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ABSTRACT: Lignin is one of the most abundant biopolymers in nature. Although lignin-derived hard carbon (L-HC) has potential
to be used as a sodium-ion battery (SIB) anode but is limited by its poor electrochemical performance. In nature, lignin normally
coexists with cellulose and hemicellulose in agricultural biomass, and studies have applied different agricultural biomasses to make
SIB anodes; however, the underlying mechanism, especially the functionality of each component, is still unclear. In this study, we aim
to combine lignin with cellulose and/or hemicellulose to produce hard carbons with outstanding electrochemical performance and
low cost, and more importantly, unveil the underlying mechanisms. We found that the poor electrochemical performance of L-HC
was mainly due to its large surface area with high amount of oxygen-containing functional groups and its unique physical structure
that inhibit effective Na diffusion. Combining lignin with either cellulose or hemicellulose led to significantly improved
electrochemical performance of the resulting hard carbon, with cellulose mainly contributing to the increase of capacity and
hemicellulose mainly contributing to the stability of capacity during cycling and at high current density. Based on the comprehensive
consideration of both electrochemical performance (half and full cells) and economic perspectives, lignin combined with cellulose
showed great potential. Our study shed light on the contributions of each major biomass component on physical and electrochemical
properties of resulting hard carbon and designed a unique way to improve L-HC.
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H INTRODUCTION and suitable anode materials is critical for the development of
Energy storage technology has been flourishing in recent years SIBs. ' '

to decrease reliance on fossil fuels. Lithium-ion batteries (LIBs) Instead of ordered carbon (graphite), disordered carbon, for
are considered as one big scientific breakthrough in the last 30 example, hard carbon has shown promising electrochemical
years.l However, there are increasing concerns regarding the features such as low operating potential and considerable

limited availability and uneven distribution of required raw
materials such as lithium and cobalt.”? Compared with LIBs,
sodium-ion batteries (SIBs) have indispensable advantages such
as natural abundance, low cost of sodium, and high composi-
tional tolerance of sodium cathodes to incorporate transition
metals other than cobalt.*"® However, graphite, which is used in
LIB anodes, is no longer suitable for SIBs due to unfavorable
formation energy of Na—graphite intercalation compounds
(GICs) compared to that of Li.”* Therefore, finding promising

reversible capacity though the underlying storage mechanism
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remains elusive, including adsorption, intercalation, pore filling,
or combination of them. More importantly, hard carbons are
produced from diverse sources.”'* For example, reed straw, ">
corncob and peanut shell,'* brewer spent grain, walnut shell, and
grape pomace,'” corn straw,'® citrus peels,'” rape seed,'® and
lotus stem'” have been carbonized into hard carbon with specific
capacities ranging from 100 to 370 mAh/g. The diverse
capacities from different biomass materials lead to the question
of the role of each biomass component in determining the
battery’s electrochemical performance. In addition, there is lack
of detailed analysis of the relationship between biomass-derived
hard carbon composition/structure and SIB performance.
Nevertheless, the seasonal availability and inconsistent
composition of agricultural wastes would be against the
electrochemical quality of derived hard carbon and thus impose
challenges on consistently large-scale production.

Lignin is the second most abundant biopolymer in nature. It is
also the main byproduct generated in the paper and pulp
industry, and thus, it is a low-cost biomass with a consistent year-
round supply. Moreover, lignin is composed of carbon-rich
aromatic rings, making it a very attractive candidate for high
yield. However, previous studies found that raw lignin-derived
hard carbon fails to deliver good electrochemical performance,
such as low initial coulombic efficiency and significant capacity
decay.zo’21 Therefore, chemical modifications (e.g, nitrogen
doping, preoxidation) and structure re-engineering of lignin
(e.g., electrospinning to produce lignin nanofiber) were
conducted to improve the structural and chemical properties
of lignin-derived hard carbon as a SIB anode.’* %% Nevertheless,
these processes are not only tedious but are also adding
additional processing cost to hard carbon production. Co-
carbonization of lignin with other materials potentially endows a
positive synergistic effect between lignin and the other materials
via one-step synthesis. Recent work demonstrated that lignin
combined with pitch and epoxy resin led to improved
electrochemical performance.2 28 However, both pitch and
epoxy resin are nonrenewable petroleum-based products and
have sustainability concerns when they are used to produce
battery anodes at a large scale.

