _TDZ//(()) )2]
e *el ex — :
s Jy P 2(=2D"(0) — B2

*_5/ *_6/ ,*_51
[ —4D"(0) 2D"(0)a? p* ] 12 N(—4D"(0))
N N(=2D"(0) - 51 \/27(—=2D"(0) — B?)

_ _ D'(
\/N(Zﬂ) (N+l)/2D/(0) N/2 o ( N@u — ﬂp 4 1LOp)p” /(’0))/0

/ 2 2
D(p?) — e 2D () — Zige

N v N—1
)e 2070 p" " dydudp.
Y0) DO

Since W (v, y) is continuous in 79[—«/5 — &1, V2 + e1] x (—\/5 —2¢q, V2 + 2e1)¢, we
have
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lim inf Y, y) =WV
8%0+UEB\/§+£1(J§L ( y) *(y)

for all y € [y, — &1, y« + 81]. By Wigner’s semicircle law with the distance (2.2) and
the LDP of the largest eigenvalue of GOE, we have

11m1anP’(L(( 1)1/2,\"’ ") € B s, (05, 8))
> hmlnf[IP’(L(( I)I/ZAN 1) € B(ox, 8))
1
~P( max |(—N W21 > V2 +en] = 1.
i N—1 N

Recall the function ¥ as in (5.1). Since the functions in question are all continuous and
thus attain strictly positive minimum in p € [px — &', px+8'], u € [uy — 8", us +8'], y €
[y« — 61, y« + 811, using (4.2) and (4.1) we deduce that

1 1 11

lim inf — log ECrty (E, (R, R2)) > liminf lim inf — 1 8, 81) + = + = log(2

im inf = log Crty (E, (R, 2))_51;2}): iminf og &Y, 1)+2+2 0g(2m)
§1—>0+

1 1 1
> — 4+ 3 log[—4D" (0)] — 5 log D’ (0)

2
+ liminf inf Wa(pou,y) = W)+ inf W, y)]
§—0+,8'—0+, pElpe—38",pe+d'], veBﬁﬂl (05¢.8)
51=>0+  uelux—8" us+8'),yE[ys—81,y:+5811
1 1 1
= 5 + 3 log[74D”(0)] -3 log D'(0) + Yy (s, Us, Vi)- (57)

Case 2: y, € [—+/2, 4/2]. In this case, we can choose 8; > 0 small such that
G(81) := (yx — 81, y« +81) N (—+/2, +/2) # ¥. Choosing K large we find

—4ND"(0)(y + 2
f E[ew—l)wL«NT“)‘/ZA’IV“),W]exp[_ OO0+ =5 ]d
GG 2(=2D"(0) — p?)
—4ND”(O)(y+m)2
Xpl:— :I
Z GG =) 2K (R V2K IV 2(=2D"(0) — B?)
N—
1—[ 1/2x —y H |xi _xj|e—T 1_[ dx;dy
i=1 l<i<j<N—1
O i1 ( N )N“i l>/ exp[_—4ND (0)(xN+—$,,(O))2]
Z\  \N -1 xneG () 2(=2D"(0) — p?)
N
f 1—[ | x;i —xj|e_% le\/:lxize%xlzv l_[dxi
[—K. KV I<i<j<N i=1
2
Zy 1/ N \MR 2 —AD'O)(x + =)
z /N —/< — ) ’ exp[N min (x__ — 7 D2(0 )]
Iy Zy 1 xeG(8) \ 2 2(=2D"(0) — B%)

N
N N 2
/ / | X; —xj|e_7 Zi:lxi dei
xNeG(81) K,K1N-

1<l<]<N i=1
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_ _ ” 2
_ Z;v ( N )N(l\‘/‘ ) xp [N - (ﬁ ~ AND"(0)(x + JT«)) )]
Zy_\N—1 xeG()) \ 2 2(=2D"(0) — B2)

E[%#{i e[N]:iN e GO max AN < K}].

