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Abstract: We study the energy landscape of a model of a single particle on a random
potential, that is, we investigate the topology of level sets of smooth random fields onRN

of the form XN (x)+
µ
2 ‖x‖2,where XN is a Gaussian process with isotropic increments.

We derive asymptotic formulas for themean number of critical points with critical values
in an open set as the dimension N goes to infinity. In a companion paper, we provide
the same analysis for the number of critical points with a given index.

1. Introduction

In this paperwe provide asymptotics for the number of critical points ofGaussian random
fields with isotropic increments (a.k.a. locally isotropic Gaussian random fields) in the
high dimensional limit. The definition of locally isotropic fields was first formulated
by Kolmogorov about 80 years ago [Kol41] for the application in statistical theory of
turbulence; see [Yag57] for an account of background and early history.

The model is defined as follows. Let BN ⊂ RN be a sequence of subsets and let
HN : BN ⊂ RN → R be given by

HN (x) = XN (x) +
µ

2
‖x‖2, (1.1)

where µ ∈ R, ‖x‖ is the Euclidean norm of x , and XN is a Gaussian random field that
satisfies

E[(XN (x) − XN (y))2] = ND
( 1
N

‖x − y‖2
)
, x, y ∈ RN .

Here the function D : R+ → R+ is called the correlator (or structure) function and
R+ = [0,∞). It determines the law of XN up to an additive shift by a Gaussian random
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variable. Complete characterization of all correlators was given in the work of Yaglom
[Yag57] (see also the general form of a positive definite kernel due to Schoenberg
[Sch38]). In short, if D is the correlator function for all N ∈ N, then XN must belong
to one of the following two classes (see also [Kli12, Theorem A.1]):

1. Isotropic fields. There exists a function B : R+ → R such that

E[XN (x)XN (y)] = N B
( 1
N

‖x − y‖2
)

where B has the representation

B(r) = c0 +
∫

(0,∞)
e−r t2ν(dt),

and c0 ∈ R+ is a constant and ν is a finite measure on (0,∞). In this case,

D(r) = 2(B(0) − B(r)).

2. Non-isotropic fields with isotropic increments. The correlator D can be written as

D(r) =
∫

(0,∞)
(1 − e−r t2)ν(dt) + Ar, r ∈ R+, (1.2)

where A ∈ R+ is a constant and ν is a σ -finite measure with
∫

(0,∞)

t2

1 + t2
ν(dt) < ∞.

See [Yag87, Section 25.3] for more details on locally isotropic fields. Case 1 is known
as short-range correlation (SRC) processes and case 2 as long-range correlation (LRC)
in the physics literature.

Here is a special example of B(r) and D(r), which we learned from Yan Fyodorov.

Example 1. We assume c0 = 0 and A = 0. For fixed ε > 0 and γ > 0, let

ν(dx) = 2e−εx2x2γ−3dx .

The case γ > 1 corresponds to SRC while the case 0 < γ ≤ 1 is LRC field. Indeed, if
γ > 1,

B(r) =
∫ ∞

0
2e−r t2e−εt2 t2γ−3dt = %(γ − 1)

(r + ε)γ−1 ,

while if 0 < γ < 1, using integration by parts,

D(r) =
∫ ∞

0
(e−εy − e−(r+ε)y)yγ−2dy = %(γ )

1 − γ
[(r + ε)1−γ − ε1−γ ].

The case γ = 1 can be obtained by sending γ ↑ 1 and using the dominated convergence
theorem with the control function f (y) = (e−εy − e−(r+ε)y)y−1 for y ≤ 1 and =
(e−εy − e−(r+ε)y)y−1/2 for y > 1. Then if γ = 1, we have

D(r) = log(1 + r/ε).

In the LRC case, we see that the long range covariance behaves like a high dimensional
analog of fractional Brownian motions.
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Remark 1.1. Observe that any Bernstein function vanishing at 0 is a structure function.
This is a consequence of the Lévy–Khintchine representation of Bernstein functions;
see e.g. the monograph [SSV12], which also contains a comprehensive list of com-
plete Bernstein functions. Conversely, any structure function is a Bernstein function. It
follows that any correlator function D must be concave, infinitely differentiable, and
non-decreasing on (0,+∞). Moreover, we have D′(r) ≥ 0, D′′(r) ≤ 0, D′′′(r) ≥ 0 for
r > 0.

Remark 1.2. One should not confuse SRC/LRC with short-range/long-range depen-
dence. SRC here refers to the fact that E(XN (x)XN (y)) decays as ‖x − y‖ → ∞
while for LRC it may not. Short-range dependence requires the autocovariance function
to have exponential decay.

1.1. Previous results. The Hamiltonian (1.1) has been considered in many papers, from
physics to mathematics, since the 1950s. In particular, the model was introduced by
Mezard–Parisi [MG91] and Engel [Eng93] among others as a model for a classical
particle confined to an impenetrable spherical box or a toy model describing elastic
manifolds propagating in a random potential [Fyo04]. A nice historical account can be
found in [FS07] which also contains the phase diagram (T − µ relation) for the model
at positive temperature. At zero temperature, in the seminal paper [Fyo04], Fyodorov
considered the case of isotropic fields (SRC) and computed the mean total number
of critical points, finding a phase transition for different values of µ and D′′(0). In a
subsequent and impressive paper, [FW07] computes the mean number of saddles and
minima for SRC fields. This paper considered a more general model where µ‖u‖22/2 is
replaced by NU (‖u‖22/N ) for suitable confining potential U .

Still in the case of isotropic fields, [FN12] computed the mean number of minima and
studied the phenomena of topology trivialization and the relation of this quantity with
the Tracy–Widom distribution. More recently, [CS18] considered the mean number of
critical points of a fixed index and for finite N . After the first version of our paper (which
includes [AZ22]) appeared in arXiv, the paper [GK22] considered the phase transition
of annealed instability index for the isotropic fields, which is more closely related to our
companion paper [AZ22]. The reader is also invited to take a look at [BD07,YV18].

For a similar Hamiltonian defined on the N dimensional sphere, known as the spher-
ical p-spin model, the rigorous study of the complexity of saddles and minima started
in [ABAC13] and now has solid body of work including [ABA13,Sub17,BAMMN19].
For the physics predictions of this model, the reader should consult [CL04,MPV86] and
the references therein.

All of the rigorous work above only considered isotropic Gaussian fields (SRC case)
or spherical spin glasses. Compared to the SRC case, LRC fields allowmore flexibility in
modeling real world phenomena. Another aspect of the significance of LRC fields is that
at low temperature they belong to Full-step Replica Symmetry Breaking (RSB), while
SRC fields are 1-step RSB according to the physics literature. Therefore, LRC fields
represent the most complex landscape like valleys within valleys within valleys and are
certainly harder to study compared with SRC fields. The free energy of LRC Gaussian
fields was studied in a sequence of two remarkable physics papers [FS07,FB08] via
the replica method and then in a mathematical paper [Kli12]. The Hessian spectrum at
the global minimum, which is closely related to landscape complexity, was investigated
in [FLD18,FLD20] still using the replica approach for both SRC and LRC fields and
the more general elastic manifold model. However, the lack of symmetry in LRC fields
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imposes a difficult obstacle and no rigorous results on the complexity are currently
known.

The main purpose of this article and its companion paper is to close this gap by
providing a comprehensive rigorous study of the complexity of LRC Gaussian fields.
In this first paper, we focus on the high dimensional limit of the expected number of
critical points when the domain or value of the fields are constrained to any particular
set. In the companion paper [AZ22], we will provide information on local minima and
saddles with given indices.

A word of comment is needed here. One of the main differences between LRC and
SRC fields is the fact that the variance of an LRC field may change from location to
location and the gradient ∇HN is no longer independent of HN . The main novelty of
our two papers is the development of techniques to overcome this difficulty. Another set
of important techniques to deal with “non-invariant” fields was also recently developed
in [BBM21b,BBM21a]; these do not seem to apply to the model we consider.

1.2. Main results. To state our results, let BN ⊂ RN and E ⊂ R be (a sequence of)
Borel sets. We define

CrtN (E, BN ) = #{x ∈ BN : ∇HN (x) = 0,
1
N
HN (x) ∈ E}.

Throughout the paper we will consider the following extra assumptions on XN .

Assumption I (Smoothness). The function D is four times differentiable at 0 and it
satisfies

0 < |D(4)(0)| < ∞. (1.3)

Remark 1.3. By Kolmogorov’s criterion, Assumption I ensures that almost surely the
field HN is twice differentiable. Moreover, Assumption I guarantees D′(0), D′′(0) and
D′′′(0) exist and are non-zero. This implies that for r > 0

D(r) > 0, D′(r) > 0, D′′(r) < 0, D′′′(r) > 0,

and in particular all these functions are strictly monotone. From here we also know
that D(r) ≤ D′(0)r and when ν in the representation (1.2) is not a finite measure (or
equivalently in case 2), limr→∞ D(r) = ∞.

Assumption II (Pinning). We have

XN (0) = 0.

Remark 1.4. Random fields with isotropic increments are high dimensional generaliza-
tions of stochastic processeswith stationary increments in dimension one. It is a common
practice to assume such processes (like Brownian motion or Poisson processes) to start
from 0. Therefore, Assumption II is a natural choice for studying random fields with
isotropic increments. Note that only the trivial isotropic field (XN = 0) satisfies As-
sumption II.

We first consider the average of the total number of critical points of HN confined
to domains that are appropriately scaled. Then we count the average number of critical
points of HN with a given fixed critical value. The following condition is only needed
when the critical value is not restricted.
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Assumption III (Domain growth). Let zN be a standard N dimensional Gaussian ran-
dom variable. There exist & or ' such that the sequence of sets BN satisfies

lim
N→∞

1
N

logP(zN ∈ |µ|BN/
√
D′(0)) = −& ≤ 0, µ ,= 0, (1.4)

lim
N→∞

1
N

log |BN | = ', µ = 0. (1.5)

Remark 1.5. Assumption III serves to select domains in the right scale and it is less
restrictive than the shell domains considered in Theorem 1.2 when the field values are
also constrained. As seen in the proof of our main theorems, the reader could consider
other sequence of sets BN provided some knowledge of their volumes. Probably themost
interesting choices of BN are shells defined below due to rotational symmetry. Although
this special case of Theorem 1.1 can be obtained from Theorem 1.2, the formula and
proof for the former result are clearer, thus we state them separately. We hope this
organization provides a gentle introduction to the reader to appreciate the latter result,
where most of the novelty (and difficulty of the paper) resides.

Theorem 1.1. Under Assumptions I, II, and III, we have

lim
N→∞

1
N

logECrtN (R, BN )

=






−&, |µ| > √−2D′′(0),

− log |µ|√−2D′′(0) +
µ2

−4D′′(0) − 1
2 − &, 0 < |µ| ≤ √−2D′′(0),

log
√−2D′′(0) − 1

2 − 1
2 log(2π) − 1

2 log[D′(0)] + ', µ = 0.

Remark 1.6. If we let J = √−2D′′(0) and & = 0 as in [Fyo04], the second case can be
rewritten as

)µ,D = 1
2

(µ2

J 2
− 1

)
− log

µ

J
≥ 0. (1.6)

which matches Fyodorov’s result for isotropic Gaussian random fields.

Next, we state our main result on the number of critical points with values in an open
set E ⊂ R and confined to a shell BN (R1, R2) = {x ∈ RN : R1 <

‖x‖√
N
< R2}. This is a

natural choice, as the isotropy assumption implies rotational invariance. To emphasize
the dependence on R1 and R2, we also write

CrtN (E, (R1, R2)) = CrtN (E, BN (R1, R2)).

We will assume the following technical assumption:

Assumption IV. (3.8) and (3.9) hold for x ∈ RN \ {0}.
This assumption is rather mild, and is satisfied by e.g. the so called Thorin–Bernstein
functions. It is likely that Assumption IV is redundant, as we do not know any structure
function violating this condition. At the time of this writing, we can only provide some
sufficient conditions, but cannot verify it for all structure functions; see Lemma 3.2 and
Remark 3.1 for more details.
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Theorem 1.2. Let 0 ≤ R1 < R2 ≤ ∞ and E be an open set of R. Assume Assumptions
I, II, IV, and |µ| + 1

R2
> 0. Then

lim
N→∞

1
N

logECrtN (E, BN (R1, R2)) =
1
2
log[−4D′′(0)] − 1

2
log D′(0)

+
1
2
+ sup

(ρ,u,y)∈F
ψ∗(ρ, u, y)

where F = {(ρ, u, y) : y ∈ R, ρ ∈ (R1, R2), u ∈ E}, and the function ψ∗ is given
explicitly in (5.2).

The condition |µ|+ 1
R2

> 0 merely says R2 < ∞ if µ = 0, which is necessary to get
non-trivial asymptotics as we saw in Theorem 1.1. Heuristically, if µ = 0 then the field
XN has comparable number of critical points for each increment due to stationarity so that
themean total numberwould be infinity,while forµ ,= 0, the condition∇XN (x) = −µx
will be harder to satisfy “in an exponential way” as ‖x‖ become larger since ∇XN (x)
are centered Gaussians with equal covariance (see Lemma A.1) so that the mean total
number of critical points tends to be finite. In Example 2 at the end of Sect. 5, we provide
details on how to recover Theorem 1.1 from Theorem 1.2 when BN is a shell, which also
provides some insight on the location of the majority of critical points. In Example 3, we
consider the example D(r) = log(1+ r

ε ) and investigate the phase transition in confining
ball radius.

Let us end this section with a brief description of the proofs, highlighting the main
difference from previous results that also computed the mean number of critical points.
Similar to many results in this area, we use the Kac–Rice formula as a starting point.
Since our fields do not have constant variance and in particular HN is correlated to
∇HN , we are unable to trace a direct parallel to random matrix theory as done in
[ABAC13,ABA13,Sub17]where theHessian is distributed as amatrix from theGaussian
OrthogonalEnsemble (GOE) plus a scalarmatrix. This small difference actually provides
major obstacles. To go around this difficulty, we first find out the conditional distribution
of the Hessian after some matrix manipulations. The GOEmatrix appears as a summand
of a principal submatrix which itself is correlated to the other element on diagonal. Then
we estimate from above and below the conditional expectation of the Hessian given HN .
Matching upper and lower bounds only come after long and non-trivial calculations and
careful asymptotic analysis.

The rest of the paper is organized as follows. In Sect. 2, we fix our notation and
provide some preliminary facts before giving the proof of Theorem 1.1. We find the
(conditional) distribution of the Hessian with some of the tools from random matrix
theory in Sect. 3 and establish various results on exponential tightness in Sect. 4, both of
which will serve as the starting point for computing complexity functions in this paper
and the companion paper [AZ22]. We prove Theorem 1.2 in Sect. 5.