In this study, we aim to use cellulose and/or hemicellulose as
additives to mix with lignin and produce hard carbon materials
with outstanding electrochemical performance. Compared with
petroleum-based precursors (e.g, pitch and epoxy resin),
cellulose and hemicellulose are biorenewable and have a
relatively low cost. In fact, cellulose and hemicellulose, together
with lignin, are the three most abundant components in plant-
based biomass; and they hold distinct elemental, structural, and
thermochemical properties, which, in turn, provide grand
opportunities to produce high-performance hard carbon by
taking the advantages of these three components. Moreover, as
previously mentioned, hard carbons derived from agricultural
biomass containing different fractions of lignin, cellulose, and
hemicellulose have a wide range of specific capacities but the
underlying mechanisms are still unclear. Identifying the
functionality of each of the three components and their
synergistic effect on battery performance will provide critical
information to guide the selection of appropriate biomass to
produce high-performance hard carbon.

From our study, we found that lignin-derived hard carbon
showed poor electrochemical performance (e.g., capacity decay,
low capacity at high current density). This was mainly due to its
high specific surface area with oxygen-containing functional
groups reacting with an electrolyte to form a thick solid
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electrolyte interface (SEI) and unique physical structure
(different sizes of globular structure with pores on the surface)
that inhibits effective Na diffusion. However, when lignin is
supplemented with either cellulose or hemicellulose for
carbonization, its certain electrochemical performance was
improved, with cellulose mainly contributing to the increase of
capacity and hemicellulose mainly contributing to the stabilizing
of cycling capacity. Our study indicates that cellulose, hemi-
cellulose, and lignin contributed differently to the electro-
chemical properties of derived hard carbon and enables better
designs of hard carbon by rationally selecting different biomass
components to optimize the battery performance.

B MATERIALS AND METHODS

Synthesis of Cellulose, Hemicellulose, and Lignin-Derived
Hard Carbon. Cellulose (avicel cellulose) was purchased from Sigma-
Aldrich (St. Louis, MO). Hemicellulose (xylan from corn core) was
obtained from ALFA Chemistry, Protheragen Inc. (NY). Lignin
(alkaline, L0082, derived from natural sources) was purchased from
TCI America (Portland).

Lignin was carbonized individually or mixed thoroughly with the
other two components before carbonization. The samples were placed
in a tube furnace under constant nitrogen flow. The carbonization
temperature and the temperature ramping rate were set at 1400 °C and
S °C/min, respectively. The derived carbons included lignin-derived
hard carbon (L-HC), lignin and hemicellulose mixed at a mass ratio of
1:1 derived hard carbon (HL-HC), cellulose and lignin mixed at a mass
ratio of 1:1 derived hard carbon (CL-HC), and cellulose, hemicellulose,
and lignin mixed at a mass ratio of 1:1:1 derived hard carbon (CHL-
HC).

Carbon Characterization. The morphology of hard carbons was
characterized using a scanning electron microscope (JEOL IT-SO0HR,
JEOL, Tokyo, Japan). An automatic physical adsorption apparatus
(ASAP 2020 Plus HD88, Micromeritics Co., Ltd.), operating
temperature at —196 °C after being outgassed at 200 °C for 12 h
under vacuum, was used to measure the specific surface area of hard
carbons. The Bruker—Emmett—Teller (BET) method and pore size
distribution from the adsorption branches of the isotherms using the
density functional theory (DFT) method were applied. The poly-
morphism of hard carbon was measured using X-ray diffraction (XRD,
Shimadzu, Japan) with Cu Ka (wavelength 4 = 0.15406 nm). Raman
measurements were performed using a WITec alphaSOOR instrument
with a 532 nm excitation source. X-ray photoelectron spectroscopy
(XPS) characterization was performed with a scanning photoelectron
spectrometer microprobe (PHI Quantera SXM, ULVAC-PHI Inc,,
Japan), which was composed of an Al anode as the monochromatized
X-ray source to obtain the surface elemental composition and valence
state. The electrodes were soaked with flooded dimethyl carbonate
(DMC) for 15 min, and then, they were dried naturally in a glovebox
and loaded onto an XPS sample holder with O-ring sealing. Fourier
transform infrared (FTIR) spectroscopy was applied to identify the
functional groups, and spectra in the range of S00—4000 cm™" with a
resolution of 4 cm™" were recorded. Skeletal density data were recorded
on a Micromeritics AccuPyc 1340 pycnometer using a 1 cm® insert and
an equilibration rate of 0.03 psig/min. Helium was used as the analysis
gas. Closed pore volume was calculated as follows: V.= (1/p,) — (1/ pg)
where V_is the closed pore volume, p; is the skeletal density of the hard
carbon, and p, is the density of graphite, 2.26 g/ cc.?”*° Small-angle X-
ray scattering (SAXS) experiments were performed using a Xeuss 3.0
SAXS/WAXS beamline, equipped with a GeniX 3D Cu HFVLF
microfocus X-ray source with a wavelength of 0.154 nm (Cu Ka). The
sample-to-detector distance was 900 mm for SAXS, 370 mm for mid-
angle X-ray scattering (MAXS), and 43 mm for wide-angle X-ray
scattering (WAXS). The g-range was calibrated using a lanthanum
hexaboride standard for WAXS and a silver behenate standard for SAXS
and MAXS. Two-dimensional scattering patterns were obtained using a
Dectris EIGER 4M detector, with an exposure time of 2 h for SAXS, 1 h
for MAXS, and 30 min for WAXS. The scattering data were reduced and
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Figure 1. Morphology comparison of L-HC, CL-HC, HL-HC, and CHL-HC (carbonization temperature at 1400 °C). SEM magnification of X100 for
the first line and X1000 for the second line. L-HC showed a globular structure with different sizes and some with pores both on the surface and inside of
particles, while this structure does not appear on HL-HC and CHL-HC, as they formed irregular bigger chunks. For CL-HC, it seemed that they were
resistant to merge, and their unique morphologies remained; meanwhile, smaller cellulose strips and lignin with less pores were observed.
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Figure 2. (a) XRD patterns of hard carbon materials of L-HC, CL-HC, HL-HC, and CHL-HC. L-HC, CL-HC, and CHL-HC showed similar dy, with
arange of 0.382—0.384 nm, but the (002) peak (0.373 nm) of HL-HC shifted to a higher diffraction angle compared with other carbons, indicating the
formation of more graphitic structure compared with others. (b) Raman spectrum of hard carbon materials. HL-HC showed the lowest I,/I; ratio of
1.93, indicating that this combination had less defected carbon but more graphitic carbon. (c) N, adsorption/desorption isotherms of hard carbon
materials. L-HC showed the highest BET surface area of 161.201 m?/g, CHL-HC showed the lowest surface area of 30.374 m*/g, and others were in
the range of 50—60 m?/g. (d) Pore size distribution. All samples showed micropores, and for L-HC and HL-HC, there were a small amount of
mesopores in the range of 2—4 nm.