Here Z), = N!Zy is the normalizing constant for the p.d.f. of unordered eigenvalues of
GOEy matrix. By Stirling’s formula,

1 z) N MR 11
lim —log[ (—) ! ]:—E——logZ.

N—oo N Z;\,] N -1 2

From Wigner’s semicircle law we deduce

l}vmlnf%bg]E[ i € INT: 3 € G max [x] < K}]

1
= lim —1 LG61)]=0.
aim 7 10g 0 [G (81)]
Since the functions in question are all continuous and thus attains strictly positive mini-
mumin p € [px — 8", px + 81, u € [uy — 8, us +8'], y € [y« — 81, y5 + 811, using (4.2)
and (4.1) we deduce that

1 1
11m 1nfﬁ log ECrty (E, (R1, R2)) > hm 1nf11m inf ﬁ log £(8', 81) + —+ = > log(27r)

81»0+
] l " / l 1
> — + — log[—4D (0)]77logD(0)777710g2+11m1nf inf
2 2 2 8 =0+, pelps—8,pstd'1,
31=>0+ yefuy,—58 ue+8'1,xeG(8))
2 —AND'O)(x+ =22 ub <v )ﬂ )2 2,2
[5 - T e PN 212)'/()0) *+log ]
2(p(e? - D—(O))
11 " 1 /
=5+3 log[—4D" (0)] — 3 log D' (0) + s (P, s, V). (5.8)
Here in the last step, we used the fact (2.8) that W, (y,) = 2)’* ol %logz as
v« €[-vV2,4/2]. O

Proof of Theorem 1.2. If E is compact and 0 < R; < Ry < 00, the assertion follows
from (4.2), (4.5), Propositions 5.2, 5.3 and 5.4.

Suppose E is not compact or Ry = oo. Thanks to Lemmas 5.1 and 4.2, we may
choose R < oo and T < oo large enough such that

1 1
lim —logECrtN(E (Ry, R)) = 11m NlogIECrtN(Eﬂ( T,T), (R, Ry) N[0, R))

N—oo N

1 1
= —log[-4D"(0)] — = log D’(0) + — + sup Yo, u, y)
2 2 2 yeR, R <p<RARy,uc EN[—T.T],

1 1 1
= ~log[-4D"(0)] — s log D'(0) + =+ sup VYu(p,u,y),
2 2 2 GayerF

which completes the proof. |
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We finish this section by showing how to recover Theorem 1.1 from Theorem 1.2
when the domain of field is confined in a shell.

Example 2. Let 0 < Ry < Ry < oo and E = R. This removes restriction on the range
of the random field. Let J = /—2D"(0). Using (3.15) and (3.16), we rewrite

J? po Bu N2 v pPp?
u,y)=Ww — + + - = +1 .
Vo, u, y) «() Vs (y it ﬁj) > " apo) Hloer
From (2.8), we calculate
—(B*+J%)y = V2J (1 + puv)
Iy = o — sgn(y)y/y? — 21{|y| > v2},
J?+ B2 |yl
ayyl/f*z_.]2_ﬂ2 _m1{|y|>\/§}v
—J% — B(V2Jy + ) V2J J?
i = =IO g =~ b=~
Using the relation 9, ¢, = 0 we find
2Jy + 2Jy + ) (J? — B2
v:—w, \/EJy+M+,3v=(\/_y l;)z( ﬂ). 5.9
Together with (2.8), we can eliminate v and simplify
1, 1 1
Valp.u.y) = =5y = 5 = Slog2 = i (=lyDUly| > v2}
5 2 2.2
_ Ny w? @ log p. (5.10)

Case I: u # 0. Solving 9y« = 0, 3,4 = 0 gives (after removing an extraneous
solution)

2
=_\/.;M7 Uzl;_ﬂ3 |IU‘ISJ’
=—gG+D v=L lul>

From (3.23) we know J2 — 82 > 0 for p > 0. By the second derivative test, this critical
point is the unique global maximum. Moreover, plugging in the critical point reveals
that

