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Abstract. An outstanding challenge in chemical computation is the many-electron problem where computational

methodologies scale prohibitively with system size. The energy of any molecule can be expressed as a weighted

sum of the energies of two-electron wave functions that are computable from only a two-electron calculation.

Despite the physical elegance of this extended “aufbau” principle, the determination of the distribution of

weights—geminal occupations—for general molecular systems has remained elusive. Here we introduce a

new paradigm for electronic structure where approximate geminal-occupation distributions are “learned” via

a convolutional neural network. We show that the neural network learns the N -representability conditions,

constraints on the distribution for it to represent an N -electron system. By training on hydrocarbon isomers with

only 2-7 carbon atoms, we are able to predict the energies for isomers of octane as well as hydrocarbons with

8-15 carbons. The present work demonstrates that machine learning can be used to reduce the many-electron

problem to an effective two-electron problem, opening new opportunities for accurately predicting electronic

structure.

Introduction
For any molecular system, the Schrödinger equation can, in

theory, be solved exactly using a full configuration interac-

tion (FCI) calculation [1–3] with a complete basis set; how-

ever, in practice, the computational complexity of such an

exact approach grows factorially with system size [3], mak-

ing molecular systems with more than a few dozen electrons

intractable. Over time, many approximate methodologies

have been introduced in an attempt to obtain “good enough”

solutions to the electronic Schrödinger equation that predict

energies within chemical accuracy (∼1 kcal/mol).

Hartree-Fock theory—a mean-field approach—yields rea-

sonable results for a wide array of molecular systems con-

taining up to a few hundred atoms [2]; however, it fails

in molecules in which the motions of electrons are signifi-

cantly correlated. Techniques which more-accurately capture

correlation energy such as many-body perturbation theory,

coupled cluster theory, complete active-space self-consistent

field theory, and others remain computationally expensive for

large system sizes [2, 4]. The so-called many-electron prob-

lem—whereby the cost of highly-accurate ab initio compu-

tational methodologies scales in a prohibitive manner with

system size—is hence an outstanding challenge in chemical

computations.

Machine learning may enable us to circumvent this

problem by allowing us to use information about smaller

molecules to treat correlation in larger systems at a reduced

cost [5]. It has been used to learn the energies of various

molecular structures [6–9], new functionals for density func-

tional theory (DFT) [10–12], inverse problems in electronic

structure theory [13, 14], and even the many-body wave func-

tion of one-dimensional spin systems [15]. However, these

areas are in their early stages and have yet to demonstrate def-

inite success in decreasing the degree of scaling with system

size.

In this Article we introduce a new paradigm for utilizing

machine learning in quantum chemistry in which we reduce

the quantum many-electron problem to a more tractable, bet-

ter scaling two-electron problem. As originally proposed by

Bopp [16, 17], the energy of a molecule of arbitrary size can

be expressed without approximation as a weighted sum of the

energies of two-electron wave functions, known as geminals.

However, despite its physical significance as an extension of

the “aufbau” principle, the distribution of weights—geminal

occupations—has remained elusive. Here, we show that the

geminal-occupation distribution can be learned with machine

learning. We use a convolutional neural network (CNN) to

learn an effective temperature in a Boltzmann-like distribu-

tion for the geminal occupations. The effective tempera-

ture—or correlation temperature—is inversely related to the

electron correlation. The neural network, we demonstrate,

learns the N -representability of the distribution—the repre-

sentability of the distribution by an N -electron system [18–

21], which appears as a nonzero temperature. The scheme

can be viewed as a two-electron reduced density matrix (2-

RDM) theory as the geminal occupations are an integral part

of the 2-RDM. A schematic of the machine learning algo-

rithm for predicting molecular energies is shown in Fig. 1.

We apply the machine learning algorithm to hydrocar-

bon systems. Specifically, by training a convolutional neu-

ral network on all isomers of ethane through heptane, we

predict the correlation temperatures—and hence molecu-

lar energies—of all of the isomers of octane as well as all

straight-chained hydrocarbons from octane through pentade-

cane. We find that this RDM-based machine learning method

accurately recovers the correlation energy for larger hydro-

carbon systems, with the N -representability conditions be-

ing learned by the CNN framework. Our approach—which

scales as O[n6]—improves upon the exponential scaling of

traditional configuration-interaction calculations, foreshad-

owing the potential utility of this machine-learning reduced

density matrix approach to the determination of accurate

molecular energies. While polynomial-scaling levels of the-

ory such as Coupled Cluster with Single and Double Exci-

tations (CCSD) can be used to treat weakly-correlated sys-

tems such as the hydrocarbons presented in this manuscript,
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if trained on appropriate molecular data, our convolutional

network approach may be capable of accurately recovering

correlation energy for more highly-correlated systems.