2. Preliminary Facts and Proof of Theorem 1.1

Throughout, we regard a vector to be a column vector. We write e.g. Cµ,D for a constant
depending on µ and D which may vary from line to line. For N ∈ N, let us denote
[N ] = {1, 2, . . . , N }. For a vector (y1, . . . , yN ) ∈ RN , we write L(yN1 ) = 1

N

∑N
i=1 δyi

for its empirical measure. Recall that an N × N matrix M in the Gaussian Orthogonal
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Ensemble (GOE) is a symmetric matrix with centered Gaussian entries that satisfy

E(Mi j ) = 0, E(M2
i j ) =

1 + δi j

2N
. (2.1)

We will simply write GOEN or GOE(N ) for the matrix M . Denoting by λ1 ≤ · · · ≤ λN

the eigenvalues of M , we write LN = L(λN
1 ) = 1

N

∑N
k=1 δλk for its empirical spectral

measure. From time to time, we may also use λk to denote the kth smallest eigenvalue
of GOEN+1 or GOEN−1. This should be clear from context and should not affect any
results as we only care about the large N behavior eventually. For a closed set F ⊂ R,
we denote by P(F) the set of probability measures with support contained in F . We
equip the space P(R) with the weak topology, which is compatible with the distance

d(µ, ν) := sup
{∣∣∣
∫

f dµ −
∫

f dν
∣∣∣ : ‖ f ‖∞ ≤ 1, ‖ f ‖L ≤ 1

}
, µ, ν ∈ P(R),

(2.2)

where ‖ f ‖∞ and ‖ f ‖L denote the L∞ norm and Lipschitz constant of f , respectively.
Let B(ν, δ) denote the open ball in the space P(R) with center ν and radius δ w.r.t. to
the distance d given in (2.2). Similarly, we write BK (ν, δ) = BK (ν, δ) ∩ P([−K , K ])
for some constant K > 0. We denote by σsc the semicircle law scaled to have support
[−

√
2,

√
2].

We will frequently use the following facts which are consequences of large devia-
tions. Using the large deviation principle (LDP) of empirical measures of GOEmatrices
[BAG97], for any δ > 0, there exists c = c(δ) > 0 and Nδ > 0 such that for all N > Nδ ,

P(L(λN
1 ) /∈ B(σsc, δ)) ≤ e−cN2

. (2.3)

On the other hand, the LDP of the smallest eigenvalue of GOE matrices [BADG01]
states that λ1 satisfies an LDP with speed N and a good rate function

J1(x) =
{∫ −

√
2

x

√
z2 − 2dz, x ≤ −

√
2,

∞, x > −
√
2,

=
{

1
2 log 2 − 1

2 x
√
x2 − 2 − log(−x +

√
x2 − 2), x ≤ −

√
2,

∞, x > −
√
2.

(2.4)

In particular, writingλ∗
N = maxi∈[N ] |λi | for the operator normof an N×N GOEmatrix,

by [BADG01, Lemma 6.3], there exists N0 > 0 and K0 > 0 such that for K > K0 and
N > N0,

P(λ∗
N > K ) ≤ e−NK 2/9. (2.5)

This can also be seen directly from the LDP of λ1, even though it was originally proved
as a technical input for the LDP of λ1. It follows that there exists an absolute constant
C > 0 such that

E[λ∗
N
k] ≤ Ck (2.6)

for any k ≥ 0 and N > N0. For a probability measure ν on R, let us define

.(ν, x) =
∫

R
log |x − t |ν(dt), .∗(x) = .(σsc, x). (2.7)
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By calculation,

.∗(x) =
1
2
x2 − 1

2
− 1

2
log 2 −

∫ |x |
√
2

√
y2 − 2dy1{|x | ≥

√
2}

=
{ 1

2 x
2 − 1

2 − 1
2 log 2, |x | ≤

√
2,

1
2 x

2 − 1
2 − log 2 − 1

2 |x |
√
x2 − 2 + log(|x | +

√
x2 − 2), |x | >

√
2.
(2.8)

Note that .∗(x)− x2
2 ≤ − 1

2 − 1
2 log 2. Unless specified otherwise, we assume Assump-

tions I and II throughout.
Let us prove the result for the total number of critical points. The strategy we employ

is well-known and similar to the one developed in [ABAC13]: We start by applying the
Kac–Rice formula and we derive the asymptotics in high dimensions with the use of
random matrix theory and large deviation principles. The proof is somewhat straight-
forward since we do not face the main obstacle of the next sections, i.e., the dependence
of HN and ∇HN .

Proof of Theorem 1.1. Let E be a Borel subset of R. By the Kac–Rice formula [AT07,
Theorem 11.2.1],

ECrtN (E, BN ) =
∫

BN

E[| det∇2HN (x)|1{
1
N
HN (x) ∈ E}|∇HN (x) = 0]p∇HN (x)(0)dx,

(2.9)

where p∇HN (x)(t) is the p.d.f. of ∇HN (x) at t .

When E = R, the restriction on the range of HN (x) disappears. By independence of
∇HN and ∇2HN (see Lemma A.1), the above formula simplifies to

ECrtN (R, BN ) =
∫

BN

E[| det∇2HN (x)|]p∇HN (x)(0)dx . (2.10)

The following lemma is a random matrix computation.

Lemma 2.1. Let M be an N × N GOE matrix and set

P = aM −
(
b +

σ√
N
Z
)
I,

where Z is a standard Gaussian random variable independent of M, I is the identity
matrix and a, b, σ ∈ R. Then

E| det P| = %( N+1
2 )(N + 1)aN+1

√
πσN

N
2 e

Nb2

2σ2

E
∫

exp
[
(N + 1)x2

2

(
1 − a2

σ 2

)

+
√
N (N + 1)axb

σ 2

]
LN+1(dx).

Proof. Use [ABAC13, Lemma 3.3] with m = b
a , t = σ√

Na
,G = R and sum over the

eigenvalues.
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From LemmaA.1,∇2HN (x) and
√−4D′′(0)M−(

√
−2D′′(0)

N Z −µ)I have the same
distribution. Then with

m = −µ/
√

−4D′′(0),

from the Lemma above with a = √−4D′′(0), b = −µ, σ = √−2D′′(0) we obtain

E| det∇2HN (x)|

=
√
2[−4D′′(0)]N/2%( N+1

2 )(N + 1)
√

πNN/2eNm2 E
∫

e− 1
2 (N+1)w2+2

√
N (N+1)mwLN+1(dw).

From Lemma B.1, we see that for the asymptotic analysis we can replace the above√
N (N + 1) in the exponent by N + 1, leaving us to compute asymptotics of

IN = E
∫

e(N+1)φ(x)LN+1(dx) =
1

N + 1

N+1∑

i=1

EGOE(N+1)e(N+1)φ(λi ),

where

φ(x) = −1
2
x2 − µx√−D′′(0)

.

This is obtained in the following Lemma.

Lemma 2.2. If |µ| ≥ √−2D′′(0) then

lim
N→∞

1
N

log IN = µ2

−4D′′(0)
+ log

|µ|√−2D′′(0)
+
1
2
,

while if |µ| < √−2D′′(0) we have

lim
N→∞

1
N

log IN = µ2

−2D′′(0)
.

From Lemma A.1, we note that

∫

BN

p∇HN (x)(0)dx =
{

1
|µ|N P(zN ∈ |µ|BN/

√
D′(0)), µ ,= 0,

1
(2π)N/2D′(0)N/2 |BN |, µ = 0,

where |BN | is the Lebesguemeasure of BN and zN is a standard N dimensional Gaussian
vector. It follows from (2.10) that

lim
N→∞

1
N

logECrtN (R, BN ) = lim
N→∞

1
N

(
logCN + log IN

)
,

where

CN =






√
2[−4D′′(0)]N/2%( N+1

2 )(N+1)
√

πNN/2eNm2 |µ|N
P(zN ∈ |µ|BN/

√
D′(0)), µ ,= 0,

√
2[−4D′′(0)]N/2%( N+1

2 )(N+1)|BN |√
πNN/2(2π)N/2D′(0)N/2 , µ = 0.

(2.11)



960 A. Auffinger, Q. Zeng

From Assumption III and Stirling’s formula,

lim
N→∞

1
N

logCN =
{
log

√−2D′′(0)
|µ| + µ2

4D′′(0) − 1
2 − &, µ ,= 0,

log
√−2D′′(0) − 1

2 − 1
2 log(2π) − 1

2 log[D′(0)] + ', µ = 0.

The above computation combined with Lemma 2.2 finishes the proof of the Theorem.

We finish this section with the proof of Lemma 2.2.

Proof of Lemma 2.2. The proof follows from the large deviation principle for the ex-
treme eigenvalues of GOE. In short, in the case of small |µ|, the maximum of φ is
attained in the bulk while in the case of large |µ|, the extreme eigenvalue (λ1 for µ > 0
and λN+1 for µ < 0) contributes to the asymptotics of IN . We argue the first case
|µ| ≥ √−2D′′(0). By symmetry, we only consider µ ≥ √−2D′′(0). Since φ(x) is
bounded from above, by the LDP for λ1 as in (2.4) and Varadhan’s Lemma,

sup
x∈R

φ(x) − J1(x) ≤ lim inf
N→∞

1
N + 1

logEGOE(N+1)e(N+1)φ(λ1)

≤ lim sup
N→∞

1
N + 1

logEGOE(N+1)e(N+1)φ(λ1) ≤ sup
x∈R

φ(x) − J1(x).

(2.12)

Note that

argmax
x

[φ(x) − J1(x)] = − µ√−4D′′(0)
−

√−D′′(0)
µ

≤ −
√
2.

Since IN ≥ 1
N+1EGOE(N+1)e(N+1)φ(λ1), it follows that

lim inf
N→∞

1
N

log IN ≥ lim inf
N→∞

1
N

log
[ 1
N + 1

EGOE(N+1)e(N+1)φ(λ1)
]

≥ µ2

−4D′′(0)
+ log

µ√−2D′′(0)
+
1
2
.

On the other hand,

IN ≤ EGOE(N+1)e(N+1)φ(λ1)1{λ1 ≥ − µ√−D′′(0)
} + e

(N+1)φ(− µ√
−D′′(0)

)
P
(
λ1 < − µ√−D′′(0)

)
.

For an upper bound for the first term on the right-hand side, we have by (2.12),

lim
N→∞

1
N

logEGOE(N+1)e(N+1)φ(λ1)

= φ
(

− µ√−4D′′(0)
−

√−D′′(0)
µ

)
− J1

(
− µ√−4D′′(0)

−
√−D′′(0)

µ

)
.
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And for the second term, we find by (2.4)

lim sup
N→∞

1
N

log
[
e
(N+1)φ(− µ√

−D′′(0)
)
P
(
λ1 < − µ√−D′′(0)

)]

≤ φ
(

− µ√−D′′(0)

)
− J1

(
− µ√−D′′(0)

)

≤ φ
(

− µ√−4D′′(0)
−

√−D′′(0)
µ

)
− J1

(
− µ√−4D′′(0)

−
√−D′′(0)

µ

)
.

It follows that

lim sup
N→∞

1
N

log IN ≤ µ2

−4D′′(0)
+ log

µ√−2D′′(0)
+
1
2
.

We have proved the claim.
For the second case |µ| < √−2D′′(0), the maximum of φ(x) on R is achieved at

x = − µ√−D′′(0) ∈ (−
√
2,

√
2). Then for ε > 0 and N large enough,

E
∫ − µ√

−D′′(0)
+ε

− µ√
−D′′(0)

e
(N+1)φ(− µ√

−D′′(0)
+ε)

LN+1(dx) ≤ IN ≤ e
(N+1)φ

(
− µ√

−D′′(0)

)

.

Since limN→∞ ELN+1

(
− µ√−D′′(0) ,−

µ√−D′′(0) + ε
)
> 0, it follows that

µ2

−2D′′(0)
− ε2

2
≤ lim inf

N→∞
1
N

log IN ≤ lim sup
N→∞

1
N

log IN ≤ µ2

−2D′′(0)
.

The claim follows by sending ε → 0+.

3. Conditional Law of ∇2HN with Constrained Critical Values

In this section, we provide the initial steps for computing complexity functions. Our
main result is a relation between a conditional Hessian ∇2HN and the GOE given
in Proposition 3.3 which implies (3.20) in the Kac–Rice representation for structure
functions D that satisfy Assumptions I, II and IV.

Recall the Kac–Rice formula (2.9). Note that (HN (x), ∂i HN (x), ∂kl
HN (x))1≤i≤N ,1≤k≤l≤N is a Gaussian field. A natural way to proceed is through con-
ditioning. From Lemma A.1, we have Var(HN (x)) = ND( 1

N ‖x‖2) and the means

E(HN (x)) =
µ

2
‖x‖2, E(∇HN (x)) = µx, E(∇2HN (x)) = µIN .

Since HN and (∇HN ,∇2HN ) are not independent, our strategy is to first remove the
dependence of HN on ∇HN by subtracting from HN a linear transform of ∇HN . Let
)01 = Cov(HN (x),∇HN (x)) = D′( ‖x‖2

N )xT and )11 = Cov(∇HN (x)) = D′(0)IN .
By the conditional distribution of Gaussian vectors, we know

Y := 1
N
[HN (x) − )01)

−1
11 ∇HN (x)] =

HN (x)
N

− D′( ‖x‖2
N )

∑N
i=1 xi∂i HN (x)

ND′(0)
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is independent from∇HN (x). Nowwe reduce the problem to understand the dependence
of ∇2HN on Y , which contains information for both of HN and ∇HN . Since ∇HN (x)
is independent from ∇2HN (x), by conditioning, we may rewrite (2.9) as

ECrtN (E, BN )

=
∫

BN

E[| det∇2HN (x)|1{Y +
1
N

)01)
−1
11 ∇HN (x) ∈ E}|∇HN (x) = 0]p∇HN (x)(0)dx

=
∫

BN

E[| det∇2HN (x)|1{Y ∈ E}]p∇HN (x)(0)dx

=
∫

BN

∫

E
E(| det∇2HN (x)||Y = u)

1√
2πσY

e
− (u−mY )2

2σ2Y p∇HN (x)(0)dudx, (3.1)

where

mY = E(Y ) = µ‖x‖2
2N

− µD′( ‖x‖2
N )‖x‖2

D′(0)N
,

σ 2
Y = Var(Y ) = 1

N

(
D(

‖x‖2
N

) − D′( ‖x‖2
N )2

D′(0)
‖x‖2
N

)
.