2

J? nw Bv \2 v
om0 ) T3

2.2
does not depend on p. As a result, we choose p by optimizing —QMD—,‘()O) +log p. Let us
consider Ry < /D’(0)/|u| only; the other case is similar. Choose

- [VD’“)) if R, > YD'O©
*

[l [l (5.11)
Ry, otherwise.
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If ju| < /—2D"(0), we take y, = —u/+/—D"(0), and

_ uD'(pD) = DO ppi  uD'(p)e3

* + (5.12)
—2D"(0) 2 D’(0)
Then we find
2 . 5
)= - llog2+ Llog D'(0) — log |pl, if Ry > —Vﬁ”@
Vi (Oss U, Vi) = 'uz 2R2 )
=070 ~ § -3 10g2 +log Ry — 55755 otherwise.
(5.13)
— _ _ © _ ~/=D"(0)
If ju| > V/—2D"(0), we take y, = a0 TR
D D'(0 D’
. (p?) — D'(0) L Hox /Lp* K (p? )p*_ (5.14)
Iz 2 D’(0)
Then we find

w*(p*v M*, y*)
—1log2 —log /=2D"(0) — 1 + % log D'(0), if Ry > YOO

|12l
—%logZ log/—2D"(0) + log || +log Ry — 2D’(0)’ otherwise.
(5.15)

Note that if Ry > ~ ﬁt/ |(0) then the complxity function is O as in Theorem 1.1. Since

By = {x e RN : /NR; < ||Ix|| < v/NR3}, using Cramer’s theorem for the chi-square
distribution, we have

2 7
~ ! 2D,(O)+ L+ log Ry +log |u] — L log D/(0), i Ry < Y2O,
0»

B otherwise.
where E is defined as in (1.4).
Case 2: n = 0. We have to assume R, < oo. Then the above computations show
that ¥, is optimized at y, = u, = 0 and p, = R, which gives

1 1 1
lim — logECrty (R, (R, R2)) = = log[—2D"(0)] — = log D'(0) +log R».
N—oo N 2 2

In addition, ® = limy—_.oc 4 log |By| = log R + § log(27) + 5.

Our results here match all the three cases in Theorem 1.1. Therefore, this example
explains the seemingly very different forms of the three phases, whose origin is hard to
understand without the general Theorem 1.2. Moreover, this suggests that the critical
points x around the norm ||x|| = /N p,. and the value Hy (x) = u, dominate all other
places.

Finally, let us consider an example with a special structure function.
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Example 3. Suppose D(r) = log(1l + g) for some ¢ > 0. This is regarded to be the
boundary case of LRC fields in physics [FS07,FB08,FLD18]. Following the previous
example, we have

2 ue  Bven2  vE plep?
l/f*(P,u,y)=‘I/*()’)—2_—82[32<Y"‘7+T> -5~ +log p,
where
2
—p? (e +p?)(u — ) + pep?
B = - , U= - .
e+ 020g1+ 2y —ep2 e+ p)2log(l + £) — 5p2

As in the physics literature, let us assume p > 0, R} = 0 and we do not restrict the field

value. Since we know the complexity function becomes trivial if © > /—2D"(0) = “/TE

whenever R, > ﬁg Let us consider u < @, Ry, < ﬁ and investigate when

the complexity function changes sign. From (5.13) together with the optimum y, =
2
—pe, v = 5L p, = Ry, we find

1 1 1 2g2 e’ R2
Jim_— log E[Crty (R, (0. R2))] = 5 log2 — > log:s + % +log Ry — 10
—: ®.(Ry).

Note that @, (R») is strictly increasing for Ry < ﬁg and (pf(ﬁg) > 0 with equality

exactly when ¢ = \/Tj On the other hand, limg, o @ (R;) = —oo for any fixed ¢ > 0.

Hence, there is a unique R; such that @, (R3) = 0.