Results and Discussion
Theory. Central to our modern understanding of chemistry

is the concept of the molecular orbital. Any molecule’s

electronic structure can be readily understood in terms of

its molecular orbitals which are filled from lowest-in-energy

to highest-in-energy by the Pauli exclusion principle. When

electrons of a molecule become strongly correlated, however,

the orbital picture with unit filling of the lowest orbitals breaks

down. Because electronic interactions are at most pairwise,

the orbital picture can in principle be replaced by an exact

two-electron (geminal) picture, which is derivable from 2-

RDM theory.

The ground- or excited-state energy of any atom or

molecule is expressible as an exact functional of the 2-RDM

(2D) [16, 18, 19, 22–59]

E =

∫

2K̂ 2D(1̄2̄; 12)d1d2 (1)

where 2K̂ is the reduced Hamiltonian operator

2K̂ = −
N

2

(

p̂2
1

2m
+

p̂2
2

2m
+
∑

k

Zk

r1k
+
∑

k

Zk

r2k

)

+
N(N − 1)

2

1

r12
. (2)

In a finite orbital basis set, the operators are expressible

as a reduced Hamiltonian matrix. Diagonalization of this

reduced Hamiltonian matrix yields a set of eigenvalues and

eigenvectors (or geminals). In the basis set of geminals, the

Hamiltonian is a diagonal matrix consisting of its eigenval-

ues, the 2-RDM has a non-negative diagonal elements which

we denote by pi, and energy is the sum over the geminal

eigenvalues of the Hamiltonian matrix ǫi weighted by the

non-negative geminal occupations pi:

E =
∑

i

piǫi. (3)

By this transformation we express the energy as a functional

of the eigenvalues of the reduced Hamiltonian ǫi, which are

readily computed at the cost of the two-electron calculation,

and the unknown geminal occupations pi (see Fig. 2).

The German chemist Bopp originally proposed approx-

imating the geminal occupation numbers by a Pauli-like

filling scheme [16, 17]. He suggested choosing the low-

est N(N − 1)/2 to be equal to one. This approach, while

analogous to the filling of orbitals in molecular-orbital the-

ory, generates accurate energies for four-electron atoms and

ions but energies for larger molecular systems that are too low.

Coleman suggested that the filling of the geminal by two elec-

trons—or the pseudo-particle called a pairon—should follow

a fundamental probability distribution as in statistical me-

chanics [16]. He proposed a Boltzmann distribution for the

geminal occupations based on the geminal energies. While

such a distribution is not exact because the pairon pseudo-

particles obey neither the Fermi-Dirac or Bose-Einstein parti-

cle statistics, there exists a Boltzmann-like distribution given

by

pi =
N(N − 1)

Z
e−ǫi/kT

∗

(4)

and parameterized by a specific correlation temperature (T ∗)

such that the resultant approximate geminal probability dis-

tribution allows for the accurate computation of a molecule’s

energy according to Eq. (3). However, the ability to deter-

mine such a correlation temperature is currently only possible

if the geminal energies (ǫi) and geminal populations (pi) are

both known.

Here, we train a convolutional neural network (CNN) to

predict the correlation temperature for a given molecular

system consistent with its ground-state energy. The convo-

lutional neural network is trained on inputs corresponding

to both geminal energies—expressed as partition functions

given by

Z =
∑

i

e−ǫi/kT (5)

for a variety of temperatures—as well as the computed

Hartree-Fock correlation temperature (T ∗

HF ) and with train-

ing outputs corresponding to a ∆ value representing the dif-

ference between the exact (i.e. configuration interaction)

correlation temperature and the HF correlation temperature,

i.e., ∆ = T ∗

EXACT − T ∗

HF . For larger molecular systems,

we then predict the ∆ values by reading in the geminal en-

ergies and Hartree-Fock correlation temperatures for those

molecules into the trained neural network. These ∆ values

are then added to the T ∗

HF s in order to yield the exact cor-

relation temperatures, which allows for the approximation of

the geminal probability distributions and hence the molecular

energies via Eq. (3).