corrected for background and transmission using XSACT software. was calculated as D = 2 \/5/_3 R, where D is the pore diameter and
SAXS, MAXS, and WAXS profiles were merged using XSACT software. sy

The scattering profiles were vertically shifted to facilitate comparison.
Scattering plots are presented as scattering intensity, I(q), versus
scattering vector g, where q = (47/4) sin(6), 6 is one half of the
scattering angle, and / is the X-ray wavelength. Scattering curves were

R, is the radius of gyration.

Electrochemical Characterization. For half-cell testing, the
electrodes were made by mixing produced hard carbon with a
poly(tetrafluoroethylene) binder and carbon black in a mass ratio of

analyzed by Irena software using the unified fit equation to extract pore 8:1:1 on a copper foil. The electrodes were cut into a circular shape with
size as radius of gyration. Assuming spherical pores, the pore diameter a diameter of 12 mm, followed by drying at a 121 °C vacuum oven
538 https://doi.org/10.1021/acssuschemeng.2c04750
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Figure 3. (a) Galvanostatic first discharge/charge profiles of L-HC, CL-HC, HL-HC, and CHL-HC derived electrodes in half cells at a current rate of
100 mAh/g, in which CL-HC showed the highest specific charging capacity. (b) Contribution of plateau and slope capacity (duplicates), in which CL-
HC and CHL-HC showed higher plateau capacity compared with that of L-HC and HL-HC. (c) Coulombic efficiency, in which CL-HC and CHL-HC
showed higher initial columbic efficiency compared with that of L-HC and HL-HC. (d) Discharge cycling curves, in which L-HC showed remarkable
decay compared with others. (e) Charge cycling curves, in which L-HC showed remarkable decay compared with others. (f) Rate capability of different
hard carbon-derived electrodes, in which CL-HC showed good specific capacity at a current density from 0.2 to 0.7C (1C = 300 mA/g); HL-HC and
CHL-HC held capacity better at a higher density from 1.3 to 3.3C; L-HC showed remarkable lower specific capacity at higher current density. (g)
Long-term cycling of CL-HC at 0.5 A/g (1.7C). (h) Long-term cycling of CL-HC at 1 A/g (3.3C).