It is not hard to see that the above argument still holds for any structure function D
considered in this paper. In conclusion, we find the phase transition of complexity in
terms of confining ball radius.
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A. Covariance Function and Its Derivatives

Let Dy(r) = D(r/N). For x,y € RY let (x,y) = %(DN(IIXIIZ) + Dy(Iyl?) —
Dy(||lx — y||2)). Under Xy (0) = 0, isotropic increments imply that EX y (x) = 0; see
[Yag87, p.439]. We have

Cov[Hy (x), Hy(y)] = Cov[Xy(x), Xy(M)] = E[Xny () XN (V)] = @(x, ¥).
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Lemma A.1. Assume Assumptions I and II. Then for x € RY,

E(VHy(x)) = ux, E(V?Hy(x)) = uly,

c B /(||x||2)
ov[Hy (x), 8 Hy (¥)] = D' ( == ) xi,

Cov[d; Hy(x), d; Hy (x)] = D'(0)8;;,
c B ,/(nxuz) XiX; [ ,<||x||2) , } 3
ovV[Hy (x), ;; Hy (x)] = 2D Ly |D | =—) - DO |5

N N N
Cov[dx Hy (x), 0;j Hy (x)] = 0,
Cov[du Hn (x), 8;j Hy (x)] = —2D"(0)[8 ji8ix + 8118k + Sk18ij1/ N,

where 8;; are the Kronecker delta function.

Proof. By [AT07, Theorem 1.4.2], X y (x) is smooth. We can differentiate inside expec-
tation as in [AT07, (5.5.4)] to find the expectations and

E[Xy(x)0; Xn(M]/N = 0y, E(Xny () XN (¥))/N
= Dy (IyI7)yi + Dy (lx — yI*)(xi = yi).
E[3; Xn (0)d; Xy (MI/N = 8 [Dy (lx — y[H)(xj — y))]
=2D}(lx — yI) (i — yi)(xj — ;) + Dy (Ix — y19)83;.
E[X N (x)3;; Xy ()]/N = 3y, [Dyy (lIyIH)yj + Dy (lx — yIH)(xj — y))]
= 2D} (lyI1*)yiy; + Dy (1yI1*)8:;
= 2D} (lx = yII)) (i — yi)(xj — y;) = Dy (llx = y[)8;;.
E[3x Xy (x)3;; Xn ()]/N = —4D¥ (Ilx — yII*) (xk — ye) (i — i) (xj — ¥)
— 2D} (lx = yIP)(xj = ¥k — 2Dy (lx — yIIP) (i = yi)dxj — 2D (llx — yII) (i — 3183
E[0x XN (x)0:; XNy (W)]/N = —8D§§)(I\x — I = vk — Y (i — ) (g = yj)
— 4D (lx — yIH[(x; — Yi)(Xj — ¥j)8k + Xk — Yi)(xj — yj)8ir + (xk — ye)(Xi — Yi)dji
+ (xr =y (xj = yi)8ki + (xr — y)(xi — yi)dkj + (xr — yi) (xk — Yi)dijl
— 2D} (llx = YIP)[8j18ik + 8itdkj + S ij 1.

Substituting x = y,
E[Xn ()3 Xy (x)]/N = D} (Ix*)x;,
E[3; Xy (x)3; Xy (x)]/N = Dy (0)5;;,
E[Xn (x)3;j Xn()]/N = 2D} (Ix|H)xix; + Dy (Ix[1)8;; — D}y (0)8;;
E[3X n (x)3;; X (x)]/N = 0,
E[0ix X v (x)8;j XN (x)]/N = =2D(0)[818ix + 8i18kj + Sxadij -

Then we note that D) (r) = D'(r/N)/N and D},(r) = D"(r/N)/N*>. O

B. Auxiliary Lemmas

For the integral E [, exp (— 1 (N+1)x%— —VN(NJC,D’” L +1(dx), we have the following
gt e 2 J=D7(0)

elementary fact which is used in Sect. 2.
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Lemma B.1. Let vy be probability measures on R and p # 0. Suppose