To proceed, we need the conditional distribution of ∇2HN (x) given Y = u. A crucial
difficulty arises here, however. Namely, one can check that the off-diagonal entries of
∇2HN (x) given Y = u may have negative covariance, for example,

Cov[(∂i j HN (x), ∂kl HN (x))|Y = u] = − 1
N

αxi x j
N

αxkxl
N

, i ,= j, k ,= l, {i, j} ,= {k, l},

for some α defined below, which prevents using GOE directly. This conditional covari-
ance structure also motivates the introduction of rotation matrix U (x) defined below,
after close scrutiny and several guess and verify procedures.

To overcome this difficulty, let us define

α = α(‖x‖2/N ) = 2D′′(‖x‖2/N )
√
D( ‖x‖2

N ) − D′(‖x‖2/N )2

D′(0)
‖x‖2
N

,

β = β(‖x‖2/N ) = D′(‖x‖2/N ) − D′(0)
√
D( ‖x‖2

N ) − D′(‖x‖2/N )2

D′(0)
‖x‖2
N

. (3.2)

Note that α ≤ 0 and β ≤ 0. One should think of α and β as O(1) quantities. Let us
define A = AN = U (x)∇2HN (x)U (x)T where U (x) is an N × N orthogonal matrix
such that

U (
αxxT

N
+ β IN )UT =





α‖x‖2
N + β 0 · · · 0
0 β · · · 0
...

...
. . .

...
0 0 · · · β




. (3.3)
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In other words, we have for U = (ui j ),

∑

k,l

uik(
αxkxl
N

+ βδkl)u jl = αδi1δ j1
‖x‖2
N

+ βδi j . (3.4)

Indeed, such a U (x) can be found by imposing the first row to be xT
‖x‖ for x ,= 0; and

if x = 0, U (x) can be arbitrary orthogonal matrix. It follows that E(A) = µIN , and by
Lemma A.1,

Cov(Ai j , Ai ′ j ′) =
∑

k,l,k′,l ′
uiku jlui ′k′u j ′l ′Cov(∂kl HN (x), ∂k′l ′ HN (x))

= −2D′′(0)
N

(δi jδi ′ j ′ + δi i ′δ j j ′ + δi j ′δi ′ j ),

Cov(Ai j , ∂l HN (x)) =
∑

a,b

uiau jbCov(∂abHN (x), ∂l HN (x)) = 0,

Cov(Ai j , HN (x)) =
∑

a,b

uiau jb(
2D′′(‖x‖2/N )xaxb

N
+ [D′(‖x‖2/N ) − D′(0)]δab)

= 2D′′(‖x‖2/N )δi1δ j1‖x‖2
N

+ [D′(‖x‖2/N ) − D′(0)]δi j .

Since A and ∇2HN (x) have the same eigenvalues, by (3.1),

ECrtN (E, BN ) =
∫

BN

∫

E
E(| det A||Y = u)

1√
2πσY

e
− (u−mY )2

2σ2Y p∇HN (x)(0)dudx .

(3.5)

We need the conditional distribution of A given Y = u. Note that

Cov(Ai j , Y ) = Cov(Ai j ,
HN

N
) = 2D′′(‖x‖2/N )δi1δ j1‖x‖2

N 2 +
[D′(‖x‖2/N ) − D′(0)]δi j

N
.

Then conditioning on Y = u we have

E(Ai j |Y = u) = E(Ai j ) + Cov(Ai j , Y )σ
−2
Y (u − E(Y ))

= µδi j +
(
2D′′( ‖x‖2

N )δi1δ j1‖x‖2
N + [D′( ‖x‖2

N ) − D′(0)]δi j )(u − µ‖x‖2
2N +

µD′( ‖x‖2
N )‖x‖2

D′(0)N )

D( ‖x‖2
N ) − D′( ‖x‖2

N )2‖x‖2
D′(0)N

,

mA|u := E(A|Y = u) = µIN +
u − µ‖x‖2

2N +
µD′( ‖x‖2

N )‖x‖2
D′(0)N

D( ‖x‖2
N ) − D′( ‖x‖2

N )2‖x‖2
D′(0)N

×




2D′′( ‖x‖2

N )‖x‖2
N + D′( ‖x‖2

N ) − D′(0) 0

0 [D′( ‖x‖2
N ) − D′(0)]IN−1



 , (3.6)

Cov[(Ai j , Ai ′ j ′ )
T|Y = u] = Cov[(Ai j , Ai ′ j ′ )

T] − Cov[(Ai j , Ai ′ j ′ )
T, Y ]σ−2

Y Cov[Y, (Ai j , Ai ′ j ′ )
T]

= Cov[(Ai j , Ai ′ j ′ )
T] − 1

N
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×



 (
αδi1δ j1‖x‖2

N + βδi j )
2 (

αδi1δ j1‖x‖2
N + βδi j )(

αδi ′1δ j ′1‖x‖2
N + βδi ′ j ′ )

(
αδi1δ j1‖x‖2

N + βδi j )(
αδi ′1δ j ′1‖x‖2

N + βδi ′ j ′ ) (
αδi ′1δ j ′1‖x‖2

N + βδi ′ j ′ )
2



 ,

where Cov[(Ai j , Ai ′ j ′)
T] denotes the 2 × 2 covariance matrix of Ai j and Ai ′ j ′ while

Cov[(Ai j , Ai ′ j ′)
T, Y ] denotes the 2× 1 covariance matrix of (Ai j , Ai ′ j ′)

T and Y . From
here we see conditioning on Y = u,

Cov[(Ai j , Ai ′ j ′)|Y = u]

= −2D′′(0)(δi jδi ′ j ′ + δi i ′δ j j ′ + δi j ′δi ′ j )

N
− 1

N
(
αδi1δ j1‖x‖2

N
+ βδi j )(

αδi ′1δ j ′1‖x‖2
N

+ βδi ′ j ′)

=






−6D′′(0)
N − 1

N ( α‖x‖2
N + β)2, i = j = i ′ = j ′ = 1,

−2D′′(0)
N − 1

N ( α‖x‖2
N + β)β, i = j = 1 ,= i ′ = j ′, or i ′ = j ′ = 1 ,= i = j,

−6D′′(0)
N − β2

N , i = j = i ′ = j ′ ,= 1,
−2D′′(0)

N − β2

N , 1 ,= i = j ,= i ′ = j ′ ,= 1,
−2D′′(0)

N , i = i ′ ,= j = j ′, or i = j ′ ,= j = i ′,
0, otherwise.

Alternatively, one can find the above conditional covariances using spherical co-
ordinates, which could avoid the matrix function U (x). Observe that the conditional
variances are positive by definition. In order to draw connection with GOE, we first
have to check that all the quantities Cov[(Ai j , Ai ′ j ′)|Y = u] are positive. Note that α

and β depend on ‖x‖2 and N through ‖x‖2/N . Let us write ρ = ρN (x) = ‖x‖√
N
so that

α = α(ρ2) and β = β(ρ2).

Lemma 3.1. We have limρ→0+
D(ρ2)

ρ4 − D′(ρ2)2

D′(0)ρ2 = − 3
2D

′′(0) and

lim
ρ→0+

β(ρ2)2 = −2
3
D′′(0), lim

ρ→0+
α(ρ2)β(ρ2)ρ2 = −4

3
D′′(0), lim

ρ→0+
[α(ρ2)ρ2]2

= −8
3
D′′(0).

Proof. Using l’Hospital’s rule together with D(0) = 0,

lim
ρ→0+

D(ρ2)

ρ4 − D′(ρ2)2

D′(0)ρ2 = lim
ρ→0+

D′(ρ2)ρ2 − D(ρ2)

ρ4 − 2D′(ρ2)D′′(ρ2)

D′(0)
= −3

2
D′′(0).

It follows that

lim
ρ→0+

β(ρ2)2 = lim
ρ→0+

[ D′(ρ2)−D′(0)
ρ

2
]2

D(ρ2)
ρ4 − D′(ρ2)2

D′(0)ρ2

= −2
3
D′′(0),

lim
ρ→0+

α(ρ2)β(ρ2)ρ2 = lim
ρ→0+

[2D′′(ρ2)] D′(ρ2)−D′(0)
ρ2

D(ρ2)
ρ4 − D′(ρ2)2

D′(0)ρ2

= −4
3
D′′(0),

lim
ρ→0+

[α(ρ2)ρ2]2 = lim
ρ→0+

[2D′′(ρ2)]2
D(ρ2)

ρ4 − D′(ρ2)2

D′(0)ρ2

= −8
3
D′′(0).
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In light of Lemma 3.1, we make the following observation. Following [SSV12, The-
orem 8.2], a function f : (0,∞) → (0,∞) is a Thorin–Bernstein function if and only
if limx→0+ f (x) exists and its derivative has a representation

f ′(x) = a
x
+ b +

∫

(0,∞)

1
x + t

σ (dt), (3.7)

where a, b ≥ 0 and σ is a measure on (0,∞) satisfying
∫
(0,∞)

1
1+t σ (dt) < ∞. In

particular, the functions D(r) = log(1 + r/ε) and D(r) = (r + ε)γ − εγ are Thorin–
Bernstein functions. Recall the definitions of α and β as in (3.2). The proof of the
following analytical result is deferred to Appendix Sect.B.

Lemma 3.2. For any x ∈ RN \ {0}, we have

−2D′′(0) >
(

α‖x‖2
N

+ β

)
β, (3.8)

−4D′′(0) >
(

α‖x‖2
N

+ β

)
α‖x‖2
N

, (3.9)

provided any one of the following conditions holds:

1. For all x ,= 0,

β2 ≤ −2
3
D′′(0). (3.10)

2. For all y ≥ 0,

2D′(0)D′′(y)[D(y) − D′(y)y] + D′(y)[D′(y) − D′(0)]2 ≥ 0. (3.11)

3. For all y ≥ 0

D′(y)y
D′(0)

− D′(y) − D′(0)
D′′(0)

≥ 0. (3.12)

4. For all y ≥ 0,

− D′(y)
D′′(y)

+
D′(0)
D′′(0)

≥ y. (3.13)

5. For all y ≥ 0,

−D′′(y)2 + D′′′(y)D′(y)
D′′(y)2

≥ 1. (3.14)

6. D is a Thorin–Bernstein function with a = 0 in (3.7).
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From now on, we always assume (3.8) and (3.9) (i.e. Assumption IV), which implies
that σ1, σ2 below are well defined and Cov[(Ai j , Ai ′ j ′)|Y = u] ≥ 0 for all i, i ′, j, j ′.
Recalling (3.6), let us write

m1 = m1(ρ, u) = µ +
(u − µρ2

2 + µD′(ρ2)ρ2

D′(0) )(2D′′(ρ2)ρ2 + D′(ρ2) − D′(0))

D(ρ2) − D′(ρ2)2ρ2

D′(0)

,

m2 = m2(ρ, u) = µ +
(u − µρ2

2 + µD′(ρ2)ρ2

D′(0) )(D′(ρ2) − D′(0))

D(ρ2) − D′(ρ2)2ρ2

D′(0)

,

σ1 = σ1(ρ) =
√

−4D′′(0) − (αρ2 + β)αρ2

N
, σ2 = σ2(ρ) =

√
−2D′′(0) − (αρ2 + β)β

N
,

mY = mY (ρ) =
µρ2

2
− µD′(ρ2)ρ2

D′(0)
, σY = σY (ρ) =

√
1
N

(
D(ρ2) − D′(ρ2)2ρ2

D′(0)

)
,

α = α(ρ2) = 2D′′(ρ2)
√
D(ρ2) − D′(ρ2)2ρ2

D′(0)

, β = β(ρ2) = D′(ρ2) − D′(0)
√
D(ρ2) − D′(ρ2)2ρ2

D′(0)

, (3.15)

where ρ = ‖x‖√
N
. From time to time, we also use the following change of variable

v =
u − µρ2

2 + µD′(ρ2)ρ2

D′(0)√
D(ρ2) − D′(ρ2)2ρ2

D′(0)

= u − mY√
NσY

(3.16)

so that

m1 = µ + v(αρ2 + β), m2 = µ + vβ. (3.17)

Let

G = G(u) =
(
z′1 ξT

ξ
√−4D′′(0)(

√
N−1
N GOEN−1 − z′3 IN−1)

)

=:
(
z′1 ξT

ξ G∗∗

)
, (3.18)

where with z1, z2, z3 being independent standard Gaussian random variables,

z′1 = σ1z1 − σ2z2 + m1, z′3 =
1√−4D′′(0)

(
σ2z2 +

√
αβρ√
N

z3 − m2

)
, (3.19)

and ξ is a centered column Gaussian vector with covariance matrix −2D′′(0)
N IN−1 which

is independent from z1, z2, z3 and the GOE matrix GOEN−1. The above discussion
yields our main result of this section.

Proposition 3.3. Assume Assumptions I, II and IV. Then we have in distribution

(U∇2HNUT|Y = u) d= G.

To connect with (3.5), we have

E(| det A||Y = u) =
∫

| det a|pA|Y (a|u)da = E(| detG|). (3.20)
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Remark 3.1. Here we explain the necessity for Assumption IV. Note that as a (condi-
tional) variance, we have

NVar(A11|Y = u) = −6D′′(0) − (αρ2 + β)2 ≥ 0, (3.21)

which implies that

|α2ρ4| ≤ −6D′′(0), β2 ≤ −6D′′(0). (3.22)

Since Cov(Gii ,G j j ) = 1
N (−2D′′(0) − β2) for i ,= j, i, j > 1, we need to introduce

the independent Gaussian variable z′3 such that

N [−4D′′(0)]Var(z′3) = −2D′′(0) − β2 > 0, for ρ > 0. (3.23)

The condition (3.22) and assumption (3.23) are sufficient in technical proofs in this
paper. However, we need the stronger assumptions (3.8) and (3.9) for the matrix model
(3.18), which is the cornerstone for the rest of the paper and the companion one [AZ22].
Indeed, since Cov(G11,Gii ) = 1

N [−2D′′(0) − (αρ2 + β)β] for i > 1, to extract the
dependence between G11 and Gii , we need (3.8) to introduce z2 and decompose G11
and Gii . For Gii , the remaining variance

Var(Gii ) − σ 2
2 = 1

N
[−4D′′(0) + αβρ2]

can be explained by a GOE diagonal term and
√

αβρ2z3 since αβρ2 ≥ 0 is known. Then
we canwrite z′3 as in (3.19). But to decomposeG11, we need to assumeVar(G11)−σ 2

2 >
0 to write G11 as z′1 in (3.19), and this assumption is exactly (3.9).