overnight. The mass loading of the active material was ~2 mg. A sodium
metal was used as the counter electrode and 1 M NaPF in diglyme was
used as the electrolyte. A piece of glass fiber (GF/D 47, Whatman) was
placed between the electrode and Na metal serving as a separator. The
battery assembly was operated in an argon-filled glovebox. Galvano-
static cycling tests were carried out using a battery tester (NEWARE,
Shen Zhen, China) in a voltage range of 0.01—-3 V (vs Na*/Na). Cyclic
voltammetry (CV) tests were performed between 0.01 and 3 V (vs
Na*/Na) using a multichannel potentiostat—galvanostat. All electro-
chemical tests were performed at 22 °C. The galvanostatic intermittent
titration technique (GITT) was employed in hard carbon half-cells after
activation. The resting period was 6 h while the pulse time was 30 min.
The current density was 0.1 A/g. For spherical particles, the ion
diffusion coefficient (D) was calculated following a previous paper.**
For full-cell testing, the cathode was prepared by mixing the
Na,V,(PO,); (NVP) active material, carbon black, and PVDF (at a
mass ratio of 9:0.5:0.5) in NMP solvent to form a slurry, and then drop-
cast on a carbon-coated aluminum foil. The prepared cathode was
punched into 10 mm diameter disks and dried overnight in a vacuum
oven at 120 °C. The mass loading of the active material was 3—4 mg.
The full cell was assembled using NVP as the cathode, 1 M NaPFq in
diglyme as the electrolyte, glass fiber as the separator, and hard carbon
or presodiation carbon as the anode. To eliminate the irreversible Na
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inventory loss caused by the parasitic electrode—electrolyte reactions,
the pristine CL-HC electrode was chemically presodiated in a 0.2 M Na
biphenyl solution (Na-Bp-Diglyme) for several minutes and then
washed with diglyme solvent, yielding presodiated CL-HC. Cyclic
voltammetry (CV) tests were performed between 1.6 and 3.8 V (vs
Na*/Na). All electrochemical tests were performed at 22 °C.

B RESULTS AND DISCUSSION

Synthesis and Characterization of Hard Carbons.
Lignin showed the highest carbon yield of 37.1% during
carbonization, and combining lignin with cellulose and hemi-
cellulose decreased the carbon yield to 24.7—25.8%. These
results reflect the higher stability of lignin during carbonization
compared with cellulose and hemicellulose (Table S1). The
morphology (SEM) of these hard carbons is shown in Figure 1.
We can see that L-HC showed a globular structure with different
sizes and some with pores both on the surface and inside of
particles, but this structure does not appear on HL-HC and
CHL-HC, which showed irregular bigger flakes. For CL-HC, it
appears that cellulose and lignin were resistant to merge, and
their unique morphologies remained (Figure 1); meanwhile,
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smaller cellulose strips and lignin granules with less pores were
observed.

Figure 2a shows the XRD results, and all hard carbons showed
two broad peaks of 002 (26 = 22°) and 100 (26 = 43°), which
are typical for disordered carbon. Among these hard carbons, L-
HC, CL-HC, and CHL-HC showed similar d, with a range of
0.382—0.384 nm (Table S1). The (002) peak of HL-HC shifted
to a higher diffraction angle with a decreased interlayer spacing
(dop, = 0.373 nm) of the graphene sheets, indicating the
formation of more graphitic structure of HL-HC compared with
other hard carbons. Figure 2b compares the Raman spectrum of
all derived hard carbons. The two characteristic bands at around
1340 and 1580 cm™ are attributed to the D band (disordered
sp® carbon/defected carbon) and G band (ordered sp” carbon/
graphitic carbon), respectively. The peak intensity ratio (Ip/Ig)
indicates the carbon materials’ disorder.”> Among the four
samples, HL-HC had the lowest I/ ratio of 1.93, indicating
that the combination of lignin and hemicellulose resulted in less
defected carbon but more graphitic carbon, which is consistent
with the XRD results.

As to nitrogen adsorption—desorption measurements (BET
and porosity) (Table S1 and Figure 2¢,d), L-HC had the highest
surface area of 161 m*/g and CHL-HC had the lowest surface
area of 30 m?/ g. The surface areas of other hard carbons were in
the range of 50—60 m?/ g. The large surface area of L-HC could
be due to its globular structure with different sizes of pores on
the surface as shown in SEM (Figure 1). The DFT pore size
distribution showed the existence of micropores for all hard
carbons (Figure 1d). There was a small amount of mesopores
with a range of 2—4 nm in L-HC and HL-HC. Dead pore volume
was obtained from helium psychometry. HL-HC showed the
largest closed pore volume (0.1107 cc/g), followed by CHL-HC
(0.0493 cc/g), CL-HC (0.0177 cc/g), and L-HC (0.0121 cc/g)
(Table S2). The higher closed pore volume could be due to
hemicellulose coating on lignin during carbonization, which may
cover up open pores on lignin and turn them into closed pores
(Figure 1). For CL-HC, it seems that cellulose was resistant to
be coated on lignin with the evidence that small cellulose strips
and lignin with open pores were observed (Figure 1). Dead pore
diameter was measured using SAXS (Figure S1 and Table S3).
HL-HC showed the highest closed pore diameter of 2.59 nm.
Closed pore diameters for the other hard carbons were about 2
nm. The closed pore diameter measured herein was the diameter
of dead pores/cavity between graphite carbons, and the high
closed pore diameter of HL-HC might be due to its formation of
more graphitic carbon verified by XRD and Raman.