) 1 —%(N+1)X2— (N+1)pux
lim —log [ e V=D"O yy i (dx) > —o0.
N—o0 R

Then we have

1 71(N+1)x27~/N(N+]);Lx 7l(N+1)x27 (N+I)¢4x
lim —(log/ e’ V=D"O) yp L (dx) —log/ e’ V=D"(0) vN+1(dx)) =0.
R R

N—oo N

Proof. Let

—%(N+l)x2— (N+Dpx

VP Oy (dy),

,%(N_,.])XZ,i«/N(N*UW

an
by VEDPIO L (di),

I
Ik

CN

—%Nxz— Ny
/ y VD7D a1 ().
R

We claim limy _s oo Llog 9 = 0. Indeed, note that
N g CcN

1 L2, (N+h? 2
—5(N+1)(x+ )+ 23
2( Y,
ay = / ¢ ERTOT2O yy (dx) < e 2070 ey
R

By Jensen’s inequality,

2 N/ N+

23 CN N
— < log— <1 = — I .
2D70) — Bay = % 4y N+1 BN

Then the claim follows from the assumption that limy_, o ﬁ logay > —oo. From the

elementary inequalitya Ab < (a+b)/2 < a Vv b, we have limy_, %(log(a;v +cn) —
logay) = 0. It remains to prove that

. 1
ngnoo N(log(aN +cn) —logby) = 0.

Note that

0 —%(N+1)x2— (N+1)px 00 —%Nxz— Npx
by < / e VP Oy (dx) +/O e VPO py Ly (dx) < ay +ey.

—00

Let ¢ be a large constant (independent of ) such that

1 —l(N+l) 2_ (N+Dpx t2

lim —log [ ¢ 2 VO g, (dx) > — —
g

N R 8

N—o0

and that

1 2 (N+Dpux
—3(N+Dx* === _ 2
/ e’ VDO yy g (dx) < e” VDA,
|x|>t
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It follows that

—%Nxz— Npx 2
/ ¢ VDO y(dx) < e VT4,
|x|>t

an

and since ilogf — 0as N — oo,
N CN

1 t 71Nx27 Npx
lim —log/ e’ VP Oy (d)

N—oo N _t
1 o0 1 xzf Npx
= lim —log / (I =1x| > e > VPO uy(dx)
—0o0
) 1 00 _ 1,2 Nux
= lim —log e’ V=D py 1 (d).
N—oo N 00
Note that
2 0 _ly2  Nux R 11N 2o N
bNZfT/ e’ VIO py g dx) te T VIO e VPO (d)
2w t_ 1 N2 Nux
>¢ T VPO / ¢ TV Oy, ().
—t
Since
1 t_Llny2- Npx
A}Enooﬁ<10g(aN+CN)—10g/ e’ V=D VN+1(dx)) =0,
—t
we have limy _, o %(log(aN +cy) —loghy) = 0. O

The following discussion is about Assumption I'V.

Proof of Lemma 3.2. 1. Since y +— D’(y) is a strictly decreasing convex function and
D"'(y) > Oforany y > 0, |D"(y)| < w. By assumption,

4D// 2N\2 4 8D// 22D//0 8
(apz)z = 5 (pple/O(pz)z = _3[D/( 2§p_)D/(O§]§/ 4 < _gDN(O)'
D(p?) — E5ks o o
It follows that

2 2 8 2 " /"
(ap™+ BB < —§D”(O) —gD”(O) - §D (0) =-2D7(0),

2 2 8 ” 2 8 "
(ap” + Bap” < —§D 0) + —§D”(O) —gD”(O) = —4D"(0).