4. Exponential Tightness

The purpose of this section is to prove several exponential tightness results so that our
future analysis will be reduced to the compact setting. Let E ⊂ R be a Borel set.
Hereafter, for simplicity, let us assume BN is a shell BN (R1, R2) = {x ∈ RN : R1 <
‖x‖√
N
< R2}, 0 ≤ R1 < R2 ≤ ∞. Recall that in this case we write CrtN (E, (R1, R2)) =

CrtN (E, BN (R1, R2)). Using spherical coordinates and writing ρ = ‖x‖√
N
, by the Kac–

Rice formula we have

ECrtN (E, (R1, R2)) =
∫

BN

∫

E
E[| det A||Y = u] 1√

2πσY
e
− (u−mY )2

2σ2Y p∇HN (x)(0)dudx

= SN−1N (N−1)/2
∫ R2

R1

∫

E
E[| detG|] 1√

2πσY
e
− (u−mY )2

2σ2Y
1

(2π)N/2D′(0)N/2 e
− Nµ2ρ2

2D′(0) ρN−1dudρ . (4.1)

Here SN−1 = 2πN/2

%(N/2) is the area of N − 1 dimensional unit sphere, G depends on u
implicitly. Using the Stirling formula, we have

lim
N→∞

1
N

log(SN−1N
N−1
2 ) = 1

2
log(2π) +

1
2
. (4.2)

Recall the representation (3.18). Let λ1 ≤ · · · ≤ λN−1 be the eigenvalues of
GOEN−1. The eigenvalues of G∗∗ can be represented as {√−4D′′(0)(( N−1

N )1/2λi −
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z′3)}N−1
i=1 . By the representation, we may find a random orthogonal matrix V which is

independent of the unordered eigenvalues λ̃ j , j = 1, . . . , N − 1 and z′3, such that

G∗∗ =
√

−4D′′(0)V T




( N−1

N )1/2λ̃1 − z′3 · · · 0
...

. . .
...

0 · · · ( N−1
N )1/2λ̃N−1 − z′3



 V . (4.3)

By the rotational invariance of Gaussian measures, V ξ is a centered Gaussian vector
with covariance matrix −2D′′(0)

N IN−1 that is independent of z′3 and λ̃ j ’s. We can rewrite

V ξ
d=
√

−2D′′(0)
N Z , where Z = (Z1, . . . , ZN−1) is an N − 1 dimensional standard

Gaussian random vector. Using the determinant formula for block matrices or the Schur
complement formula,

detG = det(G∗∗)(z′1 − ξTG−1
∗∗ ξ)

d= [−4D′′(0)](N−1)/2z′1
N−1∏

j=1

((
N − 1
N

)1/2λ j − z′3)

− [−4D′′(0)]N/2

2N

N−1∑

k=1

Z2
k

N−1∏

j ,=k

((
N−1
N

)1/2λ j −z′3).

(4.4)

It follows from (4.1) that

ECrtN (E, (R1, R2)) = SN−1N (N−1)/2
∫ R2

R1

∫

E
E
(∣∣∣[−4D′′(0)](N−1)/2z′1

N−1∏

j=1

((
N − 1
N

)1/2λ j − z′3)

− [−4D′′(0)]N/2

2N

N−1∑

k=1

Z2
k

N−1∏

j ,=k

((
N − 1
N

)1/2λ j − z′3)
∣∣∣
) e

− (u−mY )2

2σ2Y
√
2πσY

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dudρ

≤ SN−1N (N−1)/2[I1(E, (R1, R2)) + I2(E, (R1, R2))], (4.5)

where

I1(E, (R1, R2)) = [−4D′′(0)] N−1
2

∫ R2

R1

∫

E
E
[
|z′1|

N−1∏

i=1

|(N − 1
N

)1/2λi − z′3|
]

e
− (u−mY )2

2σ2Y
√
2πσY

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dudρ,

I2(E, (R1, R2)) =
[−4D′′(0)] N2

2N

N−1∑

i=1

∫ R2

R1

∫

E
E
[
Z2
i

∏

j ,=i

|(N − 1
N

)1/2λ j − z′3|
]

e
− (u−mY )2

2σ2Y
√
2πσY

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dudρ . (4.6)

In the following we will employ hard analysis to derive various estimates that would
reduce the problem to the compact setting.
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Lemma 4.1. For any ρ > 0, u ∈ R, we have

1
D′(0) − D′(ρ2)

≤ CD(1 + ρ2)

ρ2 ,
1

√
D(ρ2) − D′(ρ2)2ρ2

D′(0)

≤ CD(1 + ρ2)

ρ2 ,

|mi | ≤ |µ| + CD

∣∣∣
u
ρ2 − µ

2
+
µD′(ρ2)

D′(0)

∣∣∣(1 + ρ2), i = 1, 2. (4.7)

Proof. Since limρ→0+
D′(ρ2)−D′(0)

ρ2 = D′′(0) and D′(ρ2) is strictly decreasing to 0 as

ρ2 tends to ∞, we have the first assertion. By (3.22), we have

1
√
D(ρ2) − D′(ρ2)2ρ2

D′(0)

≤
√−6D′′(0)

D′(0) − D′(ρ2)
≤ CD(1 + ρ2)

ρ2 ,

which together with (3.22) again implies

|m1| ≤ |µ| +
∣∣∣
u
ρ2 − µ

2
+
µD′(ρ2)

D′(0)

∣∣∣
CDρ2

D′(0) − D′(ρ2)

≤ |µ| + CD

∣∣∣
u
ρ2 − µ

2
+
µD′(ρ2)

D′(0)

∣∣∣(1 + ρ2),

|m2| ≤ |µ| +
∣∣∣
u
ρ2 − µ

2
+
µD′(ρ2)

D′(0)

∣∣∣
CDρ2

D′(0) − D′(ρ2)

≤ |µ| + CD

∣∣∣
u
ρ2 − µ

2
+
µD′(ρ2)

D′(0)

∣∣∣(1 + ρ2).

Recall z′1 = σ1z1 − σ2z2 + m1, z′3 = (σ2z2 +
ρ
√

αβz3√
N

− m2)/
√−4D′′(0). Note that

the conditional distribution of z′1 given z′3 = y is given by

z′1|z′3 = y ∼ N
(
ā,

b2

N

)
, (4.8)

where

ā = m1 − σ 2
2 (

√−4D′′(0)y + m2)

σ 2
2 + αβρ2

N

=
−2D′′(0)αρ2(u − µρ2

2 + µD′(ρ2)ρ2

D′(0) )

(−2D′′(0) − β2)

√
D(ρ2) − D′(ρ2)2ρ2

D′(0)

+
αβρ2µ

−2D′′(0) − β2

− (−2D′′(0) − β2 − αβρ2)
√−4D′′(0)y

−2D′′(0) − β2 ,

b2

N
= σ 2

1 + σ 2
2 − σ 4

2

σ 2
2 + αβρ2

N

= −4D′′(0)
N

+
2D′′(0)α2ρ4

N (−2D′′(0) − β2)
.
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Note that if z is a standard Gaussian r.v. and 4 is the c.d.f. of z, then we have for
a ∈ R, b > 0,

√
2
π
b ≤ E|a + bz| =

√
2b√
π
e− a2

2b2 + a(24(
a
b
) − 1) ≤

√
2
π
b + |a|. (4.9)

Lemma 4.2. Suppose µ ,= 0. Then

lim sup
T→∞

lim sup
N→∞

1
N

logECrtN ([−T, T ]c, (0,∞)) = −∞,

lim sup
R→∞

lim sup
N→∞

1
N

logECrtN (R, (R,∞)) = −∞,

lim sup
ε→0+

lim sup
N→∞

1
N

logECrtN (R, (0, ε)) = −∞.

Proof. (1) Note that b2 ≤ −4D′′(0) and that

E[|z′3|N−1] ≤ CN−1
[
mN−1

2 +
(−2D′′(0) − β2

−4ND′′(0)

) N−1
2
]

≤ CN−1(1 + mN−1
2 ). (4.10)

We write mu = |µ| +CD| u
ρ2 − µ

2 + µD′(ρ2)
D′(0) |(1 + ρ2). Using the conditional distribution

(4.8), (4.9), (2.6), Lemma 4.1 and the elementary fact mu ≤ max{1,mN
u },

E
[
|z′1|

N−1∏

i=1

|(N − 1
N

)1/2λi − z′3|
]

=
∫

R
E
[
|z′1|

N−1∏

i=1

|(N − 1
N

)1/2λi − y|
∣∣∣z′3 = y

]√−4ND′′(0) exp{− N (
√−4D′′(0)y+m2)

2

2(−2D′′(0)−β2)
}

√
2π(−2D′′(0) − β2)

dy

≤
∫

R

( √
2b√
πN

+ |ā|
)
E(λ∗

N−1 + |y|)N−1

√−4ND′′(0) exp{− N (
√−4D′′(0)y+m2)

2

2(−2D′′(0)−β2)
}

√
2π(−2D′′(0) − β2)

dy

≤ CN−1E[(b + |m1| + |m2| +
√

−4D′′(0)|z′3|)(λ∗
N−1

N−1 + |z′3|N−1)]
≤ CN

D (1 + mN
u ),

where λ∗
N−1 is the operator norm of GOEN−1. Similarly,

E
[
Z2
i

∏

j ,=i,1≤ j≤N−1

|(N − 1
N

)1/2λ j − z′3|
]

≤ E(λ∗
N−1 + |z′3|)N−2 ≤ CN (1 + |m2|N−2).
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Since D(r) ≤ D′(0)r ,wehave D(ρ2)− D′(ρ2)2ρ2

D′(0) ≤ D′(0)ρ2.TogetherwithLemma4.1,
we obtain after a change of variable u = ρ2s,

ECrtN ([−T, T ]c, (0,∞))

≤ CN
D SN−1

∫

R+

∫

[−T,T ]c
(1 + mN

u )
1√
2πσY

e
− (u−mY )2

2σ2Y
1

(2π)N/2D′(0)N/2 e
− Nµ2ρ2

2D′(0) ρN−1dudρ

≤ CN
µ,DSN−1

∫

R+

∫

[−T/ρ2,T/ρ2]c

[
1 + (1 + ρ2N )|s − µ

2
+
µD′(ρ2)

D′(0)
|N
]

√
N

√
2π
√
D(ρ2) − D′(ρ2)2ρ2

D′(0)

exp
(

−
Nρ4(s − µ

2 + µD′(ρ2)
D′(0) )2

2(D(ρ2) − D′(ρ2)2ρ2

D′(0) )

) 1
(2π)N/2D′(0)N/2 e

− Nµ2ρ2

2D′(0) ρN+1dsdρ

≤
CN
µ,DSN−1

√
N

(2π)
N+1
2 D′(0)N/2

( ∫ ∞

0

∫ ∞
√
T/s

+
∫ 0

−∞

∫ ∞
√−T/s

)
[1 + (1 + ρ2N )(|s| + |µ|)N ]

(1 + ρ2)

ρ2 exp
(

−
N [(s − µ

2 + µD′(ρ2)
D′(0) )2 + µ2]ρ2

2D′(0)

)
ρN+1dρds.

We need to find a good lower bound for (s − µ
2 + µD′(ρ2)

D′(0) )2. To save space, let

f (s, ρ2) = [1 + (1 + ρ2N )(|s| + |µ|)N ](ρN−1 + ρN+1) exp
(

−
N [(s − µ

2 + µD′(ρ2)
D′(0) )2 + µ2]ρ2

2D′(0)

)
.

We will use the estimate
∫∞
x e− y2

2σ2 dy ≤ σ 2

x e− x2

2σ2 repeatedly in the following.

Case 1: s > 0. If s > |µ|, since | 12 − D′(ρ2)
D′(0) | ≤ 1

2 , we have

(
s − µ

2
+
µD′(ρ2)

D′(0)

)2
≥
(
s −

∣∣∣
1
2

− D′(ρ2)

D′(0)

∣∣∣|µ|
)2

≥ s2

4
.

Then

∫ ∞

|µ|

∫ ∞
√
T/s

f (s, ρ2)dρds

≤
∫ ∞

|µ|

∫ ∞
√
T/s

[1 + (s + |µ|)N + (s + |µ|)Nρ2N ](ρN−1 + ρN+1)e− N [ s24 +µ2 ]ρ2
2D′(0) dρds

≤ Cµ,D

(8D′(0)
5µ2

)N+1
∫ ∞

|µ|

∫ ∞
√

T
2D′(0) (

s
4 +

µ2
s )

( 2D′(0)
s2
4 + µ2

)(N−1)/2
(1 + (s + |µ|)N )r3N+1e−Nr2drds

≤
CN
µ,D

N
√
T

∫ ∞

|µ|

1 + (s + |µ|)N
(s2 + 4µ2)(N−1)/2 e

− NT
4D′(0) (

s
4 +

µ2
s )ds

≤
CN
µ,D

N
√
T

∫ ∞

|µ|

1
s2

e− NT s
32D′(0) ds ≤

CN
µ,D

N
√
T
e− |µ|NT

32D′(0) .

Here we have used the fact that
√

T
2D′(0) (

s
4 + µ2

s ) ≥ |µ|
√

T
2D′(0) so that we can always

choose T large to guarantee r > 1 and r4 ≤ er
2/2.
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If s ≤ |µ|, using the trivial bound (s − µ
2 + µD′(ρ2)

D′(0) )2 ≥ 0, we have

∫ |µ|

0

∫ ∞
√
T/s

f (s, ρ2)dρds

≤
∫ |µ|

0

∫ ∞
√
T/|µ|

[1 + (s + |µ|)N + (s + |µ|)Nρ2N ](ρN−1 + ρN+1)e− Nµ2ρ2

2D′(0) dρds

≤ CD

∫ |µ|

0

∫ ∞
√

|µ|T
2D′(0)

[(2D′(0)
µ2

)3N/2
+ 1
]
(1 + (s + |µ|)N )r3N+1e−Nr2drds

≤
CN
µ,D

N
√
T
e− |µ|NT

4D′(0) .

Case 2: s < 0. After change of variable s → −s, we can proceed in the same way
as the case s > 0 and find

∫ 0

−∞

∫ ∞
√−T/s

f (s, ρ2)dρds =
∫ ∞

0

∫ ∞
√
T/s

f (−s, ρ2)dρds

=
( ∫ |µ|

0

∫ ∞
√
T/s

+
∫ ∞

|µ|

∫ ∞
√
T/s

)
f (−s, ρ2)dρds

≤
CN
µ,D

N
√
T

(
e−|µ|NT/[32D′(0)] + e−|µ|NT/[4D′(0)]

)
.

Putting things together, we see that

ECrtN ([−T, T ]c, (0,∞)) ≤
CN
µ,D

N
√
T

(
e−|µ|NT/[32D′(0)] + e−|µ|NT/[4D′(0)]

)
.