In general, for two-electron reduced density matrix

methodologies, the 2-RDM must be constrained to rep-

resent the N -electron wavefunction through application

of N -representability constraints [18–21]. Here, if N -

representability conditions are not accounted for in our

Boltzmann-like machine learning approach, the correlation

temperature would be zero, which corresponds to the lowest-

energy geminal being fully occupied by all electron pairs.

This electronic structure machine learning approach, how-

ever, maintains N -representability by learning correlation

temperatures from N -representable training data and apply-

ing this inherent “learned” N -representability to the testing

data.

See the Experimental section at the end of this document

for additional details.

Energetic Predictions for Isomers of Octane. For the eigh-

teen isomers of octane—with molecular geometries obtained
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FIG. 1: Graphic demonstrating algorithm flow. For a given molecule, a trained convolutional neural network is used

to predict the Boltzmann-like correlation temperature (Tf ) with the eigenfunctions of the reduced Hamiltonian (ǫj) and the

Hartree-Fock correlation temperature (Ti) as inputs. The correlation temperature (Tf ) allows for the approximation of the

geminal populations (pf,j) by Eq. (4), which is sufficient for the prediction of the energy by Eq. (3).

FIG. 2: Example of geminal energies and probabilities. For (a) benzene, we can use the (b) geminal energies ǫi to learn

the (c) geminal probabilities pi—both of which are computed here from a [Ne = 6, No = 6] complete active-space self-

consistent-field (CASSCF) using the minimal Slater-type orbital basis set with six Gaussian primitive functions representing

each Slater-type orbital (STO-6G). Knowing both geminal energies and geminal populations is sufficient to determine molecular

energies via Eq. (3).

from the PubChem database [60]—, the Hartree-Fock and

CASSCF energies are computed using Dunning’s double-

zeta (cc-pVDZ) basis set with complete active-space self-

consistent-field (CASSCF) calculations employing a [Ne =
8, No = 8] active space. Utilizing a convolutional neural

network trained on hydrocarbons ranging from two to seven

carbon atoms, the correlation temperature corresponding to

the CASSCF energy is predicted for each of the octane iso-

mers and used to compute the predicted CASSCF energies

shown in Fig. 3(a). As can be seen from this figure, which

shows energy versus isomer identifier, the predicted CASSCF

energies (green circles) show good agreement with the ac-

tual CASSCF energies (black boxes), vastly improving upon

the Hartree-Fock energies (blue diamonds), and hence our

predictions capture the correlation energy in a fairly accurate

manner.

Additionally, in order to demonstrate the generality of our

reduced density matrix approach for “learning” molecular

energies, Coupled Cluster Single Double (CCSD) energies

are computed for the cc-pVDZ basis for hydrocarbons rang-

ing from two to seven carbon atoms. The corresponding

CCSD correlation temperatures are then used to train a con-

volutional neural net, and the correlation temperature cor-

responding to the CCSD energy is then predicted for each

isomer of octane, with the resultant predicted CCSD ener-

gies shown in Fig. 3(b). Similar to the CASSCF energies

from Fig. 3(a), the CCSD predicted energies (green circles)

demonstrate good agreement with the actual CCSD energies

(black boxes) when compared to the Hartree-Fock energies

(blue diamonds). Hence, for this second level of theory, our

predictions capture correlation energies in a fairly accurate

manner. Additional predictions corresponding to CCSD cal-
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culations utilizing the STO-6G basis set can be seen in the

Supporting Information.

We next explore systems composed of larger hydrocarbons

to determine whether such good agreement remains consis-

tent as system size is increased while the training data remains

the same.

Energetic Predictions for Large Hydrocarbon. For the

eight straight-chained hydrocarbons ranging from octane to

pentadecane—with molecular geometries obtained from the

PubChem database [60]—, the Hartree-Fock and CASSCF

energies are computed using Dunning’s double-zeta (cc-

pVDZ) basis set with the CASSCF calculations employing

a [Ne = 8, No = 8] active space. Utilizing a convolutional

neural network trained on hydrocarbons ranging from two to

seven carbon atoms, the correlation temperature correspond-

ing to the CASSCF energy is predicted for each of the octane

to pentadecane hydrocarbon isomers and used to compute

the predicted CASSCF energies shown in Fig. 4. As can be

seen from this figure, which shows energy per carbon versus

number of carbons, the predicted CASSCF energies (green

circles) show good agreement with the actual CASSCF ener-

gies (black boxes), vastly improving upon the Hartree-Fock

energies (blue diamonds), and hence our predictions cap-

ture the correlation energy in a fairly accurate manner. Al-

though there is a slight increase in the error as system size

is increased, it appears to be small enough that the energies

of even larger hydrocarbon isomers may be able to be pre-

dicted in an accurate manner through use of our convolutional

neural network trained on only hydrocarbons with seven or

fewer carbon atoms. Similar promising results are obtained

for predicting CASSCF energies for octane, nonane, decane,

and undecane via a convolutional neural network trained on

CASSCF calculations for hydrocarbons with two to seven

carbons that utilize a [10,10] active space and the cc-pVTZ

basis set as can be seen in the Supporting Information.