2. We verify (3.10). If (3.11) holds, then y — B8 (y)2 is a decreasing function and
(3.10) follows from Lemma 3.1.
3. By item 1, it suffices to check (3.10). Consider the function

3
f() ==D")D'(0)D(y) — D'(y)*y] — ED’(O)[D/(y) — D' ().
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Condition (3.10) is equivalent to f(y) > 0. Note that f(0) = 0 and that

') =[D'(0) = D'WMIID'(0)D"(y) = D"(0)D'(y)]+2D" (y»)(D"(0)D'(y)y
=D'(0O)[D'(y) — D'(O)D.

By convexity, w < D’(y) < 0.Tf (3.12) holds, D" (0) D' (y)y — D'(0)[ D' (y) —
D’(0)] < 0and

D'(y) D'(y) _
D'(0) D"(0) ~

Then (3.10) follows from here since D'(0) > D’(y) and we have f'(y) > 0.
4. By Cauchy’s mean value theorem, condition (3.12) is equivalent to (3.13).
5. Direct calculation yields

d D’(y) _D//(y)z + D’”(y)D/(y)

dy —D"(y) D' (y)>

Then (3.14) implies (3.13).
6. By the representation (3.7) of Thorin—Bernstein functions, we have

1 _ 1 " _ 2
D" (x) = ./(o,oo) = +t)20(dt), D" (x) = /((),oo) o +t)3<7(dz‘).

By the Cauchy—Schwarz inequality, we have

2D"(x)?> < D' (x)D" (x).

It follows that diy_%f,{;) > 1and (3.14) holds. O

If A = 0 in the representation (1.2), using the Cauchy—Schwarz inequality, we can
see

d D'(y) _ =D"G)*+D"(D'(y) _

- — 0,
dy —D"(y) D" (y)? -

compared with (3.14). It is easy to check that for any ¢ > 0,0 < y < 1, our major
examples D(r) = log(1+r/¢) and D(r) = (r + &)V — &V satisfy (3.13). With more
work, one can check that these functions satisfy (3.11).

On the other hand, according to [SSV12, p. 332],

V/x sinh? (/x)
sinh(24/x)

is a complete Bernstein function which is not Thorin—Bernstein. One can check (at least
numerically) that it violates (3.13) but still verifies (3.10). We suspect that (3.8) and
(3.9) always hold for any structure function D. The following shows that this is the case
at least in a neighborhood of 0.

D(x) =
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Lemma B.2. Assume A = 0 in (1.2). We have
. d
lim —[a(y)y + B(»1A(y) <0,
y—>0+ dy
) d
lim —[a(y)y +B(M]a(y)y < 0.
y—>0+ dy
Consequently, there exists § > 0 such that —2D"(0) > [a(y)y + BO)1B(y) and

—4D"(0) > [a(y)y + BDM]a(y)y for y € (0, §).

Proof. We only prove the first inequality as the second is similar. Write

[ZDN(y) + D/()’);D/(O)] D’(y);D’(O)

T
+ = =t 5.
@y +P)p DG _ DG B
Vi T D)y
Since [(ay + B)B1 = TELT and limy_o, B = —3D"(0) # 0, it suffices to show

that limy_, o, 7'B — B'T < 0. By calculation, we have lim,_,o; T = 3D”(0)? and

D"(y)y — D'(y) + D/(O)]D/(y) — D'(0)

T'=[12D"(y) + 5

y y
D'(y) = D'(0) D"(y)y — D’ D'(0
+[2D"(y) + ) ( )] )y y2(y)+ ( )’
g~ D'OD'G)y—2D'0)D(y) — 2D'(y») D" (y)y* +yD'(y)?
B D'(0)y3 '

After some tedious computation, we findlim_, o, 7" = 4D"’(0) D" (0) and lim_, o, B’ =
~3D"(0) — 20 Then

D'(0)
3D"(0)? 7
lim T'B — B'T = D”(O)z[# _ —D”’(O)].
i D) 2

By the Cauchy—Schwarz inequality,

D"(0)> = (/0 t4v(dt))2 5/0 tzv(dt)/o Sv(dt) = D'(0)D"(0).

From here the conclusion follows. O
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