From here the first assertion follows.
(2) The last two claims follow somewhat different strategy. By conditioning and

Young’s inequality,

E
[
|z′1|

N−1∏

i=1

|(N − 1
N

)1/2λi − z′3|
]

≤ CN−1E[(b + |m1| + |m2| +
√

−4D′′(0)|z′3|)(λ∗
N−1

N−1 + |z′3|N−1)]
≤ CN

D (1 + |m1|N + |m2|N ).

UsingLemma4.1, (3.22) togetherwith the change of variable formulas (3.16) and (3.17),

ECrtN (R, (R,∞))

≤ CN
D SN−1

∫ ∞

R

∫

R
(1 + |m1|N + |m2|N )

e
− (u−mY )2

2σ2Y
√
2πσY

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dudρ

≤ CN
µ,DSN−1

∫ ∞

R

∫

R
[1 + |v|N (αρ2 + β)N ]e

− Nv2
2

√
2π

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dvdρ
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≤ CN
µ,DSN−1

∫ ∞

R
e− Nµ2ρ2

2D′(0) ρN−1dρ

≤
CN
µ,DSN−1

N R
e− Nµ2R2

4D′(0)

for R large enough. Similarly,

ECrtN (R, (0, ε)) ≤ CN
µ,DSN−1

∫ ε

0
e− Nµ2ρ2

2D′(0) ρN−1dρ ≤
CN
µ,DSN−1ε

N

N
.

This completes the proof.

We remark that we have actually proved the following stronger results with heavier
notations from (4.6):

lim sup
T→∞

lim sup
N→∞

1
N

log[I1([−T, T ]c, (0,∞)) + I2([−T, T ]c, (0,∞))] = −∞,

lim sup
R→∞

lim sup
N→∞

1
N

log[I1(R, (R,∞)) + I2(R, (R,∞))] = −∞,

lim sup
ε→0+

lim sup
N→∞

1
N

log[I1(R, (0, ε)) + I2(R, (0, ε))] = −∞.

The third claim also holds for µ = 0 with the same argument. If µ = 0, observing the
complexity function in Sect. 2, it is reasonable to require R2 < ∞.

Lemma 4.3. Let µ = 0 and R < ∞. Then

lim sup
T→∞

lim sup
N→∞

1
N

logECrtN ([−T, T ]c, [0, R)) = −∞.

Proof. The argument follows that of Lemma 4.2 and is actually much easier. Indeed,
we find

ECrtN ([−T, T ]c, (0, R))

≤ CN
D SN−1

∫ R

0

∫

[−T,T ]c
(1 + mN

u )
1√
2πσY

e
− (u−mY )2

2σ2Y
1

(2π)N/2D′(0)N/2 ρN−1dudρ

≤ CN
D SN−1

√
N

(2π)
N+1
2 D′(0)N/2

∫ R

0

( ∫ ∞

T
+
∫ −T

−∞

)
[1 + ρN + (1 + ρ2N )|u|N ] (1 + ρ2)

ρ2 e
− Nu2

2D′(0)ρ2 ρN−1dudρ

≤
CN
R,DSN−1

√
N

T
e
− NT 2

4D′(0)R2 .

The proof is complete.

We need the following fact.

Lemma 4.4. Suppose |µ| + 1
R > 0. Then for any a > 0, c > 0, b, d ∈ R satisfying

aN + b < cN + d, there exist constants Cµ,D,a,b,c,d > 0, N0 > 0 such that for all
N > N0,

∫ R

0

∫ ∞

−∞
(1 + |s|aN+b) exp

(
− N (s2 + µ2)ρ2

2D′(0)

)
ρcN+ddsdρ ≤ CN

µ,R,D,a,b,c,d .
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Proof. If µ ,= 0, changing the order of integration yields

∫ ∞

0

∫

R
(1 + |s|aN+b) exp

(
− N (s2 + µ2)ρ2

2D′(0)

)
ρcN+ddsdρ

=
∫ ∞

−∞

∫ ∞

0

( D′(0)
s2 + µ2

) cN+d+1
2

(1 + |s|aN+b)rcN+de−Nr2/2drds

≤ CN
D,c,d

∫ ∞

−∞

1 + |s|aN+b

(s2 + µ2)
cN+d+1

2

ds ≤ CN
µ,D,c,d ,

where in the last step we used the assumption aN + b < cN + d. If µ = 0, then R < ∞
and we have

∫ R

0

∫ ∞

−∞
(1 + |s|aN+b) exp

(
− Ns2ρ2

2D′(0)

)
ρcN+ddsdρ ≤ CN

a,b,D

∫ R

0
(1 + ρ−aN−b)ρcN+ddρ,

which completes the proof.

To save space, for an event 5 that may depend on the eigenvalues of GOE and other
Gaussian random variables in question, let us write

I2(E, (R1, R2),5) = [−4D′′(0)] N2
2N

N−1∑

i=1

∫ R2

R1

∫

E
E
[
Z2
i

∏

j ,=i

|(N − 1
N

)1/2λ j − z′3|15

]

e
− (u−mY )2

2σ2Y
√
2πσY

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dudρ .

Lemma 4.5. Suppose |µ| + 1
R2

> 0. Then

lim sup
K→∞

lim sup
N→∞

1
N

log I2(E, (R1, R2), {λ∗
N−1 > K }) = −∞,

lim sup
K→∞

lim sup
N→∞

1
N

log I2(E, (R1, R2), {|z′3 − E(z′3)| > K }) = −∞.

Proof. Using (2.5) and choosing K large so that 2t < et
2/18 for t ≥ K ,

E[(λ∗
N−1)

N−21{λ∗
N−1 > K }]

=
∫ K

0
KtK−1P(λ∗

N−1 ≥ K )dt +
∫ ∞

K
(N − 2)t N−3P(λ∗

N−1 > t)dt

≤ K Ke−(N−1)K 2/9 +
∫ ∞

K
e−(N−1)t2/18dt ≤ 2e−(N−1)K 2/18. (4.11)
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If µ ,= 0, using (4.10) and Lemma 4.1, we obtain

I2(E, (R1, R2), {λ∗
N−1 > K }) ≤ CN

D

∫ ∞

0

∫

R
E[((λ∗

N−1)
N−2 + z′N−2

3 )1{λ∗
N−1 > K }]

1√
2πσY

e
− (u−mY )2

2σ2Y
1

(2π)N/2D′(0)N/2 e
− Nµ2ρ2

2D′(0) ρN−1dudρ

≤ CN
µ,De

−(N−1)K 2/18
∫ ∞

0

∫

R

[
1 + | u

ρ2 − µ

2
+
µD′(ρ2)

D′(0)
|N−2(1 + ρ2(N−2))

]

1√
2πσY

e
− (u−mY )2

2σ2Y
1

(2π)N/2D′(0)N/2 e
− Nµ2ρ2

2D′(0) ρN−1dudρ

≤ CN
µ,De

−(N−1)K 2/18
∫ ∞

0

∫

R

[
1 + sN−2(1 + ρ2(N−1))

]
exp

(
− N (s2 + µ2)ρ2

2D′(0)

)
ρN−1dsdρ .

Here in the last step we used the observation (1 + ρ2(N−2))(1 + ρ2) ≤ 4(1 + ρ2(N−1)).
The assertion then follows from Lemma 4.4. Similarly, note that

P(|z′3 − E(z′3)| > K ) ≤ 2e
− N (−4D′′(0))K2

2(−2D′′(0)−β2) ≤ 2e−NK 2
.

It follows that for K large enough,

E(|z′3 − E(z′3)|N−21{|z′3 − E(z′3)| > K }) ≤ 4e−NK 2/2.

From here we deduce that

I2(E, (R1, R2), {|z′3 − E(z′3)| > K }) ≤ CN
D

∫ ∞

0

∫

R
E[((λ∗

N−1)
N−2 + |E(z′3)|N−2

+ |z′3 − E(z′3)|N−2)1{|z′3 − E(z′3)| > K }] 1√
2πσY

e
− (u−mY )2

2σ2Y
1

(2π)N/2D′(0)N/2 e
− Nµ2ρ2

2D′(0) ρN−1dudρ

≤ CN
µ,De

−NK 2/2
∫ ∞

0

∫

R

[
1 + | u

ρ2 − µ

2
+
µD′(ρ2)

D′(0)
|N−2(1 + ρ2(N−2))

]

1√
2πσY

e
− (u−mY )2

2σ2Y
1

(2π)N/2D′(0)N/2 e
− Nµ2ρ2

2D′(0) ρN−1dudρ .

The rest of argument is the same as above. The case µ = 0 and R2 < ∞ follows the
same steps and is omitted.

Lemma 4.6. Suppose |µ| + 1
R2

> 0. Then for any δ > 0,

lim sup
N→∞

1
N

log I2(E, (R1, R2), {L(λN−1
1 ) /∈ B(σsc, δ)}) = −∞.

Proof. We only argue for the harder case µ ,= 0. Using (4.10), the Cauchy–Schwarz
inequality and (2.3), we have

E
[ N−1∏

i=1,i ,= j

|(N − 1
N

)1/2λi − z′3|1{L(λN−1
1 ) /∈ B(σsc, δ)}

]

≤ CNE[((λ∗
N−1)

N−2 + z′N−2
3 )1{L(λN−1

1 ) /∈ B(σsc, δ)}]
≤ CN [E((λ∗

N−1)
2(N−2) + z′2(N−2)

3 )]1/2P(L(λN−1
1 ) /∈ B(σsc, δ))1/2

≤ CN
µ,D

[
1 +

∣∣∣
u
ρ2 − µ

2
+
µD′(ρ2)

D′(0)

∣∣∣
N−2

(1 + ρ2(N−2))
]
e− 1

2 c(N−1)2 .
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Together with Lemma 4.4, we deduce that

I2(E, (R1, R2), {L(λN−1
1 ) /∈ B(σsc, δ)})

≤ CN
µ,De

−cN2
∫ R2

R1

∫

E/ρ2

[
1 +

∣∣∣s − µ

2
+
µD′(ρ2)

D′(0)

∣∣∣
N−2

(1 + ρ2(N−1))
]

exp
(

−
N [(s − µ

2 + µD′(ρ2)
D′(0) )2 + µ2]ρ2

2D′(0)

)
ρN−1dsdρ

≤ CN
µ,De

−cN2
∫ ∞

0

∫

R

[
1 + |v|N−2(1 + ρ2(N−1))

]
exp

(
− N [v2 + µ2]ρ2

2D′(0)

)
ρN−1dvdρ

≤ CN
µ,De

−cN2
.

From here the assertion follows.

For an event 5, let us write

I1(E, (R1, R2),5) = [−4D′′(0)] N−1
2

∫ R2

R1

∫

E
E
[
|z′1|

N−1∏

i=1

|(N − 1
N

)1/2λi − z′3|15

]

e
− (u−mY )2

2σ2Y
√
2πσY

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dudρ .

The argument in this part shares the same spirit as that for I2.

Lemma 4.7. Suppose |µ| + 1
R2

> 0. Then we have

lim sup
K→∞

lim sup
N→∞

1
N

log I1(E, (R1, R2), {λ∗
N−1 > K }) = −∞,

lim sup
K→∞

lim sup
N→∞

1
N

log I1(E, (R1, R2), {|z′3 − E(z′3)| > K }) = −∞.

Proof. The argument is similar to that of Lemma 4.5. As there, we only provide details
for the case µ ,= 0. Note that b2 ≤ −4D′′(0). By (4.11), (4.8), (4.9), Young’s inequality
and conditioning, we find

E
[
|z′1|

N−1∏

i=1

|(N − 1
N

)1/2λi − z′3|1{λ∗
N−1 > K }

]

≤ CNE
[( √

2b√
πN

+ |ā|
)
((λ∗

N−1)
N−1 + |z′3|N−1)1{λ∗

N−1 > K }
]

≤ CNE[(b + |m1| + |m2| +
√

−4D′′(0)|z′3|)((λ∗
N−1)

N−1 + |z′3|N−1)1{λ∗
N−1 > K }]

≤ CN
De

−(N−1)K 2/18(1 + |m1|N + |m2|N ).
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Using (3.22) and the change of variable formulas (3.16) and (3.17),

I1(E, (R1, R2), {λ∗
N−1 > K })

≤ CN
D e

−(N−1)K 2/18
∫ ∞

0

∫

R
(1 + |m1|N + |m2|N )

e
− (u−mY )2

2σ2Y
√
2πσY

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dudρ

≤ CN
µ,De

−(N−1)K 2/18
∫ ∞

0

∫

R
[1 + |v|N (αρ2 + β)N ]e

− Nv2
2

√
2π

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dvdρ

≤ CN
µ,De

−(N−1)K 2/18
∫ ∞

0
e− Nµ2ρ2

2D′(0) ρN−1dρ

≤ CN
µ,De

−(N−1)K 2/18.

From here the first assertion follows. The argument for the second one is in the same
fashion after observing |z′3| ≤ |z′3 − E(z′3)| + |E(z′3)| and

E
[
|z′1|

N−1∏

i=1

|(N − 1
N

)1/2λi − z′3|1{|z′3 − E(z′3)| > K }
]

≤ CNE[(b + |m1| + |m2| +
√

−4D′′(0)|z′3|)((λ∗
N−1)

N−1 + |z′3|N−1)1{|z′3 − E(z′3)| > K }]
≤ CN

D e
−NK 2/2(1 + |m1|N + |m2|N ).

Lemma 4.8. Let δ > 0. Suppose |µ| + 1
R2

> 0. Then we have

lim sup
N→∞

1
N

log I1(E, (R1, R2), {L(λN−1
1 ) /∈ B(σsc, δ)}) = −∞.

Proof. The proof is similar to that of Lemma 4.6 and we only provide the difference for
the case µ ,= 0. Conditioning as in the proof of Lemma 4.7, using Young’s inequality,
the Cauchy–Schwarz inequality and (2.3), we find

E
[
|z′1|

N−1∏

i=1

|(N − 1
N

)1/2λi − z′3|1{L(λN−1
1 ) /∈ B(σsc, δ)}

]

≤ CN
D (1 + |m1|2N + |m2|2N )1/2e−cN2

.

The rest of argument follows verbatim that of Lemma 4.7.

5. Proof of Theorem 1.2

For a probability measure ν defined on R, recall the functions .(ν, x) and .∗(x) as in
(2.7). Let us define
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ψ(ν, ρ, u, y) = .(ν, y) − (u − mY )
2

2
(
D(ρ2) − D′(ρ2)2ρ2

D′(0)

)

− −2D′′(0)
−2D′′(0) − β2

(
y +

m2√−4D′′(0)

)2

− µ2ρ2

2D′(0)
+ log ρ, (5.1)

ψ∗(ρ, u, y) = ψ(σsc, ρ, u, y).