The specific surface area and closed pores were different after
adding cellulose and hemicellulose. The high surface area and
low closed pores of L-HC could result in a high adsorption
capacity (>0.1V) and meanwhile a low ICE (Tables S1 and S2).
Combined with cellulose and hemicellulose, the surface area
decreased, and the closed pore increased, which was suitable for
Na® intercalation and could provide an impressive electro-
chemical performance.

As to the elemental composition characterized by XPS, we
found that L-HC showed less amount of carbon (75.7%) than C-
HC (88.9%) and H-HC (89.1%) while almost doubled the
amount of oxygen (16.7%) than the other two. The higher
oxygen content in lignin-derived hard carbon might be due to
the fact that lignin is more thermochemically stable and resistant
to be carbonized compared with cellulose and hemicellulose.
The higher content of oxygen, the more potential formation of
oxygen-containing functional groups, which might lead to
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degradation of electrolytes and could further lead to the
difference in adsorption capacity of SIBs.*°

To summarize, among L-HC, CL-HC, HL-HC, CHL-HC
samples, L-HC has the highest yield and specific surface area and
lowest closed pore volume. Lignin combined with hemi-
cellulose-derived hard carbon (HL-HC) had more graphitic
carbon, smaller interlayer space, and highest closed pore volume
and diameter compared with others. From the elemental
perspective, L-HC showed the highest O content, and by
mixing cellulose or hemicellulose, the O content could be
reduced. In addition, they all showed diverse morphology. All of
these lead to their different electrochemical and economic
performance as we will discuss in the following sections.

Electrochemical Characterization of Hard Carbons in
Half Cells. We assembled the hard carbons into Na-ion half cells
to measure the electrochemical performances. Figure 3a shows
the first galvanostatic discharge/charge curves at a current
density of 100 mA/g. The CL-HC sample showed the highest
reversible capacity of 259 mAh/g, followed by CHL-HC (240
mAh/g), HL-HC (236 mAh/g), and L-HC (231 mAh/g). The
capacities were in a reasonable range compared with previous
studies.""'® As to the distribution of plateau and slope capacity,
CHL-HC and CL-HC showed a higher percentage of plateau
capacities of 62.8 and 61.8%, respectively, than L-HC (55.8%)
and HL-HC (46.0%) did (Figure 3b). To understand the
sodium storage mechanisms in the hard carbons, cyclic
voltammetry (CV) with varying scanning rates was conducted,
followed by curve fitting to interpret pseudocapacitive Na*
storage and diffusive Na storage (Figure $2).">*77% The anodic
and cathodic peak currents in the plateau region were assigned as
P and P’, and the anodic and cathodic peak currents in the slope
region were assigned as S and S’. The curve fitting between
current and scan rates was based on the formulation: i = a X v°. If
b is close to 1, it indicates a surface mass transport with fast
kinetics, while if b is close to 0.5, it indicates a bulk mass
transportation with slow kinetics.">*” L-HC and CL-HC were
selected as representative hard carbons, and based on our results,
both of them showed b value close to 0.5 in the plateau region
and close to 1 in the slope region, indicating a predominant Na
surface adsorption mechanism in the slope region and a
predominant Na intercalation mechanism in the plateau region,
which was in accordance with some previous studies stating that
the slope capacity could be attributed to the Na-ion storage at
surface and defect sites, edges of hard carbon, while the plateau
capacity was attributed to Na-ion intercalation between
graphene lagrers (dooz) and storage in the closed voids in hard
carbon.*™* From the previously discussed possible mecha-
nisms, the higher capacity of CL-HC and CHL-HC could be
ascribed to the larger interlayer spaces (dyg,) and more defects
(In/Ig), which are beneficial to Na storage, and the slightly lower
capacity of L-HC and HL-HC could be ascribed to their smaller
interlayer spaces and less defects (Table S1).