Conclusions
In this Article, we introduce a new paradigm based on a two-

electron, reduced density matrix approach for the utilization

of machine learning architecture in the prediction of accurate

correlation energies for molecular systems at reduced compu-

tational expense. By employing a Boltzmann-like distribu-

tion for two-electron geminal populations parameterized by a

correlation temperature, we train a convolutional neural net-

work on correlation temperatures corresponding to CASSCF

and CCSD calculations for smaller molecular systems in or-

der to predict CASSCF and CCSD correlation temperatures

for larger, more computationally-expensive molecular sys-

tems and hence obtain predicted CASSCF/CCSD energies.

Moreover, the N -representability conditions are inherently

maintained by our CNN framework—as evinced by nonzero

correlation temperatures. This methodology for the predic-

tion of CASSCF energies scales as O[n6] with the number of

orbitals due to the diagonalization of the reduced Hamilto-

nian, which is an improvement over the exponential scaling

of a traditional CASSCF calculation. See the Experimental

section for additional comments on computational scaling.

Demonstrating the power of this technique, we train a

convolutional neural network on small hydrocarbon sys-

tems—with the number of carbon atoms ranging from two

to seven—in order to predict CASSCF energies for larger

hydrocarbon systems—with the number of carbons ranging

from eight to fifteen. We find that our RDM-based machine

learning approach accurately recovers the correlation energy

for the larger hydrocarbon systems. Thus, our trained con-

volutional neural network allows us to predict CASSCF-like

results at significantly lower computational expense.

While the hydrocarbons involved in training and testing

this implementation of our machine-learning reduced den-

sity matrix approach do not demonstrate large degrees of

correlation, the prediction of accurate correlation energies

for larger molecular systems of the type included in the train-

ing set likely indicates that as long as the convolutional neural

network is trained on appropriate small molecules, the en-

ergies of highly-correlated, larger molecules should be able

to be obtained via our methodology. Specifically, if one

wishes to predict the energy of a molecule which demon-

strates a fairly-large degree of correlation, smaller correlated

systems would likely be necessary to train the neural network.

Application of our machine-learning reduced density matrix

approach to highly-correlated systems is a future direction of

this research.

This work foreshadows the promise of machine learning

in molecular electronic structure calculations, demonstrat-

ing that “learning” information about less-expensive, smaller

molecular systems can be directly applied to larger typi-

cally more-expensive molecules. Future electronic struc-

ture methodologies may even include pre-trained convolu-

tional neural networks—possibly varying with the types of

atoms, basis set, active space, functional groups, and/or de-

gree of bond saturation inherent to the molecular system of

interest—trained on FCI (or similarly expensive) correlation

temperatures. This work serves as an initial step in the real-

ization of a combined reduced-density-matrix and machine-

learning approach that may provide a real advance in de-

creasing computational expense for large, highly-correlated

electronic structure calculations.

Supporting Information

An analysis of the effect of changing the active space size

on our machine-learning reduced density matrix approach;

application of our reduced density matrix machine learn-

ing algorithm to the prediction of CASSCF energies with a

[10,10] active space and cc-pVTZ basis set; application of

our reduced density matrix machine learning algorithm to

the prediction of CCSD energies with a STO-6G basis.
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(a) CASSCF, cc-pVDZ, [Ne = 8, No = 8]

(b) CCSD, cc-pvDZ

FIG. 3: Octane data. Hartree-Fock energies (HF, blue diamonds), (a) Complete Active Space Self-Consistent Field/(b)

Coupled Cluster Single Double (CASSCF/CCSD, black boxes) energies, and energy values predicted via utilization of

Convolutional Neural Networks (CNN, green circles) are shown for the series of octane isomers. As can be seen, the CNN

methodology trained on smaller hydrocarbon data fairly accurately recovers the correlation energy. Isomer labels are given

by [8.01: ‘Octane’, 8.02: ‘2-Methylheptane’, 8.03: ‘3-Methylheptane’, 8.04: ‘4-Methylheptane’, 8.05: ‘2,2-Dimethylhexane’,