Recalling the notations (3.15), ψ∗(ρ, u, y) can be written explicitly as

ψ∗(ρ, u, y) = .∗(y) −
(u − µρ2

2 + µD′(ρ2)ρ2

D′(0) )2

2(D(ρ2) − D′(ρ2)2ρ2

D′(0) )

− µ2ρ2

2D′(0)
+ log ρ − −2D′′(0)

−2D′′(0) − [D′(ρ2)−D′(0)]2
D(ρ2)− D′(ρ2)2ρ2

D′(0)

×
(
y +

1√−4D′′(0)

[
µ +

(u − µρ2

2 + µD′(ρ2)ρ2

D′(0) )(D′(ρ2) − D′(0))

D(ρ2) − D′(ρ2)2ρ2

D′(0)

])2
.

(5.2)

Lemma 5.1. For any u and y fixed, we have limρ→0+ ψ∗(ρ, u, y) = −∞. For any ρ
and u fixed, we have lim|y|→∞ ψ∗(ρ, u, y) = −∞.

Proof. From Lemma 3.1, we know D(ρ2) − D′(ρ2)2ρ2

D′(0) ∼ − 3
2D

′′(0)ρ4 as ρ → 0+. For
any ε > 0 and ρ ∈ (0, ε), we may find cε such that

ψ∗(ρ, u, y) − .∗(y) ≤ −
(u − µρ2

2 + µD′(ρ2)ρ2

D′(0) )2

2(D(ρ2) − D′(ρ2)2ρ2

D′(0) )
− µ2ρ2

2D′(0)
+ log ρ

≤ −
( u
ρ2 − µ

2 + µD′(ρ2)
D′(0) )

−3cεD′′(0)
− µ2ρ2

2D′(0)
+ log ρ .

The right-hand side clearly tends to −∞ as ρ → 0+.
Since −2D′′(0)

−2D′′(0)−β2 ≥ 1, from the definition it is clear to see lim|y|→∞ ψ∗(ρ, u, y) =
−∞ for fixed ρ and u.

Let !6" = {i1, . . . , i6} ⊂ [N − 1]. For any 1-Lipschitz function f , we have

∣∣∣
1

N − 1

N−1∑

j=1

f (λ j ) − 1
N − 1 − 6

∑

j∈[N−1]\!6"
f (λ j )

∣∣∣

≤ 1
(N − 1)(N − 1 − 6)

∑

j∈[N−1]\!6"
|(N − 1 − 6) f (λ j ) +

∑

i∈!6"
f (λi ) − (N − 1) f (λ j )|

≤ 6

N − 1
max
i, j

|λi − λ j |. (5.3)
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5.1. Upper bound.

Proposition 5.2. Suppose Ē is compact and 0 ≤ R1 < R2 < ∞. Under Assumptions I,
II and IV, we have

lim sup
N→∞

1
N

log I2(E, (R1, R2)) ≤ 1
2
log[−4D′′(0)] − 1

2
log D′(0)

− 1
2
log(2π) + sup

(ρ,u,y)∈F
ψ∗(ρ, u, y),

where F = {(ρ, u, y) : y ∈ R, ρ ∈ (R1, R2), u ∈ Ē} and ψ∗(ρ, u, y) is given as in
(5.2).

Proof. Since

I2(E, (R1, R2)) = I2(E, (R1, R2), {L(λN−1
1 ) ∈ BK (σsc, δ), |z′3 − E(z′3)| ≤ K })

+ I2(E, (R1, R2), {L(λN−1
1 ) /∈ BK (σsc, δ)} ∪ {|z′3 − E(z′3)| > K }),

by Lemmas 4.5 and 4.6, we can always choose K large enough so that the second term
is exponentially negligible as N → ∞, provided the first term yields a finite quantity in
the limit. We only need to consider the first term.

Using (5.3), if L(λN−1
i=1 ) ∈ BK (σsc, δ), we may choose N large enough so that

L(( N−1
N )1/2λN−1

j=1, j ,=i ) ∈ BK (σsc, 2δ). Then for any i ∈ [N − 1],

N−1∏

j=1, j ,=i

|(N − 1
N

)1/2λ j − z′3|1{L(λN−1
i=1 ) ∈ BK (σsc, δ)} ≤ e(N−2) supν∈BK (σsc,2δ) .(ν,z′3).

(5.4)

By Lemma 3.1 and (3.23), we have cD,R2 := inf R1<ρ<R2 −2D′′(0) − β2 > 0 where
β = β(ρ2) was defined in (3.2). It follows that

√−4ND′′(0)
√
2π(−2D′′(0) − β2)

exp
(

−
−2ND′′(0)(y + m2√−4D′′(0) )

2

−2D′′(0) − β2

)

≤
√−4ND′′(0)
√
2πcD,R2

exp
(

−
−2ND′′(0)(y + m2√−4D′′(0) )

2

−2D′′(0) − β2

)
.

Let

F(δ) =
{
(ν, ρ, u, y) : ν ∈ BK (σsc, δ), y ∈

[
− m2√

−4D′′(0)
− K ,− m2√

−4D′′(0)
+ K

]
,

ρ ∈ (R1, R2), u ∈ Ē
}
. (5.5)
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Using ρ2 ≤ R2
2 and the fact that all summands of ψ(ν, ρ, u, y) in (5.1) are bounded

from above on F(δ), we deduce from Lemma 4.1

I2(E, (R1, R2), {L(λN−1
1 ) ∈ BK (σsc, δ), |z′3 − E(z′3)| ≤ K })

≤ [−4D′′(0)]N/2
∫ R2

R1

∫

E
E
[
e(N−2) supν∈BK (σsc,2δ) .(ν,z′3)1{|z′3 − E(z′3)| ≤ K }

]

√
Ne

− N (u−mY )2

2
[
D(ρ2)− D′(ρ2)2ρ2

D′(0)
]

√
2π(D(ρ2) − D′(ρ2)2ρ2

D′(0) )

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dudρ

≤ CD,R2,|E |N [−4D′′(0)] N+1
2

(2π)
N+2
2 D′(0)

N
2

exp
[
(N − 3) sup

(ν,ρ,u,y)∈F(2δ)
ψ(ν, ρ, u, y)

]
,

where |E | is theLebesguemeasure of E . Sinceψ(ν, ρ, u, y) is an upper semi-continuous
function on F(2δ) and attains its maximum on the closure F(2δ), we have

lim sup
δ→0+

sup
(ν,ρ,u,y)∈F(2δ)

ψ(ν, ρ, u, y) ≤ sup
(ρ,u,y)∈F(0)

ψ∗(ρ, u, y).

By Lemmas 4.5 and 5.1, the continuous function ψ∗(ρ, u, y) attains its maximum in F̄
at some point (ρ∗, u∗, y∗) with ρ∗ > 0. Therefore we may choose K large enough in
the beginning so that

sup
(ρ,u,y)∈F(0)

ψ∗(ρ, u, y) = ψ∗(ρ∗, u∗, y∗).

This justifies that sup(ρ,u,y)∈F ψ∗(ρ, u, y) > −∞ and the proof is complete.

Proposition 5.3. Suppose Ē is compact and 0 ≤ R1 < R2 < ∞. Under Assumptions I,
II and IV, we have

lim sup
N→∞

1
N

log I1(E, (R1, R2)) ≤ 1
2
log[−4D′′(0)] − 1

2
log D′(0)

− 1
2
log(2π) + sup

(ρ,u,y)∈F
ψ∗(ρ, u, y),

where F = {(ρ, u, y) : y ∈ R, ρ ∈ (R1, R2), u ∈ Ē} and ψ∗(ρ, u, y) is given as in
(5.2).

Proof. By the remark after Lemma 4.2, we know

lim sup
N→∞

1
N

log I1(E, (0, R2)) = lim sup
N→∞

1
N

log I1(E, (ε, R2))

by choosing ε > 0 small enough. Hence, we may assume R1 > 0. Similar to the proof
of Proposition 5.2, since

I1(E, (R1, R2)) = I1(E, (R1, R2), {L(λN−1
1 ) ∈ BK (σsc, δ), |z′3 − E(z′3)| ≤ K })

+ I1(E, (R1, R2), {L(λN−1
1 ) /∈ BK (σsc, δ)} ∪ {|z′3 − E(z′3)| > K }),
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thanks to Lemmas 4.7 and 4.8, by choosing K large enough, it suffices to consider
the first term. Since 0 < R1 < R2 < ∞, using continuity of functions in question,
conditioning with (4.8) and Lemma 4.1 for σY ,

I1(E, (R1, R2), {L(λN−1
1 ) ∈ BK (σsc, δ), |z′3 − E(z′3)| ≤ K })

≤ [−4D′′(0)] N−1
2 sup

R1≤ρ≤R2,u∈Ē,|y+ m2√
−4D′′(0)

|≤K
(b + |m1| + |m2| +

√
−4D′′(0)|y|)

∫ R2

R1

∫

E

E
[
e(N−1) supν∈BK (σsc,δ) .(ν,z′3)1{|z′3 − E(z′3)| ≤ K }

] e
− (u−mY )2

2σ2Y
√
2πσY

e− Nµ2ρ2

2D′(0)

(2π)N/2D′(0)N/2 ρN−1dudρ

≤
CR1,R2,D,K ,Ē [−4D′′(0)] N

2

(2π)
N+2
2 D′(0)

N
2

exp
[
(N − 3) sup

(ν,ρ,u,y)∈F(δ)
ψ(ν, ρ, u, y)

]
,

where F(δ) is given as in (5.5) and the supremum of |m1|+ |m2|may depend on R1. The
assertion follows from the upper semi-continuity of ψ(ν, ρ, u, y) on F(δ) by sending
N → ∞ and δ → 0+.

5.2. Lower bound.

Proposition 5.4. Suppose E is an open set and 0 ≤ R1 < R2 < ∞. Under Assumptions
I, II and IV, we have

lim inf
N→∞

1
N

logECrtN (E, (R1, R2)) ≥ 1
2
+
1
2
log[−4D′′(0)]

− 1
2
log D′(0) + sup

(ρ,u,y)∈F
ψ∗(ρ, u, y),

where F = {(ρ, u, y) : y ∈ R, ρ ∈ (R1, R2), u ∈ Ē} and ψ∗(ρ, u, y) is given as in
(5.2).

Proof. Using (4.9) and (4.8), we know

E
[
|z′1 − h(z′3)||z′3 = y

]
≥
√

2
π

[−4D′′(0)
N

+
2D′′(0)α2ρ4

N (−2D′′(0) − β2)

]1/2
, (5.6)

where h(z′3) only depends on z′3. By conditioning, using (4.4) and (3.18),

E(| detG|) = E(| detG∗∗||z′1 − ξTG−1
∗∗ ξ |)

= [−4D′′(0)] N−1
2 E[| det(( N − 1

N
)1/2GOEN−1 − z′3 IN−1)|E(|z′1 − ξTG−1

∗∗ ξ ||GOEN−1, ξ, z′3)]

≥ [−4D′′(0)] N−1
2

√
2
π

[−4D′′(0)
N

+
2D′′(0)α2ρ4

N (−2D′′(0) − β2)

]1/2

√
N (−4D′′(0))

√
2π(−2D′′(0) − β2)

∫

RN−1

N−1∏

i=1

∫

R
|( N − 1

N
)1/2xi − y| exp

[
−

−4ND′′(0)(y + m2√−4D′′(0) )
2

2(−2D′′(0) − β2)

]
dy

pGOE(x1, . . . , xN−1)

N−1∏

i=1

dxi

where pGOE(x1, . . . , xN−1) is the joint density of the unordered eigenvalues of GOE.
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Without loss of generality we assume E is non-empty. Choose (ρ∗, u∗, y∗) as that in
the proof of Proposition 5.2; i.e., it is a maximum of ψ∗(ρ, u, y) on [R1, R2]× Ē ×R.
If there are multiple points for ψ∗ to attain its maximum, we just choose one to be
(ρ∗, u∗, y∗). Recall thatρ∗ > 0. Then (ρ∗−δ′, ρ∗+δ′)∩[R1, R2] and (u∗−δ′, u∗+δ′)∩ Ē
must be non-empty for any δ′ > 0. If ρ∗ and u∗ are both interior points, we choose δ′ > 0
small enough so that (ρ∗ − δ′, ρ∗ + δ′) ⊂ (R1, R2) and (u∗ − δ′, u∗ + δ′) ⊂ E . If either
ρ∗ or u∗ is a boundary point, by abuse of notation we still write (ρ∗ − δ′, ρ∗ + δ′) and
(u∗ − δ′, u∗ + δ′) with the understanding that one endpoint should be replaced by ρ∗ or
u∗ so that we always have (ρ∗ − δ′, ρ∗ + δ′) ⊂ (R1, R2) and (u∗ − δ′, u∗ + δ′) ⊂ E .
Using (3.23), the right-hand side of (5.6) attains strictly positive minimum for ρ ∈
[ρ∗ − δ′, ρ∗ + δ′]. By restricting to small intervals, we find

∫ R2

R1

∫

E
E(| detG|) 1√

2πσY
e
− (u−mY )2

2σ2Y
1

(2π)N/2D′(0)N/2 e
− Nµ2ρ2

2D′(0) ρN−1dudρ

≥ [−4D′′(0)] N−1
2

√
2
π

∫ ρ∗+δ′

ρ∗−δ′

∫ u∗+δ′

u∗−δ′

∫ y∗+δ1

y∗−δ1

[−4D′′(0)
N

+
2D′′(0)α2ρ4

N (−2D′′(0) − β2)

]1/2 √
N (−4D′′(0))

√
2π(−2D′′(0) − β2)

∫

RN−1

N−1∏

i=1

|(N − 1
N

)1/2xi − y| exp
[

−
−4ND′′(0)(y + m2√−4D′′(0) )

2

2(−2D′′(0) − β2)

]

pGOE(x1, . . . , xN−1)

N−1∏

i=1

dxi
1√
2πσY

e
− (u−mY )2

2σ2Y
1

(2π)N/2D′(0)N/2 e
− Nµ2ρ2

2D′(0) ρN−1dydudρ

=: E(δ′, δ1),

where δ1 > 0 will be specified in the following. We consider two cases.
Case 1: y∗ /∈ [−

√
2,

√
2]. In this case, there exists ε1 > 0 small enough so that

y∗ /∈ [−
√
2 − 3ε1,

√
2 + 3ε1]. We can choose δ1 small enough so that y∗ + δ1 <

−
√
2 − 2ε1 if y∗ < −

√
2 or y∗ − δ1 >

√
2 + 2ε1 if y∗ >

√
2. According to our choice,

if x ∈ (y∗ − δ1, y∗ + δ1), then x /∈ [−
√
2− 2ε1,

√
2 + 2ε1]. With these considerations in

mind, by restricting the empirical measure of GOE eigenvalues to B√
2+ε1

(σsc, δ) first,
we find

E(δ′, δ1) ≥ [−4D′′(0)] N−1
2

√
2
π
P(L((N − 1

N
)1/2λN−1

1 ) ∈ B√
2+ε1

(σsc, δ))

∫ ρ∗+δ′

ρ∗−δ′

∫ u∗+δ′

u∗−δ′

∫ y∗+δ1

y∗−δ1

e
(N−1) infν∈B√

2+ε1
(σsc,δ) .(ν,y)

exp
[

−
−4ND′′(0)(y + m2√−4D′′(0) )

2

2(−2D′′(0) − β2)

]

[−4D′′(0)
N

+
2D′′(0)α2ρ4

N (−2D′′(0) − β2)

]1/2 √
N (−4D′′(0))

√
2π(−2D′′(0) − β2)

√
N (2π)−(N+1)/2D′(0)−N/2
√
D(ρ2) − D′(ρ2)2ρ2

D′(0)

exp
(

−
N (u − µρ2

2 + µD′(ρ2)ρ2

D′(0) )2

2(D(ρ2) − D′(ρ2)2ρ2

D′(0) )

)
e− Nµ2ρ2

2D′(0) ρN−1dydudρ .