The initial coulombic efficiencies (ICEs) of CL-HC and
CHL-HC were higher (69—70%) than those of L-HC and HL-
HC (64—65%) (Figure 3c). The reason for the low initial
coulombic efficiency of L-HC was mainly due to its large surface
area with high amount of oxygen-containing functional groups
and other impurities (Tables S1 and S4), which could react with
the electrolyte to form SEI, resulting in a low initial coulombic
efficiency.>** As to HL-HC, even though the surface area was
low, it had the highest amount of closed pore volume, which
might be one possible reason causing the low ICE (Table S2).
The coulombic efficiency of CL-HC and CHL-HC gradually
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Figure 4. XPS deconvoluted spectra after 100 cycles for L-HC, CL-HC,

and HL-HC. (a) High-resolution C 1s spectrum of L-HC, CL-HC, and HL-

HC. (b) High-resolution F 1s spectrum of L, CL-HC, and HL-HC. (c) High-resolution P 2p spectrum of L-HC, CL-HC, and HL-HC. (d) Percentage
of C 1s functional groups, in which L-HC showed a higher percentage of C=0 compared with that of CL-HC and HL-HC. (e) Percentage of F 1s
functional groups, in which L-HC showed a lower amount of NaF compared with that of CL-HC and HL-HC. (f) Percentage of P 2p functional groups,
in which L-HC showed a remarkably higher amount of Na,PO,F,/P-F compared with that of CL-HC and HL-HC.

increased to over 99.7% and remained stable during the 100
cycles. However, the coulombic efficiency of L-HC and HL-HC
showed fluctuations, which might be due to their poor surface
and structure properties (Figure 3¢).

Figure 3d,e shows the discharge/charge curves during the first
100 cycles, with CL-HC and CHL-HC showing a similar
decreasing trend. As to HL-HC, there was a slight increase of the
capacity during the first 20 cycles, followed by a decrease of
capacity, which might be due to its higher closed pore volume
and diameter, indicating that HL-HC needs more time to be
activated and stabilized (Table S2). L-HC had a similar capacity,
decreasing trend as CL-HC and CHL-HC, but its capacity decay
was much higher in both slope and plateau capacity decay
(around 30—40%) (Figure S3). One possible reason for the high
capacity decay of L-HC could be attributed to its large surface

area and associated with high amount of oxygen-containing
functional groups (Tables S1 and S2). We further applied XPS
to investigate the electrolyte decomposition products on the
electrode surface films after 100 cycles (Figure 4). From the
overall atomic concentration, we found that L-HC had higher
atomic O (30.5%) compared with CL-HC (29.4%) and HL-HC
(27.6%), and moreover, L-HC had lower C/O, F/O, and P/O
ratios compared with those of CL-HC and HL-HC (Table SS).
From the C 1s spectrum, four peaks were observed in all samples
at binding energies of 283.21, 284.79, 286.59, and 289.24 eV,
which were associated with carbide, C—C, C—0O, and C=0
groups, respectively (Figure 4a). However, the percentage share
of these groups was different: L-HC had a higher percentage of
C=0O0 than CL-HC and HL-HC had (Figure 4d). As to the F 1s
spectrum, two peaks were found at binding energies of 684.18
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and 686.99 eV, which were assigned to P-F and NaF,
respectively (Figure 4b). Compared with CL-HC and HL-HC,
L-HC showed a lower amount of NaF (Figure 4e). Previous
research analyzed the relationship between the chemical
composition of SIB electrode’s SEI and the electrochemical
performance and reported that poor electrochemical perform-
ances were related to either high Na,COj; or low NaF content in
the electrode’s SEI after cycling,*> which supported our
hypothesis that the poor electrochemical performance of L-
HC is due to the low NaF in the formed SEIL As to the P 2p
spectrum, two peaks at 132.88 and 137.21 eV were determined
corresponding to phosphate and Na,PO,F_/P-F, respectively
(Figure 4c). The percentage contributions of these two groups
were different, in which L-HC had a much higher amount of
Na,PO,F,/P-F than CL-HC and HL-HC had (Figure 4f).
Na,PO,F_/P-F are the compounds in SEI formed during cycling,
and the higher percentage of Na,PO,F,/P-F in L-HC indicates
more reaction between the electrolyte and the functional groups
of the hard carbon, and thus more SEI formation.***” Overall,
the results revealed that the poor electrochemical performance
and high capacity decay of L-HC could be due to the formation
of thick SEI during cycling.