8.06: ‘2,3-Dimethylhexane’, 8.07: ‘2,4-Dimethylhexane’, 8.08: ‘2,5-Dimethylhexane’, 8.09: ‘3,3-Dimethylhexane’, 8.10:

‘3,4-Dimethylhexane’, 8.11: ‘3-Ethylhexane’, 8.12: ‘2,2,3-Trimethylpentane’, 8.13: ‘2,2,4-Trimethylpentane’, 8.14: ‘2,3,3-

Trimethylpentane’, 8.15: ‘2,3,4-Trimethylpentane’, 8.16: ‘3-Ethyl-2-Methylpentane’, 8.17: ‘3-Ethyl-3-Methylpentane’, 8.18:

‘2,2,4,4-Tetramethylbutane’]. Hartree-Fock, CASSCF, and CCSD calculations are all computed here using Dunning’s double-

zeta (cc-pVDZ) basis set with the CASSCF calculations employing a [Ne = 8, No = 8] active space.
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FIG. 4: Large hydrocarbon data. Hartree-Fock energies (HF, blue diamonds), Complete Active Space Self-Consistent Field

energies (CASSCF, black boxes), and energy values predicted via utilization of Convolutional Neural Networks (CNN, green

circles) per number of carbons are shown for the series of straight-chained hydrocarbons from octane through pentadecane.

As can be seen, the CNN methodology trained on smaller hydrocarbon data fairly accurately recovers the correlation energy.

Isomer labels are given by [8: ‘Octane’, 9: ‘Nonane’, 10: ‘Decane’, 11: ‘Undecane’, 12: ‘Dodecane’, 13: ‘Tridecane’,

14: ‘Tetradecane’, 15: ‘Pentadecane’]. Both Hartree-Fock and CASSCF calculations are computed here using Dunning’s

double-zeta (cc-pVDZ) basis set with the CASSCF calculations employing a [Ne = 8, No = 8] active space.
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Experimental
Computational Methods. The molecular geometries for

all hydrocarbon isomers are obtained from the PubChem

database [60]. Molecular energies are then computed for

Hartree-Fock, Complete Active Space Self-Consistent Field

(CASSCF), and Coupled Cluster Single Double (CCSD)

levels of theory through use of a Dunning’s double-zeta

(cc-pVDZ) basis set, with the CASSCF calculations em-

ploying a [Ne = 8, No = 8] active space. These calcula-

tions are accomplished via the Quantum Chemistry Toolbox

[61, 62] in the Maple computing environment [63]. Note

that while—throughout this text—the size of the active space

for the training and testing molecules is made identically

[Ne = 8, No = 8] for all CASSCF calculations, changing

active space sizes with the number of carbons yielded sim-

ilar results to those we present here. (See the Supporting

Information for additional details.)

Computation of Geminal Energies and Populations. The

reduced Hamiltonian (2K) shown in Eq. (2) is obtained by

directly computing the one electron integrals and the elec-

tron repulsion integrals via the MOIntegrals function of the

Quantum Chemistry Toolbox [61] in the Maple computing

environment [63] and then applying the appropriate conver-

sions to put it into the same orbital basis as the 2-RDM. The

geminal energies (ǫi) then correspond to the eigenvalues of

the 2K matrix. The populations (pi) of the geminals are then

obtained via the following

pi = 〈vi|
2D|vi〉 (6)

where vi is the eigenvector of the reduced Hamiltonian cor-

responding to the the geminal energy ǫi and where 2D is the

particle-particle reduced density matrix (2-RDM).

Convolutional Neural Network.

Model Inputs. For a given molecular system, both the gem-

inal energies (ǫi) and the Hartree-Fock correlation tempera-

ture (T ∗

HF ) are input into the convolutional neural network.

Specifically, the geminal energies are encoded as partition

functions (Z)—computed according to Eq. (5)—for β val-

ues ranging from 0 to 20 by 0.4 where

β =
1

kT
(7)

and where k is the Boltzmann constant. The Hartree-Fock

correlation temperature is obtained by inserting Eq. (5) into

Eq. (4) which is inserted into Eq. (3) to obtain

E(T ) =
N(N − 1)
∑

i

eiǫi/kT

∑

j

ǫje
−ǫj/kT (8)

and then temperature is optimized via

scipy.optimize.minimize such that |EHF − E(T )| is

minimized.