Since .(ν, y) is continuous in P[−
√
2 − ε1,

√
2 + ε1]× (−

√
2 − 2ε1,

√
2 + 2ε1)c, we

have
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lim
δ→0+

inf
ν∈B√

2+ε1
(σsc,δ)

.(ν, y) = .∗(y)

for all y ∈ [y∗ − δ1, y∗ + δ1]. By Wigner’s semicircle law with the distance (2.2) and
the LDP of the largest eigenvalue of GOE, we have

lim inf
N→∞

P(L((N − 1
N

)1/2λN−1
1 ) ∈ B√

2+ε1
(σsc, δ))

≥ lim inf
N→∞

[P(L((N − 1
N

)1/2λN−1
1 ) ∈ B(σsc, δ))

− P( max
i=1,...,N−1

|(N − 1
N

)1/2λi | >
√
2 + ε1)] = 1.

Recall the function ψ as in (5.1). Since the functions in question are all continuous and
thus attain strictly positive minimum in ρ ∈ [ρ∗ − δ′, ρ∗ + δ′], u ∈ [u∗ − δ′, u∗ + δ′], y ∈
[y∗ − δ1, y∗ + δ1], using (4.2) and (4.1) we deduce that

lim inf
N→∞

1
N

logECrtN (E, (R1, R2)) ≥ lim inf
δ′→0+,
δ1→0+

lim inf
N→∞

1
N

log E(δ′, δ1) +
1
2
+
1
2
log(2π)

≥ 1
2
+
1
2
log[−4D′′(0)] − 1

2
log D′(0)

+ lim inf
δ→0+,δ′→0+,

δ1→0+

inf
ρ∈[ρ∗−δ′,ρ∗+δ′],

u∈[u∗−δ′,u∗+δ′],y∈[y∗−δ1,y∗+δ1]

[ψ∗(ρ, u, y) − .∗(y) + inf
ν∈B√

2+ε1
(σsc,δ)

.(ν, y)]

= 1
2
+
1
2
log[−4D′′(0)] − 1

2
log D′(0) + ψ∗(ρ∗, u∗, y∗). (5.7)

Case 2: y∗ ∈ [−
√
2,

√
2]. In this case, we can choose δ1 > 0 small such that

G(δ1) := (y∗ − δ1, y∗ + δ1) ∩ (−
√
2,

√
2) ,= ∅. Choosing K large we find

∫

G(δ1)
E[e(N−1).(L(( N−1

N )1/2λN−1
1 ),y)] exp

[
−

−4ND′′(0)(y + m2√−4D′′(0) )
2

2(−2D′′(0) − β2)

]
dy

≥ 1
Z ′
N−1

∫

G(δ1)

∫

[−( N
N−1 )

1/2K ,( N
N−1 )

1/2K ]N−1
exp

[
−

−4ND′′(0)(y + m2√−4D′′(0) )
2

2(−2D′′(0) − β2)

]

N−1∏

i=1

|(N − 1
N

)1/2xi − y|
∏

1≤i< j≤N−1

|xi − x j |e− N−1
2
∑N−1

i=1 x2i

N−1∏

i=1

dxidy

( N−1
N )1/2xi 4→xi
=

1
Z ′
N−1

( N
N − 1

) N (N−1)
4

∫

xN∈G(δ1)
exp

[
−

−4ND′′(0)(xN + m2√−4D′′(0) )
2

2(−2D′′(0) − β2)

]

∫

[−K ,K ]N−1

∏

1≤i< j≤N

|xi − x j |e− N
2
∑N

i=1 x
2
i e

N
2 x

2
N

N∏

i=1

dxi

≥ Z ′
N

Z ′
N−1

1
Z ′
N

( N
N − 1

) N (N−1)
4 exp

[
N min

x∈G(δ1)

( x2

2
−

−4D′′(0)(x + m2√−4D′′(0) )
2

2(−2D′′(0) − β2)

)]

∫

xN∈G(δ1)

∫

[−K ,K ]N−1

∏

1≤i< j≤N

|xi − x j |e− N
2
∑N

i=1 x
2
i

N∏

i=1

dxi
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= Z ′
N

Z ′
N−1

( N
N − 1

) N (N−1)
4 exp

[
N min

x∈G(δ1)

( x2

2
−

−4ND′′(0)(x + m2√−4D′′(0) )
2

2(−2D′′(0) − β2)

)]

E
[ 1
N
#{i ∈ [N ] : λ̃N

i ∈ G(δ1)}1{ max
i=1,...,N

|λ̃N
i | ≤ K }

]
.

Here Z ′
N = N !ZN is the normalizing constant for the p.d.f. of unordered eigenvalues of

GOEN matrix. By Stirling’s formula,

lim
N→∞

1
N

log
[ Z ′

N

Z ′
N−1

( N
N − 1

) N (N−1)
4

]
= −1

2
− 1

2
log 2.

From Wigner’s semicircle law we deduce

lim inf
N→∞

1
N

logE
[ 1
N
#{i ∈ [N ] : λ̃N

i ∈ G(δ1)}1{ max
i=1,...,N

|λi | ≤ K }
]

= lim
N→∞

1
N

log σsc[G(δ1)] = 0.

Since the functions in question are all continuous and thus attains strictly positive mini-
mum in ρ ∈ [ρ∗ − δ′, ρ∗ + δ′], u ∈ [u∗ − δ′, u∗ + δ′], y ∈ [y∗ − δ1, y∗ + δ1], using (4.2)
and (4.1) we deduce that

lim inf
N→∞

1
N

logECrtN (E, (R1, R2)) ≥ lim inf
δ′→0+,
δ1→0+

lim inf
N→∞

1
N

log E(δ′, δ1) +
1
2
+
1
2
log(2π)

≥ 1
2
+
1
2
log[−4D′′(0)] − 1

2
log D′(0) − 1

2
− 1

2
log 2 + lim inf

δ′→0+,
δ1→0+

inf
ρ∈[ρ∗−δ′,ρ∗+δ′],

u∈[u∗−δ′,u∗+δ′],x∈G(δ1)

[ x2

2
−

−4ND′′(0)(x + m2√−4D′′(0) )
2

2(−2D′′(0) − β2)
−

(u − µρ2

2 + µD′(ρ2)ρ2

D′(0) )2

2
(
D(ρ2) − D′(ρ2)2ρ2

D′(0)

) − µ2ρ2

2D′(0)
+ log ρ

]

= 1
2
+
1
2
log[−4D′′(0)] − 1

2
log D′(0) + ψ∗(ρ∗, u∗, y∗). (5.8)

Here in the last step, we used the fact (2.8) that .∗(y∗) = 1
2 y

2
∗ − 1

2 − 1
2 log 2 as

y∗ ∈ [−
√
2,

√
2].

Proof of Theorem 1.2. If Ē is compact and 0 ≤ R1 < R2 < ∞, the assertion follows
from (4.2), (4.5), Propositions 5.2, 5.3 and 5.4.

Suppose Ē is not compact or R2 = ∞. Thanks to Lemmas 5.1 and 4.2, we may
choose R < ∞ and T < ∞ large enough such that

lim
N→∞

1
N

logECrtN (E, (R1, R2)) = lim
N→∞

1
N

logECrtN (E ∩ (−T, T ), (R1, R2) ∩ [0, R])

= 1
2
log[−4D′′(0)] − 1

2
log D′(0) +

1
2
+ sup

y∈R,R1<ρ<R∧R2,u∈Ē∩[−T,T ],
ψ∗(ρ, u, y)

= 1
2
log[−4D′′(0)] − 1

2
log D′(0) +

1
2
+ sup

(ρ,u,y)∈F
ψ∗(ρ, u, y),

which completes the proof.
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We finish this section by showing how to recover Theorem 1.1 from Theorem 1.2
when the domain of field is confined in a shell.

Example 2. Let 0 ≤ R1 < R2 ≤ ∞ and E = R. This removes restriction on the range
of the random field. Let J = √−2D′′(0). Using (3.15) and (3.16), we rewrite

ψ∗(ρ, u, y) = .∗(y) − J 2

J 2 − β2

(
y +

µ√
2J

+
βv√
2J

)2
− v2

2
− µ2ρ2

2D′(0)
+ log ρ .

From (2.8), we calculate

∂yψ∗ = −(β2 + J 2)y −
√
2J (µ + βv)

J 2 − β2 − sgn(y)
√
y2 − 21{|y| >

√
2},

∂yyψ∗ = − J 2 + β2

J 2 − β2 − |y|
√
y2 − 2

1{|y| >
√
2},

∂vψ∗ = −J 2v − β(
√
2J y + µ)

J 2 − β2 , ∂yvψ∗ = −
√
2Jβ

J 2 − β2 , ∂vvψ∗ = − J 2

J 2 − β2 .

Using the relation ∂vψ∗ = 0 we find

v = −β(
√
2J y + µ)

J 2
,

√
2J y + µ + βv = (

√
2J y + µ)(J 2 − β2)

J 2
. (5.9)

Together with (2.8), we can eliminate v and simplify

ψ∗(ρ, u, y) = −1
2
y2 − 1

2
− 1

2
log 2 − J1(−|y|)1{|y| >

√
2}

−
√
2µy
J

− µ2

2J 2
− µ2ρ2

2D′(0)
+ log ρ . (5.10)

Case 1: µ ,= 0. Solving ∂yψ∗ = 0, ∂vψ∗ = 0 gives (after removing an extraneous
solution)

{
y = −

√
2µ
J , v = µβ

J 2 , |µ| ≤ J,
y = − 1√

2
(µJ + J

µ), v = β
µ, |µ| > J.

From (3.23) we know J 2 −β2 > 0 for ρ > 0. By the second derivative test, this critical
point is the unique global maximum. Moreover, plugging in the critical point reveals
that

.∗(y) − J 2

J 2 − β2

(
y +

µ√
2J

+
βv√
2J

)2
− v2

2

does not depend on ρ. As a result, we choose ρ by optimizing − µ2ρ2

2D′(0) + log ρ. Let us
consider R1 <

√
D′(0)/|µ| only; the other case is similar. Choose

ρ∗ =
{√

D′(0)
|µ| , if R2 >

√
D′(0)
|µ| ,

R2, otherwise.
(5.11)
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If |µ| ≤ √−2D′′(0), we take y∗ = −µ/
√−D′′(0), and

u∗ = µ[D′(ρ2
∗) − D′(0)]

−2D′′(0)
+
µρ2

∗
2

− µD′(ρ2
∗)ρ

2
∗

D′(0)
. (5.12)

Then we find

ψ∗(ρ∗, u∗, y∗) =






µ2

−4D′′(0) − 1 − 1
2 log 2 +

1
2 log D

′(0) − log |µ|, if R2 >
√
D′(0)
|µ| ,

µ2

−4D′′(0) − 1
2 − 1

2 log 2 + log R2 − µ2R2
2

2D′(0) , otherwise.

(5.13)

If |µ| > √−2D′′(0), we take y∗ = − µ√−4D′′(0) −
√−D′′(0)

µ ,

u∗ = D′(ρ2
∗) − D′(0)
µ

+
µρ2

∗
2

− µD′(ρ2
∗)ρ

2
∗

D′(0)
. (5.14)

Then we find

ψ∗(ρ∗, u∗, y∗)

=





− 1

2 log 2 − log
√−2D′′(0) − 1

2 + 1
2 log D

′(0), if R2 >
√
D′(0)
|µ| ,

− 1
2 log 2 − log

√−2D′′(0) + log |µ| + log R2 − µ2R2
2

2D′(0) , otherwise.

(5.15)

Note that if R2 >
√
D′(0)
|µ| then the complxity function is 0 as in Theorem 1.1. Since

BN = {x ∈ RN :
√
N R1 < ‖x‖ <

√
N R2}, using Cramer’s theorem for the chi-square

distribution, we have

−& =
{

− µ2R2
2

2D′(0) +
1
2 + log R2 + log |µ| − 1

2 log D
′(0), if R2 <

√
D′(0)
|µ| ,

0, otherwise.

where & is defined as in (1.4).
Case 2: µ = 0. We have to assume R2 < ∞. Then the above computations show

that ψ∗ is optimized at y∗ = u∗ = 0 and ρ∗ = R2 which gives

lim
N→∞

1
N

logECrtN (R, (R1, R2)) =
1
2
log[−2D′′(0)] − 1

2
log D′(0) + log R2.

In addition, ' = limN→∞ 1
N log |BN | = log R2 + 1

2 log(2π) +
1
2 .

Our results here match all the three cases in Theorem 1.1. Therefore, this example
explains the seemingly very different forms of the three phases, whose origin is hard to
understand without the general Theorem 1.2. Moreover, this suggests that the critical
points x around the norm ‖x‖ =

√
Nρ∗ and the value HN (x) = u∗ dominate all other

places.

Finally, let us consider an example with a special structure function.
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Example 3. Suppose D(r) = log(1 + r
ε ) for some ε > 0. This is regarded to be the

boundary case of LRC fields in physics [FS07,FB08,FLD18]. Following the previous
example, we have

ψ∗(ρ, u, y) = .∗(y) − 2
2 − ε2β2

(
y +

µε

2
+

βvε

2

)2
− v2

2
− µ2ερ2

2
+ log ρ,

where

β = −ρ2

ε

√
(ε + ρ2)2 log(1 + ρ2

ε ) − ερ2
, v = (ε + ρ2)(u − µρ2

2 ) + µερ2

√
(ε + ρ2)2 log(1 + ρ2

ε ) − ερ2
.

