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Open quantum system violates generalized Pauli
constraints on quantum device

Irma Avdic® !, LeeAnn M. Sager-Smith 1 & David A. Mazziotti® 1®

The Pauli exclusion principle governs the fundamental structure and function of fermionic
systems from molecules to materials. Nonetheless, when such a fermionic system is in a pure
state, it is subject to additional restrictions known as the generalized Pauli constraints
(GPCs). Here we verify experimentally the violation of the GPCs for an open quantum system
using data from a superconducting-qubit quantum computer. We prepare states of systems
with three-to-seven qubits directly on the quantum device and measure the one-fermion
reduced density matrix (1-RDM) from which we can test the GPCs. We find that the GPCs of
the 1-RDM are sufficiently sensitive to detect the openness of the 3-to-7 qubit systems in the
presence of a single-qubit environment. Results confirm experimentally that the openness of
a many-fermion quantum system can be decoded from only a knowledge of the 1-RDM with
potential applications from quantum computing and sensing to noise-assisted energy
transfer.
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occupy the same quantum state!, a principle that has wide-

ranging implications for the qualitative behavior of fermionic
systems, e.g., Aufbau principle. Shortly thereafter, Dirac and
Heisenberg showed that the Pauli exclusion principle is a con-
sequence of the antisymmetry of the fermionic wave function®3.
As shown by Coleman in 19634, when the exclusion principle is
applied to the occupations of the natural orbitals (eigenfunctions)
of the one-electron reduced density matrix (1-RDM), it provides
necessary and sufficient constraints that the 1-RDM is repre-
sentable by at least one ensemble N-electron density matrix,
known as ensemble N-representability conditions. In 1971, using
calculations on IBM computers, Borland and Dennis discovered
additional restrictions on the natural-orbital occupations, known
as the generalized Pauli constraints (GPCs) or pure-state N-
representability conditions®. While the first constraint discovered
by Borland and Dennis is specific to three electrons in six orbitals
—the Borland-Dennis constraint, more recently, Klyachko and
Altunbulak generalized the Borland-Dennis constraint using
enumerative algebraic geometry to generate inequalities that
include larger numbers of particles and orbitals®’. These con-
straints allow for a systematic interpretation of the 1-RDM
behavior with applications in electronic structure theory3-1%,
open quantum systems20-22, and the foundations of quantum
theory®11. In addition, GPCs can be used to assess the nature of
electron correlation and entanglement, which may be exploited to
address aspects of quantum simulation and error-mitigation on
noisy intermediate-scale quantum devices.

Recently, Smart et al. randomly prepared correlated quantum
many-fermion states on the quantum computer and measured
their satisfaction of the GPCs?3. This work experimentally

I n 1925, Pauli postulated that two identical fermions cannot
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Fig. 1 Pauli polytope for three fermions in six orbitals. A convex set,
known as the Pauli polytope, formed from the ordered natural occupations
of the one-particle reduced density matrix (1-RDM) for three fermions in six
orbitals. The sets of occupations lying inside the yellow region of the
polytope, i.e., obeying the generalized Pauli constraints (GPCs), are
compatible with at least one closed (pure-state) quantum system. Sets of
natural occupations that lie in the blue region of the polytope, i.e., violating
the GPCs, are only compatible with an open (ensemble) quantum system.
The labeled points represent characteristic entangled states captured by
the polytope, W) (333, | EPR (Einstein-Podolsky-Rosen) ) (33,0), and

| GHZ (Greenberger-Horne-Zeilinger) ) (33,3, and an unentangled state

| Slater) (0,0,0) for this system.

verified the GPCs and highlighted restrictions imposed by the
GPCs on many-qubit systems in pure states. Prior to this
demonstration, Chakraborty and Mazziotti postulated the suffi-
cient condition for the openness of a many-fermion quantum
system at the level of a single fermion by probing the 1-RDM’s
violation of GPCs?2. These findings provided a geometric picture
of a quantum system’s interaction with its environment (quan-
tum noise) based on the GPCs, and offered insight into the
relationship between entanglement and openness of a quantum
system. In this work, we experimentally verify the GPCs as suf-
ficient conditions for the openness of quantum systems using a
superconducting-qubit quantum computer. Specifically, we pre-
pare quantum states of systems with three-to-seven qubits and
measure occupations of their natural orbitals on quantum devi-
ces, where each qubit is treated as a site with one fermion and two
separate orbitals. Quantum computation allows us to measure
experimentally the orbital occupations and provide a framework
for probing GPCs in open quantum systems, opening new ave-
nues for novel approaches to quantum sensing and simulation.