Model Outputs. For a given molecular system, the output

of the convolutional neural net is a ∆ value representing

the difference between the Hartree-Fock correlation temper-

ature and the predicted CASSCF correlation temperature,

i.e., ∆ = T ∗

CAS − T ∗

HF . From this output, the predicted

correlation temperature corresponding to the CASSCF cal-

culation can be computed by adding the output (∆) to the

Hartree-Fock correlation temperature (T ∗

HF ), which can be

used—along with the known geminal energies (ǫi)—to cal-

culate the predicted CASSCF energy according to Eq. (8).

Training Data. All hydrocarbons isomers ranging from

two to seven carbon atoms are used to train the convolu-

tional neural net. Specifically, the training set—composed

of twenty-one hydrocarbon molecules—follows: 2.01:

‘Ethane’, 3.01: ‘Propane’, 4.01: ‘Butane’, 4.02: ‘2-

Methylpropane’, 5.01: ‘Pentane’, 5.02: ‘2-Methylbutane’,

5.03: ‘2,2-Dimethylpropane’, 6.01: ‘Hexane’, 6.02: ‘2-

Methylpentane’, 6.03: ‘3-Methylpentane’, 6.04: ‘2,2-

Dimethylbutane’, 6.05: ‘2,3-Dimethylbutane’, 7.01: ‘Hep-

tane’, 7.02: ‘3-Methylhexane’, 7.03: ‘2-Methylhexane’, 7.04:

‘2,2-Dimethylpentane’, 7.05: ‘2,3-Dimethylpentane’, 7.06:

‘2,4-Dimethylpentane’, 7.07: ‘3,3-Dimethylpentane’, 7.08:

‘3-Ethylpentane’, 7.09: ‘2,2,3-Trimethylbutane’.

Testing Data. All isomers of octane isomers as well as

nonane, decane, undecane, dodecane, tridecane, tetrade-

cane, and pentadecane are used to test the trained neural

net. Specifically, the testing set follows: 8.01: ‘Octane’,

8.02: ‘2-Methylheptane’, 8.03: ‘3-Methylheptane’, 8.04:

‘4-Methylheptane’, 8.05: ‘2,2-Dimethylhexane’, 8.06: ‘2,3-

Dimethylhexane’, 8.07: ‘2,4-Dimethylhexane’, 8.08: ‘2,5-

Dimethylhexane’, 8.09: ‘3,3-Dimethylhexane’, 8.1: ‘3,4-

Dimethylhexane’, 8.11: ‘3-Ethylhexane’, 8.12: ‘2,2,3-

Trimethylpentane’, 8.13: ‘2,2,4-Trimethylpentane’, 8.14:

‘2,3,3-Trimethylpentane’, 8.15: ‘2,3,4-Trimethylpentane’,

8.16: ‘3-Ethyl-2-Methylpentane’, 8.17: ‘3-Ethyl-3-

Methylpentane’, 8.18: ‘2,2,4,4-Tetramethylbutane’, 9.01:

‘Nonane’, 10.01: ‘Decane’, 11.01: ‘Undecane’, 12.01: ‘Do-

decane’, 13.01: ‘Tridecane’, 14.01: ‘Tetradecane’, 15.01:

‘Pentadecane’.

CNN Specifics. The convolutional neural network is com-

posed of an input layer, five additional dense layers, and an
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output layer. The input layer consists of partition functions

and the Hartree-Fock correlation temperature as specified in

the Model Inputs section, and the output layer is a dense

layer consisting of the ∆ value described in the Model Out-

puts section. The additional dense layers have 503, 240,

100, 50, and 20 nodes, respectively. All dense nodes are

initialized via the he_uniform kernel initializer with a relu
activation function. For the training of the convolutional net,

loss is measured via mean absolute error, and the adam opti-

mizer is implemented for 30, 000 epochs. This convolutional

neural network is implemented using Keras—Python’s deep

learning API [64].

Computational Scaling

For the testing set, scaling is dominated by the determina-

tion of the geminal energies, which are obtained via the di-

agonalization of the two-electron reduced Hamiltonian, a

computation that scales as O[r6] where r is the number of

orbitals in the active space. Thus, for a given molecule in the

testing set, computational expense for prediction of molec-

ular energies scales as O[r6]. The computational expense

of the training set is dominated by the determination of the

reference CASSCF or CCSD energies necessary to obtain

the reference correlation temperature—which are known to

scale approximately as O[N !] and O[N6], respectively, for a

given molecule whereN for CASSCF is the number of active

electrons and N for CCSD is the number of total electrons.
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