To further understand the sodium-ion diffusion pattern in the
hard carbon, we applied the galvanostatic intermittent titration
technique (GITT) to calculate the Na-ion diffusion coefficient
in L-HC, CL-HC, and HL-HC samples. The apparent diffusion
coefficient of Na ions was computed according to Fick’s second
law (eq 1)

2 2
D 4 [ mgVy | [ AE,
= —| —
e at\ MgS | | AE, (1)
where 7 was the pulse duration, my was the active mass, Vy; was
the molar volume, My was the active mass, S was the active

surface area, and AE, and AE, were derived from the GITT
curves.*® The sodiation process pattern was similar for the L-
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HC, CL-HC, and HL-HC electrodes (Figure S4). The Na-ion
diffusion coefficient at the sloping region was much higher than
that at the plateau region, which was mainly due to the widely
available defect sites, micropores, and vacancies.”® As defects
and micropores were gradually occupied, Na ions started
implanting in the interlayer space of the graphite-like hard
carbon, during which Na ions need to overcome high energy
barriers, causing a sharp decrease of the apparent diffusion
coefficient at the early stage of the plateau region. After Na ions
intercalated into the interlayer space, the interlayer space was
expanded, which benefits further Na-ion embedding process and
results in an increased apparent diffusion coefficient at the late
stage of the plateau region. It should be noted that the apparent
diffusion coeflicient of CL-HC and HL-HC was higher than that
of the L-HC in both plateau and slope regions (Figure S4),
which could be a possible reason for the improved electro-
chemical performance and capacity retention of CL-HC and
HL-HC compared with L-HC.

We further evaluated the rate performance of the L-HC, CL-
HC, HL-HC, and CHL-HC electrodes at various rates from 0.2
to 3.3C (1C = 300 mA/g) (Figure 3f). Among the four
electrodes, CL-HC showed the highest capacity at current
densities from 0.2 to 0.7C and then presented a similar level with
HL-HC and CHL-HC when further increasing the current
densities from 1.3 to 3.3C. As to HL-HC and CHL-HC, even
though their capacities were lower than CL-HC and L-HC at a
low current density, they retain well when the current density
increased from 0.2 to 1.3C, and at a high current density of 1.3C,
the capacities still hold at around 200 mAh/g, indicating that
hard carbon blended with hemicellulose is beneficial for capacity
retaining, especially at a high current density. Interestingly, as we
reduced the current density back to 0.2C, both HL-HC and
CHL-HC bounced back to around 290 mAh/g, slightly higher
than their initial stage at 0.2C, indicating that more activation
process is needed for hard carbon derived from the biomass-
containing hemicellulose. The capacity of L-HC decayed quickly
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with the increasing current density, which might be related to
thick SEI formation due to its high surface area and high amount
of oxygen-containing functional groups and its particular
structure that hindered Na transportation during cycling
(Figures 1, 4 and S4 and Tables S1 and S4).

Finally, we also performed the long cycling of CL-HC at rates
0f 0.5 and 1.0 A/g. We could see that CL-HC exhibited an initial
capacity of 186 mAh/g at 0.5 A/g, followed by a slight decrease
during the first 50 cycles. After that, almost no capacity loss was
observed, and a final capacity of 157 mAh/g could be obtained
after 410 cycles. At 1 A/g, a similar trend was found. The initial
capacity of CL-HC was 129 mAh/g, and CL-HC could still
maintain a reversible capacity of 122 mAh/g after 1000 cycles
(Figure 3gh).

From previous results, we found that L-HC had poor
electrochemical performance in terms of relatively low capacity,
low initial columbic efficiency, high capacity decay during
cycling, and poor capacity holding ability at high current density,
which was mainly due to the high specific surface area, high
oxygen-containing functional groups on the surface, other
impurities reacting with electrolytes, and particular physical
structure that inhibit effective Na diffusion. However, when
lignin is mixed with either cellulose or hemicellulose for
carbonization, its certain electrochemical performance property
was improved, with cellulose mainly contributing to the increase
of capacity and hemicellulose mainly contributing to the stability
of capacity during cycling and at high current density. These
findings indicate that cellulose, hemicellulose, and lignin have
contributed differently to the resulting hard carbon as battery
anode materials, and their different combination will affect the
battery performance.
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Economic Assessment. To have a comprehensive under-
standing of the material selection on the economics of hard
carbon, several parameters were evaluated and considered
together, which included the market selling prices of raw
cellulose, hemicellulose and lignin, carbon yield, carbon price,
capacity, and the final price/performance ratio of different hard
carbons (Figure S). The market selling prices of cellulose,
hemicellulose, and lignin were set at $4.5/kg, $39.8/kg, and
$0.6/kg, respectively, based on the mean selling price from the
quotes of several companies (based on the year 2021 in the U.S.
market). We could see that L-HC had the lowest price/
performance ratio of $0.0065/Ah, followed by CL-HC ($0.034/
Ah). Since hemicellulose had the highest selling price, any
material blended with hemicellulose showed a relatively high
price/performance ratio, indicating that hemicellulose may not
be a good source to be used for sodium-ion anode production
from the economic standpoint. Even though L-HC had the
lowest price/performance ratio, the fast capacity decay of L-HC
and the poor performance at high current density make L-HC
not a good choice in real practice. Instead, CL-HC could be a
good choice for further investigation and application.