Results

Theory. Quantum computation allows for the direct preparation
of quantum states and is suitable for studying highly entangled
systems24‘36. We systematically prepare quantum states of sys-
tems with three-to-seven qubits and measure eigenvalues of the
one-fermion reduced density matrix (1-RDM) on the ibmq_ja-
karta quantum computer accessed through IBM Quantum3’. The
1-RDM is defined by the integration of the N-fermion density
matrix over the coordinates of all fermions except one

Ip1;1) = /ND(IZ... N;12... N)d2d3... dN. 1)

The eigenfunctions of the 1-RDM are known as the natural
orbitals ¢;, and the eigenvalues are known as the natural orbital
occupation numbers #;. The Borland-Dennis constraints on three
fermions in six orbitals, also known as GPCs or pure-state N-
representability conditions of the 1-RDM, can be expressed in
terms of the natural occupation numbers

N5+ ng —n, 20 2

n+ng=1n+n,=1n+n,=1, 3)

where n; > n; | ;°. If the GPCs are satisfied, there is at least one N-
qubit state which is pure. However, not every N-qubit state that
satisfies the GPCs is necessarily a pure state. Therefore, the
violation of the GPCs provides only a sufficient condition for
determining the ensemble character, ie., openness of the
quantum system. The physical relevance of GPCs to many-
fermion systems is the most prominent in cases of complete
saturation (pinning) and partial saturation (quasipinning) of the
constraints®>131438 where pinning (or quasipinning) reveals
fundamental one-body symmetries (or quasi-symmetries) of the
system.

In the case of three fermions in six orbitals, the ordered set of
the three smallest 1-RDM eigenvalues forms a polytope, a closed
convex set with flat facets, known as the Pauli polytope, shown in
Fig. 1. Both the yellow and blue regions of the polytope are
allowed for occupation numbers from an ensemble (open)
system, but only the yellow region of the polytope is allowed
for a pure-state system. The facet separating the yellow and blue
regions is the first-discovered GPC—the Borland-Dennis con-
straint. The following key states from quantum information are
labeled in the polytope: |W) (214)3%, | EPR) (21,0)%°, and | GHZ)

1454, and an unentangled state | Slater ) (0,0,0) where EPR and
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GHZ denote Einstein-Podolsky-Rosen and Greenberger-Horne-
Zeilinger, respectively.

For four fermions in eight orbitals and five fermions in ten
orbitals, there are 14 and 161 known inequalities, respectively,
that define their necessary and sufficient pure-state N-represent-
ability conditions’. Violation of a single constraint demonstrates
that the quantum system cannot be in a pure N-electron state.
Here we restrict the fermions and their orbitals to form qubits.
The 2N orbitals are paired with the occupation of each pair of
orbitals being restricted to one fermion. Importantly, in this case
in which the fermions are also qubits, the GPCs for N fermions in
2N orbitals reduce to a single inequality*? defined as follows:

.
> on,— ny,, 20, 4
i=N12 i N+1 ( )

where n; are the smallest N eigenvalues for the system and r is the
number of orbitals.

Each qubit on a quantum device is composed of a particle and
a hole, and collectively these particles and holes obey fermion
statistics. This is true even though the qubits, which are particle-
hole quasi-particles, do not obey fermion statistics. Though our
approach does not explicitly specify using a quantum device built
from fermions, as recently proposed in Hackl et al. 43, it allows for
probing the GPCs on quantum systems that follow fermion
statistics by directly measuring orbital occupations on quantum
computers, as supported by our previous work2327:2836_ Since we
are exploring a phenomenon produced as a consequence of the
qubit particle-hole physics and not a transformation mapping, the
presented framework allows for an experimental demonstration
of the GPC behavior in open quantum systems. We emphasize
that because the measurement is performed on a quantum system
that obeys fermion statistics, the results provide experimental
evidence that supports the GPC behavior for any quantum system
obeying fermion statistics including systems that are composed of
either composite or fundamental fermions.