As in the physics literature, let us assume µ > 0, R1 = 0 and we do not restrict the field
value. Since we know the complexity function becomes trivial ifµ >

√−2D′′(0) =
√
2

ε

whenever R2 > 1
µ

√
ε
. Let us consider µ ≤

√
2

ε , R2 ≤ 1
µ

√
ε
and investigate when

the complexity function changes sign. From (5.13) together with the optimum y∗ =
−µε, v∗ = µε2β

2 , ρ∗ = R2, we find

lim
N→∞

1
N

logE[CrtN (R, (0, R2))] =
1
2
log 2 − 1

2
log ε +

µ2ε2

4
+ log R2 − εµ2R2

2

2
=: Φε(R2).

Note that Φε(R2) is strictly increasing for R2 ≤ 1
µ

√
ε
and Φε(

1
µ

√
ε
) ≥ 0 with equality

exactly when ε =
√
2

µ . On the other hand, limR2↓0 Φε(R2) = −∞ for any fixed ε > 0.
Hence, there is a unique R∗

2 such that Φε(R∗
2) = 0.

It is not hard to see that the above argument still holds for any structure function D
considered in this paper. In conclusion, we find the phase transition of complexity in
terms of confining ball radius.
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A. Covariance Function and Its Derivatives

Let DN (r) = D(r/N ). For x, y ∈ RN , let ϕ(x, y) = 1
2 (DN (‖x‖2) + DN (‖y‖2) −

DN (‖x − y‖2)). Under XN (0) = 0, isotropic increments imply that EXN (x) = 0; see
[Yag87, p.439]. We have

Cov[HN (x), HN (y)] = Cov[XN (x), XN (y)] = E[XN (x)XN (y)] = ϕ(x, y).
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Lemma A.1. Assume Assumptions I and II. Then for x ∈ RN ,

E(∇HN (x)) = µx, E(∇2HN (x)) = µIN ,

Cov[HN (x), ∂i HN (x)] = D′
(‖x‖2

N

)
xi ,

Cov[∂i HN (x), ∂ j HN (x)] = D′(0)δi j ,

Cov[HN (x), ∂i j HN (x)] = 2D′′
(‖x‖2

N

)
xi x j
N

+
[
D′
(‖x‖2

N

)
− D′(0)

]
δi j

Cov[∂k HN (x), ∂i j HN (x)] = 0,

Cov[∂lk HN (x), ∂i j HN (x)] = −2D′′(0)[δ jlδik + δilδk j + δklδi j ]/N ,

where δi j are the Kronecker delta function.

Proof. By [AT07, Theorem 1.4.2], XN (x) is smooth. We can differentiate inside expec-
tation as in [AT07, (5.5.4)] to find the expectations and

E[XN (x)∂i XN (y)]/N = ∂yiE(XN (x)XN (y))/N

= D′
N (‖y‖2)yi + D′

N (‖x − y‖2)(xi − yi ),

E[∂i XN (x)∂ j XN (y)]/N = ∂xi [D′
N (‖x − y‖2)(x j − y j )]

= 2D′′
N (‖x − y‖2)(xi − yi )(x j − y j ) + D′

N (‖x − y‖2)δi j ,
E[XN (x)∂i j XN (y)]/N = ∂yi [D′

N (‖y‖2)y j + D′
N (‖x − y‖2)(x j − y j )]

= 2D′′
N (‖y‖2)yi y j + D′

N (‖y‖2)δi j
− 2D′′

N (‖x − y‖2)(xi − yi )(x j − y j ) − D′
N (‖x − y‖2)δi j ,

E[∂k XN (x)∂i j XN (y)]/N = −4D′′′
N (‖x − y‖2)(xk − yk)(xi − yi )(x j − y j )

− 2D′′
N (‖x − y‖2)(x j − y j )δki − 2D′′

N (‖x − y‖2)(xi − yi )δk j − 2D′′
N (‖x − y‖2)(xk − yk)δi j ,

E[∂lk XN (x)∂i j XN (y)]/N = −8D(4)
N (‖x − y‖2)(xl − yl )(xk − yk)(xi − yi )(x j − y j )

− 4D′′′
N (‖x − y‖2)[(xi − yi )(x j − y j )δkl + (xk − yk)(x j − y j )δil + (xk − yk)(xi − yi )δ jl

+ (xl − yl )(x j − y j )δki + (xl − yl )(xi − yi )δk j + (xl − yl )(xk − yk)δi j ]
− 2D′′

N (‖x − y‖2)[δ jlδik + δilδk j + δklδi j ].

Substituting x = y,

E[XN (x)∂i XN (x)]/N = D′
N (‖x‖2)xi ,

E[∂i XN (x)∂ j XN (x)]/N = D′
N (0)δi j ,

E[XN (x)∂i j XN (x)]/N = 2D′′
N (‖x‖2)xi x j + D′

N (‖x‖2)δi j − D′
N (0)δi j

E[∂k XN (x)∂i j XN (x)]/N = 0,

E[∂lk XN (x)∂i j XN (x)]/N = −2D′′
N (0)[δ jlδik + δilδk j + δklδi j ].

Then we note that D′
N (r) = D′(r/N )/N and D′′

N (r) = D′′(r/N )/N 2.

B. Auxiliary Lemmas

For the integralE
∫
R exp

(
− 1

2 (N +1)x2−
√
N (N+1)µx√−D′′(0)

)
LN+1(dx), we have the following

elementary fact which is used in Sect. 2.



Complexity of Gaussian Random Fields 989

Lemma B.1. Let νN be probability measures on R and µ ,= 0. Suppose

lim
N→∞

1
N

log
∫

R
e
− 1

2 (N+1)x2− (N+1)µx√
−D′′(0) νN+1(dx) > −∞.

Then we have

lim
N→∞

1
N

(
log

∫

R
e
− 1

2 (N+1)x2−
√
N (N+1)µx√

−D′′(0) νN+1(dx) − log
∫

R
e
− 1

2 (N+1)x2− (N+1)µx√
−D′′(0) νN+1(dx)

)
= 0.

Proof. Let

aN =
∫

R
e
− 1

2 (N+1)x2− (N+1)µx√
−D′′(0) νN+1(dx),

bN =
∫

R
e
− 1

2 (N+1)x2−
√
N (N+1)µx√

−D′′(0) νN+1(dx),

cN =
∫

R
e
− 1

2 Nx2− Nµx√
−D′′(0) νN+1(dx).

We claim limN→∞ 1
N log aN

cN
= 0. Indeed, note that

aN =
∫

R
e
− 1

2 (N+1)(x+ µ√
−D′′(0)

)2+ (N+1)µ2

−2D′′(0) νN+1(dx) ≤ e
µ2

−2D′′(0) cN .

By Jensen’s inequality,

µ2

2D′′(0)
≤ log

cN
aN

≤ log
aN/(N+1)
N

aN
= − 1

N + 1
log aN .

Then the claim follows from the assumption that limN→∞ 1
N log aN > −∞. From the

elementary inequality a ∧ b ≤ (a + b)/2 ≤ a ∨ b, we have limN→∞ 1
N (log(aN + cN )−

log aN ) = 0. It remains to prove that

lim
N→∞

1
N
(log(aN + cN ) − log bN ) = 0.

Note that

bN ≤
∫ 0

−∞
e
− 1

2 (N+1)x2− (N+1)µx√
−D′′(0) νN+1(dx) +

∫ ∞

0
e
− 1

2 Nx2− Nµx√
−D′′(0) νN+1(dx) ≤ aN + cN .

Let t be a large constant (independent of N ) such that

lim
N→∞

1
N

log
∫

R
e
− 1

2 (N+1)x2− (N+1)µx√
−D′′(0) νN+1(dx) > − t2

8

and that
∫

|x |>t
e
− 1

2 (N+1)x2− (N+1)µx√
−D′′(0) νN+1(dx) ≤ e−(N+1)t2/4.
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It follows that
∫

|x |>t
e
− 1

2 Nx2− Nµx√
−D′′(0) νN+1(dx) ≤ e−Nt2/4,

and since 1
N log aN

cN
→ 0 as N → ∞,

lim
N→∞

1
N

log
∫ t

−t
e
− 1

2 Nx2− Nµx√
−D′′(0) νN+1(dx)

= lim
N→∞

1
N

log
∫ ∞

−∞
(1 − 1{|x | > t})e− 1

2 Nx2− Nµx√
−D′′(0) νN+1(dx)

= lim
N→∞

1
N

log
∫ ∞

−∞
e
− 1

2 Nx2− Nµx√
−D′′(0) νN+1(dx).

Note that

bN ≥ e− t2
2

∫ 0

−t
e
− 1

2 Nx2− Nµx√
−D′′(0) νN+1(dx) + e

− t2
2 − µt√

−D′′(0)
∫ t

0
e
− 1

2 Nx2− Nµx√
−D′′(0) νN+1(dx)

≥ e
− t2

2 − µt√
−D′′(0)

∫ t

−t
e
− 1

2 Nx2− Nµx√
−D′′(0) νN+1(dx).

Since

lim
N→∞

1
N

(
log(aN + cN ) − log

∫ t

−t
e
− 1

2 Nx2− Nµx√
−D′′(0) νN+1(dx)

)
= 0,

we have limN→∞ 1
N (log(aN + cN ) − log bN ) = 0.

The following discussion is about Assumption IV.

Proof of Lemma 3.2. 1. Since y 4→ D′(y) is a strictly decreasing convex function and
D′′′(y) > 0 for any y > 0, |D′′(y)| < D′(0)−D′(y)

y . By assumption,

(αρ2)2 = 4D′′(ρ2)2ρ4

D(ρ2) − ρ2D′(ρ2)2

D′(0)

≤ − 8D′′(ρ2)2D′′(0)
3[D′(ρ2) − D′(0)]2/ρ4 < −8

3
D′′(0).

It follows that

(αρ2 + β)β <

√
−2
3
D′′(0)

√
−8
3
D′′(0) − 2

3
D′′(0) = −2D′′(0),

(αρ2 + β)αρ2 < −8
3
D′′(0) +

√
−2
3
D′′(0)

√
−8
3
D′′(0) = −4D′′(0).

2. We verify (3.10). If (3.11) holds, then y 4→ β(y)2 is a decreasing function and
(3.10) follows from Lemma 3.1.

3. By item 1, it suffices to check (3.10). Consider the function

f (y) = −D′′(0)[D′(0)D(y) − D′(y)2y] − 3
2
D′(0)[D′(y) − D′(0)]2.
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Condition (3.10) is equivalent to f (y) ≥ 0. Note that f (0) = 0 and that

f ′(y) = [D′(0) − D′(y)][D′(0)D′′(y) − D′′(0)D′(y)] + 2D′′(y)(D′′(0)D′(y)y
−D′(0)[D′(y) − D′(0)]).

By convexity, D′(y)−D′(0)
y ≤ D′′(y) ≤ 0. If (3.12) holds, D′′(0)D′(y)y−D′(0)[D′(y)−

D′(0)] ≤ 0 and

D′(y)
D′(0)

− D′′(y)
D′′(0)

≥ 0.

Then (3.10) follows from here since D′(0) ≥ D′(y) and we have f ′(y) ≥ 0.
4. By Cauchy’s mean value theorem, condition (3.12) is equivalent to (3.13).
5. Direct calculation yields

d
dy

D′(y)
−D′′(y)

= −D′′(y)2 + D′′′(y)D′(y)
D′′(y)2

.

Then (3.14) implies (3.13).
6. By the representation (3.7) of Thorin–Bernstein functions, we have

D′′(x) = −
∫

(0,∞)

1
(x + t)2

σ (dt), D′′′(x) =
∫

(0,∞)

2
(x + t)3

σ (dt).

By the Cauchy–Schwarz inequality, we have

2D′′(x)2 ≤ D′(x)D′′′(x).

It follows that d
dy

D′(y)
−D′′(y) ≥ 1 and (3.14) holds.

If A = 0 in the representation (1.2), using the Cauchy–Schwarz inequality, we can
see

d
dy

D′(y)
−D′′(y)

= −D′′(y)2 + D′′′(y)D′(y)
D′′(y)2

≥ 0,

compared with (3.14). It is easy to check that for any ε > 0, 0 < γ < 1, our major
examples D(r) = log(1 + r/ε) and D(r) = (r + ε)γ − εγ satisfy (3.13). With more
work, one can check that these functions satisfy (3.11).

On the other hand, according to [SSV12, p. 332],

D(x) =
√
x sinh2(

√
x)

sinh(2
√
x)

is a complete Bernstein function which is not Thorin–Bernstein. One can check (at least
numerically) that it violates (3.13) but still verifies (3.10). We suspect that (3.8) and
(3.9) always hold for any structure function D. The following shows that this is the case
at least in a neighborhood of 0.
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Lemma B.2. Assume A = 0 in (1.2). We have

lim
y→0+

d
dy

[α(y)y + β(y)]β(y) < 0,

lim
y→0+

d
dy

[α(y)y + β(y)]α(y)y < 0.

Consequently, there exists δ > 0 such that −2D′′(0) > [α(y)y + β(y)]β(y) and
−4D′′(0) > [α(y)y + β(y)]α(y)y for y ∈ (0, δ).

Proof. We only prove the first inequality as the second is similar. Write

(αy + β)β =
[2D′′(y) + D′(y)−D′(0)

y ] D′(y)−D′(0)
y

D(y)
y2 − D′(y)2

D′(0)y

=: T
B
.

Since [(αy + β)β]′ = T ′B−B′T
B2 and limy→0+ B = − 3

2D
′′(0) ,= 0, it suffices to show

that limy→0+ T ′B − B ′T < 0. By calculation, we have limy→0+ T = 3D′′(0)2 and

T ′ = [2D′′′(y) +
D′′(y)y − D′(y) + D′(0)

y2
]D

′(y) − D′(0)
y

+ [2D′′(y) +
D′(y) − D′(0)

y
]D

′′(y)y − D′(y) + D′(0)
y2

,

B ′ = D′(0)D′(y)y − 2D′(0)D(y) − 2D′(y)D′′(y)y2 + yD′(y)2

D′(0)y3
.

After some tedious computation,wefind limy→0+ T ′ = 4D′′′(0)D′′(0) and limy→0+ B ′ =
− 5

6D
′′′(0) − D′′(0)2

D′(0) . Then

lim
y→0+

T ′B − B ′T = D′′(0)2
[3D′′(0)2

D′(0)
− 7

2
D′′′(0)

]
.

By the Cauchy–Schwarz inequality,

D′′(0)2 =
( ∫ ∞

0
t4ν(dt)

)2
≤
∫ ∞

0
t2ν(dt)

∫ ∞

0
t6ν(dt) = D′(0)D′′′(0).

From here the conclusion follows.
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