Full Cell Performance. Due to the better electrochemical
and economic performance of CL-HC, we further explored the
practical application of the CL-HC anode in the full cell. When
the capacity ratio of the pristine CL-HC anode to the
Na,V,(PO,); (NVP) cathode is 1.2, the full cell cannot be
cycled stably, and the capacity decays rapidly, which is caused by
the low ICE of the CL-HC anode (Figure 3e). To compensate
for the irreversible Na loss of the CL-HC anode, we adopt a
facile and efficient chemical presodiation strategy to modify the
anode side. Figure 6a shows the first charge—discharge profiles
of the presodiated CL-HC anode and NVP cathode at 2C.
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Compared with the pristine CL-HC anode with a low ICE of
70%, the presodiated CL-HC anode delivers a high ICE of 229%,
indicating that the irreversible Na has been completely
compensated. Notably, the oversodiation of the CL-HC anode
can not only ensure that there is sufficient Na source to
compensate for the low CE of the anode in the next few cycles
(lower than 90%) but also can compensate for the low ICE of the
cathode (only 92%). Figure 6b shows the cycling stability of the
presodiated CL-HCIINa half-cell at a current density of 200 mA/
g. After 100 cycles, the presodiated CL-HC anode has a
reversible capacity of 220 mA/g with a capacity retention of
95%, which is similar to the pristine CL-HC anode under the
same conditions, indicating the feasibility of chemical
presodiation. The presodiated CL-HCIINVP full cell is also
assembled at a capacity ratio (N/P) of 1.2/1 (based on the CL-
HC capacity to NVP capacity at the same current). As shown in
Figure 6¢,d, the cycling stability of the presodiated CL-HCIINVP
full cell has been significantly improved. The presodiated CL-
HCIINVP full cell has a high ICE and a stable charge—discharge
plateau, indicating that the irreversible capacity is compensated
(Figure 6¢). After 100 cycles, the presodiated CL-HCIINVP full
cell still has a high specific capacity of 104 mA/g with a capacity
retention of 97%. As a result, the good electrochemical
performance of the CL-HC anode in half and full cells together
with its cost-effective economic performance illustrate its
potential value in practical applications.

B CONCLUSIONS

In this study, we have demonstrated that biowaste lignin
supplemented with cellulose and hemicellulose could serve as an
ideal precursor to produce hard carbon for the high-perform-
ance SIB anode. Due to its large surface area, high amount of
oxygen-containing functional groups, and unique physical
structure (different sizes of globular structure with pores on
the surface) that inhibit effective Na-ion diffusion, the lignin-
derived hard carbon had poor electrochemical performance as
an SIB anode. However, by combining lignin with cellulose and
hemicellulose, the derived hard carbon had a significantly
improved electrochemical performance with the highest
capacity of 259 mAh/g and about 80% of capacity retention
after 100 cycling. The improved performance was mainly
attributed to the expanded interlayer spaces and reduced surface
area of the hard carbon. Moreover, we unveiled that cellulose
mainly contributed to the increase of capacity during cycling and
hemicellulose mainly contributed to the stability of capacity at
high current densities. We further applied a comprehensive
economic analysis of the hard carbon production and found that
lignin combined with cellulose had great potential for further
application. The practical feasibility of CL-HC in the full cell was
further confirmed by combining with the Na;V,(PO,); (NVP)
cathode, delivering a reversible capacity of 104 mA/g with a
capacity retention of 97% after 100 cycles. In the future, the ratio
of lignin, cellulose, and hemicellulose will be systematically
investigated to identify the best mixture of the three components
to achieve the optimal electrochemical and economic perform-
ances of hard carbon.
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Yield and structural information of hard carbons (Table
S1); closed pore information of hard carbons (Table S2);
merged SAXS/MAXS/WAXS profiles of the hard carbons
(Figure S1); radius of gyration (Ry) and Porod exponent
(P) obtained from applying the unified fit function to the
SAXS/MAXS/WAXS profiles of hard carbons (Table
S3); elemental composition of hard carbons (Table S4);
cyclic voltammetry (CV) curves of hard carbon-derived
electrodes with varying rates and corresponding linear
fitting (Figure S2); elemental composition of hard
carbon-derived electrodes after cycling (Table SS);
total, plateau, and slope capacity retentions of hard
carbon-derived electrodes (Figure S3); and Na-ion
apparent diffusion coeflicients of hard carbon-derived
electrodes (Figure $4) (PDF)
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