A ladder-like state preparation with multiple variables and a
1-RDM tomography, described in the Methods, is employed to
explore the 1-RDM set on the quantum computer. The variables
in the state preparation are sampled randomly to cover the
allowed set of 1-RDMs. While m qubits are prepared in a state on
the device, n of the m qubits are treated as part of the system with
the remaining m — n qubits representing the bath (environment).
When m = n, the system is closed, and the GPCs of the system
1-RDM are satisfied by all randomly prepared states. When
m > n, however, the n-qubit system is open, and the GPCs of the
system 1-RDM may be violated by some of the prepared states.
Demonstration of the GPC violation shows experimentally that
the GPCs are only required for pure quantum states. The
experiment probes one of the most fundamental relations in
quantum mechanics—the Pauli exclusion principle and its
generalization.

Verification of openness of a three-qubit system. For three-
qubit quantum states, the 1-RDM natural occupations, obtained
from measurement of the 1-RDM on the quantum computer, are
shown in the Pauli polytope in Fig. 2a (and also in Supplementary
Fig. 16). The obtained result is in close agreement with the
findings shown by Smart et al.?3, with the majority of measured
occupation sets being inside the GPC-defined region of the
polytope (yellow). The simulated results (Supplementary Figs. 6
and 11) show no GPC violation, which indicates that the states in
violation in Fig. 2a are a consequence of the quantum noise.
Therefore, we confirm that a closed three-qubit system obeys
GPCs for three fermions in six orbitals.

(0.5,0,0)

(0.5,0.5,0.5)

(a)

(0.5,0,0)

(0.5,0.5,0.5)

(b)

Fig. 2 Comparison of polytopes for three and four qubits. Polytopes
showing the sets of three lowest natural occupations, ordered from highest
to lowest, for the three-qubit system (a) and for the four-qubit system (b),
measured on ibmq_jakarta. The sets of occupations lying inside the yellow
region of the polytope are compatible with at least one closed (pure-state)
guantum system. Sets of natural occupations that lie in the blue region of
the polytope are only compatible with an open (ensemble) quantum
system. Addition of a single environmental qubit to the closed three-qubit
system results in the violation of the generalized Pauli constraints (GPCs)
and allows the quantum system to reach openness.

To investigate the GPC behavior with an additional (environ-
mental) qubit added to the three-qubit system, we prepared and
measured four-qubit states on the quantum device. Here, the N-
representability inequalities for both a system of three fermions in
six orbitals (three qubits) and a system of four fermions in eight
orbitals (four qubits) were examined. When the ancillary qubit is
treated as an environmental qubit, the GPCs for the three-qubit
system are violated (Fig. 2b), with a significant portion of the
measured occupation sets being in the blue region of the
polytope, defined solely by the ordinary Pauli constraints. When
all four qubits are treated in the same conditions, there is no
violation of the inequalities for the four-qubit system. These
results, consistent in noiseless (Supplementary Fig. 7) and noisy
environments (Supplementary Figs. 12 and 17), experimentally
verify the sufficient condition at the level of a single particle for
the openness of a many-particle quantum system, as proposed by
Chakraborty and Mazziotti?2. We show that to reach sets of
occupation numbers that are only compatible with an open three-
qubit quantum system, it is sufficient to add one environmental
qubit to the closed three-qubit system. This demonstration of the
expansion of accessible 1-RDMs provides a unique tool for
determining the optimal size of the effective bath in open
quantum system modeling on quantum devices.

The distributions captured for a five-qubit system in Fig. 3a—c
suggest that a single ancilla qubit may also be sufficient for there
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Fig. 3 Inequality residual distributions for five qubits. Bar graphs showing
the distribution of higher-inequality residuals in the region defined by the
generalized Pauli constraints (yellow only) and the region defined by
ordinary Pauli constraints (blue and yellow) for the five-qubit system,
collected on ibmg_jakarta; a three-qubit inequality, b four-qubit inequality,
c five-qubit inequality.

to be a violation of the four-qubit GPCs (constraints for 4
fermions in 8 orbitals) to indicate openness of the four-qubit
system (Fig. 3b). Though the number of states outside the GPC-
defined region is low, the system still shows evidence for the
sufficient condition for openness being at the level of a single
particle, even in the presence of quantum noise. Furthermore,
results simulated in the noiseless environment for all studied
systems show that treating one of the m qubits as the
environment generates an (m — 1)-qubit open system whose
openness is detectable by the (i — 1)-qubit GPC (Supplementary
Figs. 8-10).

These findings support previous conclusions by Liebert et al.44
on the hierarchy of generalized exclusion principle constraints
and are in line with the bounds of Borland-Dennis GPCs for a
mixed state considered by Hackl et al.43. In particular, our results
demonstrate how the flexibility of higher-order inequalities for

14
5-qubit system

12 4-qubit subsystem
’ 3-qubit subsystem

1.0
0.8
0.6
0.4
0.2

0.0

GPC Inequality Residual

00 05 10 15 20 25 30 35 40
Von Neumann Entropy

Fig. 4 Relationship between the constraints and entropy. Generalized
Pauli constraints (GPCs) inequality residual plotted as a function of von
Neumann entropy for the 5-qubit system and its respective, 4- and 3-qubit
subsystems from occupations measured on ibmgq_jakarta. Light (dark) blue
points represent the subsystem where there is some amount of violation of
the respective, 3-qubit (4-qubit) GPC inequality for the prepared states.
Yellow points represent the total system, where there is no violation of the
respective 5-qubit GPC inequality for the prepared states.

some n-qubit system exposes the lower-order inequalities in the
(m — n)-qubit environment, where m>n (Supplementary
Figs. 13-15 and 18-20). This generalization goes beyond the
Borland-Dennis setting and provides a method for analyzing the
mixed-state GPCs in qubit systems.

To assess the connection between the GPC inequalities and the
degree of entanglement in the considered systems, we analyze the
GPC inequality residual as a function of von Neumann entropy*°.
Figure 4 and Supplementary Figs. 21-25 show the von Neumann
entropy, generally, being minimized in the limit of high GPC
violation. In addition, the results demonstrate how states in the
pure-state polytope regime (yellow points in Fig. 4) can exhibit a
greater mixed character in the 1-RDM than the states in the
ensemble-state polytope regime (light blue points with GPC
inequality residual <0 in Fig. 4). Finally, increasing entropy in the
system shifts it away from the Borland-Dennis setting, which can
be directly quantified in the comparison between an ideal
simulation and a noisy quantum device, making this analysis a
useful tool for error-mitigation purposes.

Discussion. We have experimentally verified the violation of the
GPCs in an open quantum system. Specifically, we showed that
the GPCs of a n-qubit system with a (1 — n)-qubit environment
where m > n are generally violated. The importance of the result is
that it shows that evidence of the openness of a many-fermion
quantum system can be decoded from only a knowledge of the
1-RDM. In the case of the 3-qubit systems we have an intuitive,
geometric picture of the violation in terms of a violation of the
Borland-Dennis facet of the GPC polytope. Similarly, for higher-
qubit systems the degree of the GPC violation provides a com-
putational measure of the openness of the quantum system.
This experimental verification of the violation of GPCs due to
environmental interactions has potentially important applications
from quantum computing and sensing to noise-assisted energy
transfer. First, they may be used for the development of efficient
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Fig. 5 Four-qubit state preparation. Quantum circuit used for the state preparation of a four-qubit system. The same logic was used for all state

preparations (Supplementary Figs. 1-5).

quantum simulation algorithms for open quantum systems; for
example, in combination with the density-matrix purification
theory?, they provide a framework for determining the practical
size of the effective bath. Second, we observe that the 1-RDM
eigenvalue sets measured on the quantum computer are
consistently pulled away from the edge states, | EPR), | GHZ),
and |Slater), toward the inside of the GPC-defined polytope,
suggesting a signature behavior of quantum noise with respect to
the Pauli polytope. Considering the origins and nature of such
1-RDM behavior with respect to the GPCs has the potential to
serve as a benchmarking tool for noise characterization on
different quantum devices and the development of novel noise-
mitigation techniques. Third, the GPCs can be used in multi-
qubit quantum sensors to enhance their sensitivity over 1- or
2-qubit quantum sensors. Finally, because the violation of the
GPCs enlarges the set of physically accessible 1-RDMs, it can be
used to understand and predict the role of noise in assisting
energy transfer.

In summary, the demonstration of GPC violation in open
quantum systems on quantum devices probes one of the most
fundamental relations in quantum mechanics—the Pauli exclu-
sion principle and its generalization. While many experiments
have confirmed and reconfirmed that two fermions cannot
occupy the same quantum state—the Pauli exclusion principle for
fermions, the present work provides an experimental demonstra-
tion of the satisfaction and violation of the pure-state generalized
Pauli exclusion principle in closed and open quantum systems,
respectively. Albeit a fundamental result, the GPCs are central to
many-fermion and many-qubit quantum systems with potential
applications for building more error-tolerant quantum compu-
ters, designing more sensitive multi-qubit quantum sensors, and
harnessing the environment to enhance energy transfer in
materials.

Methods

State preparation. The state preparation algorithm used in this work employs
unitary rotations of control and target qubits with CNOT gates in between (Fig. 5).
For a four-qubit system, this can be expressed as follows:

U, = U3(910,¢10,/\10)U2(99,¢9,/19)C2
U, (05, ¢35, 1)U, (0, ¢,,4,)Ct
U1(96a¢5*A6)U0(957¢57’15)C(1)
Us(04, ¢4, 1) U,(65, ¢5,45)
Uy(8;,65,2)U4(6,, ¢, A,)

where U; are unitary rotations around three Euler angles (81, ¢;+1, A;1) on qubit
i. The Uj; gates are defined as follows:

cos®  —etsin®
¢ sin(g) ei9tit cos(g)

U,(8,¢,1) = (5)

and the CNOT gates, C; are standard with i control and j target qubits. The same
algorithm is applied to all state preparations with additional rotations and CNOT
gates added for each extra qubit in the system (see Supplementary Figs. 1-5). The
many unitary rotations allow for a wide range of parameter tuning to span the
entirety of the Pauli polytope. In addition, this algorithm includes some local
degrees of freedom?®” and suggests that qubit-ordering dependence may be
removed?3. A total of 2050 measurements of each prepared state were made to
ensure the statistical robustness of the collected data. The measurements were
obtained by simulating each circuit over a range of random angles, 0, ¢, and A, from

—180° to 180° used for the single-qubit unitary rotations of qubits, as defined
above.

Quantum tomography. To directly measure the eigenvalues of the 1-RDM on a
quantum device, we exploit the restriction of the N-fermions in 2N-orbitals system
to a system of N qubits, where each qubit is a two-level system sharing an electron.
In the second quantization, the elements of the 1-RDM are given by

(6)
j creates a particle in the ith orbital and 4; annihilates a particle in the jth
orbital, where i and j correspond to the same qubit3>. A one-qubit 1-RDM can be
constructed as follows:

a; ‘Ale>7

where a

ap,0 ap,1
ap,O ap,Oa’PA,O a’p,Oapal
| At o
Ap,1| p,19p,0 Gp,1ap,1

for some qubit p. In the Pauli basis, these elements can be written as follows:

. 10 1
oo =\ o) = E(I +Z,) 7)
s 0 1 1 .
e P E(XP +iY,) (8)
At A 0 0 1 i
Ay 1850 = L o)< E(XP —iY,) 9)
. 0 0 1
Ay, = 0 1)= E(I -Z,) (10)

Since the expectations of the single-qubit Pauli matrices can be directly obtained on
a quantum device, it is straightforward to obtain the expectation values of the
1-RDM elements for each state preparation.

Quantum device specifications. This work utilized superconducting-qubit IBM
Quantum devices available online, ibmq_gasm_simulator, ibmq_jakarta, and a
noise model qasm simulator of ibmq_jakarta (qasm_simulator(ibmq_jakarta)).
ibmgq_jakarta is one of the IBM Quantum Falcon Processors®’+45. The quantum
computer is composed of fixed-frequency transmon qubits with co-planar wave-
guide resonators*®>0. For calibration details, see Supplementary Table 1.

Data availability
Supporting data can be found in Supplementary Figs. 1-25. Any additional data will be
made available upon reasonable request.

Code availability

Code will be made available upon reasonable request.
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